

-

S.pneumoniae MOI

Supplementary figure 1

(A-C) Figure 1 data visualizing variation between donors. Dots represent values of individual donors. Lines connect data points of every individual donor. *p<0.05, **p<0.01 (Repeated measures ANOVA with post-hoc Bonferroni correction).

Supplementary figure 2

Respiratory epithelial cells were stimulated with *M. pneumoniae* and *S. pneumoniae* with multiplicity of infection 10 or 100. (A-D) *IL6* and *CXCL8* gene expression was assessed at five hours (n=4-10/group). (E) *CCL20* gene expression was assessed after five hours (n=5-11/group). (F-H) *CCL2* gene expression was assessed after five hours (n=5-12/group). (I) *S. pneumoniae* Colony Forming Units (CFUs) after 0 and 18 hours of incubation with A549 cells. (J) IL-8 levels in culture supernatant after stimulation of A549 cells with live *M. pneumoniae* and *S. pneumoniae* at different MOIs. (A-H) Data shown of at least two independent experiments. (I-J) Data of one representative experiment. Dots represent biological replicates and lines group medians. Bars represent group means and error bars SEM. *p<0.05, **p<0.01, ***p<0.001 (ANOVA with posthoc Bonferroni correction).

Supplementary figure 3

(A-C) Respiratory epithelial cells were stimulated with 100 ng/mL FSL-1 or 1 μ g/mL PAM3CSK4. *CCL20* gene expression was assessed after five hours (n=3-10/group). Dots represent biological replicates and lines group medians. ***p<0.001 (ANOVA with post-hoc Bonferroni correction). (D-E) A549 cells were stimulated with *Haemophilus influenzae* with multiplicity of infection 1, 10 or 100 or 10-100 ng/mL LPS. *IL6* and *CXCL8* gene expression was assessed at five hours (n=2-3/group). (F) TLR4 signaling as assessed by fold increase in bioluminescence of TLR4-luciferase reporter cells upon stimulation with different doses of bacteria (n=3/dose). (G) Mean fold increase in bioluminescence by TLR2 reporter assays after stimulation with alive or heat-killed *M. pneumoniae* or *S. pneumoniae* at MOI 10 (H) IL-6 levels in culture medium after 24 hours of stimulation of A549 cells with *M. pneumoniae* in the presence of TLR10 blocking antibody or isotype control. (I) IL-6 levels in culture medium after 24 hours of stimulation with 2 µg/mL of *M. pneumoniae* lipoproteins with either a TLR10-blocking antibody or isotype control. (L) IL-1β levels in culture medium after 24 hours of stimulation with live *M. pneumoniae* or *S. pneumoniae* at MOI 10 or 100. (A-C) Data shown of at least two independent experiments. (D-G) Data shown of one experiment. (A-E) Dots represent biological replicates and lines group medians. Bars represent group means and error bars SEM. *p<0.05, **p<0.01, ***p<0.01 (ANOVA with post-hoc Bonferroni correction or comparing EC₅₀ of fitted dose-response curves).

Supplementary figure 4

(A-C) Detroit 562 cells were stimulated with 100 ng/mL FSL-1 or vehicle controls and simultaneous with 5 ng/mL IL-1 alpha or vehicle control. *IL33* and *CXCL8* gene expression was assessed after 5 hours. Bars represent group means and error bars SEM. Data of 2 independent experiments.

Supplemental Information

Full statistical report

All performed tests are reported in the tables below with exact p-values. Technical replicates were averaged and statistical tests were applied on biological replicates or individual patients. We assumed log-normal distribution for cytokine levels, gene expression ratios and TLR signaling data.

Figure 1

Analyses were paired for individual donors.

	Data sets	Statistical test	Exact p-value
1A	All groups	Repeated measures ANOVA	.0112
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.406
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.462
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 3.057
1B	All groups	Repeated measures ANOVA	.0093
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.652
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.307
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 2.655
1C	All groups	Repeated measures ANOVA	.0132
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 2.803
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.543
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 1.740

Figure 2

	Data sets	Statistical test	Exact p-value
2A	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.153
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 6.546
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 5.394
2B	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.748
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.852
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.104
2C	All groups	One-way ANOVA	.0005
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = .0437
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.618
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 4.574
2D	All groups	One-way ANOVA	.0008
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.425
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 4.491
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 3.066
2E	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 4.671
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 10.48
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 5.395
2F	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 3.023
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 8.874
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 4.856

Figure 3

Both doses and fold increases in TLR2 signaling were ¹⁰log-transformed. A three parameter doseresponse curve with constrained top and bottom were fitted to the data. All dose-response curves were assumed to have a standard slope. We tested if log(EC₅₀) parameters were the same or different for *M. pneumoniae* and *S. pneumoniae*.

	Data sets	Statistical test	Exact p-value
3E	All groups	$Log(EC_{50})$ same for both data sets	< .0001
		F(DFn, DFd)	52.46 (1,14)
	Mp (all doses)	Mp EC ₅₀	9.942
	Sp (all doses)	<i>Sp</i> EC ₅₀	20.47
	Mp and Sp	EC₅₀ ratio	2.059
3F	All groups	$Log(EC_{50})$ same for both data sets	< .0001
		F(DFn, DFd)	2654 (1,20)
	Mp (all doses)	Mp EC ₅₀	.2998
	Sp (all doses)	<i>Sp</i> EC ₅₀	8.355
	Mp and Sp	EC ₅₀ ratio	27.87
3G	All groups	$Log(EC_{50})$ same for both data sets	< .0001
		F(DFn, DFd)	126.4 (1,20)
	Mp (all doses)	Mp EC ₅₀	5.750
	Sp (all doses)	<i>Sp</i> EC ₅₀	16.74
	Mp and Sp	EC₅₀ ratio	2.911
ЗH	All groups	Log(EC ₅₀) same for both data sets	< .0001
		F(DFn, DFd)	761.7 (1,20)
	Mp (all doses)	Mp EC ₅₀	.4562
	Sp (all doses)	<i>Sp</i> EC ₅₀	7.251
	Mp and Sp	EC₅₀ ratio	15.89

Figure 4

	Data sets	Statistical test	Exact p-value
4A	All groups	One-way ANOVA	.0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.061
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.538
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 4.477
4B	All groups	One-way ANOVA	.0219
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 2.299
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 3.177
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = .8780
4C	All groups	One-way ANOVA	.0008
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.501
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 3.578
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 2.077
4D	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 1.318
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 3.710
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 5.028
4E	All groups	One-way ANOVA	.0038
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = 2.860
	IL-1α control vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 4.235
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 1.375
4F	All groups	One-way ANOVA	.0426
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = .4484
	IL-1α control vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 2.512
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 2.960
4G	All groups	One-way ANOVA	.0214
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = .4423
	IL-1α control vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 3.256
	<i>Mp</i> 100 vs <i>Sp</i> 100	Post-hoc Bonferroni's MCT	t = 2.814

Supplementary Figure 1

Statistical tests are the same as for Figure 1.

Supplementary Figure 2

	Data sets	Statistical test	Exact p-value
S2A	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 4.390
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 9.925
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.053
S2B	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = .4903
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 6.971
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.796
S2C	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 3.445
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 11.79
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 7.230
S2D	All groups	One-way ANOVA	< .0001
	Control vs. Mp 100	Post-hoc Bonferroni's MCT	t = 6.448
	Control vs Sp 100	Post-hoc Bonferroni's MCT	t = 7.510
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = .5439
S2E	All groups	One-way ANOVA	< .0001
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = 5.154
	IL-1α control vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.724
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = .5295
S2F	All groups	One-way ANOVA	.0685
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	n/a
	IL-1α control vs Sp 100	Post-hoc Bonferroni's MCT	n/a
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	n/a
S2G	All groups	One-way ANOVA	.0008
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = 3.585
	IL-1α control vs Sp 100	Post-hoc Bonferroni's MCT	t = 3.718
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = .1239
S2H	All groups	One-way ANOVA	< .0001
	IL-1α control vs. <i>Mp</i> 100	Post-hoc Bonferroni's MCT	t = 2.004
	IL-1α control vs Sp 100	Post-hoc Bonferroni's MCT	t = 5.315
	Mp 100 vs Sp 100	Post-hoc Bonferroni's MCT	t = 2.904

Supplementary Figure 3

	Data sets	Statistical test	Exact p-value
S3A	All groups	One-way ANOVA	< .0001
	Control vs. FSL-1	Post-hoc Bonferroni's MCT	t = 21.02
	Control vs PAM3CSK4	Post-hoc Bonferroni's MCT	t = 12.28
S3B	All groups	One-way ANOVA	< .0001
	Control vs. FSL-1	Post-hoc Bonferroni's MCT	t = 27.65
	Control vs PAM3CSK4	Post-hoc Bonferroni's MCT	t = 13.74
S3C	All groups	One-way ANOVA	< .0001
	Control vs. FSL-1	Post-hoc Bonferroni's MCT	t = 11.10
	Control vs PAM3CSK4	Post-hoc Bonferroni's MCT	t = 10.53

Supplementary Figure 4

	Data sets	Statistical test	Exact p-value
S4A	IL-1α vs. IL-1α + FSL-1	Paired T-test	.0244
S4B	IL-1α vs. IL-1α + FSL-1	Paired T-test	.2395
S4C	IL-1α vs. IL-1α + FSL-1	Paired T-test	.6961

Detailed methods for quantitative PCR

Epithelial cell samples were washed with PBS and dry cells were flash frozen until mRNA extraction. Epithelial cells were lysed in culture plate using lysis buffer from the Nucleospin RNA extraction kit (Macherey-Nagel, Düren, Germany). RNA was extracted according to manufacturer's instructions and then incubated with DNAse I (Promega, Madison, USA) for 15 minutes at room temperature. Extracted RNA was quantified with a DS-11 FX spectrophotometer (DeNovix, Wilmington, USA) and A₂₆₀/A₂₈₀ ratios were used to assess RNA purity. 1 µg of RNA was used for reverse transcription using the Sensifast cDNA synthesis kit according to manufacturer's instructions (Bioline Reagents, London, UK). qPCR target sequences for forward and reverse primers were on different exons separated by introns larger than 500 base pairs to avoid amplification of contaminant genomic DNA. Primer specificity was tested in silico using BLAST and in vitro verification of specificity was performed with melting curve analysis and gel electrophoresis. Only primer sets with PCR efficiencies between 95-105% were accepted. The following primer sets were used: GAPDH: Fw 5'-GTCGGAGTCAACGGATT-3', Rv 5'-AAGCTTCCCGTTCTCAG-3', CCL2 (MCP-1): Fw 5'-TCCAGCATGAAAGTCTCTG-3', Rv 5'-CGAGCCTCTGCACTGA-3', CCL20 (MIP-3α): Fw 5'-GAAGGCTGTGACATCAATG-3', Rv 5'-CCCCAGCAAGGTTCTT-3', IL33: Fw 5'-AACACCCCTCAAATGAATC-3', Rv 5'-CTTGCATTCAAATGAAACAC-3', CXCL8 (IL-8): Fw 5'-CCGGAAGGAACCATCT-3', Rv 5'-TTGGGGTGGAAAGGTT-3', IL17RB (IL-25 receptor): Fw 5'-GGCACGAAAGGATCAAG-3', Rv 5'-CTGCAATGGTTTTGAAGAA-3'. The reaction mix consisted of SensiMix SYBR & Fluorescein Kit (Bioline reagents), 10 µM of forward and reverse primer, Mg²⁺ final concentrations were 4.0 mM and total reaction volume was 20 µL. PCR reactions were performed in clear Hard-Shell PCR plates (Bio-Rad Laboratories, Hercules, USA) sealed with Microseal B adhesive seals (Bio-Rad Laboratories, Hercules, USA) in a CFX96 Real-Time system C1000 (Bio-Rad laboratories). The PCR protocol consisted of 10 minutes at 95°C, 40 cycles of 15 seconds at 95°C, and 1 minute at 60°C

followed by at Amplification and melting curves were inspected visually and technical replicates were considered adequate if they differed no more than 1 cycle. The quantification cycle (C_q) was determined using Bio-rad CFX manager algorithm (Bio-Rad Laboratories). *GAPDH* was used as a reference gene for normalizing gene expression. Relative gene expression was normalized to medium controls and expressed as a ratio.