Vitamin D Requirements and Upper Limits in Children 0-36 months: A Systematic Review

Investigators:

Andrew R. Beauchesne, MD, MS¹ Kelly Copeland Cara, MS² Danielle M. Krobath, MS² Laura Paige Penkert, MS, MPH^{1,2} Shruti P. Shertukde, MS² Danielle S. Cahoon, MS, PhD² Belen Prado, MBA, PhD² Ruogu Li, MS, MPH^{1,2} Qisi Yao, MPH¹ Jing Huang, MS, MPH^{1,2} Tee Reh, MPH¹ **Principal Investigator:** Mei Chung, PhD, MPH^{1,2*} **Research Librarian:** Amy E. LaVertu, MLS^{1,2}

Affiliations:

¹ School of Medicine, Tufts University, Boston, Massachusetts (U.S.A.)

² Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts (U.S.A.)

*Corresponding to:

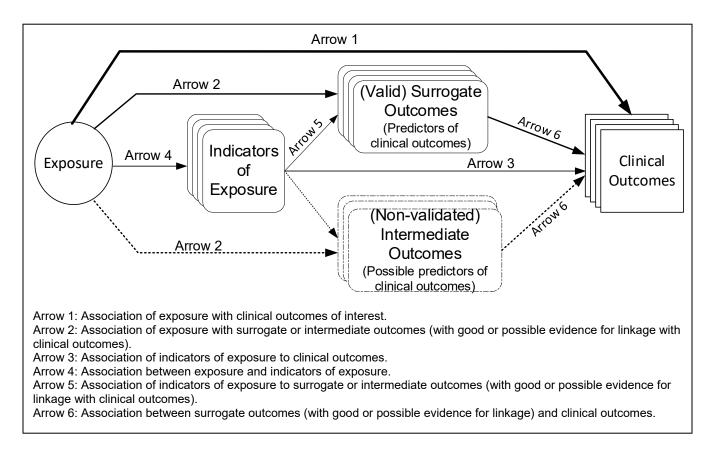
150 Harrison Ave, Boston, Masshachusetts 02111 (U.S.A.). Email: Mei_Chun.Chung@tufts.edu. Work TEL: 1+617-636-2966

Funding: This work was supported by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO).

Conflicts of interest: None to disclose.

Table of Contents

Background	4
Key Questions and Study Eligibility Criteria	
I. Vitamin D Requirements	
II. Vitamin D Upper Limits	
Methods	12
Literature Searches and Study Selection Process	
Data Extraction	
Risk of Bias Assessment	
Data Synthesis and Strength of Evidence Rating	
Meta-analysis	
Organization of this report	
Results	
I. Vitamin D Requirements	
KQ1. What is the effect of different levels of vitamin D intake on health outcomes in	
0 to 4 years?	
KQ1. Atopic Outcomes: Asthma, Wheezing, and Eczema.	
KQ1. Infectious Disease Outcomes	
KQ1. Growth and Neurological Development Outcomes	
KQ1. Rickets	
KQ1. Bone Mineral Content and Bone Mineral Density Outcomes	
KQ1. Blood Pressure Outcomes	
KQ1. UV Light Studies	
KQ2: What is the association between serum 25(OH)D concentrations and health out	
children aged 0 to 4 years?	
KQ2. Atopic Outcomes: Asthma, Wheezing, and Eczema	
KQ2. Infectious Disease Outcomes	
KQ2. Autoimmune Disease Outcomes	59
KQ2. Growth and Neurological Development Outcomes	
KQ2. Fracture Outcome	
KQ2. Blood Pressure	71
KQ3. What is the effect of vitamin D intake on serum 25(OH)D concentrations in child	ldren aged 0
to 4 years?	75
KQ3. Studies comparing different levels of daily vitamin D supplementation	
KQ3 Sub-section 2. Studies using non-daily vitamin D supplementation dosing regim	ens 98
KQ3 Sub-section 3. Studies comparing supplementation for post-partum mothers to	
supplementation for infants	
KQ3 Sub-section 4. Studies using food interventions with different levels of vitamin I	
comparing food interventions with vitamin D supplements	
KQ3 Sub-section 5. Studies examining the effects of combined vitamin D and calcium	
supplementation	
II. Vitamin D Upper Limits	
ULs KQ1a. At what levels of vitamin D intake are adverse effects observed in childre	-
years?	


ULs KQ1b. What are levels of vitamin D intake at which a prespecified threshold of serum
25(OH)D is reached in children aged 0 to 4 years?
Conclusions
Vitamin D Requirements138
KQ1. What is the effect of different levels of vitamin D intake on health outcomes in children aged
0 to 4 years?
KQ2. What is the association between serum 25(OH)D concentrations and health outcomes in
children aged 0 to 4 years?
KQ3. What is the effect of vitamin D intake on serum 25(OH)D concentrations in children aged 0
to 4 years?
Vitamin D Upper Limits
ULs KQ1a. At what levels of vitamin D intake are adverse effects observed in children aged 0 to 4
years?
ULs KQ1b. What are levels of vitamin D intake at which a prespecified threshold of serum
25(OH)D is reached in children aged 0 to 4 years?
References142
Appendix 1: GRADE Evidence Profile Tables150
Appendix 2: Bibliography160

Background

The objective of this systematic review was to synthesize all available evidence that met predefined eligibility criteria for informing a Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) expert group, whose charge was to update the vitamin D requirements for children aged 0 to 4 years.¹ During phase I of this work, the FAO/WHO expert group reviewed and discussed the results of a scoping review² and other background documents. The group then formulated the key questions (KQs) of this systematic review using a generic analytic framework (Figure 1).³ In this analytic framework, the term "Indicators of Exposure (Nutrient Intake)," as defined within the Dietary Reference Intake (DRI) context, are measures that correlate with dietary intake of a nutrient, such as nutrient biomarkers, nutritional status, or markers of nutritional status. Specifically, the indicators of vitamin D exposure (i.e., vitamin D intake and sun exposure) included serum 25-hydroxy vitamin D [25(OH)D] concentrations.⁴ Dose-response randomized controlled trials (RCTs) assessing the effects of nutrient intake levels on age-specific clinical outcomes of public health importance (Arrow 1 in Figure 1) would provide the best direct evidence for setting nutrient reference values (NRVs). However, such evidence is often lacking for chronic disease endpoints, as shown in the scoping review of vitamin D and health outcomes in children 0 to 4 years.² In the absence of direct evidence, a "piecemeal approach" has been suggested as an option for setting NRVs.⁵ For example, data that address the dose-response relationship between nutrient intake and indicators of exposure or surrogate outcomes (Arrows 4 and 5 in Figure 1) can be synthesized with data that address the relation between indicators of exposure and clinical outcomes (Arrow 3 in Figure 1) to set NRVs. This "piecemeal approach" (also known as the "dose-response approach"⁶) has the advantage of relying on a wider breadth of available evidence but also has many uncertainties.⁵

In phase I of this work, the FAO/WHO expert group determined a dose-response approach would be appropriate for setting vitamin D requirements. Thus, the expert group utilized the analytic framework³ (Figure 1) to formulate KQs for vitamin D requirements and upper limits (ULs).

Figure 1. A generic analytic framework to assist formulation of Key Questions for the development of DRIs using a dose-response approach

Key Questions and Study Eligibility Criteria

I. Vitamin D Requirements

KQ1. What is the effect of different levels of vitamin D intake on health outcomes in children aged 0 to 4 years? (See **Table 1** for KQ1 eligibility criteria.)

Planned subgroup analyses:

- Level of vitamin D intake (i.e., dose-response)
- Source of vitamin D (e.g., food, fortified food, supplements, formula, breast milk)
- For supplements, different formulation of supplements
- Different forms of vitamin D (e.g., D₂, D₃)
- Calcium intake
- Sun/UV-B exposure, latitude, months of year when 25(OH)D levels were assessed
- Age
- Breastfeeding (BF) status (e.g., exclusive BF, any BF, exclusive formula)
- Analytical method for determining circulating 25(OH)D (including by calibration to NIST standard, etc., where appropriate)

- Race and ethnicity
- Skin color

Table 1. Vitamin D requirements KQ1 eligibility criteria

Category	Inclusion Criteria	Exclusion Criteria
Study designs of interest	 Randomized (paralleled or crossover) controlled trials, or nonrandomized controlled trials Intervention duration ≥ 2 weeks 	 In vitro (cell) and animal studies Observational studies [Note: Dietary assessments of vitamin D intake levels were not included due to inadequacy of nutrient composition tables for vitamin D⁷] Single-arm trials Studies that used non-concurrent cohorts or non-concurrent controls Unpublished studies (e.g., conference abstracts, posters)
Populations of interest	Generally healthy ^a children 0 to 4 years old	 Critically ill children admitted to intensive care unit Studies that enrolled exclusively premature infants (≤ 32 weeks gestational age) or very low birth weight infants (≤ 1500 grams) Studies conducted exclusively in children with moderate or severe acute malnutrition (MAM/SAM)
Interventions of interest	 Dietary vitamin D intake (with or without calcium) from foods or supplements UV exposure to manipulate 25(OH)D levels 	 Non-oral intake of vitamin D such as injections or peripheral parenteral nutrition Intervention studies in which effects of vitamin D and/or calcium cannot be isolated Vitamin D analogs (e.g., calcifedio, calcijex, calcipotriol, calcitriol, doxercalciferol, hectorol, paricalcitrol, rayaldee, rocaltrol, zemplar)
Comparators of interest	Any	None
Outcomes of interest	 Growth and development (anthropometric indices, failure to thrive, etc.)^b Neurological development^c Infectious disease 	 Maternal health-related outcomes Any outcome measured only at birth in mothers or in infants Lead concentration Health-service utilization outcomes

Category	Inclusion Criteria	Exclusion Criteria
	Autoimmune disease	
	• Asthma, wheezing, or atopic	
	dermatitis	
	• Fracture	
	• Bone mineral density or bone	
	mineral content (irrespective of the	
	method employed, for example,	
	ultrasonography, DEXA etc.)	
	• Rickets (including "nutritional	
	rickets")	
	Blood pressure	
	• Calcium absorption and retention ^d	
	• COVID-19	

DEXA = Dual-energy X-ray absorptiometry; MAM = moderate acute malnutrition; SAM = severe acute malnutrition; UV = ultraviolet

^a "Generally healthy" populations are defined as having $\leq 20\%$ of the study population with disease at the study's baseline with the exception of the case-control study design. Nutrition deficiencies, overweight, and obesity are not considered diseases in this systematic review.

^b For growth and development outcomes, the populations of interest are expanded to include children 0-9 years old because growth and development outcomes are also considered outcomes of interest for vitamin D and calcium ULs. All anthropometric measures are considered outcomes of interest, such as height, weight, length/height for age, weight for age, weight for height/length, BMI, related z-scores, waist circumference, mid-arm circumference (MUAC), skinfold thickness, head circumference.

° Autism is not an outcome of interest, but cognitive or intellectual development assessed by IQ is of interest.

^d For the calcium absorption and retention outcomes, the minimal intervention duration of 2 weeks criterion does not apply because calcium absorption is also an outcome of interest for calcium requirements.

KQ2. What is the association between serum 25(OH)D concentrations and health outcomes in children aged 0 to 4 years? (See **Table 2** for KQ2 eligibility criteria.)

Planned subgroup analyses:

- Level of vitamin D intake (i.e., dose-response)
- Source of vitamin D (e.g., food, fortified food, supplements, formula)
- Different forms of vitamin D (e.g., D₂, D₃)
- Sun/UV-B exposure, latitude, time of year assessed
- Age
- Breastfeeding status
- Analytical method for determining circulating 25(OH)D (including by calibration to NIST standard, etc., where appropriate)
- Race and ethnicity
- Skin color

Category	Inclusion Criteria	Exclusion Criteria
Study designs of interest	 Cohort, nested case-control, or case- cohort studies in which 25(OH)D concentrations were measured before outcome ascertainment. Follow-up duration ≥ 2 weeks 	 In vitro (cell) and animal studies Intervention studies Cross-sectional studies reporting only prevalence data (i.e., no correlation or association analyses) Retrospective case-control studies Case reports or case series
Populations of interest	Generally healthy ^a children 0 to 4 years old	 Critically ill children admitted to intensive care unit Studies that enrolled exclusively premature infants (≤ 32 weeks gestational age) or very low birth weight infants (≤ 1500 grams) Studies conducted exclusively in children with moderate or severe acute malnutrition (MAM/SAM)
Exposures of	25(OH)D concentrations (irrespective of	Dietary assessments of vitamin D
interest	measurement assay)	intake only [Note: Dietary assessments of vitamin D intake levels were not included due to inadequacy of nutrient composition tables for vitamin D ⁷]
Comparators of interest	Different levels of 25(OH)D concentrations	None
Outcomes of interest	 Growth and development (anthropometric indices, failure to thrive, etc.)^b Neurological development^c Infectious disease Autoimmune disease Asthma, wheezing, or atopic dermatitis Fracture Bone mineral density or bone mineral content (irrespective of the method employed, for example, ultrasonography, DEXA etc.) Rickets (including "nutritional rickets") Blood pressure 	 Maternal health-related outcomes Any outcome measured only at birth in mothers or in infants Lead concentration Health-service utilization outcomes

Table 2. Vitamin D requirements KQ2 eligibility criteria

Category	Inclusion Criteria	Exclusion Criteria
	• Calcium absorption and retention ^d	

DEXA = Dual-energy X-ray absorptiometry; MAM = moderate acute malnutrition; SAM = severe acute malnutrition

^a "Generally healthy" populations are defined as having $\leq 20\%$ of the study population with disease at the study's baseline with the exception of the case-control study design. Nutrition deficiencies, overweight, and obesity are not considered diseases in this systematic review.

^b For growth and development outcomes, the populations of interest are expanded to include children 0-9 years old because growth and development outcomes are also considered outcomes of interest for vitamin D and calcium ULs. All anthropometric measures are considered outcomes of interest, such as height, weight, length/height for age, weight for age, weight for height/length, BMI, related z-scores, waist circumference, mid-arm circumference (MUAC), skinfold thickness, head circumference.

^c Autism is not an outcome of interest.

^d For the calcium absorption and retention outcomes, the minimal follow-up duration of 2 weeks criterion does not apply because calcium absorption is also an outcome of interest for calcium requirements.

KQ3. What is the effect of vitamin D intake on serum 25(OH)D concentrations in children aged 0 to 4 years? (See **Table 3** for KQ3 eligibility criteria.)

Planned subgroup analyses:

- Level of vitamin D intake (i.e., dose-response)
- Source of vitamin D (e.g., food, fortified food, supplements, formula)
- For supplements, different formulation of supplements
- Different forms of vitamin D (e.g., D₂, D₃)
- Calcium intake
- Sun/UV-B exposure, latitude, time of year assessed
- Age
- Breastfeeding status
- Analytical method for determining circulating 25(OH)D (including by calibration to NIST standard, etc., where appropriate)
- Race and ethnicity
- Skin color

Table 3. Vitamin D requirements KQ3 and ULs KQ1b eligibility criteria

Category	Inclusion Criteria	Exclusion Criteria
Study	• Randomized (paralleled	• In vitro (cell) and animal studies
designs of	or crossover) controlled	Observational studies
interest	trials, or	Single-arm trials
	nonrandomized	• Studies that used non-concurrent cohorts or non-
	controlled trials	concurrent controls
	• Intervention duration \geq	• Unpublished studies (e.g., conference abstracts,
	2 weeks	posters)
Populations	Generally healthy ^a children	• Critically ill children admitted to intensive care unit
of interest	0 to 9 years old	

Category	Inclusion Criteria	Exclusion Criteria
		 Studies that enrolled exclusively premature infants (≤ 32 weeks gestational age) or very low birth weight infants (≤ 1500 grams) Studies conducted exclusively in children with moderate or severe acute malnutrition (MAM/SAM)
Interventions of interest	Dietary vitamin D intake (with or without calcium) from foods or supplements	 Non-oral intake of vitamin D such as injections or peripheral parenteral nutrition Intervention studies in which effects of vitamin D and/or calcium cannot be isolated Vitamin D analogs
Comparators of interest	Any	None
Outcomes of interest	25(OH)D concentrations (irrespective of measurement assay)	None

MAM = moderate acute malnutrition; SAM = severe acute malnutrition

^a "Generally healthy" populations are defined as having $\leq 20\%$ of the study population with disease at the study's baseline with the exception of the case-control study design. Nutrition deficiencies, overweight, and obesity are not considered diseases in this systematic review.

II. Vitamin D Upper Limits

KQ1a. At what levels of vitamin D intake are adverse effects observed in children aged 0 to 4 years? (See **Table 4** for ULs KQ1a eligibility criteria.)

KQ1b. What are levels of vitamin D intake at which a prespecified threshold of serum 25(OH)D is reached in children aged 0 to 4 years? (See Table 3 for ULs KQ1b eligibility criteria.)

Category	Inclusion Criteria	Exclusion Criteria
Study designs of interest	 Intervention studies of any design Observational studies of any design Case reports of excess vitamin intake (as defined in the original studies) 	 In vitro (cell) and animal studies Unpublished studies (e.g., conference abstracts, posters)
Populations of interest	Generally healthy ^a children 0 to 9 years old	 Critically ill children admitted to intensive care unit Studies that enrolled exclusively premature infants (≤ 32 weeks gestational age) or very low birth weight infants (≤ 1500 grams) Studies conducted exclusively in children with moderate or severe acute malnutrition (MAM/SAM)
Interventions or exposures of interest	 Intervention studies: Dietary vitamin D intake (with or without calcium) from foods or supplements Observational studies: 25(OH)D concentrations (irrespective of measurement assay) 	 Non-oral intake of calcium and/or vitamin D such as injections or peripheral parenteral nutrition Intervention studies in which effects of vitamin D and/or calcium cannot be isolated Vitamin D analogs
Comparators of interest	Any	None
Outcomes of interest	 Growth and development^b Hypercalcaemia Hypercalciuria Kidney stones Nephrocalcinosis All-cause mortality 	None

Table 4. Vitamin D ULs KQ1a eligibility criteria

MAM = moderate acute malnutrition; SAM = severe acute malnutrition

^a "Generally healthy" populations are defined as having $\leq 20\%$ of the study population with disease at the study's baseline with the exception of the case-control study design. Nutrition deficiencies, overweight, and obesity are not considered diseases in this systematic review.

^b Any definition for categorical growth and development outcomes associated with high levels of vitamin D intake or 25(OH)D concentrations, such as overweight or obesity (usually defined by BMI cut-off).

Methods

We followed the methods for conducting a systematic review outlined in the Institute of Medicine's Standards for Systematic Reviews⁸ and reported the study results according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁹ We organized the results into two chapters (I. Vitamin D: requirements; II. Vitamin D: upper limits) corresponding to the sections described in Key Questions and Study Eligibility Criteria above. A prospectively developed protocol was published on the International Prospective Register of Systematic Reviews, PROSPERO (https://www.crd.york.ac.uk/prospero/; registration number: CRD42020198843).

Literature Searches and Study Selection Process

We developed search strategies according to the KQs (see the PROSERO: CRD42020198843) and implemented the searches in MEDLINE®, Embase, and Cochrane Central databases to capture studies from the inception of these databases to the 2nd week of June 2020. All searches had no language restrictions but were limited to human studies. We performed reference mining for the included studies in the relevant authoritative reports and systematic reviews.¹⁰ Finally, we rescreened the excluded and included full-text articles from the scoping review² using the systematic review study eligibility criteria (Tables 1-4).

Duplicated citations across databases were removed prior to the screening process. Titles and abstracts were screened by two independent investigators using the Rayyan app for systematic reviews.¹¹ Full-text articles of screened-in abstracts were retrieved and screened by one investigator according to the study eligibility criteria (Tables 1-4). All rejected articles were reviewed by a second investigator to confirm or refute their exclusion. Disagreements between the two investigators were adjudicated by a third investigator or by group consensus. A list of excluded studies and exclusion reasons are available upon request.

Data Extraction

To extract data from each included study, we created standardized data extraction forms comprising study design and population characteristics, study results for all outcomes of interest, and data that are required for the planned subgroup analyses (see Key Questions and Study Eligibility Criteria). Data were extracted by one investigator and spot-checked by another investigator.

Risk of Bias Assessment

Two independent assessors performed a risk of bias (ROB) assessment for each included study, and the disagreements were resolved via discussions between the two assessors.

We used the Cochrane Collaboration's tool (ROB 2.0)¹² to assess ROB for each included interventional study. Overall ROB was rated for individual interventional studies using the Cochrane criteria.¹² We used the Newcastle Ottawa Scale (NOS) to assess the ROB for included cohort, case-cohort, and nested case-control studies.¹³ Several NOS prompting questions were tailored or defined for specific systematic review topics, including "ascertainment of exposure," "comparability of cohorts based on the design and analysis," and "adequacy of follow-up of cohorts." The "representative of exposed cohort" question was removed due to the broad nature of the populations of interest in this review. In addition, the NOS "ascertainment of exposure" question was modified in order to assess the validity and uncertainty of intake assessment, which is one of the unique challenges that should be

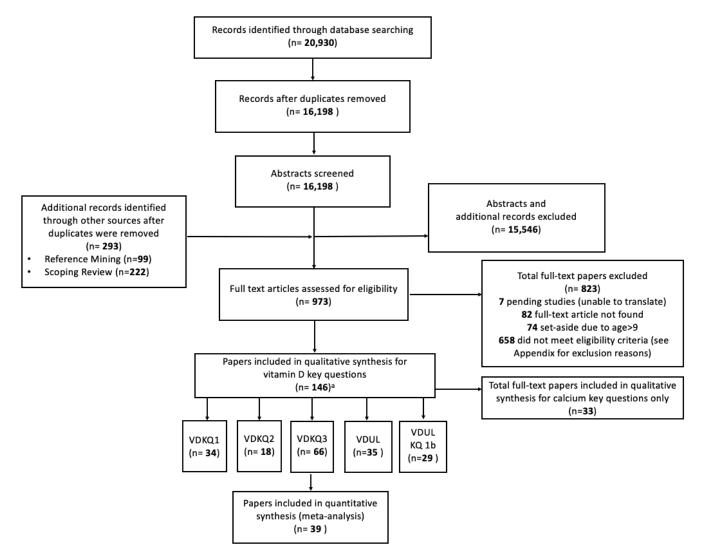
considered in nutrition-related systematic reviews.¹⁴ In addition to the tailored prompting questions, the Selection and Outcome domains of the NOS were further adapted to assess ROB for included case-cohort and nested case-control studies. A new domain was also created to address the analyses recommended to reduce bias in these observational designs.¹⁵⁻¹⁸

Data Synthesis and Strength of Evidence Rating

Data were synthesized for each KQ and for each outcome separately. Summary tables were created to present key study features and results and to facilitate qualitative synthesis. The Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach^{19,20} was utilized to determine strength of evidence for each outcome. GRADE evidence profile tables²¹ were used to present synthesized data for each KQ and can be found in the Supplement.

Meta-analysis

For vitamin D requirement KQ3 (What is the effect of vitamin D intake on serum 25(OH)D concentrations in children aged 0 to 4 years?), we performed random-effects meta-regression^{22,23} to examine the intake-response associations across studies. No meta-analyses were performed for all other KQs due to large heterogeneity in exposure and outcome definitions or ascertainment methods across included studies.


Organization of this report

Results were organized into one of the two main sections: I. Vitamin D Requirements and II: Vitamin D Upper Limits. Within each main section, the results were then organized in the order of key questions.

Results

Literature search and study selection processes of this systematic review are summarized in Figure 2.

Figure 2. Literature search and study selection process. Legends: VDKQ = vitamin D requirement key question; VDUL = vitamin D upper limits

^a The sum of papers for listed key questions is greater than 146, as some papers were included in more than one key question.

I. Vitamin D Requirements

KQ1. What is the effect of different levels of vitamin D intake on health outcomes in children aged 0 to 4 years?

A total of 34 interventional studies met the inclusion criteria for the effect of different levels of vitamin D intake on health outcomes in children aged 0 to 4 years. No interventional studies reported autoimmune disease or fracture as an outcome.

KQ1. Atopic Outcomes: Asthma, Wheezing, and Eczema.

Table KQ1-1 shows the characteristics and results of interventional studies reporting the effects of different levels of vitamin D intake on asthma, wheezing, and eczema outcomes. All studies were parallel randomized controlled trials (RCTs) in design with the number of randomized participants ranging from 195 to 987 in each trial. All trials were conducted in neonates and took place in the Northern and Southern Hemispheres. One trial was conducted in exclusively Black or African American preterm infants,²⁴ one with 100% of mothers of Northern European ethnicity,²⁵ and the other two trials (conducted in New Zealand and Australia) did not report race or ethnicity of the infants.^{26,27} The majority of infants included in one trial were deficient in vitamin D at baseline.²⁵ All trials included an intervention arm of 400 IU/d of vitamin D₃ with other arms being 800 IU/d, 1,200 IU/d, or placebo. Intervention duration was six months for three studies and 12 months for the last study.

Figure KQ1-1 shows the summary ROB and individual study ROB ratings for the included studies in this section. Although all four trials have low ROB for measurement of the outcome, half of the trials have some or high ROB from at least one ROB domain including bias arising from the randomization process, bias due to deviations from intended interventions, bias due to missing outcome data, and bias in the selection of the reported results.

Asthma

The three RCTs that investigated the effects of vitamin D on asthma reported mixed results. One study found participants who received 400 IU/d of vitamin D₃ were at lower risk of developing asthma at six months compared to those who received placebo (RR = 0.055; 95% CI 0.003, 0.94).²⁶ However, there were no significant differences in the risk of asthma when comparing 800 IU/d of vitamin D₃ to placebo or when comparing 800 IU/d to 400 IU/d of vitamin D₃ supplementation. The other two RCTs that investigated the effects of vitamin D on asthma, both of which enrolled more participants for the same or longer duration, found no significant difference between groups.^{24,25}

Wheeze

Two RCTs reported the effects of vitamin D supplementation on wheezing. One RCT comparing 400 IU/d of vitamin D₃ to placebo found no significant difference in the risk of developing wheezing at six months (RR = 1.08; 95% CI 0.06, 2.07).²⁷ In another RCT, Black or African American preterm infants who had achieved 200 IU/d of vitamin D from formula or human milk fortification were given additional supplementation or placebo.²⁴ Those given 400 IU/d vitamin D₃ until 6 months' adjusted age showed reduced risk of recurrent wheezing compared to the placebo group (adjusted RR = 0.62; 95% CI 0.44, 0.87).

Eczema

Three RCTs reported the effects of vitamin D supplementation on eczema. None found a significant difference in risk of eczema between groups (RR ranged from 0.74 to 1.12).^{24,25,27}

Table KQ1-1. Characteristics and key findings of interventional studies reporting the effects of different levels of vitamin D intake on asthma,
wheezing, and eczema outcomes

Authors (year)	Study design; N randomize d	Enrollmen t years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breastfeedin g status	Race or ethnicity	Health status; nutrition status	Vitamin D interventio n groups ^a	Interventio n duration	Compariso n groups ^b	Key findings ^c
Grant et al. (2016) 26	RCT; N= 260	2010-2011	Auckland, New Zealand; - 36°	Neonate s	46.5	Any BF	NR	100% Healthy; NR	VD3: 400 IU/d; 800 IU/d	6 months	Placebo	Asthma: RR=0.05 5 (0.003, 0.94) (400 IU/d vs. placebo); RR=0.35 (0.01, 1.25 (800 IU/d vs. placebo); RR=6.36 (0.32, 124.8) (800 IU/d vs. 400 IU/d)
Hibbs et al. (2018) ²⁴	RCT; N= 300	2013-2016	Cleveland, Charleston , and Bronx, US; ~38°	Neonate s	55.3	Any BF	100% Black or African America n	100% preterm	VD3 400 IU/d until 6 months' adjusted age (sustained group); VD3 400 IU/d until taking at least 200 IU/d of VD from formula or human milk fortifier (diet-limited group)	6 months	None	Asthma: RR=0.84 (0.41, 1.7) Asthma or wheezing : RR=0.94 (0.65, 1.35) Eczema: RR=0.82 (0.62, 1.088)

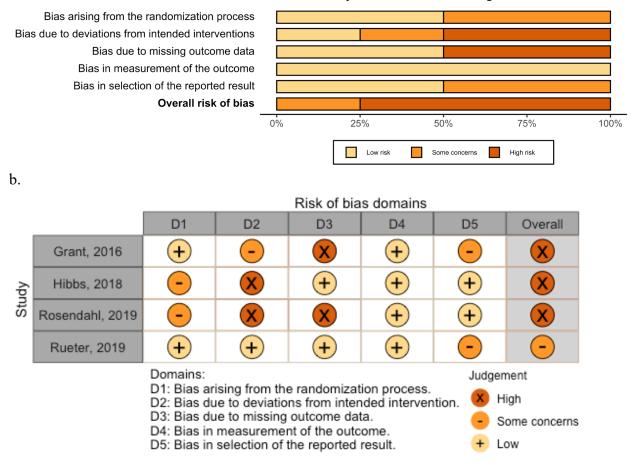
												Recurrent wheezing : adj. RR=0.62 (0.44, 0.87) ^d
Rosendah l et al. (2019) ²⁵	RCT; N= 987	2013-2014	Helsinki, Finland; 60°	Neonate s	50.3	Any BF	100% of Mothers were northern European ethnicity	Generally healthy; 95.7% with vitamin D deficienc y	VD3: 400 IU/d; 1200 IU/d	12 months	None	Asthma: 0.49 (0.02, 14.5) (1200 IU/d vs. 400 IU/d)
												Eczema: 0.74 (0.53, 1.02) (1200 IU/d vs. 400 IU/d)
Rueter et al. (2019) 27	RCT; N= 195	2012-2017	Perth, Australia; -32°	Neonate s	53%	NR	NR	NR	VD3 400 IU/d	6 months	Placebo	Eczema: 1.12 (0.62, 2.02)
												Wheeze: 1.08 (0.06,

adj. = adjusted; BF = breastfeeding; d = day; IU = international units; N = sample size; NR = not reported; RCT = randomized controlled trial; RR = risk ratio; SD = standard deviation; VD = vitamin D; VD3 = vitamin D3

^a Administered in the form of a supplement unless otherwise stated.

^bComparison group: Non-vitamin D or non-calcium intervention group.

^c Results compare higher dose groups to lower dose groups unless otherwise noted; Results are reported as: effect measure = effect size (95% confidence interval).


^dAdjusted for randomization strata, time in study, gestational age, and the variables associated with recurrent wheezing in bivariate analysis.

2.07)

Figure KQ1-1. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effects of different levels of vitamin D on wheezing, asthma, and eczema outcomes

Bias Summary for VDKQ1 Wheezing, Asthma, Eczema

KQ1. Infectious Disease Outcomes

Table **KQ1-2** shows study characteristics of 8 interventional studies reporting the effects of different levels of vitamin D intake on infectious disease outcomes. All studies were RCTs that compared different levels of vitamin D₃ (n = 4), compared vitamin D₃ to controls receiving no vitamin D intervention (i.e, placebo or no intervention) (n = 2), or both (n = 2). The number of participants randomized ranged from 88 to 3,046 in each trial, with half the studies randomizing 300 or fewer infants. All studies were conducted in the northern hemisphere with latitudes ranging from ~29 to 60.2. In most studies, baseline health status of participants was either not reported and presumed healthy or generally healthy. One study included preterm infants with a mean gestational age of 33 weeks.²⁴ Nutritional status was not discussed in most studies; however, one study included exclusively malnourished infants,²⁸ and another study reported nearly all participants were deficient in vitamin D at baseline.²⁹ All study interventions included a daily regimen of vitamin D₃, ranging from 400 to 1,200 IU/d, except for one group that received a bolus dose of 100,000 IU vitamin D₃ once every three

months.²⁸ Intervention durations ranged from 4 to 23.5 months. Two follow-up studies reported different outcomes 12 months after the same trial consisting of a six-month intervention.^{26,30} Almost all studies reported on respiratory infections with classification either by general anatomic location (e.g., upper respiratory tract, lower respiratory tract), specific anatomic location (e.g., pneumonia, bronchitis, otitis media), or causative agent (e.g., influenza A). Other reported infectious diseases included gastroenteritis, "other infections," or "all infections."

Figure KQ1-2 shows the summary ROB and individual study ROB for trials included in this section. Three-quarters of the included studies were prone to bias due to deviations from intended interventions. This was often due to high levels of non-adherence to the intervention or to the absence of statistical analyses assessing the effect of adherence to the intervention. Half of the studies were prone to bias due to missing outcome data with no evidence to suggest results were not biased due to missingness. Other potential bias arose from poorly described or inappropriate randomization processes and from a lack of evidence or indication that detailed analysis and statistical plans were pre-specified before unblinded outcome data were available.

The eight included studies collectively reported 20 total infectious disease outcomes, which included 15 respiratory infection outcomes, one gastroenteritis outcome, and four other or unspecified infectious disease outcomes. Of all 20 reported outcomes, 19 were not significantly different between intervention groups. One RCT found infants receiving 1,200 IU/d of vitamin D₃ were significantly less likely to develop influenza A over 4 months compared to infants receiving 400 IU/d of vitamin D₃ (RR = 0.54; 95% CI 0.42, 0.77).³¹

Table KQ1-2. Characteristics and key findings of interventional studies reporting the effects of different levels of vitamin D on infectious disease	
outcomes	

Author (year)	Study design; N randomize d	Enroll- ment years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breast - feedin g status	Race or ethnicity	Health status; nutrition status	Vitamin D interventio n groups ^a	Interventio n duration	Compariso n groups ^b	Key findings ^c
Aglipay et al. (2017) ³²	RCT; N= 703	2011- 2015	Toronto, Canada; 43°	2.7 (1.5) years	57.4	Any BF	NR	100% Healthy; NR	VD3: 400 IU/d; 2000 IU/d	4 months	None	URTI: IRR=0.97 (0.80, 1.16)
Alonso et al. (2011) ³³	RCT; N= 88	2007- 2008	Spain; 43°	Neonate s	52.3	Any BF	NR	100% Healthy; NR	VD3: 402 IU/d	12 months	Without intervention (no placebo was used)	Infectious disease: "not significantly different between groups"
Grant et a. (2015) ^{30d}	RCT; N= 260	2010- 2011	Auckland, New Zealand; - 36°	Neonate s	NR	Any BF	NR	NR; NR	VD3: 400 IU/d; 800 IU/d	6 months	Placebo	Healthcare visit for any respiratory infection: RR=0.87 (0.65, 1.16) (400 IU/d vs. placebo); RR=1.07 (0.82, 1.39) (800 IU/d vs placebo) Healthcare visit for any other infection: RR=1.51 (0.82, 2.76) (400 IU vs placebo); RR=1.39 (0.74, 2.61)

Vitamin D In	itakes and H	ealth Outc	omes in Chil	dren Aged	l 0-4 Y	ears, Bea	uchesne e	et al. Su	pplement			
												(800 IU vs placebo)
Grant et al. (2016) ^{26d}	RCT; N= 260	2010- 2011	Auckland, New Zealand; - 36°	Neonate s	46.5	Any BF	NR	Generally healthy; NR	VD3: 400 IU/d; 800 IU/d	6 months	Placebo	Bronchiolitis: RR=1.00 (0.64, 1.65) (400 IU/d vs) placebo); RR=0.86 (0.50, 1.48) (800 IU/d vs) placebo) Bronchitis: RR=0.43 (0.11, 1.60) (400 IU/d vs) placebo); RR=0.75 (0.25, 2.27) (800 IU/d vs) placebo); Cold or influenza: RR=0.94 (0.65, 1.26) (400 IU/d vs) placebo); RR=1.02 (0.71, 1.47)
												(800 IU/d vs. placebo)

Croup: RR=1.29 (0.80, 2.08) (400 IU/d vs. placebo); RR=1.00

Vitamin D Intakes and Health Out	comes in Chil	dren Aged	10-4 Y	ears, Bea	uchesne e	tal. S	Supplement			
										(0.59, 1.70) (800 IU/d vs. placebo)
										Otitis media: RR=0.86 (0.55, 1.34) (400 IU/d vs. placebo); RR=0.94 (0.61, 1.46) (800 IU/d vs. placebo)
										URTI: RR=0.89 (0.73, 1.08) (400 IU/d vs. placebo); RR=0.90 (0.74, 1.09) (800 IU vs. placebo)
										Wheezy lower respiratory infection: RR=0.89 (0.50, 1.59) (400 IU/d vs. placebo); RR=1.11 (0.64, 1.91) (800 IU/d vs placebo)
Hibbs et a.RCT; N=2013- $(2018)^{24}$ 3002016	Cleveland, USA; Charleston,	Neonate s	55	Any BF	100% Black or African	100% preterm (mean	VD3: 400 IU/d	6 months	Placebo	URTI: RD=3.6 (-16.4, 4.4)
	USA; Bronx, NY, USA; ~38°				America n	GA=33); NR				LRTI: RD=08.3 (- 20.6, 2.7)

												Other infection: RD=-1.6 (- 17.1, 7.0)
Manaseki- Holland et al. (2012) ²⁸	RCT; N= 3046	2008- 2009	Kabul, Afghanistan ; 34.6°	~0.54 [0.17-1] years	52	Any BF	Father ethnicity: Tajik, Pashton, Uzbek, Hazara	NR: Mal- nourished	VD3: 100,000 IU/3 mo	18 months	Placebo	Incidence of first pneumonia: IRR=1.07 (0.90, 1.27)
Rosendahl et al. (2018) 29	RCT; N= 987	2013- 2014	Helsinki, Finland; 60.2°	Neonate s	50.3	Any BF	100% White	Generally healthy; 95.7% with vitamin D sufficienc y	VD3: 400 IU/d; 1200 IU/d	23.5 months	None	Respiratory infection: IRR=1.00 (0.93, 1.07) Gastroenteritis : IRR=0.92 (0.79, 1.08)
												Other infections: IRR=1.04 (0.91, 1.19) All infections: 1.00 (0.93, 1.06)
Zhou et al. (2018) ³¹	RCT; N= 400	2015- 2016	Yongkang, China; Wenzhou, China; Jinhua, China; ~29°	0.65 (0.22) years	52.3	Any BF	Presume d 100% Chinese	Generally healthy; Presumed normal	VD3: 400 IU/d; 1200 IU/d	4 months	None	Influenza A: RR=0.56 (0.42, 0.77)

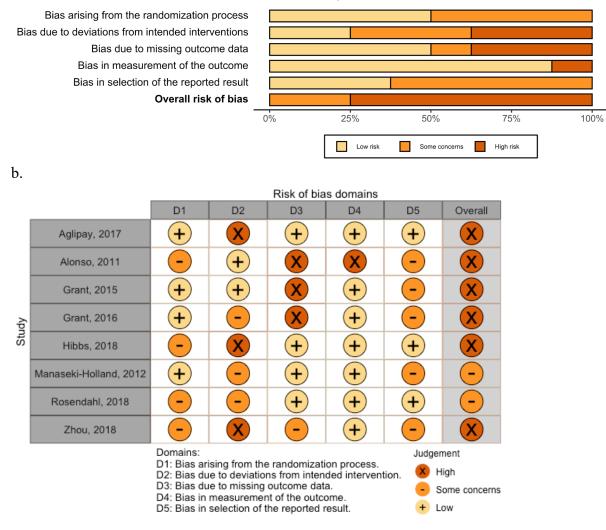
Supplement

BF = breastfeeding; d = day; GA = gestational age; IRR = incident rate ratio; IU = international units; LRTI = lower respiratory tract infection; N = sample size; NR = not reported; RCT = randomized controlled trial; RD = risk difference; RR = risk ratio; SD = standard deviation; URTI = upper respiratory tract infection; VD3 = vitamin D_3

^a Administered in the form of a supplement unless otherwise stated.

^bComparison group: Non-vitamin D or non-calcium intervention group.

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.


^c Results compare higher dose groups to lower dose groups unless otherwise noted; Results are reported as: effect measure = effect size (95% confidence interval).

^d Follow up to Grant et al. (2014) study.

Figure KQ1-2. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effects of different levels of vitamin D on infectious disease outcomes

a.

Bias Summary for Vitamin D KQ1 Infectious Disease

KQ1. Growth and Neurological Development Outcomes

The characteristics and results for 16 publications (13 unique studies, one ancillary study, and two follow-up studies) reporting on associations between vitamin D intake and growth or neurological development outcomes in children aged 0 to 4 years are presented in Table KQ1-3. Most studies were conducted at northern latitudes ranging from 29° to 46°. Two studies were conducted at 60° N,^{34,35} and one study was conducted at 38° S.³⁶ Twelve of the 13 unique studies were RCTs while the other was a non-randomized controlled trial comparing certain growth outcomes.³⁷ Intervention durations varied widely from 2.5 to 23.5 months with approximately half the unique study interventions lasting eight or more months. Five unique studies compared various daily doses of vitamin D (400, 800, 1,200, and/or 1,600 IU),^{34,35,38-41} one study compared a daily dose of 400 IU vitamin D with a bolus dose of 50,000 IU,³⁶ and one study compared a weekly dose of 1,400 IU vitamin D to a placebo.⁴² Three studies compared human milk or infant formula supplemented with vitamin D (400 IU/d supplement or 400-427 IU/L formulations) to human milk alone^{43,44} or with a placebo.³⁷ The remaining two studies included various combinations of vitamin D supplementation or placebo for both infants fed human milk (400 IU/d or placebo) and their lactating mothers (600 IU/d, 6,000 IU/d, 120,000 IU/month, or placebo).^{45,46} Most studies recruited 100% healthy infants, but two studies enrolled preterm or low birth weight infants who were otherwise generally healthy.^{39,42}

Growth and development outcomes for these studies were defined by measurements of the body and head. Body measurements included weight; body length or height; lean mass; fat mass; body fat percentage; leg length; and circumferences of the chest, arm (mid-arm or mid-upper arm), leg, waist, hip, and thigh. Head measurements included head circumference, occipitofrontal circumference, and anterior fontanelle maximum diameter. From these measurements, many studies calculated *Z* scores, standard deviation scores, or indices (body mass index, lean mass index, and/or fat mass index). Neurological development outcomes were defined by gross motor skills and measured in one ancillary study of six-month-old infants⁴⁷ and one follow-up study for participants under five years old.⁴⁸

Growth and Development Results

Eleven of the 13 unique studies (85%) reported no association between vitamin D interventions and any growth and development outcomes (P>0.05). One study reported statistically significant benefits for length at 12 months of age in infants given a formula with 427 IU/L (range of intake was 382-480 IU/L) compared to a placebo (P = 0.02).³⁷ This study also showed a moderately significant benefit for length at 12 months when comparing infants fed human milk supplemented with 400 IU/d vitamin D to infants given human milk plus a placebo (P<0.1). There was no difference in weight and head circumference between groups. It is important to note that formula fed infants in this study were a non-randomized control group and that at six months of age, all randomized infants fed human milk (including the previous placebo group) were given 400 IU/d vitamin D until weaned or until the study ended when the infants were 12 months of age. Another study reported significant improvements in weight-for-age and length-for-age Z scores as well as for arm circumference at age six months for neonates assigned to a weekly dose of 1,400 IU vitamin D compared to a placebo (P < 0.05).⁴² According to the follow-up study, when participants were 3-6 years old, those originally assigned to the placebo group had significantly better BMI, BMI Z score, and arm muscle area measurements than those from the vitamin D group.⁴⁸ No other growth and development measurements showed significant associations with study group.

Neurological Development Results

One of the two studies measuring neurological development found an association with vitamin D intake and reported an inverse relationship.⁴⁷ This study reported that one-month-old infants assigned to 400 IUd vitamin D had statistically significantly higher total scores on the Alberta Infant Motor Scale (AIMS) at age 6 months compared to both the 800 IU/d and 1,200 IU/d groups (P<0.05). The 400 IU/d group also performed significantly better than the 800 IU/d group for the prone and sitting subscores and better than the 1,200 IU/d group on the sitting subscore (P<0.05). There were no group differences for the supine and standing subscores.

Risk of Bias Results

Results for the ROB assessment conducted for all 16 publications are presented in **Figure KQ1-3**. In all ROB domains, at least four studies were assessed as having some concern or high risk of bias, and for three domains, 12 or more studies (\geq 80%) had some concern or high risk of bias. The randomization process and measurement of the outcome domains showed the lowest risk for bias. In most studies, high dropout rates and a general lack of published pre-specified analysis plans or protocols resulted in some concern or high risk of bias for missing outcome data and selection of the reported results. Nearly all studies showed high risk of bias due to deviations from intended interventions. In most cases, low adherence rates and a failure to conduct analyses to detect effects of non-adherence led to risk of bias in this domain.

Author (year)	Study design ; N enrolle d	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Male (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritio nal status	Growth/dev elopment outcome(s) analyzed	Vitamin D or calcium intervention group	Interven tion duration (months)	Compariso n group(s)ª	Key findings ^b
	althy Infar												
Chan et al. (1982) ⁴³	RCT; N=91	NR	Salt Lake City, United States; 41°	GA: NR [38-41] weeks	NR	Any BF (mixed feeding)	White: 100%	100% Healthy; NR	Weight; length	VD + Ca: Infant formula with 400 IU/L (VD) + 51 mg/dl (Ca); VD: BF + 400 IU/d supp	12	BF only	Weight: 0 Length: 0
Chandy et al. (2016) ⁴⁵	RCT; N= 230	2012- 2014	Lucknow, India; 26°	~0 (NR) days	NR	Any BF (mixed feeding)	100% Asian Indian	100% Healthy; NR	Weight; length; head cir.; chest cir.; anterior fontanelle max. diameter	VD3: BF + 400 IU/d (infant) and placebo (mother)	9	BF + placebo (infant) and 120,000 IU VD3/month (mother); BF + placebo (infant and mother)	All growth/ dev. outcomes (at 3.5 months): 0
Dawodu et al. (2019) ⁴⁶	RCT; N= 190	2013- 2016	Doha, Qatar; 25°	≤4 (NR) weeks	NR	Exclusi ve BF	100% Ara b	100% Healthy; low vitamin D intake	Weight; length; head cir.	VD3: BF + 400 IU/d (infant) and 600 IU/d (mother)	6	BF + placebo (infant) and 6,000 IU VD3/d (mother)	Weight: 0 Length: 0 Head cir.: 0
Enlund- Cerullo et al. (2019) ³⁴	RCT; N=987	2013- 2014	Helsinki, Finland; 60°	GA: 40.2 (1.1) weeks	50.3	Any BF (mixed)	White: 100 (Northern European)	100% Healthy; Normal	Weight; length-adj. weight SDS	VD3: 400 IU/d; 1,200 IU/d	23.5	None	Weight: 0 Length-adj. weight SDS: +
Gallo et al.	RCT; N=132 Follow	2007- 2010	Montréal, Canada; 46°	~34.3 (95% CIs ranged	57.6 56.3 at 3-	Exclusi ve BF	White: 84.1%; Other:	100% Healthy; NR	WAZ; HAZ; HCAZ;	VD3: 400 IU/d; 800 IU/d; 1,200	11	None	All growth/ dev. outcomes (at 12 and 36

Table KQ1-3. Characteristics of vitamin D interventional studies that assessed growth and development and/or neurological development outcomes

Author (year)	Study design ; N enrolle d	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Male (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritio nal status	Growth/dev elopment outcome(s) analyzed	Vitamin D or calcium intervention group	Interven tion duration (months)	Compariso n group(s) ^a	Key findings ^b
(2013)b 38 Hazell et al. (2017) ^{c4} 9	-up study; N=87			from 31 to 38) days ~36.7 (1.1) months at 3-year follow-up	year follo w-up		14.4% (includes Black, Hispanic, First Nations, Asian, Hawaiian/ Pacific Islander, and nonwhite mixed race)		36-month follow-up Height; HAZ; weight; WAZ; BMI; BAZ; lean mass; fat mass; body fat percentage; lean mass index; fat mass index	IU/d; 1,600 IU/d			months of age): 0
Greer et al. (1982) ³⁷	RCT; N=18 Non- rando mized compa rison group; N=12	1979	Madison, United States; 43°	GA: NR [38-40] weeks (reported for RCT groups only)	44.4 (repor ted for RCT group s only)	Any BF (mixed feeding)	White: 83%; Asian- Indian: 3%; Non- White: 13%	100% Healthy; NR	Weight; length; head cir.	VD2: BF + 400 IU/d supp; VD (Non- randomized comparison group): Infant formula with an average of 427 IU/L [range 382- 480 IU/L]	6-12 ^d	BF + placebo	Weight (at 12 months): 0 Length (at 6 months): VD2 supp > formula > placebo (P- value or 95% CI NR) Length (at 12 months): ++ (formula vs. placebo), + (VD2 supp vs. placebo), 0 (formula vs. VD2 supp) Head cir. (at 12 months): 0
Holmlu nd-Suila et al.	RCT; N=113	2010- 2011	Helsinki, Finland; 60°	GA: ~40.4 (~0.8-1.3) weeks	50.4	Any BF (mixed feeding)	NR	100% Healthy; NR	Weight; length; head cir.; leg	VD3: 400 IU/d; 1,200 IU/d; 1,600 IU/d	2.5	None	All growth/ dev. outcomes (at age 3 months): 0

Author (year) (2012)	Study design ; N enrolle d	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Male (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritio nal status	Growth/dev elopment outcome(s) analyzed length; leg	Vitamin D or calcium intervention group	Interven tion duration (months)	Compariso n group(s) ^a	Key findings ^b
35 Huynh et al. (2017) 36	RCT; N= 70	2013- 2014	St. Albans, Australia; -38°	GA: 39 (1.1-1.2) / 40 [IQR: 1.2-1.3] weeks; ~0 [0-2] days at enrollmen t	NR	Any BF (mixed feeding	NR	100% Healthy; Normal	cir. Weight; length; head cir.	VD3: 400 IU/d; 50,000 IU bolus	4	None	Weight (at 3- 4 months of age): + (400 IU/d > 50,000 bolus) Length: 0 Head cir.: 0
Singh et al. (2018) ⁴⁴	RCT; N= 100	2013- 2014	New Delhi, India; 29°	GA: 38.2 (0.82- 0.87) weeks; ~0 [0-2] days at enrollmen t	55	Exclusi ve BF	100% Asian Indian	100% Healthy; 60% (interve ntion group) and 34% (control group) were VD deficient at birth	Head cir.; length; weight; mid- arm cir.	VD3: BF + 400 IU/d	6	BF only	Head cir.: 0 Length: 0 Weight: 0 Mid-arm cir.:
Wagner et al. (2006) ⁴¹	RCT; N= 19	NR	Charlesto n, South Carolina, United States; 33°	GA: ~39.0 (~0.7-1.2)	47	Exclusi ve or fully BF	White: 79% Hispanic: 11% Black: 11%	100% Healthy; NR;	BMI; weight; length; head cir.	Maternal VD3: 400 IU/d; infant BF with 300 IU/d supplement	6	Maternal VD3: 6400 IU/d; infant BF, not supplemente d	BMI: 0 Weight: 0 Length: 0 Head cir.: 0
Wicklo w et al. (2016) ^{e4} 7	RCT; N= 55	2009- 2011	Montreal, Canada; 46°	1 (NR) month	56.4	Any BF (mixed)	White: 87.3% Other: 12.7%	100% Healthy; Normal	WAZ; LAZ; HCAZ; WLZ; Gross motor skills (AIMS total and	VD3: 400 IU/d, 800 IU/d, 1,200 IU/d	11	None	At 6 months WAZ: 0 LAZ: 0 HCAZ: 0 WLZ: 0

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.	Supplement
---	------------

Author (year)	Study design ; N enrolle d	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Male (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritio nal status	Growth/dev elopment outcome(s) analyzed	Vitamin D or calcium intervention group	Interven tion duration (months)	Compariso n group(s)ª	Key findings ^b
									subscores) ^f ; all measures taken at 6 months of age				AIMS total score: (800 IU/d vs. 400 IU/d; 1,200 IU/d vs. 400 IU/d) AIMS prone: (800 IU/d) AIMS supine: 0 AIMS sitting: (800 IU/d) vs. 400 IU/d vs. 400 IU/d; 1,200 IU/d vs. 400 IU/d) AIMS standing: 0
Ziegler et al. (2014) ⁴⁰	RCT; N= 213	2006- 2010	Iowa City, United States; 41°	1 (NR) month	NR	Exclusi ve BF to 4 months of age	Native: 2.3%; Asian: 0.9%; Black: 2.8%; Native: 0 White: 89.7%; Hispanic: 4.2%	100% Healthy; low 25(OH) D levels	Weight; length	VD3: 200 IU/d, 400 IU/d, 600 IU/d, 800 IU/d	8	None	Δ weight (4-9 months): 0 Δ length (4-9 months): 0
	•		h Low Birth V				· · ·		· · · · · · · · · · · · · · · · · · ·	LID2 1 400	6	D1 1	T T A CZİ
Kumar et al. (2011) ⁴² Trilok- Kumar et al.	RCT; N=2,0 79 N=912 at 3-6 year	2007- 2010	New Delhi, India; 29°	~2.0 [0-2] days at enrollmen t 5.0 (1.0) years at 3-	46.7 at enroll ment 47.9 at 3-6 year	NA at follow- up	Presumed 100% Asian Indian	100% with low birthwei ght (1.8- 2.5 kg) and at- risk for	WAZ; LAZ; weight/lengt h z-score; head cir.; arm cir. <u>At 3-6 year</u> follow-up	VD3: 1,400 IU/week	6	Placebo	WAZ ⁱ : ++ LAZ ⁱ : ++ Weight/length Z score ⁱ : 0 Head cir. ⁱ : - Arm cir. ⁱ : ++

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Su	Supplement
--	------------

Author (year)	Study design ; N enrolle d	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Male (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritio nal status	Growth/dev elopment outcome(s) analyzed	Vitamin D or calcium intervention group	Interven tion duration (months)	Compariso n group(s)ª	Key findings ^b
(2015) ^g	follow- up			6 year follow-up	follo w-up			infant mortalit y; 100% severely VD deficient at enrollme nt ~50% were VD deficient at 3-6 year follow- up	Weight; WAZ; height; HAZ; BMI; BMIZ; waist circ; hip cir.; MUAC; thigh cir.; triceps skinfold; subscapular skinfold; arm muscle area; gross motor dev. ^h (ASQ score) only for children <5 years old (N=571)				<u>At 3-6 year</u> <u>follow-up</u> BMI ^j : BMIZ ^j : MUAC ^j : - Thigh cir. ^j : - Arm muscle area ^j : All other growth/dev. measures ^j : 0 ASQ Score ^j : 0
Nataraja n et al. (2014) ³⁹	RCT; N=96	2011- 2012	North India; ~29°	3.0 [~1- 14] days	56.3	Any BF (mixed feeding)	Presumed 100% Asian Indian	Preterm infants (mean GA=32. 5 weeks); VD deficien cy at birth	Weight; length; OFC	VD3: 400 IU/d; 800 IU/d	3	None	Weight: 0 Length: 0 OFC: 0

adj. = adjusted; AIMS = Alberta Infant Motor Scale; ASQ = Ages and Stages Questionnaire; BAZ = BMI-for-age Z score; BF = breastfeeding; BMI = body mass index; BMIZ = BMI Z score; Ca = calcium; cir. = circumference; CI = confidence interval; d = day; dev. = development; GA = gestational age; HAZ = height-for-age Z score; HCAZ: head circumference-for-age Z score; IU = international units; LAZ = length-for-age Z score; MUAC = mid-upper arm circumference; N = number of participants; NA = not applicable; NR = not reported; OFC = occipitofrontal circumference; RCT = randomized controlled trial; SDS = standard deviation scores; supp = supplement; VD = vitamin D; VD3 = vitamin D₃; WAZ = weight-for-age Z score; WLZ = weight-for-length Z score

^a Comparison group: Non-vitamin D or non-calcium intervention group.

^b Results compare higher dose groups to lower dose groups unless otherwise noted: ++ Significant beneficial effects (p < 0.05); + Marginally significant beneficial effects (0.05); 0 No effects; - Marginally significant detrimental effects (<math>0.05); -- Significant detrimental effects (<math>p < 0.05); results=0 means there were no significant differences observed for any outcomes of interest.

^c Follow-up to the Gallo et al. (2013)b³⁸ study conducted 3 years after enrollment.

^d At age 6 months, infants randomized to the placebo group were also given 400 IU VD/d after which all randomized infants received supplementation until weaned from

breastfeeding or until age 12 months when the study ended.

^e Ancillary study to Gallo et al. (2013)b.³⁸

^fAssessed with the Alberta Infant Motor Scale (AIMS) which includes a total score and four subscores: prone, supine, sitting, and standing.

^g Follow-up to the Kumar et al. (2011) ⁴² study conducted when participants were 3-6 years of age.

^h Assessed with the Ages and Stages Questionnaire (ASQ), second edition.

ⁱResults from multivariate linear regression models adjusting for baseline anthropometric z score (except for arm circumference where birth arm circumference was used instead), sex, quintile of socioeconomic status, family type, maternal education, exposure to sunlight, and breast feeding for more than six months.

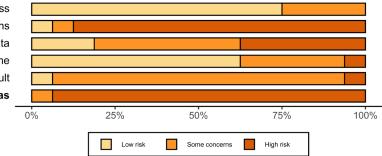

^j Results from multivariate linear regression models adjusted for age at follow-up, family size (total number of adults + children in the household), family type, socioeconomic status at baseline, maternal and paternal education (factors associated with being lost to follow-up) for Z scores and ASQ score; other variables also adjusted for sex.

Figure KQ1-3. Summary ROB plot (panel a) and individual study ROB (panel b) for vitamin D intervention studies reporting on growth or neurological development outcomes

a.

Bias Summary for Vitamin D KQ1 Anthropometrics

Bias arising from the randomization process Bias due to deviations from intended interventions Bias due to missing outcome data Bias in measurement of the outcome Bias in selection of the reported result Overall risk of bias

b.

		Risk of bias domains								
		D1	D2	D3	D4	D5	Overall			
Study	Chan, 1982	-	×	×	-	-	×			
	Chandy, 2016	+	+	×	+	-	×			
	Dawodu, 2019	-	×	-	+	-	×			
	Enlund-Cerullo, 2019	+	-	+	+	-	-			
	Gallo, 2013b	+	×	-	+	+	×			
	Greer, 1982	-	×	×	-	×	×			
	Hazell, 2017	+	×	×	+	-	×			
	Holmlund-Suila, 2012	-	×	-	+	-	×			
	Huynh, 2017	+	×	×	×	-	×			
	Kumar, 2011	+	×	-	+	-	×			
	Natarajan, 2014	+	×	-	-	-	×			
	Singh, 2018	+	×	+	-	-	×			
	Trilok-Kumar, 2015	+	×	-	+	-	×			
	Wagner, 2006	+	×	-	-	-	×			
	Wicklow, 2016	+	×	+	+	-	×			
	Ziegler, 2014	+	×	×	+	-	×			
		Domains:	aing from the	Judger	Judgement					
		D1: Bias arising from the randomization process. D2: Bias due to deviations from intended intervention. D3: Bias due to missing outcome data.								

ias due to missing o

D4: Bias in measurement of the outcome. D5: Bias in selection of the reported result.

 Some concerns + Low

KQ1. Rickets

Nine interventional studies conducted in children (0 to 4 years old) reported on the association between vitamin D supplementation and the development of rickets. Table KQ1-4 presents each study's definition of rickets, although most studies failed to provide much detail on how rickets was determined and by whom (e.g., physician or research staff). Eight of these studies (89%) were RCTs while one was a non-randomized controlled trial.⁵⁰ Study sample sizes ranged from 18 to 2,079 participants, and all studies were conducted between latitudes of 29° and 61° north. Two of these studies included only exclusively human milk fed infants,^{51,52} while the rest (78%) studied infants with a mix of feeding styles (i.e., human milk, formula, and/or solid foods). Four studies compared participants assigned to a vitamin D intervention to a placebo group or participants with no intervention.^{24,33,37,42} Two studies compared multiple vitamin D intervention arms with a placebo or no intervention group.^{51,53} One study compared infants assigned to calcium, vitamin D, or combined supplementation (calcium + vitamin D) with a group receiving no intervention.⁵⁰ Two studies compared two vitamin D arms.^{52,54} Most of these studies assigned vitamin D interventions as daily doses ranging from 200 to 1.000 IU/d. One study assigned newborns to 1,400 IU vitamin D per week while another study assigned older infants (mean age of 2.26 years) to a dose of 25,000 IU per month. Intervention durations ranged from 1.5 to 36 months.

Only one study reported any clinical cases of rickets.⁵⁰ This study found no effect of supplementation on the prevalence of rickets (P = 0.214). It is important to note that 1.25% of participants ($n \approx 2$) had severe rickets (defined as more than three signs of rickets) after one year in the study while 1.33% ($n \approx 2$) had severe rickets at the end of the study. The highest reported prevalence of rickets in this study was 1.77% ($n \approx 3$) at the end of study year two.

For most of these studies, all five domains of the ROB tool presented some concern for bias (**Figure KQ1-4**). While just one of these studies was not randomized,⁵⁰ the others generally did not report details on randomization processes or efforts to conceal allocation sequences until patient enrollment and assignment. In several studies, there was some concern for bias due to deviations from intended interventions resulting from low levels of participant adherence to supplementation protocols and no analysis of low adherence impact. The amount of missing data for the rickets outcome in these studies resulted in some concern for bias in Domain 3. Most studies had dropout or loss to follow-up rates higher than 90-95% likely due to the long study durations, but few studies reported the impact of that missing data on outcomes assessment. In terms of outcome measurement bias, there was less concern, but the lack of details on rickets evaluation led to some concern for bias. Finally, due to a lack of reporting on analysis plans for rickets outcomes by all nine studies, there was some concern for bias in selection of reported results.

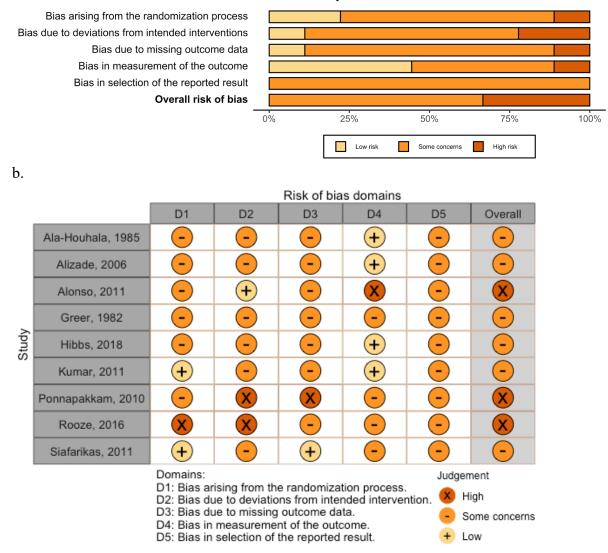
Author (year)	Study design; N enrolled	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breastf eeding Status	Race or ethnicity	Health status; nutritional status	Vitamin D or calcium intervention group(s)	Interventi on duration (months)	Compa rison group(s) ^a	Rickets definition
Ala- Houhala et al. (1985) ⁵¹	RCT; N=92	1982	Tampere, Finland; 61°	0 (0) days	NR	Exclusi ve BF	Presumably 100% Finnish	100% Healthy; NR	VD: BF + 400 IU/d supp, BF + 1000 IU/d supp	5	BF + 1,000 IU VD/d (mother)	Biochemical signs determined by mineral and AP levels
Alizade et al. (2006) ⁵⁴	RCT; N=68	2001- 2002	Tehran, Iran; 36°	GA: ~32.7 (28-37) weeks	50	NR	NR	GA 29-38 weeks, birth weight 1500-2000 g; NR	VD: 400 IU/d; 1000 IU/d	2	None	Physical examination and x- ray analysis for signs and symptoms (craniotabes, rickets rosary, wide fontanel, Harrison groove, kyphosis/scoliosis, Potts belly)
Alonso et al. (2011)	RCT; N=102	2007 - 2008	Northern Spain; 43°	1 (NR) month	52.2	Any BF (mixed feeding)	Presumably 100% Spanish	100% Healthy; NR	VD: 402 IU/d	12	No interven tion	Determined by physical examination
Greer et al. (1982) 37	RCT; N=18	1979	Madison, United States; 43°	GA: NR [38-40] weeks	44.4	Any BF (mixed feeding)	White: 94.4%; Asian- Indian: 5.6%	100% Healthy; NR	VD2: BF + 400 IU/d supp	6-12 ^b	BF + placebo	Clinical signs including craniotabes, rachitic rosary, or widened wrists
Hibbs et al. (2018) ²⁴	RCT; N=300	2013- 2016	Cleveland, Charlesto n, and Bronx, United States; 41°, 33°, 41°	~12.0 [IQR ~6- 21] days	55.3	Any BF (mixed feeding)	Black or African American: 100 (~7.6% of all parents reporting race in the	Preterm infants (mean GA=33 weeks); Normal	VD3: 400 IU/d [sustained]	6	Placebo [diet- limited]	Diagnosis

Table KQ1-4. Characteristics of vitamin D interventional studies that assessed rickets

Author (year)	Study design; N enrolled	Enroll ment years	Location; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breastf eeding Status	Race or ethnicity study were	Health status; nutritional status	Vitamin D or calcium intervention group(s)	Interventi on duration (months)	Compa rison group(s) ^a	Rickets definition
Kumar et al. (2011) ⁴²	RCT; N=2,079	2007- 2010	New Delhi, India; 29°	~2.0 [0-2] days	46.7	Any BF (mixed feeding)	Hispanic) Presumed 100% Asian Indian	100% low birthweight (1.8-2.5 kg) infants at- risk for infant mortality; 100% severely VD deficient	VD3: 1,400 IU/week	6	Placebo	Determined by physical examination
Ponnapak kam et al. (2010) ⁵³	RCT; N=80	NR	Southern Louisiana, United States; ~30°	0 (0) [0] years	NR	Any BF (mixed feeding)	NR	Generally healthy (<20% disease); Normal	VD3: 200 IU/d from birth, 200 IU/d from age 2 months	6	Placebo	Elevated AP levels and evidence of rachitic changes on hand X-rays
Rooze et al. (2016) ⁵⁰	Non- randomiz ed trial; N=207	2010	Lhasa, Tibet; 30°	2.26 (NR) [0-5] years	48	Any BF (mixed feeding)	Presumed 100% Tibetan	Generally healthy (<20% disease); NR	Ca: 15 mmol/d VD: 25,000 IU/month VD + Ca: 25,000 IU/month (VD), 15 mmol/d (Ca)	36	No interven tion	Open fontanelle after 1 year of age, craniotabes, frontal bossing, enlargement of the wrists, bowing of the legs, Harrison's groove, pigeon chest, or costochondral swelling
Siafarika s et al. (2011) ⁵²	RCT; N=40	NR	Berlin, Germany; 53°	GA: 39 [39-40] weeks	NR	Exclusi ve BF	Presumed 100% German	100% Healthy; VD insufficienc y	VD3: 250 IU/d; 500 IU/d	1.5	None	Determined by physical examination

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

 $AP = alkaline phosphatase; BF = breastfeeding; Ca = Calcium; d = day; GA = gestational age; IQR = interquartile range; IU = international units; N = sample size; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; supp = supplement; VD = vitamin D; VD3 = vitamin D_3$


^a Comparison group: Non-vitamin D or non-calcium intervention group.

^b At age 6 months, infants randomized to the placebo group were also given 400 IU VD/d after which all randomized infants received supplementation until weaned from breastfeeding or until age 12 months when the study ended.

Figure KQ1-4. Summary ROB plot (panel a) and individual study ROB (panel b) for vitamin D interventional studies that assessed rickets as an outcome

a.

Bias Summary for Vitamin D KQ1 Outcome Rickets

KQ1. Bone Mineral Content and Bone Mineral Density Outcomes

Table KO1-5 shows characteristics and results for 10 unique vitamin D interventional studies in our review that assessed outcomes related to bone mineral content (BMC) or bone mineral density (BMD). Sample size at enrollment ranged from 30 to 2,079, but seven of these studies (67%) had sample sizes below 200. Eight studies (80%) were RCTs and 1 was a non-randomized trial.⁵⁵ The remaining study randomized human milk fed infants to either a vitamin D or placebo intervention for the first 6 months of life, and then all were given vitamin D supplementation until weaned.³⁷ This study also included a non-randomized group of formula fed infants as a comparison group for bone mineral outcomes only. All these interventional studies were conducted in the northern hemisphere with latitudes ranging from 26° to 60°. Two studies compared a single vitamin D dosing group to a placebo group,^{24,48} three compared infants fed human milk or formula fed with a vitamin D supplement to a group fed human milk with no supplement,^{37,43,55} and the remaining five studies compared groups with different doses of VD.^{29,35,38,39,56} For most of these studies, vitamin D dosing was given as a daily regimen of 400 IU to 1,600 IU, while one study used a dose of 1,400 IU per week.⁴⁸ Two studies did not specify total daily vitamin D dose for study groups given infant formula but reported vitamin D IU per liter of formula.^{37,43} In all 10 studies, intervention duration was 2.5 months or greater with the longest duration at 23.5 months. Three of the included studies were long term post-intervention follow-up studies of RCTs with follow-up duration ranging from 3 months to 6 years.^{48,55,57}

Other than general BMD and BMC measurements, bone structure and strength outcomes reported in these studies included the following: speed of sound (SOS), bone transmission time (BTT), stress and strain index (SSI), cross-sectional area of the bone (CSA), and polar moment of inertia. Areas of measurement specified in the studies included metacarpal,⁵⁵ radius,^{37,43,48} ulna,³⁷ femur,³⁸ tibia,^{24,29,35,48} lumbar spine vertebrae,^{38,57} and whole body.^{38,39,57} Five studies reported no difference in BMD/BMC outcomes when comparing vitamin D supplementation to human milk only⁴³ or when comparing groups with different vitamin D supplement doses (1,600, 1,200, 800, and 400 IU/d;³⁸ 800 and 400 IU/d;³⁹ 1,200 and 400 IU/d;²⁹ 4,000 IU/d and 30,000 IU/wk⁵⁶). Two studies reported benefits to BMC/BMD outcomes when comparing 400 IU/d vitamin D supplementation with a placebo but did not report p-values or confidence intervals.^{24,37} One study reported statistically significant (P<0.05) benefits for most BMC/BMD measurements when comparing the highest dose of vitamin D with lower doses (1.600 IU/d vs. 400 IU/d; 1.600 IU/d vs. 1.200 IU/d).³⁵ Another study reported statistically significant (P<0.05) benefits for BMC/BMD measures when comparing vitamin D supplementation in human milk or formula fed infants with human milk alone.⁵⁵ One study reported moderately significant (0.05 < P <0.1) benefits for distal radius (but not tibia) measurements when comparing 1,400 IU vitamin D per week to a placebo.⁴⁸

Figure KQ1-5 presents summary results for the ROB assessment for all 10 vitamin D intervention studies that reported BMC and BMD outcomes. In all studies, there was a low ROB for how the BMC and BMD outcomes were measured, but there was a high risk of bias or some concern due to deviations from intended interventions. Risk of bias in this latter domain generally resulted from low adherence to daily supplementation by participants or a lack of analysis conducted in the study to account for the effect of adherence. For over half of these studies (60%), there was some concern with the randomization process and the reporting of results – generally owing to no publicly available protocols showing pre-specified analysis plans. Finally, due to missing outcome data, three studies had some concern for bias, and three had high risk of bias. These ratings were likely a product of long intervention and follow-up durations that increase the possibility for participant drop-out and loss to follow-up.

Table KQ1-5. Characteristics and key findings of vitamin D interventional studies with bone mineral density or bone mineral content outcomes reported

Author (year)	Study design; N enrolled	Enrol Iment years	Location ; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breast feedin g status	Race or ethnicity	Health status; nutritio nal status	BMD/BMC outcome analyzed	Vitamin D or calcium intervention group(s)	Interve ntion duratio n (month s)	Compari son group(s) a	Key findings ^b
Bagnoli et al. (2013) ⁵⁵	Non- randomize d Trial; N=73 (at 3-month follow-up)	NR	Siena, Italy; 43°	GA: ~39.4 (~1.3-1.7) weeks at enrollmen t; 3.0 (NR) months at follow-up	49.3	Any BF (mixed feedin g)	NR	100% Healthy ; NR	Metacarpal SOS (m/sec); Metacarpal BTT (μsec); used four metacarpal measurements	VD: BF + 400 IU/d supp [BFD]; Formula milk with or without 400 IU/d supp [FF]	3	BF only [BF]	SOS: ++ (BFD vs. BF; FF vs. BF), 0 (BFD vs. FF) BTT: ++ (BFD vs. BF; FF vs. BF), 0 (BFD vs. FF)
Chan et al. (1982) ⁴³	RCT; N=91	NR	Salt Lake City, United States; 41°	GA: NR [38-41] weeks	NR	Any BF (mixed feedin g)	White: 100%	100% Healthy ; NR	BMC from distal left radius	VD + Ca: Infant formula with 400 IU/L (VD) + 51 mg/dl (Ca); VD: BF + 400 IU/d supp	12	BF only	BMC: 0
Gallo et al. (2013)b ³⁸ Gallo et al. (2016) ^{c 57}	RCT; N=132 N=87 in follow-up study	2007- 2010	Montréal , Canada; 46°	~34.3 (NR) days ~36.7 (NR) months at follow-up study	57.6	Exclus ive BF	White: 84.1%; Other: 14.4% (includes Black, Hispanic, First Nations, Asian, Hawaiian/Pa cific Islander, and nonwhite mixed race)	100% Healthy ; NR	BMC of the whole body, lumbar spine vertebrae 1-4, and whole femur; BMD of lumbar spine (BMC of femur NR in follow-up study)	VD3: 400 IU/d; 800 IU/d; 1200 IU/d; 1600 IU/d	11	None	BMC (at 12 and 36 months of age): 0 BMD (at 12 and 36 months of age): 0

Author (year)	Study design; N enrolled	Enrol Iment years	Location ; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breast feedin g status	Race or ethnicity	Health status; nutritio nal status	BMD/BMC outcome analyzed	Vitamin D or calcium intervention group(s)	Interve ntion duratio n (month s)	Compari son group(s) a	Key findings ^b
Greer et al. (1982) ³⁷	RCT; N=18 Non- randomize d compariso n group for BMC outcome; N=12	1979	Madison, United States; 43°	GA: NR [38-40] weeks (reported for RCT groups only)	44.4 (rep orted for RCT grou ps only)	Any BF (mixed feedin g)	White: 83%; Asian- Indian: 3%; Non-White: 13%	100% Healthy ; NR	BMC of the one-third distal radius and ulna of the left hand	VD2: BF + 400 IU/d supp VD (Non- randomized comparison group): Infant formula with an average of 427 IU/L [range 382- 480 IU/L]	6-12 ^d	BF + placebo	BMC (at 6 months): 0 (VD2 supp vs. placebo), + or ++ (formula vs. placebo reported as "significant" ; P-value or 95% CI NR) BMC (at 12 months): formula > placebo > VD2 supp (P-value or 95% CI NR)
Hibbs et al. (2018) ²⁴	RCT; N=300	2013- 2016	Clevelan d, Charlesto n, and Bronx, United States; 41°, 33°, 41°	~12.0 [IQR ~6- 21] days	55.3	Any BF (mixed feedin g)	Black or African American: 100 (~7.6% of all parents reporting race in the study were Hispanic)	Preterm infants (mean GA=33 weeks); Normal	Tibial SOS	VD3: 400 IU/d [sustained]	6	Placebo [diet- limited]	SOS (at 12 months) ^e : sustained > diet-limited (P-value or 95% CI NR)

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Su	upplement
--	-----------

Author (year)	Study design; N enrolled	Enrol lment years	Location ; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breast feedin g status	Race or ethnicity	Health status; nutritio nal status	BMD/BMC outcome analyzed	Vitamin D or calcium intervention group(s)	Interve ntion duratio n (month s)	Compari son group(s) a	Key findings ^b
Holmlun d-Suila et al. (2012) ³⁵	RCT;	2010- 2011	Helsinki, Finland; 60°	GA: ~40.4 (~0.8-1.3) weeks	50.4	Any BF (mixed feedin g)	NR	100% Healthy ; NR	CALCBD (density and area; total and trabecular bone); CORTBD (density and area); Polar SSI; Site for analyzed measurements was at 65% of the length of the left tibia	VD3: 400 IU/d; 1,200 IU/d; 1,600 IU/d	2.5	None	CALCBD area ^f : + (overall); ++ (1,600 IU/d vs. 400 IU/d); 0 (1,600 IU/d vs. 1,200 IU/d; 1,200 IU/d; 1,200 IU/d vs. 400 IU/d) CALCBD density ^f : 0 CORTBD area ^f : + (overall); ++ (1,600 IU/d vs. 400 IU/d; 1,600 IU/d vs. 1,200 IU/d); 0 (1,200 IU/d vs. 400 IU/d) CORTBD density ^f : 0 Polar SSI ^f : + (overall); ++ (1,600 IU/d vs. 400 IU/d; 1,600 IU/d vs. 1,200 IU/d); 0 (1,200 IU/d vs. 400 IU/d vs. 1,200 IU/d); 0 (1,200 IU/d vs

Author (year)	Study design; N enrolled	Enrol Iment years	Location ; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breast feedin g status	Race or ethnicity	Health status; nutritio nal status	BMD/BMC outcome analyzed	Vitamin D or calcium intervention group(s)	Interve ntion duratio n (month s)	Compari son group(s) ª	Key findings ^b
Nataraja n et al. (2014) ³⁹	RCT; N=96	2011- 2012	North India; ~29°	3.0 [~1- 14] days	56.3	Any BF (mixed feedin g)	Presumed 100% Asian Indian	Preterm infants (mean GA=32. 5 weeks); VD deficien cy at birth	BMC; BMD; Measurements were for whole body	VD3: 400 IU/d; 800 IU/d	3	None	BMC: 0 BMD: 0
Rao et al. (2016) ⁵⁶	RCT; N=45	NR	Kanpur, India; 26°	~3.1 (~0.7-0.9) [2-5] years	NR	NR	Presumed 100% Asian Indian	NR; 100% with VD deficien cy (<20 ng/mL)	BMC; BMD; Measurements were for total body less head	VD + Ca: 4000 IU/d VD3 + 50 mg/kg/d Ca VD + Ca: 30,000 IU/d VD3 + 50 mg/kg/d Ca	3	None	BMC: 0 BMD: 0
Rosenda hl et al. (2018) ²⁹	RCT; N=987	2013- 2014	Helsinki, Finland; 60°	GA: 40.2 (1.1) weeks	50.3	Any BF (mixed feedin g)	White: 100 (Northern European)	100% Healthy ; Normal	BMC; BMD; CSA; Polar moment of inertia; All measurements were of the left tibia at 20% distal proximal length	VD3: 400 IU/d; 1200 IU/d	23.5	None	BMC: 0 BMD: 0 CSA: 0 Polar moment: 0
Trilok- Kumar et al. (2015) ⁴⁸	RCT; N=2,079 (N=912 at 3-6 year follow-up)	2007- 2010	New Delhi, India; 29°	~2.0 [0-2] days at enrollmen t; 5.0 (1.0) years at follow-up	46.7 at enrol lmen t; 47.9 at	NA at follow- up	Presumed 100% Asian Indian	Low birth weight (1.8 to <2.5 kg) at enrollm ent;	Bone structure and strength; Measurements taken at distal radius and mid-shaft tibia	VD3: 1,400 IU/week	6	Placebo	Distal radius: + Tibia: 0

Author (year)	Study design; N enrolled	Enrol lment years	Location ; latitude	GA or mean age (SD) / median [range]	Mal e (%)	Breast feedin g status	Race or ethnicity	Health status; nutritio nal status	BMD/BMC outcome analyzed	Vitamin D or calcium intervention group(s)	Interve ntion duratio n (month s)	Compari son group(s) a	Key findings ^b
					follo			~50%					
					w-up			were					
								VD					
								deficien					
								t at					
								follow-					
								up					

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

 $BF = breastfeeding; BMC = bone mineral content; BMD = bone mineral density; BTT = Bone Transmission Time; Ca = Calcium; CALCBD = calculated bone density; CI = confidence interval; CORTBD = cortical bone density; CSA = cross-sectional area of the bone; GA = gestational age; IQR = interquartile range; IU/d = international units per day; N = sample size; NA = not applicable; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; SOS = Speed of Sound; SSI = stress and strain index; Supp = supplement; VD = vitamin D; VD2 = vitamin D_2; VD3 = vitamin D_3$

^a Comparison group: Non-vitamin D or non-calcium intervention group.

^bResults compare higher VD dose groups to lower dose groups unless otherwise noted: ++ Significant beneficial effects of higher VD dose (P < 0.05); + Marginally significant beneficial effects (0.05 < P < 0.1); 0 No effects; - Marginally significant detrimental effects (0.05 < P < 0.1); -- Significant detrimental effects (P < 0.05).

^c Follow-up to the Gallo et al. (2013) study conducted 3 years after enrollment.

^d At age 6 months, infants randomized to the placebo group were also given 400 IU VD/d after which all randomized infants received supplementation until weaned from breastfeeding or until age 12 months when the study ended.

^e According to Hibbs et al. (2018) ²⁴, "No participants had a tibial speed of sound measurement more than 2 SDs below the mean, based on previously published norms, at 12 months" (p. 2092).

^f Results from multivariate analysis of covariance with gender and quality of pQCT measurement as covariates.

Figure KQ1-5. Summary ROB plot (panel a) and individual study ROB (panel b) for vitamin D interventional studies reporting bone mineral density or bone mineral content outcomes

a. Bias Summary for Vitamin D KQ1 Outcome BMD/BMC Bias arising from the randomization process Bias due to deviations from intended interventions Bias due to missing outcome data Bias in measurement of the outcome Bias in selection of the reported result Overall risk of bias 0% 25% 50% 75% Low risk Some concerns High risk b. Risk of bias domains D1 D2 D3 D4 D5 Overall 0 Ξ Bagnoli, 2013 \mathbf{X} X (+) (\mathbf{X}) Ξ Ξ \mathbf{X} X (+)X Chan, 1982 (+)(+)(+)X \mathbf{X} \mathbf{X} Gallo, 2016 (+) \mathbf{X} (-)(+)(+)X Gallo, 2013b Ξ (+)(+)Ξ X X Greer, 1982 Study Ξ (+)(+)Ξ X \mathbf{X} Hibbs, 2018 (+)Ξ Ξ Ξ X Holmlund-Suila, 2012 \mathbf{X} X (+)0 (+)Θ (X) Natarajan, 2014 (+)Ξ (\pm) X X X Rao, 2016 Rosendahl, 2018 --(+)(+)(+)--(+)-(+)X X Trilok-Kumar, 2015 Domains: Judgement D1: Bias arising from the randomization process. X High D2: Bias due to deviations from intended intervention. D3: Bias due to missing outcome data. Some concerns D4: Bias in measurement of the outcome. Low D5: Bias in selection of the reported result. +

100%

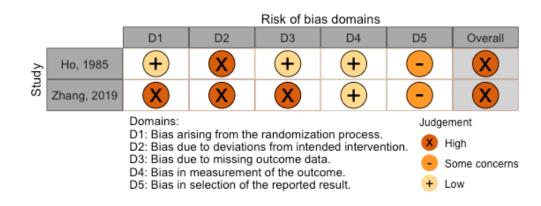
KQ1. Blood Pressure Outcomes

In a follow-up study (n = 912; 47.9% male) of a large RCT (n = 2,079; 46.7% male) conducted in newborns (mean age = 2 days) in New Delhi, India (29° N), blood pressure outcomes were measured when participants were age 3-6 years (mean [SD] = 5.0 [1.0] years).⁴⁸ The characteristics of this followup study are presented in **Table KQ1-6**. In the original study, newborn participants were assigned to either 1,400 IU vitamin D per week or a placebo for a duration of six months. After 3 to 6 years of follow-up, mean differences between the vitamin D and placebo arms for systolic (95% CI -0.63, 1.69; *P* = 0.37) and diastolic (95% CI -0.96, 0.87; *P* = 0.92) blood pressure were not statistically significant. Risk of bias for this study was assessed as "low" for the randomization and measurement of the outcome domains. There was some risk of bias due to a high proportion of missing data, and there was some risk of bias for selection of the reported result due to the lack of a pre-specified analysis plan. A lack of adherence to intended interventions in more than 20% of participants with no report of analyses addressing this issue led to high risk of bias in this final domain.

Author (year)	Study design; N enrolled	Enroll ment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfee ding Status	Race or ethnicity	Health status; nutritional status	Study groups	Study duration	Key findings ^a
Trilok- Kumar et al. (2015) ⁴⁸	RCT; N=2,079 (N=912 at follow-up)	2007- 2010	New Delhi, India; 29°	~2.0 (0) [2] days at enrollment; 5.0 (1.0) [3-6] years at follow- up	46.7 at enrollm ent; 47.9 at follow- up	NR; NA at follow- up	Presumed 100% Asian Indian	Low birth weight (1.8 to <2.5 kg) at enrollment; ~50% were VD deficient at follow-up	VD3: 1400 IU/week Placebo	Intervention: 6 months; Follow-up: 3-6 years	Systolic BP: 0 Diastolic BP: 0

Table KQ1-6. Characteristics and key findings of one interventional study reporting on blood pressure outcomes

 $BP = blood pressure; IU = international units; N = sample size; NA = not applicable; NR = not reported; RCT = randomized controlled trial; VD3 = vitamin D_3$


^a Results compare vitamin D (VD) intervention group to placebo group: ++ Significant beneficial effects of VD (P < 0.05); + Marginally significant beneficial effects (0.05 < P < 0.1); 0 No effects; - Marginally significant detrimental effects (0.05 < P < 0.1); -- Significant detrimental effects (P < 0.05).

KQ1. UV Light Studies

In this section, we describe intervention studies reporting the effect of UV or sunlight on serum 25(OH)D and clinical outcomes. Two RCTs were identified that reported on the effect of UV or sunlight on motor development and serum 25(OH)D.^{58,59} In a nonrandomized trial conducted in Xi'an, China (latitude, 35.4° N), 229 generally healthy neonates born from depressed mothers were divided into groups receiving either 400 IU/d vitamin D₃, 1,000 IU/d vitamin D₃, 400 IU/d vitamin D₃ supplementation plus sunlight exposure of various durations, or no intervention (control group). Infants who received 400 IU/d vitamin D₃ plus sunlight exposure achieved significantly higher scores in motor development compared to other groups (P < 0.05). Within the sunlight exposure group (7-14 hours per week, <7 hours per week, and <2 hours per week), a dose-response relationship was evident, with infants receiving the most amount of sunlight per week achieving the highest motor development scores (P < 0.05 for all comparisons). In a randomized trial conducted in Beijing, China (latitude, 39° N), 54 healthy infants were randomized to receive two hours of sunlight each day or the usual amount of sunlight (control). After two months, mean serum 25(OH)D had increased significantly in infants in the 2-hour sunlight group, but did not significantly change in the control group (30 +/- 37.5 ng/mL vs. -7.5 +/- 20 ng/mL). Further, a dose-response relationship was evident, with infant serum 25(OH)D concentration at two months correlating with UV exposure scores (r=0.61, P<0.001).

Figure KQ1-6 shows the individual study ROB for the two trials in this section. Both studies had high ROB due to deviations from intended intervention and some ROB in selection of the reported results. One study also had high ROB due to a nonrandomized design and missing outcome data. Both trials had low ROB in measurement of the outcome.

Figure KQ1-6. Individual study ROB for studies reporting the effect of UV or sunlight on serum 25(OH)D or clinical outcomes of interest

KQ2: What is the association between serum 25(OH)D concentrations and health outcomes in children aged 0 to 4 years?

A total of 18 observational studies examining the association between serum 25(OH)D concentrations and health outcomes in children aged 0 to 4 years were included. Findings below are organized by outcomes.

KQ2. Atopic Outcomes: Asthma, Wheezing, and Eczema

Table KQ2-1 shows the study characteristics and results of four observational studies reporting the association between serum 25(OH)D and asthma, wheezing, and eczema outcomes included in our review. The studies include three cohort studies and one case-cohort study, with the number of enrolled participants ranging from 263 to 5,044 for each study. Two of the articles were conducted in neonates in Australia, one in infants in Canada, and one in infants the United States. All studies either reported background diets as any (mixed) breastfeeding, or breastfeeding status was not reported. Race or ethnicity was not reported in two studies, one study enrolled primarily white participants,⁶⁰ and the last study enrolled primarily Hispanic and Black participants.⁶¹

Table KQ2-2 shows the ROB assessment of cohort studies in this section. Overall, there was concern for ROB due to absent or unclear demonstration that the outcome was not present at the start of the study, poor adjustment of possible confounders, poor or unclear assessment of the outcome, and significant loss to follow up of participants. **Table KQ2-3** shows the ROB assessment of the one case-cohort study reporting on asthma.⁶⁰ There was concern for ROB due to selection of cases, as 100% of cases were not included in the study. There was also concern for risk of bias since reporting lacked description of how the outcome was assessed. Lastly, there was concern for ROB due to the analytic methods.

Asthma

Table KQ2-1 shows two cohort studies that investigated the association between serum 25(OH)D at baseline and asthma as an outcome. Neither study found a significant association.^{61,62} A third cohort study reported significantly increasing odds of asthma at age 10 years for each additional follow-up visit from age six months to 10 years where participants were vitamin D deficient (<50 nmol/L [<20 ng/mL]) (adjusted OR not reported; P<.05).⁶³

Wheeze

Table KQ2-1 shows two cohort studies that investigated the association between serum 25(OH)D and wheeze outcome. One study found no association between serum 25(OH)D and wheezing.⁶² The other study reported significantly increasing odds of wheezing at age 10 years for every vitamin D deficient (<50 nmol/L [<20 ng/mL]) follow-up visit when participants were six months to 10 years (adjusted OR not reported; P<.01).⁶³

Eczema

Table KQ2-1 shows one case-cohort study that found no association between serum 25(OH)D and eczema outcome.⁶⁰ The other study was a cohort study which reported significantly increasing odds of eczema at age 10 years for each additional vitamin D deficient (<50 nmol/L [<20 ng/mL]) follow-up visit between age six months and 10 years (adjusted OR not reported; P<.05).⁶³

Table KQ2-1. Characteristics and key findings of studies of observational studies reporting the association of serum 25(OH)D and asthma, wheezing, and eczema outcomes

Authors (year)	Study design; N analyzed	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Mean follow- up (SD)	Exposure or comparisons	Key findings ^a
Anderson et al. (2015) ₆₂	Cohort; N= 5044	2008-2012	Canada; 44°	2.54 (1.5) [0- 5]	51.1	Any BF	NR	100% Healthy; NR	2.3 (1.2) years	Serum 25(OH)D at baseline	Asthma: 0 ^b Wheeze: 0 ^c
Hollams et al. (2017) ₆₃	Cohort; N= 263	1996-1998	Western Australia; NR	Neonates	NR	Any BF	NR	Generally healthy; NR	10 years	Number of deficient [25(OH)D <50 nmol/L] follow ups by 10 years of age	Asthma: ++ ^d Medicated asthma 0 ^d Wheeze: ++ ^d Eczema: ++ ^d
Molloy et al. (2017) ⁶⁰	Case- cohort; N= 1074	NR	Southeast Australia; - 30°	Neonates	52	Any BF	72% White, 28% Non- White	Generally healthy; NA	6 months (12 months of age)	Serum 25(OH)D levels at 6 months of age (nmol/L): <50 vs. >= 50	Eczema: 0 °
Navas- Nazario et al. (2011) 61	Cohort; N= 601	2005-2008	New Haven, CT; 41.3°	1.8 (0.7)	46.6	NR	72.1% Hispanic, 21.2% Black, 6.7% White	NR	5.9 (1.0) years of age	Serum 25(OH)D levels at baseline	Asthma: 0 ^f

BF = breastfeeding; N = sample size; NA = not applicable; NR = not reported; SD = standard deviation

^a Key findings: ++ Significant difference indicating benefit of higher serum 25(OH)D levels (p < 0.05); + Marginally significant difference indicating benefit (0.05); 0 No significant difference; - Marginally significant difference indicating detriment (<math>0.05); - Significant difference indicating detriment (<math>p < 0.05).

^b Adjusted for child sex, neighborhood income, smoker in household, maternal ethnicity, child in licensed daycare, child's age in months, z-BMI, birth weight, hours of outdoor free play, breastfeeding duration and family history of asthma.

^c Adjusted for child sex, family income, smoker in household, maternal ethnicity, child in licensed daycare, age in months, z-BMI, birth weight, hours of outdoor free play, breastfeeding duration and family history of asthma (both mother and father).

^dAdjusted for sex, month of birth, cesarian birth, birth weight, breast-feeding for less than 3 months, antenatal and/or childhood smoke exposure, childcare attendance, and living with older children by age 5 years.

^e Adjusted for family history of allergy, ethnicity, number of siblings, domestic pets, and formula feeding at 6 months.

^f Unadjusted.

Table KQ2-2. Risk of bias assessment results for cohort studies reporting the association between serum 25(OH)D and asthma, wheezing, and eczema outcomes^a

Author (year)	Outcome assessed	Selection of the non- exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstratio n that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
Anderso n et al. (2015) ⁶²	Asthma	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Present at start or unknown	c) Both a) and b) ^b	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\ge 20\%$ and no description of those lost
Anderso n et al. (2015) ⁶²	Wheeze	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Present at start or unknown	c) Both a) and b) ^b	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\ge 20\%$ and no description of those lost
Hollams et al. (2017) ⁶³	Asthma	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Present at start or unknown	a) Study controls for at least 4/6 of the important factors or gives justification for non- inclusion	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\ge 20\%$ and no description of those lost
Hollams et al. (2017) ⁶³	Medicate d asthma	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Not present at start	a) Study controls for at least 4/6 of the important factors or gives justification for non- inclusion	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\ge 20\%$ and no description of those lost
Hollams et al. (2017) ⁶³	Wheeze	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Present at start or unknown	a) Study controls for at least 4/6 of the important factors or gives justification for non- inclusion	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\ge 20\%$ and no description of those lost
Hollams et al. (2017) ⁶³	Eczema	a) Drawn from the same community as	b) Method used was HPLC, RIA kits, LC-MS/MS	b) Present at start or unknown	a) Study controls for at least 4/6 of the important factors or gives	c) Self-report only with no reference to original	a) Yes	c) Lost to follow up rate $\ge 20\%$

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.	Supplement

Author (year)	Outcome assessed	Selection of the non- exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstratio n that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
		the exposed	OR		justification for non-	health records or no		and no description
		cohort	EIA/Chemilumin escence		inclusion	documented source		of those lost
Navas- Nazario et al. (2011) ₆₁	Asthma	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Not present at start	d) Neither a) nor b) *	e) Both a) and b)	a) Yes	a) Complete follow up - all subjects were accounted for

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with *The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses.* ^b Study controls for 3+ important factors AND any of the other factors, gives justification for non-inclusion.

Table KQ2-3. Risk of bias assessment results for a case-cohort study reporting the association between serum 25(OH)D and asthma, wheezing, and eczema outcomes^{a,b}

Author (year)	Study design; outcome assessed	Follow-up in the original cohort	Selection of cases	Selection of controls	Ascertain ment of 25(OH)D concentra tions	Demonstr ation that outcome of interest was not present at start of study	Compara bility of cohorts on the basis of the design or analysis	Assessme nt of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts	Weighting	Adjusted variance
Molloy	Case-	b) Subjects	b) Not all	a) Drawn	b) Method	a) Not	c) Both a)	d) No	a) Yes	b)	c)	b)
et al.	cohort;	lost to	cases from	randomly	used was	present at	and b)	description		Controls	Analysis	Analysis
$(2017)^{60}$	Eczema	follow up	the cohort	or matched	HPLC,	start				lost to	used	does not
		unlikely to	were	with cases	RIA kits,					follow up	calibration	include
		introduce	selected or	AND	LC-					unlikely to	or	adjusted
		bias	no	drawn	MS/MS					introduce	estimation	variance,
			description	from the	OR					bias	to adjust	or no
				same	EIA/Chem						sampling	statement
				cohort as	iluminesce						weights	
				cases	nce							

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with an adapted version of The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

^b No nested case-control studies included were included in this section.

KQ2. Infectious Disease Outcomes

Table KQ2-4 shows study characteristics and results of four observational studies from three publications reporting the association between serum 25(OH)D and infectious disease outcomes. Two studies were conducted in Bangladesh, one in Western Australia, and one in Tanzania. All four were cohort studies that compared rates of infectious disease outcomes by serum 25(OH)D sufficiency status or quartile.⁶³⁻⁶⁵ One paper reported results stratified by weight status (normal vs. underweight), and these are presented on separate rows in Table KQ2-4.⁶⁴ Sample sizes of the included studies ranged from 263 to 948. In all studies, participants were 24 months or younger at enrollment. Follow-up duration was precisely reported in two publications^{63,64} while the other reported age of last follow-up.⁶⁵

Reported outcomes included upper respiratory tract infection (URTI), acute lower respiratory tract infection (ALRI), respiratory tract infection, malaria infection, and oral candidiasis. Most reported associations between serum 25(OH)D and infectious disease outcomes were not statistically significant. Mixed results with significant associations were found for three of eight total infectious disease outcomes as follows. One study found that serum 25(OH)D concentrations <10 ng/mL were associated with an increased incidence of oral candidiasis in HIV-exposed infants (adjusted IRR = 1.47; 95% CI 1.00, 2.15; P=0.046).⁶⁵ However, the same study reported that serum 25(OH)D concentrations \geq 30ng/mL were significantly associated with an increased incidence of clinical (adjusted IRR = 1.34; 95% CI 1.06, 1.70; P=0.02) and confirmed (adjusted IRR = 1.71; 95% CI 1.15, 2.54; P<0.01) malaria diagnoses. Another study reported lower risk of URTI in underweight children who were vitamin D-deficient (adjusted IRR = 0.73; 95% CI 0.61, 0.89; P<0.001) or vitamin D-insufficient (adjusted IRR = 0.80; 95% CI 0.68, 0.94; P<0.05) at baseline compared to those who were vitamin D-sufficient.

Table KQ2-5 shows the ROB assessment of cohort studies reporting infectious disease outcomes. In one study, there was ROB due to lack of reporting that the outcome was not present at the start of the study, possible insufficient adjustment for potentially relevant confounders, and a significant number of participants lost to follow-up.⁶³ There was concern for ROB in a second study due to unclear adequacy of follow-up of participants.⁶⁵

Author (year)	Study design; N analyz ed	Enroll ment years	Location; latitude	Age range ^h	Male (%)	Breas tfeedi ng status	Race or ethnici ty	Health status ^h ; nutritional status ^h	Mean follow-up (SD)	Exposure	Key findings ^b
Ahmed et al. (2016) ⁶⁴	Cohort; N= 446	2010- 2012	Dhaka, Banglades h; 23.8°	6-24 months	51.3	NR	100% Asian Indian	NR; NR	0.38 years (NR)	Serum 25(OH)D levels at 6-24 months at birth, 6 months, and years 1, 2, 3, and 4: sufficiency, insufficiency, and deficiency ⁱ	URTI: 0 (deficiency and insufficiency vs. sufficiency (ref.)) ^j ALRI: 0 (deficiency and insufficiency vs. sufficiency (ref.)) ^j
Ahmed et al. (2016) ⁶⁴	Cohort; N= 466	2010- 2012	Dhaka, Banglades h; 23.8°	6-24 months	50.2	NR	100% Asian Indian	NR; 100% underweight (weight-for- age z-score < -2.00 SD)	0.37 years (NR)	Serum 25(OH)D levels at birth, 6 months, and years 1, 2, 3, and 4: sufficiency, insufficiency, and deficiency ⁱ	URTI: (deficiency and insufficiency vs. sufficiency (ref.)) ^j ALRI: 0 (deficiency and insufficiency vs. sufficiency (ref.)) ^j
Hollams et al. (2017) ⁶³	Cohort; N= 263	1996- 1998	Western, Australia; NR	Neonate s	NR	Any BF	NR	Generally healthy; NR	Proceeding 6 or 12 months after exposure assessment	Serum 25(OH)D levels at birth, 6 months, and years 1, 2, 3, and 4: sufficiency, insufficiency, and deficiency ⁱ	Respiratory tract infection: 0 (sufficiency vs insufficiency vs deficiency at all follow ups) ^k
Sudfeld et al. (2015) ⁶⁵ (HIV- exposed, uninfect ed cohort)	Cohort; N= 948	NR	Tanzania; ~-6°	5-7 weeks	53.5	Any BF	100% Tanzan ian	Generally healthy; low VD status (mean serum 25(OH)D 18.1 ng/mL and SD 9.2 ng/mL)	20.9 months ^a (IQR: 17.0–23.9)	Serum 25(OH)D levels at 5-7 weeks of age (ng/mL): <10, 10-19.9, 20-29.9 (ref.), >=30	ALRI: 0 (serum 25(OH)D quartiles vs. second highest quartile (ref.)) ^g ; Malaria infection: (highest quartile vs second highest quartile of serum 25(OH)D (ref.)) ^g ;
											Oral candidiasis: ++ (lowest quartile of serum 25(OH)D vs second highest quartile (ref.))

Table KQ2-4. Characteristics and results of observational studies reporting the association between vitamin D intake and infectious disease outcomes

ALRI = acute lower respiratory tract infection; BF = breast-feeding; HIV = human immunodeficiency virus; IQR = interquartile range; n = sample size; NR = not reported; ref. = reference group; SD = standard deviation; URTI = upper respiratory tract infection; VD = vitamin D

^a Median age at follow up.

^b Key findings: ++ Significant difference indicating benefit of higher serum 25(OH)D levels (p < 0.05); + Marginally significant difference indicating benefit (0.05); 0 No significant difference; - Marginally significant difference indicating detriment (<math>0.05); - Significant difference indicating detriment (<math>p < 0.05).

^g Adjusted for baseline maternal factors, including age, education, marital status, number of prior pregnancies, household assets, food expenditure per person, underweight, anemia, CD4 T-cell count, and use of antiretrovirals during pregnancy, and baseline child factors, including sex, exclusive breastfeeding, stunting, wasting, low birth weight, anemia, season of 25(OH)D measurement, and randomized treatment regimen.

^h At baseline or first exposure assessment; no studies reported the mean or median age.

ⁱ Defined as <50 nmol/L, >=50 and <75 nmol/l, >=75 nmol/l, respectively.

^j Adjusted for serum retinol, serum zinc, maternal education, household wealth index, and season of vitamin D measurement.

^k Unadjusted.

Author (year)	Outcome(s) assessed	Selection of the non-exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
Ahmed et al. (2016) ⁶⁴	URTI; ALRI	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b) ^b	a) Independent blind assessment	a) Yes (for both URTI and ALRI outcomes)	a) Complete follow up - all subjects were accounted for
Hollams et al. (2017) ⁶³	Respiratory tract infection	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	b) Present at start or unknown	a) Study controls for at least 4/6 of the important factors or gives justification for non-inclusion	c) Self-report only with no reference to original health records or no documented source	a) Yes	c) Lost to follow up rate $\geq 20\%$ and no description of those lost
Sudfeld et al. (2015) ⁶⁵	ALRI; malaria infection; oral candidiasis	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b) ^b	a) Independent blind assessment	a) Yes	d) No statement

Table KQ2-5. Risk of bias assessment results for cohort studies reporting the association between vitamin D intake and infectious disease outcomes^a

ALRI = acute lower respiratory tract infection; EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay; URTI = upper respiratory tract infection

^a Assessed with *The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses.* ^b Study controls for 3+ important factors AND any of the other factors, gives justification for non-inclusion.

KQ2. Autoimmune Disease Outcomes

Table KQ2-6 shows study characteristics and results of seven observational studies from six articles reporting the association between serum vitamin D and autoimmune disease outcomes. Reported outcomes included type 1 diabetes, islet autoimmunity (a precursor to type 1 diabetes), and juvenile idiopathic arthritis (JIA). Four references reported on nested case-control studies,⁶⁶⁻⁶⁹ one reported a case-cohort study design,⁶⁷ and two reported case-cohort studies.^{70,71} Sample sizes in the included studies ranged from 128 to 8,676, and the mean age of participants at baseline or first measure of serum vitamin D was under 12 months for all studies. Follow-up duration was precisely reported in two studies,^{66,70} and the other studies either did not report duration or reported only the age or year of last follow-up.^{67-69,71}

Four articles reported no association between serum vitamin D level (including serum $25(OH)D_2$, $25(OH)D_3$, or serum 25(OH)D) and either type 1 diabetes or islet autoimmunity outcomes,^{66-68,70} and a fifth article reported no association between 25(OH)D levels and odds of JIA.⁷¹ One nested case-control study of 8,676 children at increased genetic risk of type 1 diabetes found that higher serum 25(OH)D, as measured in infancy and in early childhood, was associated with lower odds of islet autoimmunity (adjusted OR = 0.93 per 5 nmol/L difference; 95% CI 0.89, 0.97).⁶⁹

Table KQ2-7 shows the ROB assessment of case-cohort and nested case-control studies reporting autoimmune disease outcomes. At least one study had ROB due to each of the following reasons: unknown follow-up of the original cohort, incomplete or poor description of case selection, non-random or unmatched selection of controls, non-optimal adjustment of possible confounders, poor description of how outcomes were assessed, incomplete or poor description of subject follow-up rate, or inappropriate or poorly described analytic methods.

	Study			Mean							
Author (year)	design; N enrolle d	Enroll ment years	Locatio n [latitud e]	age (SD) [range] ^h	Mal e (%)	Breas tfeedi ng status	Race or ethnici ty	Health status ^h ; nutritional status ^h	Mean follow-up (SD)	Exposure	Key findings ^b
Cadario et al. (2015) ⁶⁶	Nested case- control; N= 303	Since 1990	Italy	Neonat es	48	NR	NR	Generally healthy; NR	Cases: 7.0 (0.25); Controls 7.2 (0.49)	Serum 25(OH)D at birth	Type 1 diabetics vs. nondiabetics: 0 °
Jacobsen et al. 2016 ⁶⁷	Case- cohort; N= 3778	1981- 2002	Denmar k; ~56°	Neonat es	51.2	NR	Mother s >90% Danish	Generally healthy; NR	Until end of 2012; Cases: 10.2; Controls: 10.5 ⁿ	Serum $25(OH)D$, $25(OH)D_2$, and $25(OH)D_3$ at birth	Type 1 diabetics vs. nondiabetics: 0 (for all three exposures) ^g
Jacobsen et al. 2016 67	Nested case- control; N=105 4	1981- 2002	Denmar k; ~56°	Neonat es	52.3	NR	Mother s >95% Danish	Generally healthy; NR	Until May 2012	Serum 25(OH)D, 25(OH)D ₂ , and 25(OH)D ₃ at birth	Type 1 diabetics vs. nondiabetics: 0 (for all three exposures) ^m
Makinen et al. (2016) ⁶⁸	Nested case- control; N= 252	1994- 2004	Tamper e, Finland; 61°	3 (0) months	51	NR	NR	Generally healthy, 100% with HLA- conferred susceptibility to T1D; NR	Cases: 2.53 y of age; Controls: 2.92 y of age ^a	Serum 25(OH)D in infancy	Type 1 diabetics vs. nondiabetics: 0 ⁻¹
Norris et al. (2018) ⁶⁹	Nested case- control; N=	2004- 2010	USA and Europe	95% age 3- 12 months	55.6	NR	NR	Generally healthy, 100% with high-risk HLA haplotype or first-degree relative	NR	Serum 25(OH)D in first year of life and in childhood	Islet autoimmunity vs. non- cases: ++ (for first year of life exposure) ^d
	8676			at first sample				with T1D; NR		emanood	Islet autoimmunity vs. non- cases: ++ (for childhood exposure) ^e
Simpson et al. (2011) (study 1c) 70	Case- cohort; N= 128	1993- 2006	Denver, USA; 39.7°	NR [0.1- 0.75] years	50	NR	76% Non- Hispan ic white	Generally healthy, 100% with high-risk allele in HLA region or first- degree relative with T1D; NR	Cases: 3.5 (2.6) y; Controls 7.3 (4.0) y	Serum 25(OH)D at 9 months of age; VD insufficiency at 9 months of age	Islet autoimmunity vs. non- cases: 0 ^f (for both exposures)

Table KQ2-6. Characteristics and results of observational studies reporting the association between vitamin D intake and autoimmune disease outcomes

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Thorsen et al. (2017)	Case- cohort; N= 600	1983- 2012	Denmar k	Neonat es	40.2	NR	89.3% ethnic Dane	Generally healthy; NR	Median age 5-8.5 years	Serum 25(OH)D at birth	Oligoarticular JIA groups vs. controls: 0 ^j
											Polyarticular JIA groups vs. controls: 0 ^j

HLA = human leukocyte antigen; JIA = juvenile idiopathic arthritis; NR = not reported; ref. = reference group; T1D = type 1 diabetes; VD = vitamin D; y = years

^a Median age at follow up.

^b Results: ++ Significant difference indicating benefit of higher serum 25(OH)D levels (p < 0.05); + Marginally significant difference indicating benefit (0.05); 0 No significant difference; - Marginally significant difference indicating detriment (<math>0.05); - Significant difference indicating detriment (<math>p < 0.05).

^c Multiple serum 25(OH)D measures were collected in each subject.

^d Controls matched for clinical center, sex, and family history of type 1 diabetes; adjusted for HLA-DR3/4 status and the first two PCs indicating ancestry, age, and season of sample collection at the first visit.

^e Adjusted for HLA-DR3/4 status and the first two PCs indicating ancestry.

^f Adjusted for family history of T1D and HLA-DR3/4, DQB1*0302 genotype.

^g Adjusted for maternal and paternal type 1 diabetes status.

^h At baseline or first exposure assessment.

^j Controls matched for date of birth; adjusted for 25(OH)D, gender, ethnicity, weight (categorical), gestational age (categorical), and mother's age (categorical).

^k Controls matched for date of birth and ethnic group.

¹Controls matched for age, sex, study site, and HLA-conferred; adjusted for sample month, sample year, age of child at sample draw, and sex.

^m Controls matched for season of birth; adjusted for HLA genotype.

ⁿ Median age at last follow-up.

° Controls matched for birth date and ethnicity, model unadjusted.

Table KQ2-7. Risk of bias assessment results for case-cohort and nested case-control studies reporting the association between serum 25(OH)D and autoimmune disease outcomes^a

Author (year) Cadario et al. (2015) ⁶⁶	Study design; outcome assessed NCC; Type 1 diabetes	Follow-up in the original cohort d) No statement	Selection of cases a) All cases from the cohort were selected	Selection of controls a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	Ascertain ment of 25(OH)D concentra tions b) Method used was HPLC, RIA kits, LC- MS/MS OR EIA/Chem iluminesce nce	Demonstr ation that outcome of interest was not present at start of study a) Not present at start	Comparabilit y of cohorts on the basis of the design or analysis a) Study controls for at least 4/6 of the important factors, OR the authors described the variable selection process or gives justification for non- inclusion	Assessme nt of outcome e) Both a) and b)	Was follow- up long enough for outcome s to occur? a) Yes	Adequac y of follow up of cohorts d) No statement	C-C: Weighting; NCC: Accounts for unequal probability sampling methods b) Conditional logistic regression analysis with matching variables or stratification	Adjusted variance b) Analysis does not include adjusted variance, or no statement
Jacobsen et al. (2016) – Study 1 ⁶⁷	C-C; Type 1 diabetes	b) Subjects lost to follow up unlikely to introduce bias	b) Not all cases from the cohort were selected or no descriptio n	a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	b) Method used was HPLC, RIA kits, LC- MS/MS OR EIA/Chem iluminesce nce	a) Not present at start	c) Both a) and b)	e) Both a) and b)	a) Yes	a) Complete follow up - all controls were accounte d for	b) Analysis involves weighted likelihood approach	a) Analysis includes robust estimation of the variance
Jacobsen et al. (2016) – Study 2 ⁶⁷	NCC; Type 1 diabetes	b) Subjects lost to follow up unlikely to introduce bias	b) Not all cases from the cohort were selected	a) Drawn randomly or matched with cases AND drawn	b) Method used was HPLC, RIA kits, LC- MS/MS	a) Not present at start	c) Both a) and b)	e) Both a) and b)	a) Yes	a) Complete follow up - all controls were	b) Conditional logistic regression analysis with matching	b) Analysis does not include adjusted variance,

Demonstr Was C-C: Weighting; ation that followoutcome up long NCC: Ascertain of interest Comparabilit Adequac Accounts enough v of cohorts Study Follow-up ment of was not for y of for unequal design; in the Selection 25(OH)D on the basis of follow probability present at Assessme outcome Author outcome original Selection of concentra start of the design or nt of s to up of sampling Adjusted (year) assessed cohort of cases controls tions study analysis outcome occur? cohorts methods variance or no from the OR accounte variables or or no descriptio same EIA/Chem d for stratification statement cohort as iluminesce n cases nce NCC: b) Method Makinen c) Lost to b) Not all a) Drawn a) Not a) Study a) a) Yes b) b) b) controls for at Independe Controls Conditional Analysis et al. Type 1 follow up cases randomly used was present at (2016) 68 diabetes rate $\geq 20\%$ from the or matched HPLC, least 4/6 of the nt blind lost to logistic does not start follow up and no cohort with cases RIA kits. important assessment regression include description were AND LCfactors or (e.g., by unlikely analysis with adjusted of those selected MS/MS physician/ matching variance, drawn gives to variables or lost from the OR iustification nurse or introduce or no or no stratification EIA/Chem for nonfrom bias descriptio same statement iluminesce health n cohort as inclusion cases nce records) Norris et NCC; d) No a) All a) Drawn d) Both a) a) Not c) Both a) and a) a) Yes b) b) b) al. Islet statement randomly and b) present at b) Independe Controls Conditional Analysis cases (2018) 69 autoimm from the or matched start nt blind lost to logistic does not cohort with cases follow up regression include unity assessment AND (e.g., by unlikely analysis with adjusted were selected drawn physician/ matching to variance, introduce variables or from the nurse or or no same from bias stratification statement health cohort as cases records) Simpson C-C; Islet c) Lost to b) Not all b) Neither b) Method a) Not c) Both a) and a) a) Yes d) No b) Analysis b) et al. autoimm follow up drawn used was b) Independe involves Analysis cases present at statement (2011) rate > 20%from the HPLC. nt blind weighted unitv randomly start does not Study 1c and no cohort nor RIA kits. assessment likelihood include 70 description were matched LC-(e.g., by approach adjusted of those selected OR drawn MS/MS physician/ variance. lost from a OR nurse or or no or no EIA/Chem different from statement

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Author (year)	Study design; outcome assessed	Follow-up in the original cohort	Selection of cases descriptio n	Selection of controls source than cases	Ascertain ment of 25(OH)D concentra tions iluminesce nce	Demonstr ation that outcome of interest was not present at start of study	Comparabilit y of cohorts on the basis of the design or analysis	Assessme nt of outcome health records)	Was follow- up long enough for outcome s to occur?	Adequac y of follow up of cohorts	C-C: Weighting; NCC: Accounts for unequal probability sampling methods	Adjusted variance
Thorsen et al. (2017) – Birth cohort ⁷¹	NCC; Juvenile idiopathi c arthritis	b) Subjects lost to follow up unlikely to introduce bias	b) Not all cases from the cohort were selected or no descriptio n	a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	b) Method used was HPLC, RIA kits, LC- MS/MS OR EIA/Chem iluminesce nce	a) Not present at start	c) Both a) and b)	e) Both a) and b)	a) Yes	a) Complete follow up - all controls were accounte d for	b) Conditional logistic regression analysis with matching variables or stratification	a) Analysis uses adjusted variance

C-C = case-cohort; EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; NCC = nested case-control; RIA = Radioimmunoassay

^a Assessed with an adapted version of *The Newcastle-Ottawa Scale (NOS)* for assessing the quality of nonrandomised studies in meta-analyses.

KQ2. Growth and Neurological Development Outcomes

Six observational studies included in this systematic review assessed the association between serum 25(OH)D concentrations in infancy and outcomes related to growth or neurological development outcomes (**Table KQ2-8**). These studies ranged in size from 134 to 1,550 participants, and study latitudes ranged from 7° S to 65° N. Four cohort studies assessed weight, length/height, or body mass index (BMI) outcomes after six months,^{72,73} 18 months,⁶⁵ or 19 years.⁷⁴ Two of these studies also assessed neurological development determined with the Ages and Stages Questionnaire-3⁷² or Børge Priens IQ scores.⁷⁴ One nested case-control study assessed changes in 25(OH)D and BMI over three years for children diagnosed with type 1 diabetes and healthy controls⁶⁸ while another compared 25(OH)D in children with or without intellectual disabilities at about age three.⁷⁵

All six studies reported no significant linear associations between 25(OH)D levels and growth and development outcomes; however, some subgroup and categorical analyses provided support for possible associations. One study found an inverse relationship between 25(OH)D at infancy and BMI at age 3, but this study did not report if these findings were statistically significant.⁶⁸ Another study⁶⁵ reported significant benefits in weight-for-length Z-scores at 20 months if 25(OH)D levels at age 5-7 weeks were between 20-29.9 ng/mL compared to less than 10 ng/mL. For all other group comparisons, no significant associations were found.

Two studies reporting on neurological development outcomes found no linear association with 25(OH)D levels from infancy.^{72,74} After dividing neonatal 25(OH)D into quintiles, one of these studies⁷⁴ found infants with 25(OH)D levels in quintiles three (21.8–30.3 nmol/L) and four (30.3–43.9 nmol/L) had significantly higher IQ scores around age 19 than infants in quintile one (0-13.3 nmol/L). In another study that analyzed 25(OH)D₃ deciles, models predicted the lowest relative risk for intellectual disability by age three years was at the 72nd percentile (48.1 nmol/L).⁷⁵

Among the included cohort studies, the potential for ROB was generally assessed as low (**Table KQ2-9**). Two studies showed potential for bias due to a loss to follow-up rate greater than 20% for certain outcomes with no description of those lost.^{72,73} One study used an uncommon method to assess 25(OH)D.⁷³ Another cohort study included underweight infants in the study population but also measured underweight as an outcome.⁶⁵ In this study, unclear follow-up rates were another source of potential bias. One nested case-control was assessed as having high possibility for ROB in three domains due to unclear reporting (**Table KQ2-10**).⁶⁸ Regarding selection, it was not clear if 100% of cases from the original cohort were included in the study. While some description of analysis methods was provided, details for how BMI was assessed and analyzed were not clearly presented. Neither nested case-control study mentioned the use of adjusted or robust estimation of the variance which is recommended for studies of this design.

Table KQ2-8. Characteristics and key findings of observational studies reporting the association between serum 25(OH)D and growth or neurological development outcomes

Author (year)	Study design; country (latitude)	Enroll ment years	N analyzed (male %)	Mean age (SD) [range] ^a at baseline	Breastfe eding status	Race or ethnicity	Health status; nutritional status	Growth outcome analyzed	Mean age (SD) [range] at follow-up	Exposure	Key findings ^b
Chowdh ury et al. (2017) ⁷²	Cohort; Delhi, India (29°)	2010- 2012	960 (51) N=401 with neurological measures N=919 with growth measures	~16.2 (7.0-7.1) [6-30] months	Any BF (mixed feeding)	Presumed 100% Asian Indian	34.5% with vitamin D deficiency	Neurodevel opment (ASQ-3 score); weight; length	NR (NR) [12- 36] months	Serum 25(OH)D status at 6-30 months: deficient (<25 nmol/L), non- deficient (≥25 nmol/L)	ASQ-3: 0 HAZ: 0 WHZ: 0 WAZ: 0
Makinen et al. (2016) ⁶⁸	Nested case control; Oulu, Tampere, and Turku, Finland (60-65°)	1994- 2004	252 (50.8) Cases: N=126 (50.8) Controls: N=126 (50.8)	3 (0) months	NR	Presumed 100% Finnish	100% with HLA-conferred susceptibility to T1D, and cases were those who developed T1D; NR	BMI	Median [IQR]: Cases: 3.24 [1.55-5.74] years Controls: 2.53 [1.10- 5.20] years	Changes in 25(OH)D from baseline to follow-up	ΔBMI: Inverse association (P- value NR) ^c
Pludows ki et al. (2011) ⁷³	Cohort; Bialystok, Rzeszow, Warsaw, and Kielce, Poland (49- 54.5°)	NR	134 (51.5) at enrollment; 98 (NR) at last follow-up	183 (7) days	Any BF (mixed feeding)	Presumed 100% Polish	100% Healthy;	Body weight; body length	365 (7) [NR] days	Changes in 25(OH)D from age 6 months to 12 months	ΔBody weight: 0 (No correlation) ΔBody length: 0 (No correlation)
Specht et al. (2020) ⁷⁴	Cohort; Denmark (56°)	1988- 1998	818 (95.8)	0 (0) [0-7] days	NR	100% Danish	Generally healthy; NR	BMI; neurologica l developme nt (IQ score)	19.4 (NR) [17.7–27.8] years	25(OH)D from neonatal DBS as quintiles (nmol/L): 0- 13.3 (Q1), 13.3-21.8 (Q2), 21.8– 30.3 (Q3), 30.3–43.9 (Q4), and	BMI: 0 IQ ^d : 0 (overall), ++ (Q3 vs. Q1; Q4 vs. Q1); 0 (all other quintile comparisons)

Author (year)	Study design; country (latitude)	Enroll ment years	N analyzed (male %)	Mean age (SD) [range] ^a at baseline	Breastfe eding status	Race or ethnicity	Health status; nutritional status	Growth outcome analyzed	Mean age (SD) [range] at follow-up	Exposure	Key findings ^b
										43.9-104.7 (Q5)	
Sudfeld et al. (2015) ⁶⁵	Cohort; Dar es Salaam, Tanzania (- 7°)	2004- 2007	948 (53.5) in the HIV- exposed, uninfected cohort	[5-7] weeks	Any BF (mixed feeding)	100% Tanzanian	Generally healthy; Low VD status, mean (SD) 25(OH)D at baseline = 18.1 (9.2) ng/mL	Height; weight	Median [IQR]: 20.9 [17.0–23.9] months	Serum 25(OH)D levels (ng/mL) at 5-7 weeks: < 10, 10-19.9, 20-29.9 (ref.), and ≥ 30	LAZ: 0 WLZ: 0 (ref. vs. 10-19.9 ng/mL; ref. vs. ≥ 30 ng/mL), ++ (ref. vs. <10 ng/mL ^e) WAZ: 0
Wu et al. (2018) ⁷⁵	Nested case- control; Beijing, China (39°)	2008- 2010	1,550 (77.4) Cases: N=310 (77.4) Controls: N=1,240 (77.4)	3.3 (1.6- 1.8) [1-7] days	Any BF (mixed feeding)	100% Chinese	Cases were diagnosed with ASDs; NR	ID (based on IQ ^f)	3 (NR) [NR] years	25(OH)D ₃ from neonatal DBS	ID: ++

ASDs = autism spectrum disorders; ASQ = Ages and Stages Questionnaire; BF = breastfeeding; BMI = body mass index; DBS = dried blood spots; HAZ = height-for-age z-score; HIV = human immunodeficiency virus; ID: intellectual disability; IQ = intelligence quotient; IQR = interquartile range; LAZ = length-for-age z-score; N = sample size; NR = not reported; Q = quintile; ref. = reference group; RR = relative risk; SD = standard deviation; T1D = type 1 diabetes; VD = vitamin D; WAZ = weight-for-age z-score; WHZ = weight-for-length z-score

^a Measure from baseline or first exposure assessment.

^b Results: ++ Significant difference indicating benefit of higher serum 25(OH)D levels (P < 0.05); + Marginally significant difference indicating benefit (0.05 < P < 0.1); 0 No significant difference; - Marginally significant difference indicating detriment (0.05 < P < 0.1); -- Significant difference indicating detriment (P < 0.05)

^c According to Makinen et al. (2016) ⁶⁸, "when BMI increased with 1 kg/m², median 25(OH)D concentration decreased with 1.3 nmol/L. The effect was similar in cases and controls (P = .57)" (p. 727).

^d Adjusted mean Børge Priens IQ test scores according to quintiles of neonatal vitamin D levels. Results for linear regression model adjusted for maternal age at birth, maternal and paternal education level, gestational age at birth, and season of birth.

^e According to Sudfeld et al. (2015) ⁶⁵, "In multivariate analysis, the trajectory of WLZ significantly differed for infants with 25(OH)D concentrations of <10 ng/mL compared with those with concentrations of 20–29.9 ng/mL (P < 0.01). Infants with 25(OH)D concentrations of <10 ng/mL experienced a rapid decrease in WLZ from 10–38 wk of age, but then experienced catch-up, and WLZ was comparable to other groups by 110 wk of age" (p. 126).

^f Intellectual disability defined as IQ < 80 on the Combined Raven's Test after conversion to Chinese children's norms.

Author (year)	Outcome assessed	Selection of the non-exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
Chowdhury et al. (2017) ⁷²	Weight; length	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b)	a) Independent blind assessment	a) Yes	b) Subjects lost to follow up unlikely to introduce bias
Chowdhury et al. (2017) ⁷²	Neurological development	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	b) Study controls for 3+ important factors AND any of the other factors, gives justification for non-inclusion	a) Independent blind assessment	a) Yes	c) Lost to follow up rate $\geq 20\%$ and no description of those lost
Pludowski et al. (2011) ⁷³	Body weight; body length	a) Drawn from the same community as the exposed cohort	c) Other methods were used to assess 25(OH)D or no description	a) Not present at start	c) Both a) and b)	a) Independent blind assessment	a) Yes	c) Lost to follow up rate $\geq 20\%$ and no description of those lost
Specht et al. (2020) ⁷⁴	Body mass index	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b)	b) Record linkage	a) Yes	a) Complete follow up - all subjects were accounted for
Specht et al. (2020) ⁷⁴	Neurological development (IQ score)	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b)	b) Record linkage	a) Yes	a) Complete follow up - all subjects were accounted for
Sudfeld et al. (2015) ⁶⁵	Height; weight	a) Drawn from the same	b) Method used was HPLC, RIA	b) Present at start or unknown	c) Both a) and b)	a) Independent blind assessment	a) Yes	d) No statement

Table KQ2-9. Risk of bias assessment results for cohort studies^a reporting on growth or neurological development outcomes

Vitamin D Intakes and Health Outcomes in	Children Aged 0-4 Years, Beauchesne et al.	Supplement

Author (year)	Outcome assessed	Selection of the non-exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
		community as the	kits, LC-MS/MS					
		exposed cohort	OR					
			EIA/Chemilumin					
			escence					

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

Author (year)	Outcome assessed	Follow-up in the original cohort	Selection of cases	Selection of controls	Ascertain ment of 25(OH)D concentra tions	Demonstr ation that outcome of interest was not present at start of study	Compara bility of cohorts on the basis of the design or analysis	Assessme nt of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts	Accounts for unequal probabilit y sampling methods	Adjusted variance
Makinen et al. (2016) ⁶⁸	Body mass index	c) Lost to follow up rate $\geq 20\%$ and no description of those lost	b) Not all cases from the cohort were selected or no description	a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	b) Method used was HPLC, RIA kits, LC- MS/MS OR EIA/Chem iluminesce nce	a) Not present at start	Not clear from reporting	d) No description	a) Yes	b) Controls lost to follow up unlikely to introduce bias	Not clear from reporting	b) Analysis does not include adjusted variance, or no statement
Wu et al. (2018) ⁷⁵	Intellectua l developm ent (IQ)	b) Subjects lost to follow up unlikely to introduce bias	a) All cases from the cohort were selected	a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	d) Both a) and b)	a) Not present at start	c) Both a) and b)	a) Independe nt blind assessment (e.g., by physician/ nurse or from health records)	a) Yes	a) Complete follow up - all controls were accounted for	b) Conditiona l logistic regression analysis with matching variables or stratificati on	b) Analysis does not include adjusted variance, or no statement

Table KQ2-10. Risk of bias assessment results for nested case-control studies^a reporting on growth or neurological development outcomes

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with an adapted version of The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

KQ2. Fracture Outcome

One large case-cohort study (n = 2,604; ~47.7% male) conducted in Denmark (~55°-58° N) reported on the association between 25(OH)D₃ levels at birth and bone fracture outcomes when participants were 6-13 years old.⁷⁶ **Table KQ2-11** shows the characteristics of this study where cases were identified through the Danish National Patient Registry (NPR), and fractures of interest were forearm, wrist, or scaphoid bone (International Classification of Diseases, 10th edition [ICD-10]: S52, S62.0); the clavicle (ICD-10: S42.0); or the ankle (ICD-10:S82.5, S82.6, S82.8). This study found no association between serum 25(OH)D₃ at birth as a continuous measure and fracture risk at age 6-13 years. When 25(OH)D₃ quintiles were compared, participants in the middle quintile (mean 25[OH]D₃ = 23.90 nmol/L) had significantly lower odds of fracture compared to participants in the lowest quintile (mean 25[OH]D₃ = 7.88 nmol/L; crude OR = 0.76; 95% CI 0.60, 0.98). This trend remained after adjusting for age, sex, parity, maternal education level, maternal ethnicity, and maternal age (adjusted OR = 0.75; 95% CI 0.58, 0.96). Other models adding either maternal smoking during pregnancy, season of birth, or birth weight to the adjusted model also resulted in lower odds of fracture for the middle quintile compared to the lowest quintile. In global tests, no significant overall association was found for any model (*P*-value range: 0.08 – 0.16).

There was some potential for risk of bias in the selection of participants, as 100% of cases were not included in the study; rather, a sample was selected randomly from all eligible cases (**Table KQ2-12**). Due to this deviation from the classic case-cohort design, the study analysis did not include weighting or robust adjustments for variance which resulted in additional potential for risk of bias.

KQ2. Blood Pressure

A cohort study (n = 284, 56.3% male) conducted in Sweden (60° N) assessed the association between 25(OH)D₃ levels at birth and blood pressure outcomes at age 35 years (**Table KQ2-13**).⁷⁷ This study utilized stored dried blood samples which, when tested, showed signs of potential for 25(OH)D₃ degradation. Due to this, 25(OH)D₃ was assessed only as a continuous measure. Regression results suggested no association between 25(OH)D₃ at birth and systolic (95% CI -1.32, 6.21; P = 0.20) or diastolic (95% CI -2.46, 3.22; P = 0.79) blood pressure at age 35 years after adjusting for sex, postnatal age at sample collection, season of birth, preterm birth, maternal age, education, smoking, fish consumption per week, exercise per week, and current 25(OH)D. A similar trend was found when current BMI was added to the model (systolic 95% CI -2.67, 4.79; P = 0.58; diastolic 95% CI -3.56, 2.04; P = 0.60).

In this study, there was a likelihood of low ROB for both the selection and comparability domains (**Table KQ2-14**). There were some concerns for the outcome domain due to a loss to follow-up rate of nearly 80%. With a 35-year follow-up duration, "rejection or no response to invitation" accounted for 79% of those lost to follow-up. The paper states, "Response rates were not influenced by sex or season of birth";⁷⁷ however, nothing was reported regarding differences between levels of 25(OH)D at birth for those who did or did not participate.

Author (year)	Study design; country (latitude)	Enroll ment year(s)	N analyzed (male %)	Mean age (SD) at baseline	Breastf eeding status	Race or ethnicity ^a	Health status; nutritional status	Exposur e	Mean age [range] at follow-up	Key findings ^b
Handel et al. (2017) ⁷⁶	Case- cohort; Denmark (~55°-58°)	1989- 1999	2,604 (~47.7%) Cases: N=1,039 (49.9) Controls: N=1,565 (52.3)	Cases GA: 39.5 (1.8) weeks Controls GA: 39.6 (2.0) weeks	NR	Cases: 95.7% European; Controls: 92.3% European	NR; low VD3 levels	25(OH)D 3 from DBS at birth	NR [6-13] y	Odds of fracture at age 6- 13 y by mean 25(OH)D ₃ at birth: ++ (middle quintile [23.90 nmol/L] vs. lowest quintile [7.88 nmol/L]) Risk of fracture at age 6- 13 y by continuous 25(OH)D ₃ at birth: 0

Table KQ2-11. Characteristics and key findings of one case-cohort study reporting on fracture outcomes

GA = gestational age; DBS = dried blood spots; N = sample size; NR = not reported; SD = standard deviation; VD3 = vitamin D₃; y = years

^a Maternal race/ethnicity reported.

^b Results comparing higher to lower levels of serum 25(OH)D: ++ Significant beneficial effects of higher 25(OH)D levels (P < 0.05); + Marginally significant beneficial effects (0.05 < P < 0.1); 0 No effects; - Marginally significant detrimental effects (0.05 < P < 0.1); -- Significant detrimental effects (P < 0.05).

Author (year)	Study design; outcome assessed	Follow-up in the original cohort	Selection of cases	Selection of controls	Ascertain ment of 25(OH)D concentra tions	Demonstr ation that outcome of interest was not present at start of study	Compara bility of cohorts on the basis of the design or analysis	Assessme nt of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts	Weighting	Adjusted variance
Handel et al. (2017) ⁷⁶	C-C; Fracture	b) Subjects lost to follow up unlikely to introduce bias	b) Not all cases from the cohort were selected or no description	a) Drawn randomly or matched with cases AND drawn from the same cohort as cases	b) Method used was HPLC, RIA kits, LC- MS/MS OR EIA/Chem iluminesce nce	a) Not present at start	a) Study controls for at least 4/6 of the important factors or gives justificatio n for non- inclusion	e) Both a) and b)	a) Yes	b) Controls lost to follow up unlikely to introduce bias	d) Analysis does not include weighting or no statement	b) Analysis does not include adjusted variance, or no statement

Table KQ2-12. Risk of bias assessment results for one case-cohort study^a reporting on fracture outcomes

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with an adapted version of The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

Author (year)	Study design; country (latitude)	Enrollmen t year(s)	N analyzed (male %)	Mean age (SD) at baseline	Breastf eeding Status	Race or ethnicity	Health status; nutritiona l status	Exposure	Mean age (SD) at follow-up	Key findings ^a
Tornhammar et al. (2014)	Cohort; Sweden	1975; 2010 (follow-up)	N=284 (56.3%)	~4.8 (1.2- 1.3) days	NR	100% Swedish	NR; NR	25(OH)D ₃ from DBS	35 (NR) y	Systolic BP at age 35 y: 0
77	(60°)							at birth		Diastolic BP at age 35 y: 0

Table KQ2-13. Characteristics and key findings of a cohort study reporting on blood pressure outcomes

BP = blood pressure; DBS = dried blood spots; N = sample size; NR = not reported; SD = standard deviation; y = years

^a Results comparing higher to lower levels of serum 25(OH)D: ++ Significant beneficial effects of higher 25(OH)D levels (P < 0.05); + Marginally significant beneficial effects (0.05 < P < 0.1); 0 No effects; - Marginally significant detrimental effects (0.05 < P < 0.1); -- Significant detrimental effects (P < 0.05).

Table KQ2-14. Risk of bias assessment results for one cohort study^a reporting on blood pressure outcomes

Author (year)	Outcome assessed	Selection of the non-exposed cohort	Ascertainment of 25(OH)D concentrations	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur?	Adequacy of follow up of cohorts
Tornhammar et al. (2014) ⁷⁷	Blood pressure	a) Drawn from the same community as the exposed cohort	b) Method used was HPLC, RIA kits, LC-MS/MS OR EIA/Chemilumin escence	a) Not present at start	c) Both a) and b)	a) Independent blind assessment	a) Yes	c) Lost to follow up rate $\geq 20\%$ and no description of those lost

EIA = Enzyme immunoassay; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; RIA = Radioimmunoassay

^a Assessed with The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

KQ3. What is the effect of vitamin D intake on serum 25(OH)D concentrations in children aged 0 to 4 years?

Table KQ3-1 reports the characteristics of interventional studies reporting the effect of vitamin D intake on serum 25-hydroxyvitamin D [25(OH)D] included in our review. Of the 67 studies (from 66 publications), 51 studies were conducted in children ages 0 to 4 years, ^{24,27-49,51-54,57,78-100} while 16 studies (from 14 publications) were conducted in children ages 3-9 years.^{56,101-114}

To perform planned subgroup analyses (see Background), we first categorized the included studies into 5 sub-sections: 1) studies comparing different levels of daily vitamin D supplementation (vitamin D₃ or D₂ supplements), 2) studies using non-daily vitamin D supplementation dosing regimens (including single dose), 3) studies comparing supplementation to post-partum mothers to supplementation to infants, 4) studies using food interventions with different levels of vitamin D or comparing food interventions with vitamin D supplements, and 5) studies examining the effects of combined vitamin D and calcium supplementation. Within each section, we then plotted the mean 25(OH)D concentration and its 95% confidence interval at baseline (if reported) and at follow-up time points for all intervention arms of each included study to summarize the individual study results. Results of all follow-up time points were included; however, results from the post-intervention follow-up time points were excluded.

Author (year)	Study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards
Abrams et al. (2013)	RCT; N= 64	2009-2011	Houston, USA; 29.7°	6.6 (1.4) [4-8.9] years	NR	NR	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Aglipay et al. (2017) 32	RCT; N= 703	2011-2015	Toronto, Canada; 43°	2.7 (1.5) years	57.4	Any BF	NR	100% Healthy; NR	Protein- binding assay	CDC: yes; NIST: no
Ala-houhala et al. (1985) ⁵¹	RCT; N= 92	1982	Tampere, Finland; 61°	Neonates	NR	Exclusively BF	NR	100% Healthy; NR	HPLC	CDC: no; NIST: no
Ala-Houhala et al. (1986) ⁷⁸	RCT; N= 16	1984	Tampere, Finland; 61°	Neonates	NR	Exclusively BF	NR	100% Healthy; NR	Competitive protein binding assay	CDC: no; NIST: no
Alahouhala et al. (1988) ¹⁰²	RCT; N= 51	1984-1985	Tampere, Finland; 61°	[8-10 years]	NR	NA	NR	100% Healthy; NR	HPLC	CDC: no; NIST: no
Alonso et al. (2011)	RCT; N= 88	2007-2008	Spain; 43°	Neonates	52.3	Any BF	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Aluisio et al. (2013) ⁷⁹	RCT; N= 3046	2007-2009	Kabul, Afghanistan; 34.5°	0.5 [0.08- 0.92] years	NR	NR	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Atas et al. (2013) 80	RCT; N= 169	2006-2007	Istanbul, Turkey; 40°	Neonates	NR	Exclusively BF	NR	100% Healthy; NR	HPLC	CDC: no; NIST: no
Brett et al. (2016) 103	RCT; N= 77	2014	Montreal, Canada; 45.5°	5.1 (1.9) years	54.5	NA	NR	100% Healthy; NA	EIA/Chemi- luminescence	CDC: yes; NIST: yes (mean bias: NR)
Brett et al. (2018) ¹⁰⁴	RCT; N= 51	2014	Montreal, Canada; 46°	~5.2 (1.8- 2.0) [1.9- 8.6] years	52.9	NA	60.8% White; 39.4% non- white (Hispanic, Black, or Asian)	100% Healthy; <8% with low vitamin D	HPLC	CDC: no; NIST: yes (mean bias: <5%)
Chan et al. (1982) 43	RCT; N= 91	NR	Salt Lake City, USA; NR	Neonates	NR	Any BF	100% White	100% Healthy; NR	Competitive protein	CDC: no; NIST: no

Table KQ3-1. Characteristics of all studies reporting the effect of vitamin D on serum 25(OH)D included in our review

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Author (year)	Study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards
		v					v		binding	
Chandy et al. (2016) 45	RCT; N= 230	2012-2014	India; 26°	Neonates	NR	Any BF	100% Asian Indian	100% Healthy; NR	radioassay RIA kits	CDC: yes; NIST: no
Dawodu et al. (2019) ⁴⁶	RCT; N= 190	2013-2016	Dohar, Qatar; 25°	Neonates	NR	Exclusively BF	NR	100% Healthy; Low vitamin D intake	EIA/Chemi- luminescence	CDC: yes; NIST: no
Economos et al. (2014) ¹⁰⁵	RCT; N= 176	2005-2006	Massachusetts, USA; 42°	8.0 (1.4) years	61	NA	2.1% Asian; 44.0% Black; 24.8% White; 12.8% Hispanic; 16.3% other	100% Healthy; NR	Protein binding assay	CDC: yes; NIST: no
Ekbote et al. (2011) ⁸¹	RCT; N= 60	2007-2008	Pune, India; 19°	2.7 (0.52) [1-5] years	52	NR	Presumed 100% Asian Indian	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Enlund-Cerullo et al. (2019) ³⁴	RCT; N= 913	2013-2016	Helsinki, Finland; 60.2°	NR [0-2 years]	50.3	Any BF	100% of mothers of Northern European Origin	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: yes (mean bias: <8% positive)
Gallo et al. (2013)a	RCT; N= 52	2010-2011	Montreal, Canada; 46°	1 month	48	Any BF	NR	100% Healthy; NR	LC-MS/MS	CDC: no; NIST: no
Gallo et al. (2013)b 38	RCT; N= 132	2007-2010	Montreal, Canada; 46°	Neonates	57.6	Exclusively BF	84% White, 16% non- white	100% Healthy; NR	LC-MS	CDC: yes; NIST: no
Gordon et al. (2008) ⁸³	RCT; N= 40	2005-2007	Boston, USA; 42°	Neonates	45	NR	NR	100% Healthy; 100% vitamin D deficiency	EIA/Chemi- luminescence	CDC: yes; NIST: no
Grant et al. (2014) 84	RCT; N= 260	2010-2011	Auckland, New Zealand; -36°	Neonates	48.6	Any BF	NR	100% Healthy; NR	LC-MS/MS	CDC: yes; NIST: no
Grant et al. (2015) 30	RCT; N= 236	2010-2011	Auckland, New Zealand; -36°	Neonates	NR	Any BF	NR	100% Healthy; NR	LC-MS/MS	CDC: yes; NIST: no
Greer et al. (1981) 98	RCT; N=30	1978	NR; NR	Neonates	NR	Exclusively BF	94% Caucasian; 6% Asian Indian	100% Healthy; NA	NR	CDC: no; NIST: no

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Author (year)	Study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards
Greer et al. (1982) 37	RCT; N= 30	1978	NR; NR	Neonates	NR	Exclusively BF	94% White; 6% Asian Indian	100% Healthy; NA	NR	CDC: no; NIST: no
Harnot et al. (2017) ⁸⁵	RCT; N= 60	2012-2013	Chandigarh, India; 31°	1.2 (0.8) [0-3] years	68.3	NR	Presumed 100% Asian Indian	100% with evidence of VitD deficiency; Low vitamin D intake	EIA/Chemi- luminescence	CDC: yes; NIST: no
Hibbs et al. (2018) 24	RCT; N= 300	2013-2016	Cleveland, USA; Charleston, USA; Bronx, USA; ~38°	Neonates	55	Any BF	100% Black or African American	100% preterm (mean GA=33); NR	EIA/Chemi- luminescence	NIST: no
Hirschler et al. (2014) ¹⁰⁶	Cluster RCT; N= 96	2011-2013	Salta, Argentina; -24°	8.8 (1.8) years	46.9	NA	100% South American indigenous children	100% Healthy; Low vitamin D intake	EIA/Chemi- luminescence	CDC: yes; NIST: no
Hollis et al. (2015) 86	RCT; N= 216	2005 -2012	Charleston, Rochester, Morgantown, USA; 33°, 43°	NR [4-6] weeks	NR	Any BF	23% Black; 51% White; 26% Hispanic	100% Healthy; NR	RIA kits	CDC: no; NIST: no
Holmlund-Suila et al. (2012)	RCT; N= 113	2010-2011	Helsinki, Finland; 60.2°	Neonates	50.4	Any BF	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: unclear; NIST: no
Holstgemeiner et al. (1978) 87	RCT; N= 21	1976	Vienna, Austria; 48°	Neonates	23.8	Any BF	Presumed 100% Austrian	Generally healthy;	NR	CDC: no; NIST: no
Huynh et al. (2017) $_{36}^{36}$	RCT; N= 70	2013-2014	St. Albans, Australia; -38°	Neonates	NR	Any BF	NR	100% Healthy; VD deficiency	EIA/Chemi- luminescence	CDC: no; NIST: no
Karlsland Akeson et al. (dark skinned children) (2018) ¹⁰⁷	RCT; N= 206	NR	Malmo and Umea Sweden; 55° and 63°	6.3 years	NR	NR	Presumed 100% Swedish	NA NA	LC-MS/MS	NIST: no CDC: yes; NIST: no

Study Mean age Health status; design; N **Enrollment** Location; (SD) Male Breastfeeding Race or nutritional Assay Assay Author (year) randomized vears latitude [range] (%) status ethnicity status method standards RCT; N= NR Malmo and NR NR Presumed 100% Healthy; LC-MS/MS CDC: yes; Karlsland Akeson 6.3 years 100% et al. (fair-skinned 206 Umea Sweden: NA NIST: no 55° and 63° Swedish children) (2018) 107 100% with CDC: yes; Kumar et al. (2011) RCT: N= 2007-2010 New Delhi. 46.7 Any BF Presumed **RIA** kits Neonates 42 100% Asian NIST: no 2079 India; 29° low Indian birthweight (range 1.8-2.5 kg); 100% with severe VD deficiency Kunz et al. (1982) RCT; N=29 NR Bonn, Neonates NR NR Presumed Generally NR CDC: no; Germany; 48° 100% healthy; Low NIST: no German vitamin D intake Loeb et al. (2019) RCT: N= 2013-2016 Thanh Ha. 8.6 [3-17] 50 NR NR 100% Healthy: EIA/Chemi-CDC: ves: 108 1.300 Vietnam: 21.1° NR luminescence NIST: no vears Madar et al. (2009) RCT; N= 66 2004-2006 Oslo, Norway; 0.13 NR Pakistani, 100% Healthy; HPLC CDC: no; Any BF 60° Turkish or Low vitamin (0.03)NIST: no Somali D intake years background RCT: N= ~0.54 Father Manaseki-Holland 2008-2009 Kabul. 52 Any BF Generally EIA/Chemi-CDC: yes; et al. (2012) 3046 healthy: luminescence NIST: no Afghanistan: [0.17-1] ethnicity: 28 34.6° Malnourished Tajik, years Pashton, Uzbek. Hazara, or other Mandlik et al. Controlled 2014-2015 Pune, Western ~8.12 54.5 NR 100% Asian 66% vit D EIA/Chemi-CDC: no: (2019)Trial; N= India; 18.5° (~1.2) Indian deficient; NR luminescence NIST: no 109 435 vears

0

55

NA

NR

Presumed

Presumed

100% Asian

Indian

Indian

100% Asian

100% Healthy;

Low vitamin

D intake

clinical

100% with

evidence of rickets

EIA/Chemi-

RIA kits

luminescence

8.9 [6.1-

11.8]

years

~17.5

(13.2 -

14.4)

months

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Marwaha et al.

Mittal et al. (2014)

(2018)

110

RCT: N=

RCT; N=76

240

2015-2016

2010-2012

Delhi, India;

Delhi, India;

29°

~29°

CDC: yes;

NIST: no

CDC: yes

NIST: no

Study Mean age Health status; design; N **Enrollment** Location; (SD) Male Breastfeeding Race or nutritional Assay Assay Author (year) randomized vears latitude [range] (%) status ethnicity status method standards CDC: yes Mittal et al. (2018) NR 100% with RCT; N= NR Delhi, India; 10.5 60 Presumed EIA/Chemi-100 110 ~29° 100% Asian radiographic luminescence NIST: no months [6 evidence of months -Indian rickets 5 years] 51 100% Moodley et al. RCT; N= 51 2011-2012 Tijuana, Neonates Any BF 100% Healthy: LC-MS/MS CDC: no (2015) Mexico: ~32.5° Hispanic Low vitamin NIST: no 90 D intake Mortensen et al. RCT: N= 2014-2015 Copenhagena 6.6 (1.5) 47 NR NR 100% Healthy; LC-MS/MS CDC: yes; (2016)130 [4-8] NR NIST: no and ìn Frederiksberg years Denmark: 55° RCT; N= 96 2011-2012 Northern India; Presumed 100% preterm Natarajan et al. Neonates 56.3 Any BF EIA/Chemi-CDC: yes; (2014) ~2.9° 100% Asian infants (mean luminescence NIST: no <u>3</u>9 Indian GA = 32.5); 81% with VD deficiency Ohlund et al. RCT; N= 2012-2013 NR NR LC-MS/MS CDC: yes; Sweden; NA° 6.3 [5-7] 51.1 100% Healthy; (2017)NIST: no 206 years NR 112 Pittard (term RCT; N=25NR Charleston, US; Neonates 44 Exclusively NR 100% Healthy; Competitive CDC: no; infants only) et al. 32.8° formula NR protein NIST: no (1991)binding 91 assays RCT; N= 80 NR Louisiana, NR NR EIA/Chemi-Ponnapakkam et al. Neonates Any BF Not specified CDC: yes; (2010) USA: ~30° but luminescence NIST: no 53 presumably healthy; Presumably normal Rao et al. (2016) 56 NR ~3.1 NR NR EIA/Chemi-CDC: no RCT: N = 45Kanpur, India; Presumed NR: 100% 26° (~0.7-0.9) 100% Asian with VD luminescence NIST: no [2.5] Indian deficiency (<20 ng/mL)vears Rosendahl et al. RCT: N= 2013-2014 Helsinki. Neonates 50.3 Anv BF 100% of 100% Healthy: EIA/Chemi-CDC: ves: 975 Finland; 60.2° mothers of 95.7% with luminescence NIST: yes (2018)

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Author (year)	Study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards
29		v					Northern European Origin	vitamin D sufficiency		(mean bias: <8%)
Rueter et al. (2019)	RCT; N= 195	2012-2017	Perth, Australia; 32°	Neonates	53	NR	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Shajari et al. (2009) 92	RCT; N= 90	NR	Yazd, Iran; 32°	Neonates	NR	Exclusively BF	Presumed 100% Iranian	100% Healthy; Presumably normal	NR	CDC: no NIST: no
Shakiba et al. (2010) 93	RCT; N= 75	2007	Yazd, Iran; 32°	Neonates	46.7	Any BF	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Shakiba et al. (2014) 94	Non- randomized trial; N= 83	2010	Yazd, Iran; 32°	Neonates	49.4	Exclusively BF	NR	100% Healthy; NR	EIA/Chemi- luminescence	CDC: yes; NIST: no
Sharma et al. (2016) ₉₅	RCT; N= 132	2007-2010	Montreal, Canada; 46°	1 month	57.6	Any BF	84% White; 15% non- white	100% Healthy; NR	LC-MS/MS	CDC: no; NIST: no
Siafarikas et al. (2011) ⁵²	RCT; N= 40	NR	Berlin, Germany; 52.5°	Neonates	NR	Any BF	NR	100% Healthy; NR	RIA kits	CDC: no; NIST: no
Singh et al. (2018) 44	RCT; N= 100	2013-2014	New Delhi, India; 29°	Neonates	55	Exclusively BF	Presumed 100% Asian Indian	100% Healthy; ~47% with VD deficiency	EIA/Chemi- luminescence	CDC: no; NIST: no
Stellinga-Boelen et al. (2007)	RCT; N= 135	2003	Groningen, The Netherlands; 53°	7.1 [2-12] years	58	NR	NR	100% Healthy; estimated VD intake ranged: 0.1-6.0 μg (median 1.2 μg)	RIA kits	CDC: yes; NIST: no
Talaat et al. (2016)	RCT; N= 637	2014	Taif region, KSA; 21.4°	8.5 (3.53) [2-18] years	49.3	NR	NR	100% Healthy; Low vitamin D intake	EIA/Chemi- luminescence	CDC: yes; NIST: no
Trilok-Kumar et al. (2015)	RCT; N= 912	2007-2010	New Delhi, India; 29°	Neonates	52.1	Any BF	Presumed 100% Asian Indian	Low birth weight (1.8 to <2.5 kg);	RIA kits	CDC: yes; NIST: no

Vitamin D Intakes and Health	Outcomes in C	Children Aged 0-4	Years, Beauchesne et al.	Supplement

Author (year)	Study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Breastfeeding status	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards
• /								~50% with vitamin D deficiency at follow-up		
Wagner et al. (2006) ⁴¹	RCT; N= 19	NR	Charleston, South Carolina, United States; 33°	Neonates	47	Exclusive or fully BF	White: 79% Hispanic: 11% Black: 11%	100% Healthy; NR	NR	NR
Wicklow et al. (2016) 47	RCT; N= 55	2009-2011	Montreal, Canada; 46°	Neonates	56.4	Any BF	87.3% White; 12.7% non- white	100% Healthy; NR	LC-MS/MS	CDC: no; NIST: no
Zeghoud et al. (1991-1992 study) (1994) 96	RCT; N= 30	1991-1992	Constantine, Algeria; 36°	NR [0- 0.75 years]	NR	NR	NR	100% Healthy; Low vitamin D intake	RIA kits	CDC: no; NIST: no
Zeghoud et al. (1997) ⁹⁷	RCT; N= 80	1994	Compiegne, France; 49°	Neonates	NR	NR	99% Mothers of European extraction	100% Healthy; NR	RIA kits	CDC: no; NIST: no
Zhou et al. (2018) 31	RCT; N= 400	2015-2016	Yongkang, China; Wenzhou, China; Jinhua, China; ~29°	Neonates	52.3	Any BF	Presumed 100% Chinese	Generally healthy; Presumed normal	NR	CDC: no NIST: no
Ziegler et al. (2014)	RCT; N= 213	2006-2010	Iowa City, USA; 41°	1 month	NR	Exclusively BF		100% Healthy; Normal	RIA kits	CDC: yes; NIST: no

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

BF = Breast Feeding; CDC = Centers for Disease Control and Prevention; EIA = Enzyme immunoassay; GA = gestational age; HPLC = High performance liquid chromatography; LC-MS = Liquid chromatography mass spectrometry; NIST = National Institute of Standards and Technology; NA = Not applicable; NR = Not reported; RCT = Randomized controlled trial; RIA = Radioimmunoassay; VD = Vitamin D

KQ3. Studies comparing different levels of daily vitamin D supplementation

Total of 38 unique studies (in 39 publications) examining the effects of daily vitamin D intake on serum 25(OH)D concentration were included, of which, 30 trials (in 31 publications) were conducted in children 0 to 12 months,^{24,27,29,31,33-40,43-46,52,53,78,80,82-84,86-89,91,93,95,97} one was conducted in children 1 to 4 years,³² and seven were conducted in children 3 to 9 years.^{101-103,109-111,114} The characteristics of these studies are reported in Table KQ3-1.

Children 0-12 months old

Thirty trials reported in 31 publications (all RCTs) examining the effects of daily vitamin D intake on serum 25(OH)D concentration in children 0 to 12 months were included.^{24,27,29,31,33-40,43-46,52,53,78,80,82-84,86-89,91,93,95,97} The individual study results are shown in **Figures KQ3-1a and KQ3-1b**. The doses of vitamin D supplementation (mostly vitamin D₃) ranged from 200 to 2,000 IU/d across the 30 RCTs, and of these, 11 RCTs included a non-vitamin D supplementation comparison group (placebo, no intervention, or maternal supplementation). Intervention durations ranged from six to 94 weeks. Sample sizes ranged widely from five to 459 subjects per intervention arm.

Figure KQ3-2 shows the summary and individual risk of bias (ROB) plots for trials reporting the effect of vitamin D intake on serum 25(OH)D concentration in children from birth to 12 months of age. More than 75% of trials had some or high ROB due to deviations from intended interventions, especially issues of non-adherence and how they were accounted for in the statistical methods. More than 75% of trials also had some or high ROB due to selection of the reported results. More than 50% of trials had some or high ROB due to selection of the reported results. More than 50% of trials had some ROB in the randomization process and some or high ROB due to missing outcome data. Nearly all studies (>95% of studies) had low ROB in measurement of the outcome.

Children 1 to 4 years old

Only one study examining the effects of daily vitamin D intake on serum 25(OH)D concentration conducted in children 1 to 4 years was included.³² The study results are shown in Figure KQ3-1b. In the study, children were randomized to either 400 IU/d or 2,000 IU/d of vitamin D₃. At 16 weeks follow-up, serum 25(OH)D remained unchanged in the 400 IU/d group but had significantly increased from 89.6 to 121.6 nmol/L in the 2,000 IU/d group. The study was assessed as having high ROB due to deviations from intended intervention, specifically surrounding to issues of adherence and statistical analysis; however, the study was assessed as having low ROB in all other domains.

Random-effects meta-regression analysis of studies conducted in children 0 to 4 years showed that each 100 IU/d increase in vitamin D supplementation was associated with an average of 1.92 (95% CI 0.28, 3.56) nmol/L increase in achieved 25(OH)D concentration (n = 53 intervention arms; P = 0.022; adjusted R² = 9.07%). However, the residual heterogeneity is large (I² = 99.39%) (see **Table KQ3-2**; Figure KQ3-3).

Table KQ3-2. Random-effects meta-regression analysis to examine the association between daily vitamin D supplementation doses and achieved 25(OH)D concentrations at the end of intervention period in children 0 to 4 years^a

Meta-regression REML estimate of between-st % residual variation due to he Proportion of between-study Hartung modification	eterogeneity	7	th Knapp-	$tau^2 = 6$ I ² residu	r of observation 62.6 ual = 99.39% squared = 9.0)
		Std. Err.				
	Coef.	t	P>t	[95%	6 CI]	
Vitamin D daily dose (IU)	0.0192	0.0082	2.3500	0.0220	0.0028	0.0356

Adj = adjusted; IU = international units; REML = restricted maximum likelihood

^a Meta-regression analysis includes 27 studies with mean age 0-12 months and one study with mean age 2.7 years.

^b Meta-regression analysis included 28 unique RCTs with total 53 intervention arms.

Three RCTs examining the effects of daily vitamin D intake on serum 25(OH)D concentration in children 0 to 4 years cannot be included in the meta-regression analysis due to insufficient quantitative data.^{24,83,86} One RCT showed that 2,000 IU/d of vitamin D₂ and 2,000 IU/d of vitamin D₃ supplementation had similar effects on changes in 25(OH)D concentrations (both groups had about 150% increase from baseline; data were reported in the figure only).⁸³ Another RCT showed that neonates receiving 400 IU/d of vitamin D₃ had significantly higher median serum 25(OH)D levels after three months compared to placebo group (38.0 vs. 36.8 ng/mL; *P*<0.001), but there was no significant difference in 25(OH)D concentrations at six or 12 months.²⁴ Lastly, an RCT compared exclusively breastfed infant-mother dyads both receiving 400 IU/d of vitamin D₃ to exclusively breastfed infant-mother dyads with infants receiving placebo and mothers receiving 2,400 IU or 6,400 IU/d of vitamin D₃. Analysis revealed no difference in serum 25(OH)D between the groups.⁸⁶

Trial ID and Study	BF status	Arm	Vit D dose (IU/d)	25(OH)D assay	Follow-up, wk	n						Mean 25(OH)D, nmo (95% CI)
D: 4												
Ala-Houhala et al. (1986)	exclusively BF	other: specify	0	other (specify)	0	17						23.35 (14.93, 31.77)
Ala-Houhala et al. (1986)	exclusively BF		0	other (specify)	0	16						18.52 (12.21, 24.83)
Ala-Houhala et al. (1986)	exclusively BF		0	other (specify)	8	17						52.87 (41.83, 63.92)
Ala-Houhala et al. (1986)	exclusively BF		0	other (specify)	8	16	-					30.60 (25.86, 35.33)
Ala-Houhala et al. (1986)	exclusively BF		0	other (specify)	15	16		-				41.33 (33.44, 49.22)
Ala-Houhala et al. (1986)	exclusively BF		õ	other (specify)	15	17			-			70.59 (55.86, 85.31)
Ala-Houhala et al. (1986)	exclusively BF		400	other (specify)	0	16	-					19.86 (12.50, 27.23)
	exclusively BF		400		8	16	_		_			,
Ala-Houhala et al. (1986) Ala-Houhala et al. (1986)	exclusively BF		400	other (specify) other (specify)	o 15	16				_		59.85 (43.54, 76.16) 82.66 (57.94, 107.39
(1300)	exclusively DI	WILD'E	400	outer (apecity)	15	10			-			02.00 (07.04, 107.00
D: 6									_			
Alonso et al. (2011)	any BF	no intervention	0	EIA/Chemiluminsecense		44		-	-			68.89 (59.45, 78.33)
Alonso et al. (2011)	any BF	no intervention	0	EIA/Chemiluminsecense		45						81.12 (74.63, 87.61)
lonso et al. (2011)	any BF	no intervention	0	EIA/Chemiluminsecense		43						92.10 (81.96, 102.25
Alonso et al. (2011)	any BF	vit D only	402	EIA/Chemiluminsecense	12	39						104.33 (91.25, 117.4
Alonso et al. (2011)	any BF	vit D only	402	EIA/Chemiluminsecense	24	31			-	-		109.32 (97.20, 121.4
Alonso et al. (2011)	any BF	vit D only	402	EIA/Chemiluminsecense	48	28				-		99.59 (90.72, 108.47
ID: 8												
Atas et al. (2013)	exclusively BF	vit D only	200	HPLC	14	75					-	126.30 (115.79, 136.
Atas et al. (2013)	exclusively BF	,	400	HPLC	14	64				-	-	 184.20 (168.73, 199.
		,										
D: 9	25			F 14 (6)			_					
Iolmlund-Suila et al. (2012)	any BF	vit D3	1200	EIA/Chemiluminsecense		38	-	•		_		35.00 (30.23, 39.77)
Iolmlund-Suila et al. (2012)	any BF	vit D3	1200	EIA/Chemiluminsecense		35	_	_		_		124.00 (114.06, 133
Iolmlund-Suila et al. (2012)	any BF	vit D3	1600	EIA/Chemiluminsecense		37					_	37.00 (32.81, 41.19)
		vit D3	1600	EIA/Chemiluminsecense		37						153.00 (140.11, 165.
	any BF	vit D3	400	EIA/Chemiluminsecense	0	37	-	•				35.00 (30.49, 39.51)
Holmlund-Suila et al. (2012)	any BF	vit D3	400	EIA/Chemiluminsecense	10	34			-			88.00 (81.95, 94.05)
D: 13												
Chan et al. (1982)	any BF	no intervention	0	other (specify)	0	20	-	-				49.92 (35.24, 64.60)
Chan et al. (1982)	any BF	no intervention	0	other (specify)	6	22	-	-				42.43 (32.65, 52.22)
Chan et al. (1982)	any BF	no intervention	0	other (specify)	14	23	_	-				42.43 (27.76, 57.11)
Chan et al. (1982)	any BF	no intervention	0	other (specify)	22	19	,					47.42 (37.64, 57.21)
Chan et al. (1982)	any BF	vit D3	400	other (specify)	0	29	-					34.94 (30.05, 39.84)
, , ,	any BF	vit D3	400		6	29	-	_				
Chan et al. (1982)		vit D3	400	other (specify)	14	23						47.42 (37.64, 57.21)
Chan et al. (1982) Chan et al. (1982)	any BF any BF	vit D3	400	other (specify) other (specify)	22	24		-				54.91 (40.24, 69.59) 57.41 (42.73, 72.08)
Sharret al. (1902)	any Di	WIL DO	400	outer (speeny)	22	20		-				57.41 (42.75, 72.55)
D: 14								_				
Chandy et al. (2016)	exclusively BF		0	RIA kits	14	54	-	-				42.30 (34.67, 49.93)
Chandy et al. (2016)	exclusively BF		0	RIA kits	14	51						60.90 (52.69, 69.11)
Chandy et al. (2016)	exclusively BF	vit D3	400	RIA kits	14	47						59.30 (51.87, 66.73)
D: 15												
Dawodu et al. (2019)	exclusively BF	placebo	0	EIA/Chemiluminsecense	0	93	•					31.90 (27.49, 36.31)
Dawodu et al. (2019)	exclusively BF		0	EIA/Chemiluminsecense	12	67						81.40 (75.05, 87.75)
Dawodu et al. (2019)	exclusively BF		0	EIA/Chemiluminsecense		55						92.20 (82.82, 101.58
Dawodu et al. (2019)	exclusively BF		400	EIA/Chemiluminsecense		94			-			29.60 (26.18, 33.02)
Dawodu et al. (2019)	exclusively BF		400	EIA/Chemiluminsecense		60	_		_	-		105.50 (92.75, 118.2
Dawodu et al. (2019)	exclusively BF		400	EIA/Chemiluminsecense		47			_	-		109.10 (96.72, 121.4
anoud of an (2010)	SAGINGIY DF		400	c., conomicarini socerise						_		100.10 (00.12, 121.4

	BF		Vit D do	se	Follow-up	o,		Mean 25(OH)D, nmol
Trial ID and Study	status	Arm	(IU/d)	25(OH)D assay	wk	n		(95% CI)
D: 18								
Enlund-Cerullo et al. (2019)	any BF	vit D3	1200	EIA/Chemiluminsecense	0	454	•	81.20 (79.01, 83.39)
Enlund-Cerulio et al. (2019)	any BF	vit D3	1200	EIA/Chemiluminsecense	48	407		114.40 (111.62, 117.1
Enlund-Cerullo et al. (2019)	any BF	vit D3	400	EIA/Chemiluminsecense	0	459	-	81.40 (78.86, 83.94)
Enlund-Cerullo et al. (2019)	any BF	vit D3	400	EIA/Chemiluminsecense	48	409	•	82.70 (80.76, 84.64)
Rosendahl et al. (2018)	any BF	vit D3	1200	EIA/Chemiluminsecense	46	403		115.00 (112.30, 117.7
Rosendahl et al. (2018)	any BF	vit D3	1200	EIA/Chemiluminsecense	94	410	_	117.70 (115.17, 120.2
Rosendahl et al. (2018)	any BF	vit D3	400	EIA/Chemiluminsecense	46	401		82.70 (80.76, 84.64)
Rosendahl et al. (2018)	any BF	vit D3	400	EIA/Chemiluminsecense	94	404	-	86.60 (84.69, 88.51)
,	,				•			,,
ID: 19								
Gallo et al. (2013)a	any BF	vit D2	400	EIA/Chemiluminsecense	0	25		56.90 (43.69, 70.11)
Gallo et al. (2013)a	any BF	vit D3	400	EIA/Chemiluminsecense	0	26		69.50 (57.74, 81.26)
Gallo et al. (2013)a	any BF	vit D3	400	LC-MS/MS	0	26		54.60 (45.49, 63.71)
Gallo et al. (2013)a	any BF	vit D2	400	LC-MS/MS	0	26		44.20 (35.05, 53.35)
Gallo et al. (2013)a	any BF	vit D2	400	EIA/Chemiluminsecense	12	24		69.00 (57.00, 81.00)
Gallo et al. (2013)a	any BF	vit D3	400	EIA/Chemiluminsecense	12	26		82.90 (74.02, 91.78)
Gallo et al. (2013)a	any BF	vit D3	400	LC-MS/MS	12	26		76.80 (70.11, 83.49)
Gallo et al. (2013)a	any BF	vit D2	400	LC-MS/MS	12	24		64.80 (54.32, 75.28)
D. 00								
D: 20 Gallo et al. (2013)b	any BF	vit D3	1200	LC-MS	4	29		64.64 (55.94, 73.33)
Gallo et al. (2013)b	any BF	vit D3	1200	LC-MS	8	31		112.17 (96.81, 127.54
Gallo et al. (2013)b	any BF	vit D3	1200	LC-MS	12	27		 134.00 (118.00, 150.0
allo et al. (2013)b	any BF	vit D3	1200	LC-MS	24	30		119.13 (105.80, 132.4
Gallo et al. (2013)b	any BF	vit D3	1200	LC-MS	36	27		109.28 (88.70, 129.8
Gallo et al. (2013)b	any BF	vit D3	1600	LC-MS	4	11		63.64 (51.27, 76.00)
Gallo et al. (2013)b Gallo et al. (2013)b	,	vit D3	1600	LC-MS	8			
, ,	any BF	vit D3	1600	LC-MS	8 12	13 13		120.85 (84.00, 157.70
Gallo et al. (2013)b	any BF				24			180.00 (153.50, 206.
Gallo et al. (2013)b	any BF	vit D3	1600	LC-MS		10		160.12 (130.30, 189.5
Gallo et al. (2013)b	any BF	vit D3	1600	LC-MS	36	13		122.79 (100.48, 145.0
Gallo et al. (2013)b	any BF	vit D3	400	LC-MS	4	35	-	55.18 (48.67, 61.69)
Gallo et al. (2013)b	any BF	vit D3	400	LC-MS	8	25	— _	66.27 (59.52, 73.01)
Gallo et al. (2013)b	any BF	vit D3	400	LC-MS	12	29	-	78.00 (71.50, 84.50)
Gallo et al. (2013)b	any BF	vit D3	400	LC-MS	24	29	-	81.69 (73.01, 90.36)
Gallo et al. (2013)b	any BF	vit D3	400	LC-MS	36	29		75.90 (69.40, 82.41)
Gallo et al. (2013)b	any BF	vit D3	800	LC-MS	4	30		52.84 (44.02, 61.67)
Gallo et al. (2013)b	any BF	vit D3	800	LC-MS	8	30		84.71 (74.41, 95.00)
Gallo et al. (2013)b	any BF	vit D3	800	LC-MS	12	32		102.00 (90.00, 114.00
Gallo et al. (2013)b	any BF	vit D3	800	LC-MS	24	29		98.43 (86.42, 110.44)
Gallo et al. (2013)b	any BF	vit D3	800	LC-MS	36	29		87.65 (80.29, 95.00)
Vicklow et al. (2016)	any BF	vit D3	1200	LC-MS/MS	0	18		65.64 (54.11, 77.18)
Vicklow et al. (2016)	any BF	vit D3	1200	LC-MS/MS	8	18		135.53 (116.51, 154.5
Vicklow et al. (2016)	any BF	vit D3	1200	LC-MS/MS	20	18	_	115.56 (96.89, 134.24
Vicklow et al. (2016)	any BF	vit D3	400	LC-MS/MS	0	19		56.41 (47.21, 65.61)
Vicklow et al. (2016)	any BF	vit D3	400	LC-MS/MS	8	19		82.62 (74.20, 91.03)
Vicklow et al. (2016)	any BF	vit D3	400	LC-MS/MS	20	19		81.12 (69.67, 92.57)
Vicklow et al. (2016)	any BF	vit D3	800	LC-MS/MS	0	18		52.17 (41.67, 62.66)
Vicklow et al. (2016)	any BF	vit D3	800	LC-MS/MS	8	18		101.34 (87.96, 114.7
Wicklow et al. (2016)	any BF	vit D3	800	LC-MS/MS	20	16		100.34 (87.74, 112.94

			\mathcal{O}			0,	
			Vit D dose		Follow-up,		Mean 25(OH)D, nmo
Trial ID and Study	BF status	Arm	(IU/d)	25(OH)D assay	wk	n	(95% CI)
D: 22							
Gordon et al. (2008)	nr	vit D2	2000	EIA/Chemiluminsecense	0	12 🖷	39.31 (33.69, 44.93)
Gordon et al. (2008)	nr	vit D3	2000	EIA/Chemiluminsecense		14 🖶	38.06 (33.08, 43.05)
2010011 01 al. (2000)		Vii 20	2000	2.5 vonennamnseoonse	Ū.	_	00.00 (00.00) 40.00)
D: 23							
Grant et al. (2014)	any BF	placebo	0	LC-MS/MS	0	63	37.19 (36.13, 38.24)
Grant et al. (2014)	any BF	placebo	0	LC-MS/MS	8	70	54.28 (51.98, 56.57)
Grant et al. (2014)	any BF	placebo	0	LC-MS/MS	16	68	70.61 (68.40, 72.82)
Grant et al. (2014)	any BF	placebo	0	LC-MS/MS	24	77	78.15 (76.46, 79.83)
Grant et al. (2014)	any BF	vit D3	400	LC-MS/MS	0	74	59.80 (59.12, 60.49)
Grant et al. (2014)	any BF	vit D3	400	LC-MS/MS	8	74	87.70 (86.21, 89.18)
Grant et al. (2014)	any BF	vit D3	400	LC-MS/MS	16	61	91.46 (90.27, 92.66)
Grant et al. (2014)	any BF	vit D3	400	LC-MS/MS	24	67	85.43 (84.47, 86.40)
Grant et al. (2014)	any BF	vit D3	800	LC-MS/MS	0	63	67.59 (66.60, 68.59)
Grant et al. (2014)	any BF	vit D3	800	LC-MS/MS	8	61	120.36 (118.28, 122.
Grant et al. (2014)	any BF	vit D3	800	LC-MS/MS	16	60	109.05 (107.21, 110.
Grant et al. (2014)	any BF	vit D3	800	LC-MS/MS	24	70	101.01 (99.72, 102.3
D: 27							
Greer et al. (1981)	exclusively BF	placebo	0	other (specify)	12	9	20.00 (18.04, 21.96)
Greer et al. (1981) Greer et al. (1981)	exclusively BF		400	other (specify)	12	9 –	38.00 (36.04, 39.96)
aleer et al. (1901)	exclusively DF	Vit D3	400	other (specify)	12	3 -	36.00 (36.04, 33.36)
D: 30							
Hibbs et al. (2018)	any BF	vit D3	400	EIA/Chemiluminsecense	0	147	52.42 (50.00, 54.83)
Hibbs et al. (2018)	any BF	vit D3	400	EIA/Chemiluminsecense	0	153	52.24 (48.60, 55.88)
D: 33							
Hollis et al. (2015)	exclusively BF	placebo	0	RIA kits	0	106	94.60 (83.53, 105.67
Hollis et al. (2015)	exclusively BF		400	RIA kits	0	110	84.12 (73.15, 95.08)
D: 35						_	
Holstgemeiner et al. (1978)	any BF	vit D3	1200	nr	0	10 🖷	30.70 (26.70, 34.70)
Holstgemeiner et al. (1978)	any BF	vit D3	1200	nr	5	8	153.19 (107.80, 198
D: 36							
Huynh et al. (2017)	any BF	vit D3	400	EIA/Chemiluminsecense	14	23 -	81.29 (73.53, 89.05)
D. 10							
D: 40 Kunz et al. (1982)	any BF	vit D3	1000	nr	6	16	134.78 (112.77, 156.
Kunz et al. (1982)	any BF	vit D3	500	nr	6	13 -	92.35 (81.50, 103.21
1002 01 al. (1002)	why br	vn 00	300		5		- 92.33 (01.50, 103.21
D: 45							
Madar et al. (2009)	any BF	no intervention	0	HPLC	0	29	55.80 (42.77, 68.83)
Madar et al. (2009)	any BF	no intervention	0	HPLC	7	29	72.70 (60.29, 85.11)
Madar et al. (2009)	any BF	vit D2	400	HPLC	0	22	38.80 (24.26, 53.34)
Aadar et al. (2009)	any BF	vit D2	400	HPLC	7	22	93.50 (80.63, 106.37

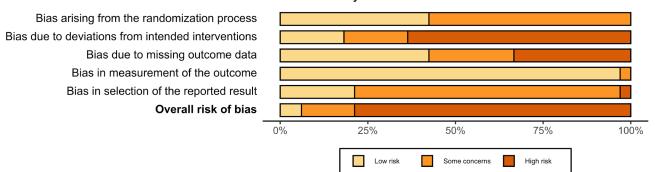
0 20 40 60 80 100 120 140 160 180 200 220

			Vit D dose		Follow-up,			Mean 25(OH)D, nm
Trial ID and Study	BF status	Arm	(IU/d)	25(OH)D assay	wk	n		(95% CI)
D: 52								
Natarajan et al. (2014)	any BF	vit D3	400	EIA/Chemiluminsecense	7.5	45	-#-	49.00 (42.52, 55.47
Natarajan et al. (2014)	any BF	vit D3	800	EIA/Chemiluminsecense	7.6	43		93.48 (77.67, 109.2
ID: 54								
Pittard (term infants only) et al. (1991)	exclusively formula	vit D only	400	other (specify)	2	11	- 	57.41 (45.61, 69.21
Pittard (term infants only) et al. (1991)	exclusively formula	-	400	other (specify)	4	11	- 	52.42 (40.62, 64.22
Pittard (term infants only) et al. (1991)	exclusively formula	-	400	other (specify)	6	11	_ _ _	62.40 (47.65, 77.15
Pittard (term infants only) et al. (1991)	exclusively formula		400	other (specify)	8	11		69.89 (50.71, 89.06
Pittard (term infants only) et al. (1991)	exclusively formula		400	other (specify)	10	11		67.39 (54.12, 80.67
Pittard (term infants only) et al. (1991)	exclusively formula		400	other (specify)	12	11	_ _	67.39 (54.12, 80.67
Pittard (term infants only) et al. (1991)	exclusively formula		400	other (specify)	14	11		72.38 (53.21, 91.56
Pittard (term infants only) et al. (1991)	exclusively formula		400	other (specify)	16	11	_	64.90 (47.20, 82.60
Pittard (term infants only) et al. (1991)	exclusively formula	-	800	other (specify)	2	5	_ 	52.42 (41.48, 63.36)
Pittard (term infants only) et al. (1991)	exclusively formula		800	other (specify)	4	5	_	64.90 (47.39, 82.40
Pittard (term infants only) et al. (1991)	exclusively formula	-	800	other (specify)	6	5	_	69.89 (56.76, 83.01
Pittard (term infants only) et al. (1991)	exclusively formula		800	other (specify)	8	5		69.89 (50.20, 89.58
Pittard (term infants only) et al. (1991)	exclusively formula		800	other (specify)	10	5	_	82.37 (53.93, 110.8
Pittard (term infants only) et al. (1991)	exclusively formula	-	800	other (specify)	12	5		84.86 (49.86, 119.8)
Pittard (term infants only) et al. (1991)	exclusively formula		800	other (specify)	14	5		82.37 (47.36, 117.3)
Pittard (term infants only) et al. (1991)	exclusively formula		800	other (specify)	16	5	_	87.36 (56.73, 117.9
,,,,,,,,,								
ID: 55								
Ponnapakkam et al. (2010)	any BF	vit D3		EIA/Chemiluminsecense	8	8		88.75 (37.77, 139.7
Ponnapakkam et al. (2010)	any BF	vit D3		EIA/Chemiluminsecense	16	7		132.86 (87.87, 177.
Ponnapakkam et al. (2010)	any BF	placebo	0	EIA/Chemiluminsecense	8	6	— e —	44.00 (27.55, 60.45)
Ponnapakkam et al. (2010)	any BF	placebo	0	EIA/Chemiluminsecense	16	6		57.83 (43.74, 71.93
Ponnapakkam et al. (2010)	any BF	placebo	0	EIA/Chemiluminsecense	24	8		108.00 (69.51, 146.
Ponnapakkam et al. (2010)	any BF	vit D3	200	EIA/Chemiluminsecense	8	6		83.00 (36.92, 129.0
Ponnapakkam et al. (2010)	any BF	vit D3	200	EIA/Chemiluminsecense	16	6		122.33 (53.04, 191.
Ponnapakkam et al. (2010)	any BF	vit D3	200	EIA/Chemiluminsecense	24	8	_	99.86 (73.55, 126.1)
ID: 59								
Rueter et al. (2019)	nr	placebo	0	EIA/Chemiluminsecense	12	90	+	59.20 (54.51, 63.89
Rueter et al. (2019)	nr	placebo	0	EIA/Chemiluminsecense	24	87	+	82.00 (76.14, 87.86
Rueter et al. (2019)	nr	vit D3	400	EIA/Chemiluminsecense	12	90	-	83.20 (77.46, 88.94
Rueter et al. (2019)	nr	vit D3	400	EIA/Chemiluminsecense		86	+	93.10 (87.03, 99.17

Frial ID and Study	BF status	Arm	(IU/d)	25(OH)D assay	wk			(255) (20)
			(10/0)	25(OH)D assay	WK	n		(95% CI)
D: 61								
Shakiba et al. (2010)	any BF	vit D3	200	EIA/Chemiluminsecense	24	19		78.12 (68.59, 87.66)
Shakiba et al. (2010)	any BF	vit D3	400	EIA/Chemiluminsecense	24	26		95.85 (84.91, 106.78)
D: 63								
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	0	29	-	64.65 (56.71, 72.58)
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	4	30		120.24 (106.00, 134.4
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	8	27	_	130.85 (114.56, 147.1
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	20	30		125.42 (112.69, 138.1
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	32	27	_	139.96 (115.37, 164.5
Sharma et al. (2016)	any BF	vit D3	1200	LC-MS/MS	44	28	+	90.04 (82.71, 97.37)
Sharma et al. (2016)	any BF	vit D3	1600	LC-MS/MS	0	11		62.15 (48.73, 75.57)
Sharma et al. (2016)	any BF	vit D3	1600	LC-MS/MS	4	13		122.30 (84.35, 160.26
Sharma et al. (2016)	any BF	vit D3	1600	LC-MS/MS	8	13		179.65 (156.66, 202.6
Sharma et al. (2016)	any BF	vit D3	1600	LC-MS/MS	20	10		165.92 (142.07, 189.7
	any BF	vit D3	1600	LC-MS/MS	32	12		124.80 (103.47, 146.1
	any BF	vit D3	1600	LC-MS/MS	44	12		98.53 (81.90, 115.16)
	any BF	vit D3	400	LC-MS/MS	0	35	+	57.72 (51.84, 63.60)
, ,	any BF	vit D3	400	LC-MS/MS	4	24	-	62.90 (55.72, 70.08)
	any BF	vit D3	400	LC-MS/MS	8	29	-	75.88 (69.02, 82.74)
	any BF	vit D3	400	LC-MS/MS	20	29		75.32 (64.18, 86.46)
	any BF	vit D3	400	LC-MS/MS	32	29	+	72.20 (65.49, 78.90)
	any BF	vit D3	400	LC-MS/MS	44	29		71.88 (67.67, 76.10)
	any BF	vit D3	800	LC-MS/MS	0	29	-	56.35 (47.90, 64.80)
. ,	any BF	vit D3	800	LC-MS/MS	4	30		87.36 (77.38, 97.34)
. ,	any BF	vit D3	800	LC-MS/MS	8	32	-#-	105.27 (93.36, 117.17
	any BF	vit D3	800	LC-MS/MS	20	30		103.02 (92.32, 113.73
	any BF	vit D3	800	LC-MS/MS	32	28	• ·	83.87 (76.51, 91.22)
. ,	any BF	vit D3	800	LC-MS/MS	44	27	-	80.00 (72.92, 87.07)
D: 64								
Siafarikas et al. (2011)	any BF	vit D3	250	RIA kits	0	14		68.00 (53.00, 83.00)
Siafarikas et al. (2011)		vit D3	250	RIA kits	6	14		139.00 (114.00, 164.0
Siafarikas et al. (2011)	,	vit D3	500	RIA kits	0	14		68.00 (53.00, 83.00)
Siafarikas et al. (2011)		vit D3	500	RIA kits	6	14		151.00 (126.00, 176.0
D: 65								
	evolucively PE	no intervention	0	EIA/Chemiluminsecense	24	48		67.14 (55.70, 78.58)
	exclusively BF		0 400	EIA/Chemiluminsecense		48 49		75.38 (62.59, 88.17)

0 20 40 60 80 100 120 140 160 180 200 220

			Vit D dose	9	Follow-u	ıp,		Mean 25(OH)D, nr
Trial ID and Study	BF status	Arm	(IU/d)	25(OH)D assay	wk	n		(95% CI)	
D: 77									
Zeghoud et al. (Hypovitaminosis group 16-30 nmol/	1 hor	vit D2	1000	RIA kits	0	11	-	21.82 (18.	67 24 9
Zeghoud et al. (Hypovitaminosis group 16-30 nmol/		vit D2	1000	RIA kits	4	11		59.80 (49.	
Zeghoud et al. (Hypovitaminosis group 16-30 nmol/		vit D2	1000	RIA kits	4 12	11		69.63 (58	
eghoud et al. (Hypovitaminosis group 16-30 nmol/		vit D2	500	RIA kits	0	9		22.14 (18.	
eghoud et al. (Hypovitaminosis group 16-30 nmol/		vit D2	500	RIA kits	4	9	-	58.72 (52	
		vit D2	500	RIA kits	4 12	9		 56.72 (52) 65.45 (54) 	
eghoud et al. (Hypovitaminosis group 16-30 nmol/ eghoud et al. (Vit D deficient group <=15 nmol/L)		vit D2 vit D2	1000	RIA kits	0	4		- 65.45 (54.	
	nr	vit D2 vit D2	1000 1000	RIA kits RIA kits	4	4		51.30 (39.	
eghoud et al. (Vit D deficient group <=15 nmol/L)					12		-	70.27 (61.	
eghoud et al. (Vit D deficient group <=15 nmol/L)		vit D2	500	RIA kits	0	8	-	18.29 (14	
eghoud et al. (Vit D deficient group <=15 nmol/L)	nr	vit D2	500	RIA kits	4	8		45.50 (40.	
eghoud et al. (Vit D deficient group <=15 nmol/L)		vit D2	500	RIA kits	12	8		55.83 (50.	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	1000	RIA kits	0	13		46.84 (43	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	1000	RIA kits	4	13		59.20 (53	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	1000	RIA kits	12	13		69.30 (61	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	500	RIA kits	0	7		47.81 (42.	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	500	RIA kits	4	7		59.68 (54	
eghoud et al. (Vit D sufficient group >30 nmol/L)	nr	vit D2	500	RIA kits	12	7		62.57 (57.	.54, 67.
D: 79									
hou et al. (2018)	any BF	vit D3	1200	nr	0	164	-	42.60 (41	.70, 43
hou et al. (2018)	any BF	vit D3	1200	nr	6	164	-	61.30 (59	.82, 62
hou et al. (2018)	any BF	vit D3	1200	nr	16	164	-	62.80 (61	.24, 64
hou et al. (2018)	any BF	vit D3	400	nr	0	168	•	43.40 (42	2.48, 44.
Zhou et al. (2018)	any BF	vit D3	400	nr	6	168	•	43.80 (42	2.89, 44
hou et al. (2018)	any BF	vit D3	400	nr	16	168	•	43.10 (42	.13, 44
D: 80									
Ziegler et al. (2014)	exclusively BF	wit D2	200	RIA kits	0	56	-	35.10 (30.	10 40
• • •					8				
liegler et al. (2014) liegler et al. (2014)	exclusively BF exclusively BF		200 200	RIA kits RIA kits	8 16	53 46		64.30 (58. 76.10 (67.	
	-								
liegler et al. (2014)	exclusively BF		200	RIA kits	22	45		75.10 (66.	
liegler et al. (2014)	exclusively BF		200	RIA kits	30	42	-	85.70 (78	
liegler et al. (2014)	exclusively BF		400	RIA kits	0	60	-	42.20 (37	
liegler et al. (2014)	exclusively BF		400	RIA kits	8	55		72.20 (67.	
liegler et al. (2014)	exclusively BF		400	RIA kits	16	44	-	81.30 (72	
liegler et al. (2014)	exclusively BF		400	RIA kits	22	37		84.50 (74	
Ziegler et al. (2014)	exclusively BF		400	RIA kits	30	34	_	94.30 (84	
liegler et al. (2014)	exclusively BF		600	RIA kits	0	56	-8-	43.40 (37.	
liegler et al. (2014)	exclusively BF		600	RIA kits	8	49	-	77.30 (71.	
ïegler et al. (2014)	exclusively BF		600	RIA kits	16	42		101.60 (9	
iegler et al. (2014)	exclusively BF		600	RIA kits	22	40		97.60 (89	
iegler et al. (2014)	exclusively BF	vit D3	600	RIA kits	30	32		101.60 (9	0.17, 11
liegler et al. (2014)	exclusively BF	vit D3	800	RIA kits	0	41		44.20 (38	.14, 50.
liegler et al. (2014)	exclusively BF	vit D3	800	RIA kits	8	37	-	82.70 (72	.81, 92
Ziegler et al. (2014)	exclusively BF	vit D3	800	RIA kits	16	33		100.90 (9	1.62, 1
Ziegler et al. (2014)	exclusively BF	vit D3	800	RIA kits	22	30		103.00 (9-	4.56, 11
legier et al. (2014)	exclusively BF	vit D3	800	RIA kits	30	28		115.80 (10	06.61.


0 20 40 60 80 100 120 140

	BF		Vit D dose		Follow-up,												Mean 25(OH)D, nmol/L
Trial ID and Study	status	Arm	(IU/d)	25(OH)D assay	wk	n											(95% CI)
ID: 2																	
Aglipay et al. (2017)	any BF	vit D3	2000	other (specify)	0	349					- 1	•					89.61 (86.39, 92.83)
Aglipay et al. (2017)	any BF	vit D3	2000	other (specify)	16	349							-				121.56 (117.06, 126.05)
Aglipay et al. (2017)	any BF	vit D3	400	other (specify)	0	354						•					92.10 (89.06, 95.14)
Aglipay et al. (2017)	any BF	vit D3	400	other (specify)	16	354						•					91.85 (88.36, 95.35)
										—							
							0	20	40	60	80	100	120	140	160	180	

Figure KQ3-2. Summary (panel a) and individual study (panel b) ROB for studies reporting the effect of vitamin D on serum 25(OH)D in children ages 0-12 months

a.

Bias Summary for VDKQ3: 0-36 Months

b.

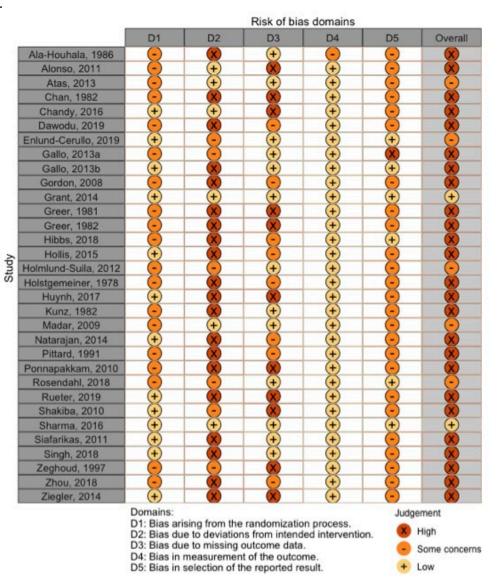
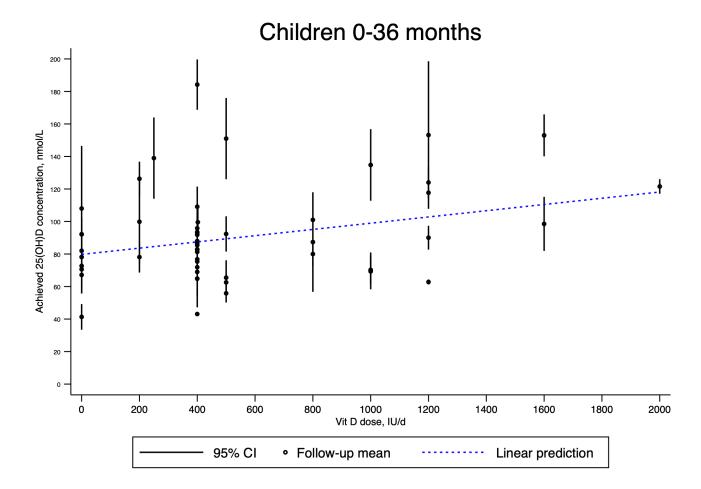



Figure KQ3-3. Random-effects meta-regression analysis to examine the association between daily vitamin D supplementation doses and achieved 25(OH)D concentrations at the end of intervention period in children 0 to 4 years

Children 3-9 years old

Seven unique studies (all RCTs) examining the effects of daily vitamin D intake on serum 25(OH)D concentration in children three to nine years old were included.^{101-103,109-111,114} The individual study results are shown in **Figure KQ3-4**. The doses of vitamin D supplementation (mostly vitamin D₃) ranged from 400 to 2,000 IU/d across the seven RCTs, and of these, five RCTs included a non-vitamin D supplementation comparison group (placebo, no intervention, or maternal supplementation). Intervention durations ranged from eight to 52 weeks. Sample sizes ranged widely from 24 to 199 subjects per intervention arm.

Figure KQ3-5 shows the summary and individual ROB plots for trials reporting the effect of vitamin D intake on serum 25(OH)D concentration in children ages three to nine years. More than 75% of trials had some or high ROB due to deviations from intended interventions, often due to issues of non-adherence and how non-adherence was accounted for in the statistical methods. All (100%) of the trials also had some ROB due to selection of the reported results. More than 50% of trials had some or high ROB in the randomization process, and more than 25% had some or high ROB due to missing outcome data. All studies (100%) had low ROB in measurement of the outcome.

Table KQ3-3 shows the ROB for one cluster-randomized trial reporting the effect of vitamin D intake on serum 25(OH)D in children ages 3-9 years. The study had high ROB due to the randomization process and low ROB in all other ROB domains.

Random-effects meta-regression showed that each 100 IU/d increase in vit D supplementation was associated with an average of 2.49 (95% CI -0.24, 5.22) nmol/L increase in achieved 25(OH)D concentration in children three to nine years old (n = 16 intervention arms; P = 0.071; adjusted R² = 19.96%). However, the residual heterogeneity is large (I² = 97.75%) (**Table KQ3-4**; Figure KQ3-6).

One RCT comparing the effects of three daily vitamin D₃ supplementation doses (600, 1,000, and 2,000 IU/d) on serum 25(OH)D concentrations in pre-pubertal girls aged 6.1 to 11.8 years old cannot be included in the meta-regression.¹¹⁰ The study found that the median serum 25(OH)D increased by 37.25, 45.0, and 55.5 nmol/L (14.9, 18.0, and 22.2 ng/mL), respectively, for the three supplementation groups, and analysis of variance revealed these changes were significantly different (P<0.05).

Author (year)	Bias arising from the randomization process	Bias arising from the timing of identification and recruitment of participants	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of the outcome	Bias due to selection of the reported result
Mandlik et al. (2020)	High	Low	Low	Low	Low	Low

Table KQ3-3. ROB for one cluster-randomized trial reporting the effect of vitamin D intake on serum 25(OH)D in children ages 3-9 years^a

^a Assessment based on *Revised Cochrane risk of bias tool for randomized trials (RoB 2.0): Additional considerations for cluster-randomized trials.*

Figure KQ3-4. Results of studies reporting the effect of daily vitamin D supplementation on serum 25(OH)D (nmol/L) in children 3-9 years old. Legend: BF = breastfeeding; wk = weeks

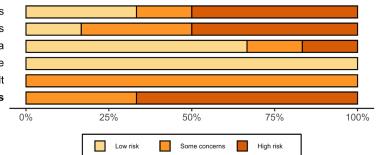

Study	BF status	Arm	Vit D dose (IU/d)	25(OH)D assay	Follow-up, wk	n			/lean 25(OH)D, 1mol/L (95% Cl)
ID: 1									
Abrams et al. (2013)	n/a	placebo	0	EIA/Chemiluminescence	e 0	31		e	8.89 (62.48, 75.30
Abrams et al. (2013)	n/a	placebo	0	EIA/Chemiluminescenc	e 8	31		7	4.63 (63.74, 85.53
Abrams et al. (2013)	n/a	vit D3	1000	EIA/Chemiluminescence	e 0	32		e	9.14 (62.74, 75.54
Abrams et al. (2013)	n/a	vit D3	1000	EIA/Chemiluminescence	e 8	32		٤	9.86 (80.95, 98.76
ID: 5									
Alahouhala et al. (1988)) n/a	placebo	0	HPLC	0	27 -	-	4	5.93 (40.09, 51.76
Alahouhala et al. (1988)) n/a	placebo	0	HPLC	32	27		5	8.91 (52.22, 65.59
Alahouhala et al. (1988)) n/a	placebo	0	HPLC	52	27 -	-	4	3.18 (35.84, 50.52
Alahouhala et al. (1988)		vit D2	400	HPLC	0	24			9.17 (41.58, 56.76
Alahouhala et al. (1988)		vit D2	400	HPLC	32	24			7.88 (68.19, 87.56
Alahouhala et al. (1988)		vit D2	400	HPLC	52	24			1.14 (61.65, 80.62
	,								
ID: 11 Brett et al. (2016)		no intervention	0	EIA/Chemiluminsecens	o 10	24	-	-	E 80 /E0 88 60 70
()	nr		400			24			5.80 (50.88, 60.72
Brett et al. (2016)	nr	vit D3		EIA/Chemiluminsecens					4.10 (60.18, 68.02
Brett et al. (2016)	nr	vit D3	600	EIA/Chemiluminsecens	e 12	25	-	t	3.70 (58.84, 68.56
ID: 47									
Mandlik et al. (2019)	nr	placebo	0	EIA/Chemiluminsecens	e 0	150	•	5	57.70 (56.10, 59.30
Mandlik et al. (2019)	nr	placebo	0	EIA/Chemiluminsecense	e 24	145	•	5	8.30 (55.74, 60.86
Mandlik et al. (2019)	nr	placebo	0	EIA/Chemiluminsecens	e 48	49 -		4	2.60 (35.46, 49.74
Mandlik et al. (2019)	nr	vit D plus calcium	1000	EIA/Chemiluminsecens	e 0	135		6	0.20 (58.19, 62.21
Mandlik et al. (2019)	nr	vit D plus calcium	1000	EIA/Chemiluminsecens	e 24	124		8	3.90 (78.60, 89.20
Mandlik et al. (2019)	nr	vit D plus calcium	1000	EIA/Chemiluminsecense	e 48	79	+	5	4.40 (48.62, 60.18
ID: 49									
Marwaha et al. (2018)	n/a	vit D3	600	EIA/Chemiluminsecens	e 0	74		2	25.28 (23.29, 27.28
Marwaha et al. (2018)	n/a	vit D3	1000	EIA/Chemiluminsecens		67			25.48 (23.27, 27.70
Marwaha et al. (2018)	n/a	vit D3	2000	EIA/Chemiluminsecens		75 ■			24.46 (22.35, 26.57
ID: 51									
Mortensen et al. (2016)	nr	placebo	0	LC-MS/MS	0	41	•	5	5.20 (51.89, 58.51
Mortensen et al. (2016)		placebo	0	LC-MS/MS	20	41 🔳			31.10 (28.80, 33.40
Mortensen et al. (2016)		vit D3	400	LC-MS/MS	0	38	+		6.90 (52.86, 60.94
Mortensen et al. (2016)		vit D3	400	LC-MS/MS	20	38	•		1.80 (58.43, 65.17
Mortensen et al. (2016)		vit D3	800	LC-MS/MS	0	40	+		8.10 (53.92, 62.28
Mortensen et al. (2016)		vit D3	800	LC-MS/MS	20	40	•		75.80 (72.24, 79.36
ID: 69									
Talaat et al. (2016)	n/o	vit D3	400	EIA/Chemiluminsecens	~ 0	196	-	E	4.09 (50.76, 57.42
Talaat et al. (2016) Talaat et al. (2016)	n/a n/a	vit D3	400	EIA/Chemiluminsecens		196			2.28 (39.00, 45.57
Talaat et al. (2016) Talaat et al. (2016)	n/a n/a	vit D3	400	EIA/Chemiluminsecens		196	-		2.28 (39.00, 45.57 25.56 (22.67, 28.45
iaidai ei al. (2010)	n/d	VIL DO	400	Liv Oremiuminsecens	- 1 0	130 -		2	.0.00 (22.07, 20.40
							<u> </u>		

Figure KQ3-5. Summary (panel a) and individual study (panel b) ROB for studies reporting the effect of vitamin D on serum 25(OH)D in children ages 3-9 years

a.

Bias Summary for VDKQ3: 0-36 Months

Bias arising from the randomization process Bias due to deviations from intended interventions Bias due to missing outcome data Bias in measurement of the outcome Bias in selection of the reported result **Overall risk of bias**

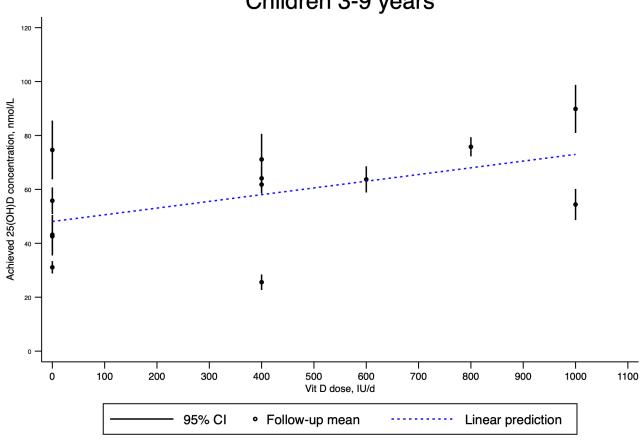
Low

b.

				Risk of bia	s domains		
		D1	D2	D3	D4	D5	Overall
	Abrams, 2013	×	-	+	+	-	×
	Ala-Houhala, 1988	×	×	×	+	-	×
dy	Brett, 2016	+	×	+	+	-	×
Study	Marwaha, 2018	-	-	+	+	-	-
	Mortensen, 2016	+	+	-	+	-	-
	Talaat, 2016	×	×	+	+	-	×
		Domains:				Judgen	nent
				e randomizati ns from inten		tion. 🗙 H	igh
		D3: Bias du	e to missing	outcome dat	a.		ome concerns

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.


Table KQ3-4. Random-effects meta-regression analysis to examine the association between daily vitamin D supplementation doses and achieved 25(OH)D concentrations at the end of intervention period in children 3-9 years old

Meta-regression REML estimate of between-s % residual variation due to he Proportion of between-study Hartung modification	th Knapp-	Number of observation = 16^{a} tau ² = 265.9 I ² residual = 97.75% Adj R-squared = 19.96%					
		Std.					
	Coef.	Err.	t	P>t	[95%	% CI]	
Vitamin D daily dose (IU)	0.0249	0.0127	1.9600	0.0710	-0.0024	0.0522	

Adj = adjusted; IU = international units; REML = restricted maximum likelihood

^a 6 RCTs with total 16 intervention arms.

Figure KQ3-6. Random-effects meta-regression analysis to examine the association between daily vitamin D supplementation doses and achieved 25(OH)D concentrations at the end of intervention period in children 3 to 9 years old

Children 3-9 years

KO3 Sub-section 2. Studies using non-daily vitamin D supplementation dosing regimens

Figure KO3-7 shows a forest plot of 11 studies reporting the effect of non-daily vitamin D supplementation dosing regimens on serum 25(OH)D.^{36,42,83,87,90,93,96,99,108,112,114} The characteristics of these studies are reported in Table KQ3-1. Among the studies that administered a single dose of vitamin D₃ supplement, the doses ranged from 50,000 to 600,000 IU. Other intervention regimens included intermittent dosing regimens, including weekly, monthly, or bimonthly dosing for variable durations. Many studies included placebo groups, other control groups (no intervention and without placebo), or daily dosing supplementation groups as comparisons. Studies reported serum 25(OH)D assessments at single or multiple time points ranging from one to 48 weeks follow-up. Information on the season or month during which serum 25(OH)D was assessed was not reported in five studies. Two studies reported that serum 25(OH)D was assessed in all seasons,^{42,83} while two studies provided a specific timing for baseline serum 25(OH)D assessment and the intervention.^{93,114}

Figure KQ3-7. Forest plot of studies reporting the effect of non-daily vitamin D supplementation dosing regimens on serum 25(OH)D (nmol/L) by study arms

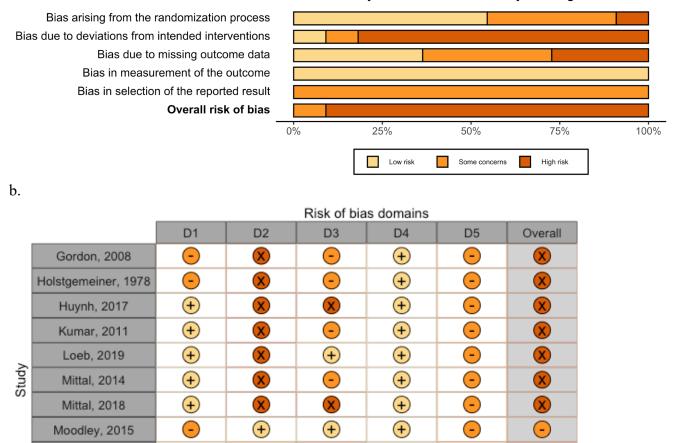
	BF			Follow-up,				Mean 25(OH)D, nmol/L
Trial ID and Study	status	Other intervention info.	25(OH)D assay	wk	n			(95% CI)
D: 22								
Gordon et al. (2008)	NR	VD2: 2000 IU/d	EIA/Chemiluminsecense	0	12	•		39.31 (33.69, 44.93)
Gordon et al. (2008)	NR	VD2: 50,000 IU once weekly	EIA/Chemiluminsecense	0	14	•		38.06 (33.08, 43.05)
Gordon et al. (2008)	NR	VD3: 2000 IU/d	EIA/Chemiluminsecense	0	14	•		38.06 (33.08, 43.05)
D: 35								
Holstgemeiner et al. (1978)	Any BF	VD3: 1200 IU/d	nr	0	10	•		30.70 (26.70, 34.70)
lolstgemeiner et al. (1978)	Any BF	VD3: 1200 IU/d	nr	1	10			66.89 (46.82, 86.97)
lolstgemeiner et al. (1978)	Any BF	VD3: 1200 IU/d	nr	5	8			153.19 (107.80, 198.59
lolstgemeiner et al. (1978)	Any BF	VD3: 200,000 IU single dose	nr	0	11			31.99 (16.15, 47.84)
Holstgemeiner et al. (1978)	Any BF	VD3: 200,000 IU single dose	nr	1	11			
lolstgemeiner et al. (1978)	Any BF	VD3: 200,000 IU single dose	nr	5	9		=	245.99 (136.92, 355.07
D: 36								
Huynh et al. (2017)	Any BF	VD3: 400 IU/d	EIA/Chemiluminsecense	1.5	31	•		48.37 (42.95, 53.79)
luynh et al. (2017)	Any BF	VD3: 400 IU/d	EIA/Chemiluminsecense	14	23	+		81.29 (73.53, 89.05)
luynh et al. (2017)	Any BF	VD3: 50,000 IU single dose	EIA/Chemiluminsecense	1.5	31	-		154.41 (132.76, 176.06
luynh et al. (2017)	Any BF	VD3: 50,000 IU single dose	EIA/Chemiluminsecense	14	26	-		61.90 (55.87, 67.93)
D: 38								
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	0	40	•		48.00 (42.42, 53.58)
Dhlund et al. (dark skinned children) (2017)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	12	38	•		77.00 (71.59, 82.41)
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	0	38	•		51.00 (45.59, 56.41)
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	12	33	-		67.00 (61.46, 72.54)
Dhlund et al. (dark skinned children) (2017)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	0	17	•		39.00 (31.39, 46.61)
Dhlund et al. (dark skinned children) (2017)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	12	16	•		39.00 (31.92, 46.08)
Dhlund et al. (fair-skinned children) (2011)		Fortified food: 1000 IU/d VD3	LC-MS/MS	0	45	•		66.00 (60.45, 71.55)
Dhlund et al. (fair-skinned children) (2011)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	12	45	-		86.00 (81.03, 90.97)
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	0	40	•		61.00 (56.04, 65.96)
hlund et al. (fair-skinned children) (2011)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	12	35	-		72.00 (67.43, 76.57)
	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	0	22	•		58.00 (50.90, 65.10)
hlund et al. (fair-skinned children) (2011)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	12	19	•		58.00 (51.53, 64.47)
D: 39								
Kumar et al. (2011)	Any BF	Placebo	RIA kits	24	237			36.00 (32.75, 39.25)
Kumar et al. (2011)	Any BF	VD3: 1400 IU once weekly	RIA kits	24	216	•		55.00 (52.00, 58.00)
D: 44								
_oeb et al. (2019)	NA	Placebo	EIA/Chemiluminsecense	0	542			65.21 (63.79, 66.63)
				-				

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Figure KQ3-7 (continued). Forest plot of studies reporting the effect of non-daily vitamin D supplementation dosing regimens on serum 25(OH)D (nmol/L) by study arms

	BF			Follow-up,											Mean 25(OH)D, r
Trial ID and Study	status	Other intervention info.	25(OH)D assay	wk	n										(95% Cl)
D: 50															
Moodley et al. (2015)	Any BF	Placebo	LC-MS/MS	0	17			-							50.17 (43.06, 57.
Moodley et al. (2015)	Any BF	Placebo	LC-MS/MS	8	15			-	-						60.40 (43.80, 77.
Acodley et al. (2015)	Any BF	Placebo	LC-MS/MS	24	10				_						68.39 (54.91, 81.
foodley et al. (2015)	Any BF	VD3: 50,000 IU single dose	LC-MS/MS	0	18										44.18 (37.56, 50.
Moodley et al. (2015)	Any BF	VD3: 50,000 IU single dose	LC-MS/MS	8	14				-	-					84.61 (72.13, 97.
Moodley et al. (2015)	Any BF	VD3: 50,000 IU single dose	LC-MS/MS	24	11										91.10 (73.51, 108
D: 61															
hakiba et al. (2010)	Any BF	VD3: 200 IU/d	EIA/Chemiluminsecense	24	19			-	-						78.12 (68.59, 87.
hakiba et al. (2010)	Any BF	VD3: 400 IU/d	EIA/Chemiluminsecense	24	26				_						95.85 (84.91, 106
hakiba et al. (2010)	Any BF	VD3: 50,000 IU once every two months	EIA/Chemiluminsecense	24	30						_	-	-		134.04 (116.62, 1
D: 69															
alaat et al. (2016)	NA	VD3: 2000 IU once daily for 3 months followed by 1000 IU almost daily	EIA/Chemiluminsecense	0	194										32.15 (30.28, 34.
alaat et al. (2016)	NA	VD3: 2000 IU once daily for 3 months followed by 1000 IU almost daily	EIA/Chemiluminsecense	16	194				-						90.46 (87.99, 92.
alaat et al. (2016)	NA	VD3: 2000 IU once daily for 3 months followed by 1000 IU almost daily	EIA/Chemiluminsecense	48	194				1						94.10 (92.24, 95.
alaat et al. (2016)	NA	VD3: 400 IU/d	EIA/Chemiluminsecense	0	196			•							54.09 (50.76, 57.
alaat et al. (2016)	NA	VD3: 400 IU/d	EIA/Chemiluminsecense	16	196		•								42.28 (39.00, 45.
alaat et al. (2016)	NA	VD3: 400 IU/d	EIA/Chemiluminsecense	48	196	•									25.56 (22.67, 28.
alaat et al. (2016)	NA	VD3: 45,000 IU once weekly for 2 months followed by 400 IU almost daily	EIA/Chemiluminsecense	0	247		•								35.67 (33.98, 37.
alaat et al. (2016)	NA	VD3: 45,000 IU once weekly for 2 months followed by 400 IU almost daily	EIA/Chemiluminsecense	16	247										119.06 (112.41, 1
alaat et al. (2016)	NA	VD3: 45,000 IU once weekly for 2 months followed by 400 IU almost daily	EIA/Chemiluminsecense	48	247			•							57.58 (53.63, 61.
D: 75															
eghoud et al. (1991-1992 study) (1994)	NR	VD3: 100,000 IU single dose at baseline and 3 months	RIA kits	2	15			-	_		•				92.00 (70.75, 113
eghoud et al. (1991-1992 study) (1994)	NR	VD3: 200,000 IU single dose	RIA kits	2	15						_		-		150.00 (122.17, 1
D: 81															
Aittal et al. (2014)	NR	VD3: 300,000 IU single dose	RIA kits	12	32	+									16.10 (12.27, 19.
fittal et al. (2014)	NR	VD3: 600,000 IU single dose	RIA kits	12	28	-									17.60 (11.73, 23.
									_	_	_	_			
					0	20	40	60	80	100	120	140	160) 180	200

Figure KQ3-8 shows the summary and individual study ROB plots for trials in this section. More than 75% of trials had high ROB due to deviations from intended interventions. Further, 100% of trials had some ROB in selection of the reported outcomes, usually from failing to provide pre-specified analysis plans, and nearly 50% of studies had some or high ROB from the randomization process. Over 50% of studies had some or high ROB due to missing outcome data. Notably, 100% of studies had low ROB in measurement of the outcome.


As seen in Figure KQ3-7, single doses of 200,000 IU of vitamin D₃ increased serum 25(OH)D to above 317 nmol/L at one week and 246 nmol/L at 5 weeks in one study,⁸⁷ and 150 nmol/L at two weeks in another study.⁹⁶ A single dose of 100,000 IU of vitamin D₃ resulted in serum 25(OH)D levels of 92 at two weeks.⁹⁶ Two studies used a single dose of 50,000 IU of vitamin D₃, with serum 25(OH)D measuring 154 and 62 nmol/L at 1.5 and 14 weeks in one study,³⁶ and measuring 85 and 91 nmol/L at eight and 14 weeks in the other study.⁹⁰ One single-dose study compared 300,000 IU to 600,000 IU and found that serum 25(OH)D levels were 16.1 and 17.6 nmol/L, respectively, after 12 weeks.⁹⁹ Other dose regimens, including weekly or monthly doses of vitamin D, resulted in increased 25(OH)D. In one study, baseline was assessed in July in the northern hemisphere, and the comparison group of 400 IU/d of vitamin D₃ resulted in variable changes in serum 25(OH)D at follow-up assessments.¹¹⁴ Another RCT compared the effect of 14,000 IU/wk of vitamin D₃ to placebo among children (mean age = 8.5 years) and found that the mean 25(OH)D increased to 91.8 nmol/L in the vitamin D₃ supplementation group but did not change in the placebo group (mean = 64.5 nmol/L) after eight months.¹⁰⁸

One RCT reported the mean change (%) in serum 25(OH)D in infants with hypovitaminosis D after six weeks of treatment with either 2,000 IU of vitamin D₂ daily, 50,000 IU of vitamin D₂ weekly, or 2,000 IU of vitamin D₃ daily. They found the daily D₂, weekly D₂, and daily D₃ groups, which had baseline serum 25(OH)D means (SD) of 39 (10), 38 (10), and 38 (10) nmol/L, respectively, had mean (95% CI) percent increases in serum 25(OH)D of 149% (84%, 214%), 169% (111%, 226%), and 159% (100%, 219%), respectively.⁸³

Figure KQ3-8. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effect of non-daily vitamin D supplementation dosing regimens on serum 25(OH)D

a.

Bias Summary for VDKQ3 Non-Daily Dosing

(+)

(+)

(+)

Θ

0

0

Judgement

X High

Low

X

X

X

Some concerns

-Domains:

(+)

X

Shakiba, 2010

Talaat, 2016

Zeghoud,

D1: Bias arising from the randomization process.

D2: Bias due to deviations from intended intervention.

X

(+)

(+)

D3: Bias due to missing outcome data.

Θ

X

X

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.

KQ3 Sub-section 3. Studies comparing supplementation for post-partum mothers to supplementation for infants

Table KQ3-5 shows the characteristics of studies comparing supplementation for post-partum mothers to supplementation for infants, including maternal exposure information. **Figure KQ3-9** shows a forest plot of four studies reporting the effect of post-partum maternal vitamin D supplementation on the serum 25(OH)D of their human milk fed infants.^{41,45,51,78} Maternal supplementation included interventions of 400, 1,000, 2,000, and 6,400 IU/d of vitamin D, as well as an intermittent large dose of 120,000 IU vitamin D₃. Studies included placebo groups and direct infant supplementation groups (with or without maternal supplementation) as comparisons. Studies reported serum 25(OH)D assessments at eight, 15, 14, 16, and 28 weeks of interventions. Information on the season or month during which serum 25(OH)D was assessed was not reported in one study,⁵¹ one study reported follow-up assessment was completed in January,⁷⁸ while the last reported baseline assessment in September and follow-up in June.⁴⁵

Figure KQ3-10 shows the summary and individual study ROB plots for trials in this section. All trials had some ROB in selection of the reported outcomes, and this was usually from failing to provide pre-specified analysis plans. About 75% of trials had some or high ROB in two ROB domains: bias due to deviations from intended interventions and bias due to missing outcome data. Further, 50% of trials had some ROB due to the randomization process, and 25% of trials had some ROB due to measurement of the outcome.

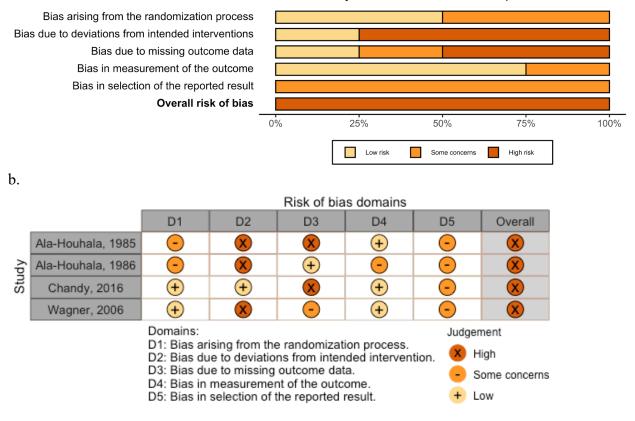
In one RCT, the serum 25(OH)D of human milk fed infants at eight weeks follow-up had decreased in the maternal 1,000 IU/d supplementation group, while serum 25(OH)D increased in both the direct infant supplementation of 400 IU/d and 1,000 IU/d of vitamin D₃ groups.⁵¹ Baseline serum 25(OH)D was not provided in the other trials; however, one study showed maternal supplementation of 120,000 IU vitamin D₃ following delivery and once per month for 3 months (infant placebo), as well as infant supplementation of 400 IU/d vitamin D₃ (maternal placebo), both resulted in higher infant serum 25(OH)D at 14 weeks compared to double placebo (maternal and infant).⁴⁵ In the other trial, maternal supplementation of 1,000 IU/d, but not 2,000 IU/d, resulted in infant serum 25(OH)D significantly lower than that of infants receiving direct 400 IU vitamin D₂ daily at eight weeks.⁷⁸ This difference was also significant at 15 weeks, but differences between the other groups were not significant. Lastly, in one trial of supplementation with 6,400 IU/d to breastfeeding mothers (infant placebo) compared to infant supplementation of 300 IU/d with maternal supplementation of 400 IU/d found no significant difference in serum 25(OH)D levels at 16 or 28 weeks.⁴¹

Table KQ3-5. Characteristics of studies assessing the effect of post-partum maternal vitamin D exposure on breastfed infants' serum 25(OH)D

Author (year); study design; N randomized Ala-houhala et al.	Enrollment years 1982	Location; latitude Tampere,	Mean age (SD) [range] Neonates	Male (%) NR	Race or ethnicity NR	Health status; nutritional status 100%	Assay method HPLC	Assay standards CDC: no;	Intervention Infant 400	Control Maternal 1000
(1985) ⁵¹ ; RCT; N= 92		Finland; 61°				Healthy; NR		NIST: no	IU/d, breastfed Infant 1000 IU/d, breastfed	IU/d, infant breastfed (not supplemented)
Ala-Houhala et al. (1986) ⁷⁸ ; RCT; N= 16	1984	Tampere, Finland; 61°	Neonates	NR	NR	100% Healthy; NR	Competitive protein binding assay	CDC: no; NIST: no	Infant 400 IU/d, breastfed	Maternal 2000 IU/d, infant breastfed (not supplemented)
										Maternal 1000 IU/d, infant breastfed (not supplemented)
Chandy et al. (2016) ⁴⁵ ; RCT; N= 230	2012-2014	India; 26°	Neonates	NR	100% Asian Indian	100% Healthy; NR	RIA kits	CDC: yes; NIST: no	Infant 400 IU/d, breastfed	Maternal 120,000 IU (within 7d of delivery then at 1.5, 2.5, and 3.5 months), infant breastfed (not supplemented)
										Double placebo
Wagner et al. (2006) ⁴¹ ; RCT; N= 19	NR	Charleston, South Carolina,	Neonates	47	White: 79%	100% Healthy; NR	NR	NR	Infant 300 IU/d, breastfed plus	Maternal 6400 IU/d, infant

Author (year); study design; N randomized	Enrollment years	Location; latitude	Mean age (SD) [range]	Male (%)	Race or ethnicity	Health status; nutritional status	Assay method	Assay standards	Intervention	Control
		United			Hispanic:				maternal 400	breastfed plus 0
		States; 33°			11%				IU/d	IU/d placebo
					Black:					-
					11%					

CDC = Centers for Disease Control and Prevention; d = day; HPLC = high performance liquid chromatography; IU = international units; N = sample size; NIST = National Institute of Standards and Technology; NR = not reported; RCT = randomized controlled trial; RIA = radioimmunoassay; SD = standard deviation


Figure KQ3-9. Forest plot of studies reporting the effect of post-partum maternal vitamin D supplementation on breastfed infants' serum 25(OH)D (nmol/L) by study arms

			Follow-up,										Mean 25(OH)D, nmol				
Trial ID and Study	BF status	Other intervention info.	25(OH)D assay	wk	n												(95% CI)
D: 3																	
Ala-houhala et al. (1985)	Exclusively BF	Maternal VD: 1000 IU/d; infant breastfed, not supplemented	HPLC	0	32			_	-	_							82.37 (66.80, 97.93)
Ala-houhala et al. (1985)	Exclusively BF	Maternal VD: 1000 IU/d; infant breastfed, not supplemented	HPLC	8	32		_	-	-								59.90 (44.34, 75.47)
Ala-houhala et al. (1985)	Exclusively BF	VD3: 1000 IU/d	HPLC	0	29		-	-	_								67.39 (51.04, 83.74)
la-houhala et al. (1985)	Exclusively BF	VD3: 1000 IU/d	HPLC	8	29									-	_		174.72 (153.83, 195.6
Ala-houhala et al. (1985)	Exclusively BF	VD3: 400 IU/d	HPLC	0	31			•	-	-							82.37 (70.95, 93.79)
Ala-houhala et al. (1985)	Exclusively BF	VD3: 400 IU/d	HPLC	8	31					_	-	_					117.31 (97.98, 136.64
D: 4																	
Ala-Houhala et al. (1986)	Exclusively BF	Maternal VD: 1000 IU/d; infant breastfed, not supplemented	other (specify)	8	16	-											30.60 (25.86, 35.33)
la-Houhala et al. (1986)	Exclusively BF	Maternal VD: 1000 IU/d; infant breastfed, not supplemented	other (specify)	15	16	-	-										41.33 (33.44, 49.22)
a-Houhala et al. (1986)	Exclusively BF	Maternal VD: 2000 IU/d; infant breastfed, not supplemented	other (specify)	8	17		-	-									52.87 (41.83, 63.92)
la-Houhala et al. (1986)	Exclusively BF	Maternal VD: 2000 IU/d; infant breastfed, not supplemented	other (specify)	15	17				—								70.59 (55.86, 85.31)
Ala-Houhala et al. (1986)	Exclusively BF	VD2: 400 IU/d	other (specify)	8	16		_	-	-								59.85 (43.54, 76.16)
Ala-Houhala et al. (1986)	Exclusively BF	VD2: 400 IU/d	other (specify)	15	16			_	-								82.66 (57.94, 107.39)
D: 14																	
Chandy et al. (2016)	Exclusively BF	Maternal VD3: 120,000 IU after delivery and 1.5 months, then monthly after that; infant breastfed, not supplemented	RIA kits	14	51			-									60.90 (52.69, 69.11)
Chandy et al. (2016)	Exclusively BF	Placebo	RIA kits	14	54		-										42.30 (34.67, 49.93)
Chandy et al. (2016)	Exclusively BF	VD3: 400 IU/d	RIA kits	14	47		-	•									59.30 (51.87, 66.73)
D: 84																	
Vagner et al. (2006)	any BF	Maternal VD: 6400 IU/d; infant breastfed, not supplemented	HPLC	16		-	—										36.00 (20.32, 51.68)
Vagner et al. (2006)	any BF	Maternal VD: 6400 IU/d; infant breastfed, not supplemented	HPLC	28		_	-										46.00 (26.40, 65.60)
/agner et al. (2006)	any BF	VD3: 300 IU/d; Maternal VD: 400 IU/d	HPLC	16			_										33.00 (21.24, 44.76)
Vagner et al. (2006)	any BF	VD3: 300 IU/d; Maternal VD: 400 IU/d	HPLC	28		-	-	•									43.00 (29.28, 56.72)
						_	<u> </u>	—	_	_	_	_	_	_	_	_	
					0	20	40	60	80	100	120	140	160	180	200	220	

Figure KQ3-10. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effect post-partum maternal vitamin D supplementation on breastfed infants' serum 25(OH)D

a.

Bias Summary for VDKQ3 Maternal Exposure Studies

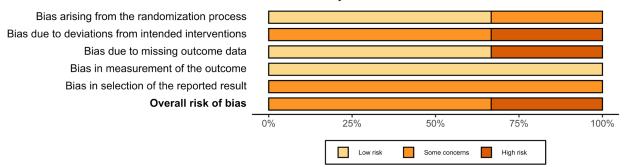
KQ3 Sub-section 4. Studies using food interventions with different levels of vitamin D or comparing food interventions with vitamin D supplements

Figure KQ3-11 shows a forest plot of three trials reporting the effect of vitamin D in fortified and non-fortified food on serum 25(OH)D.^{43,104,112} Interventions included food fortified with vitamin D ranging from 80 IU/d to 1,000 IU/d, with non-fortified food, daily vitamin D supplementation, placebo, and other control groups as comparisons. Studies reported serum 25(OH)D assessments ranging from six to 22 weeks of intervention. Information on the season or month during which serum 25(OH)D was assessed was not reported in two studies,^{43,104} but one trial reported baseline assessment in early winter with follow-up assessment in late winter stratified by child skin tone.¹¹²

Figure KQ3-12 shows the summary and individual study ROB plots for trials in this section. All three trials had some ROB in selection of the reported outcomes, usually from failing to provide pre-specified analysis plans, and all had some or high ROB due to deviations from intended interventions. One trial had high ROB due to missing outcome data and some ROB due to the randomization process. Notably, 100% of studies had low ROB in measurement of the outcome.

Results in one study showed that serum 25(OH)D decreased in groups receiving both fortified (with mean vitamin D dose of 466-486 IU/d) and non-fortified food, although none of the changes were significant.¹⁰⁴ In a second study, participants receiving 400 IU of vitamin D₃ supplementation daily had significantly increased serum 25(OH)D at 14 and 22 weeks; however, the placebo and fortified formula (400 IU/L) groups saw no significant increase in serum 25(OH)D.⁴³ The last trial reported significant increases in 25(OH)D after 12 weeks of food fortified with 1,000 IU/d and 400 IU/d in both fair- and dark-skinned children but no significant increase in the groups receiving 80 IU/d in food.¹¹²

Figure KQ3-11. Forest plot of studies reporting the effect of vitamin D in fortified and non-fortified foods on serum 25(OH)D (nmol/L) by study arms


	BF		25(OH)D	Follow-up,			Mean 25(OH)D,
Study	status	Other intervention info.	assay	wk	n		nmol/L (95% CI)
ID: 12							
Brett et al. (2018)	NA	Fortified food: 466 IU/d	HPLC	0	26		65.30 (60.61, 69.
Brett et al. (2018)	NA	Fortified food: 466 IU/d	HPLC	12	26	-	64.70 (60.01, 69.
Brett et al. (2018)	NA	Fortified food: 486 IU/d	HPLC	24	26	+	58.40 (55.06, 61.
Brett et al. (2018)	NA	Non-fortified food: 239 IU/d	HPLC	0	25	-#-	67.50 (61.58, 73.
Brett et al. (2018)	NA	Non-fortified food: 239 IU/d	HPLC	12	23		58.30 (52.05, 64.
Brett et al. (2018)	NA	Non-fortified food: 241 IU/d	HPLC	24	23	+	56.60 (50.92, 62.
ID: 13							
Chan et al. (1982)	Any BF	Without intervention	other (specify)	0	20	_	49.92 (35.24, 64.
Chan et al. (1982)	Any BF	Without intervention	other (specify)	6	22		42.43 (32.65, 52
Chan et al. (1982)	Any BF	Without intervention	other (specify)	14	23		42.43 (27.76, 57
Chan et al. (1982)	Any BF	Without intervention	other (specify)	22	19		47.42 (37.64, 57
Chan et al. (1982)	Any BF	VD3: 400 IU/d	other (specify)	0	29 -	.	34.94 (30.05, 39
Chan et al. (1982)	Any BF	VD3: 400 IU/d	other (specify)	6	23		47.42 (37.64, 57
Chan et al. (1982)	Any BF	VD3: 400 IU/d	other (specify)	14	24		54.91 (40.24, 69
Chan et al. (1982)	Any BF	VD3: 400 IU/d	other (specify)	22	20	— 	57.41 (42.73, 72
Chan et al. (1982)	Exclusively Formula	Fortified food: dose NR (400 IU/L)	other (specify)	0	40	-	49.92 (40.14, 59
Chan et al. (1982)	Exclusively Formula	Fortified food: dose NR (400 IU/L)	other (specify)	6	39	_	67.39 (47.82, 86
Chan et al. (1982)	Exclusively Formula	Fortified food: dose NR (400 IU/L)	other (specify)	14	49		62.40 (52.62, 72
Chan et al. (1982)	Exclusively Formula	Fortified food: dose NR (400 IU/L)	other (specify)	22	30		44.93 (35.14, 54
ID: 38							
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	0	40	-#-	48.00 (42.42, 53
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	12	38	-8-	77.00 (71.59, 82
Dhlund et al. (dark skinned children) (2017)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	0	38	-8-	51.00 (45.59, 56
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	12	33	-8-	67.00 (61.46, 72
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	0	17 •	-8-	39.00 (31.39, 46
Ohlund et al. (dark skinned children) (2017)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	12	16	+	39.00 (31.92, 46
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	0	45	-=-	66.00 (60.45, 71
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 1000 IU/d VD3	LC-MS/MS	12	45	-	86.00 (81.03, 90
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	0	40	+	61.00 (56.04, 65
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 400 IU/d VD3	LC-MS/MS	12	35	-	72.00 (67.43, 76
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	0	22		58.00 (50.90, 65
Ohlund et al. (fair-skinned children) (2011)	NA	Fortified food: 80 IU/d VD3	LC-MS/MS	12	19		58.00 (51.53, 64

I

Figure KQ3-12. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effect of vitamin D in fortified and non-fortified foods on serum 25(OH)D

a.

Bias Summary for VDKQ3 Fortified Food

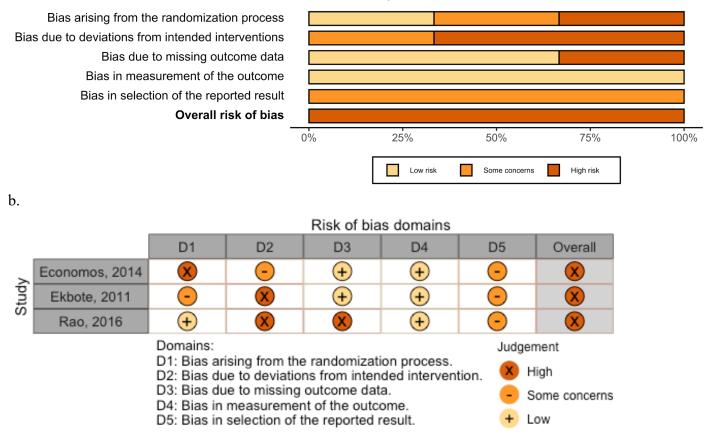
b.

				Risk of bia	is domains	-	
		D1	D2	D3	D4	D5	Overall
~	Brett, 2018	+	-	+	+	-	-
Study	Chan, 1982	-	×	×	+	-	×
0)	Ohlund, 2017	+	-	+	+	-	-
		D2: Bias du D3: Bias du D4: Bias in	e to deviation to missing measuremer	e randomizati ns from inten outcome dat nt of the outco he reported r	ded intervent a. ome.	- s	ment ligh some concerns ow

KQ3 Sub-section 5. Studies examining the effects of combined vitamin D and calcium supplementation

Figure KQ3-13 shows a forest plot of three studies reporting the effect of combined vitamin D and calcium on serum 25(OH)D. One study randomized 101 participants to 200 IU/d of vitamin D₃ plus 700 mg/d of calcium supplementation or 700 mg/d of calcium supplementation without vitamin D supplementation. After 12 weeks, mean serum 25(OH)D levels in the vitamin D plus calcium group increased significantly more than that in the calcium only (+12.7 nmol/L [5.09 ng/mL]; 95% CI 1.3, 24.1).¹⁰⁵ The second study randomized 60 participants to 405 mg or 156 mg of calcium five times weekly. Each group also received 30,000 IU of vitamin D₃ once monthly. After 48 weeks, there was no significant difference in serum 25(OH)D concentration between the two groups.⁸¹ The last study randomized 30 infants to either 30,000 IU once weekly or 4,000 IU/d of vitamin D₃.⁵⁶ Each group also received 50 mg/d of calcium for every kg of body weight. After 48 weeks, serum 25(OH)D had increased significantly; however, there was no significant difference between groups. Information on season or month of serum 25(OH)D assessment was not reported for any study.

Figure KQ3-14 shows the summary and individual study ROB plots for these three RCTs. All three studies had some or high ROB in three ROB domains. All three trials had low ROB due to measurement of the outcome, but an overall high risk of bias rating.


Figure KQ3-13. Forest plot of studies reporting the effect of the effect of combined vitamin D and calcium on serum 25(OH)D (nmol/L) by study arms

	BF			Follow-up,										Mean 25(OH)D,	, nmol/L
Trial ID and Study	status	Other intervention info.	25(OH)D assay	wk	n									(95% CI)	
ID: 10															
Ekbote et al. (2011)	NR	30,000 IU VD3 once monthly + 156 mg Ca 5 times per week	RIA kits	0	30	-								18.90 (9.24, 28.	56)
Ekbote et al. (2011)	NR	30,000 IU VD3 once monthly + 156 mg Ca 5 times per week	RIA kits	48	28			-						58.10 (53.69, 62	2.51)
Ekbote et al. (2011)	NR	30,000 IU VD3 once monthly + 405 mg Ca 5 times per week	RIA kits	0	30		_							25.00 (15.30, 34	4.70)
Ekbote et al. (2011)	NR	30,000 IU VD3 once monthly + 405 mg Ca 5 times per week	RIA kits	48	30				-					64.30 (55.75, 72	2.85)
ID: 16															
Economos et al. (2014)	NA	200 IU/d VD3 + 700 mg/d Ca	other (specify)	0	53		_	-						64.20 (39.22, 89	9.18)
Economos et al. (2014)	NA	200 IU/d VD3 + 700 mg/d Ca	other (specify)	12	34				_					92.80 (80.70, 10	04.90)
Economos et al. (2014)	NA	700 mg/d Ca	other (specify)	0	48			-	•					64.30 (58.39, 70	0.21)
Economos et al. (2014)	NA	700 mg/d Ca	other (specify)	12	25				-	-				80.80 (68.84, 92	2.76)
ID: 83															
Rao et al. (2016)	NR	30,000 IU once weekly + 50 mg/kg/d Ca	EIA/Chemiluminsecense	12	15									29.08 (27.23, 30	0.93)
Rao et al. (2016)	NR	30,000 IU once weekly + 50 mg/kg/d Ca	EIA/Chemiluminsecense	48	15									51.12 (50.17, 52	2.07)
Rao et al. (2016)	NR	4000 IU/d VD3 + 50 mg/kg/d Ca	EIA/Chemiluminsecense	12	15	-	-							28.02 (24.35, 31	1.69)
Rao et al. (2016)	NR	4000 IU/d VD3 + 50 mg/kg/d Ca	EIA/Chemiluminsecense	48	15		-	·						47.58 (44.46, 50	0.70)
					0	20	40	60	80	I 100	120	 140	 160	 180	

Figure KQ3-14. Summary ROB plot (panel a) and individual study ROB (panel b) for trials examining the effect of combined vitamin D plus calcium on serum 25(OH)D

a.

Bias Summary for VDKQ3 Combined VD and Calcium Stuc

II. Vitamin D Upper Limits

ULs KQ1a. At what levels of vitamin D intake are adverse effects observed in children aged 0 to 4 years?

The below section includes interventional, observational, and case report studies that assess upper limit (UL) outcomes. The UL outcomes include hypercalcemia, hypercalciuria, nephrocalcinosis, kidney stones, and overweight and obesity.

Figure VDUL-1 displays the summary and individual outcome ROB for all interventional studies included in this section. All studies were assessed to be of some or high ROB due to deviations from intended interventions, such as high levels of non-adherence to the intervention. Many of the included studies were also prone to bias due to missing outcome data with no evidence to suggest results were not biased due to this missingness. Other potential sources of bias are attributed to poorly described or inappropriate randomization processes or a lack of evidence that analysis and statistical plans were pre-specified before unblinded outcome data were available. Almost all studies were assessed to have low risk of bias for the measurement of outcomes.

No ROB appraisals were performed for observational studies and case reports. Of note, there are currently no validated ROB assessment tools for cross-sectional studies and case reports.

Interventional Studies

Daily or less frequent vitamin D supplementation

Table VDUL-1 shows the characteristics and results of 11 interventional studies included in our review that investigate the effect of a daily dose or less frequent vitamin D supplementation on upper limit outcomes. All studies were conducted in children 0-12 months.

All studies used an RCT design.^{24,31,35,36,38,39,42,44,52,92,116} Most studies were conducted in North America, Europe, and Asia, with one study conducted in Australia. Most studies included infants with any breastfeeding status (mixed feeding) or did not specify feeding status. The health and nutritional status of subjects was characterized as healthy term infants in most studies, but three studies were in preterm or low birthweight infants.^{24,39,42} Vitamin D deficiency was usually defined as a serum 25(OH)D level <20 ng/mL (50 nmol/L). Ten studies administered daily vitamin D₃ supplementation ranging from 200 IU/d to 2,000 IU/d, and one study administered 1,400 IU vitamin D₃ supplementation once weekly, versus placebo.⁴²

Hypercalcemia was a reported outcome in seven RCTs. Five of these (with administered vitamin D doses ranging from 400 to 1,600 IU/d) reported no hypercalcemia during the study periods.^{31,35,39,52,116} In a study with vitamin D interventions of four different doses, the 800, 1,200, and 1,600 IU/d groups each had two participants with suspected hypercalcemia compared to none with suspected hypercalcemia in the 400 IU/d group (no statistical comparisons were reported).³⁸In another study among preterm infants, the incidence of hypercalcemia (calcium > 10.7 mg/dL) by age 6 months was lower in the group supplemented with 400 IU/d vitamin D compared to the placebo group, but this difference was not statistically significant (Risk Difference % = - 5.4; 95% CI -13.0, 1.9).²⁴

Hypercalciuria was a reported outcome in five RCTs^{35,38,39,44,52} and was assessed by spot urine in all five. The incidence of hypercalciuria showed no patterns but was variable across studies and across intervention arms comparing different doses of vitamin D supplementation.

Mortality was a reported outcome in one large RCT (n = 2,079). The study participants were infants with low birthweight and severe vitamin D deficiency at baseline. The results showed that, at six months, 1.92% and 1.83% of infants died from all causes in the 1,400 IU of vitamin D once weekly and

placebo arms, respectively, but the rate per child year in these two groups was not statistically different (Adjusted Rate Ratio = 1.97; 95% CI 0.74, 5.28; P = 0.18).⁴²

Nephrocalcinosis was a reported outcome in one RCT.⁴⁴ No participants were reported to have nephrocalcinosis in either the 400 IU/d of vitamin D supplementation or control group (no intervention).⁴⁴

Single, large-dose vitamin D supplementation

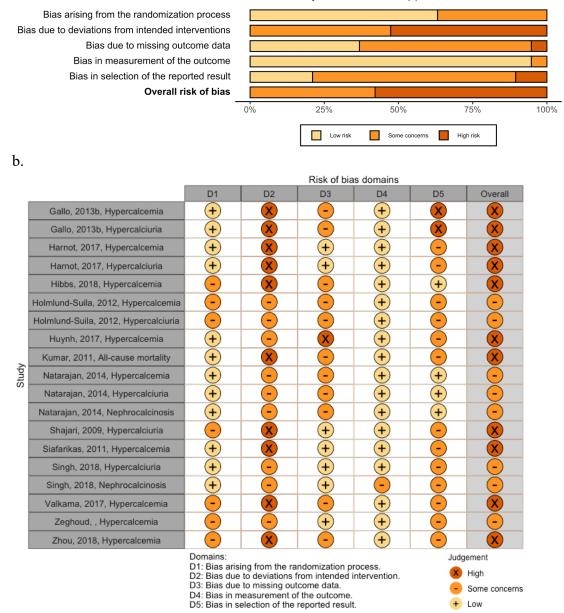
Tables VDUL-2a and **VDUL-2b** show the characteristics and results of studies in our review that investigated the effect of a single, large dose of vitamin D supplementation on upper limit outcomes. This included six interventional studies from five publications (one publication reported two studies⁹⁶) conducted in children 0-12 months (n = 3 studies) and 1-9 years (n = 3 studies).

Children 0-12 months. The studies conducted in children 0-12 months consisted of two singlearm interventions and one RCT reported in two publications (Table VDUL-2a).^{96,117} The studies were conducted in healthy children in Germany and Algeria. Two studies were conducted in children with vitamin D deficiency. Administered vitamin D doses ranged from single doses of 100,000 to 600,000 IU of vitamin D₃, with follow-up ranging from 2 weeks to 20 months.

Hypercalcemia was a reported outcome in two studies. One study reported no hypercalcemia during the study periods.⁹⁶. The other study (a single-arm interventional trial), with intervention of 600,000 IU of vitamin D once every 3-5 months, reported that none of the infants were hypercalcemic before the first dose, but 14 of the treated infants (34%) later had calcium values above the high normal limit.¹¹⁷

Hypercalciuria was an outcome reported in one study and was assessed by spot urine. The study reported no hypercalciuria at either follow-up (2 weeks and 6 months) after a single, large dose of vitamin D (600,000 IU) was administered.⁹⁶

Children 1-9 years. The studies conducted in children 1-9 years old consisted of two RCTs^{85,99} and one single-arm intervention¹¹⁸ (Table VDUL-2b). The studies were conducted in India and Argentina with mean age ranging from 1.2 to 8.6 years. Health status of enrolled participants ranged from healthy to evidence of vitamin D deficiency with or without clinical evidence of rickets. Administered vitamin D doses ranged from single doses of 150,000 IU of vitamin D₂ to 600,000 IU of vitamin D₃, with follow-up ranging from 3-5 days to five months.


Hypercalcemia was reported in all three studies, but one study reported this outcome as hypercalcemia and/or hypercalciuria.⁸⁵ One study reported no hypercalcemia during the six-week follow up period for children given a single 150,000 IU dose of vitamin D₂.¹¹⁸ Another study reported one case of hypercalcemia in each group (300,000 IU or 600,000 IU vitamin D₃) at four weeks, and one additional child with hypercalcemia at 12 weeks in the 600,000 IU vitamin D₃ group (statistical comparisons not reported).⁹⁹ The study reporting hypercalcemia and/or hypercalciuria found a slightly higher incidence in the group receiving 600,000 IU compared to the group with 300,000 IU of vitamin D₃, but the difference was not statistically significant at either 7-10 days or 25-30 days post therapy (for both follow-up periods, RR = 1.73; 95% CI 0.46, 6.54; P = 0.47).⁸⁵

Hypercalciuria was a reported outcome in two studies and was assessed by spot urine in both. One study reported no hypercalciuria at six weeks and five months after a single, large dose of vitamin D₂ (150,000 IU) was administered.¹¹⁸ The other study reported incidences of 7.1% and 18.5% 3-5 days after participants received a single dose of 300,000 or 600,000 IU of vitamin D₃, respectively, but this difference was not statistically significant (RR = 2.59; 95% CI 0.55, 12.24; P = 0.25).⁸⁵

Figure VDUL-1. Summary ROB (panel a) and individual outcome ROB (panel b) for interventional studies reporting vitamin D upper limit outcomes

a.

Bias Summary for Vitamin D Upper Limit Outcomes

Table VDUL-1. Characteristics and key findings of interventional studies reporting the effects of a daily dose of vitamin D intake on upper limit
outcomes in children 0-12 months. ^a

Author (year)	Study design; N randomized	Enroll ment years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breast feedin g status	Race or ethnicit y	Health status; nutrition status	Interven tion duration	Upper limit outcome incidence by intervention group
Gallo et al. (2013)b ³⁸	RCT; N= 132	2007- 2010	Montréal, Québec, Canada; 46°	Neonates	57.6	Any BF	84% white, 16% non- white	100% Healthy; NR	11 months	Hypercalcemia: VD3 400 IU/d: 0.0%; VD3 800 IU/d: 6.25%; VD3 1200 IU/d: 7.41%; VD3 1600 IU/d: 15.5% Hypercalciuria [spot urine]: VD3 400 IU/d: 0.0%; VD3 800 IU/d: 3.13%; VD3 1200 IU/d: 3.70%; VD3 1600 IU/d: 7.69%
Hibbs et al. (2018) ²⁴	RCT; N= 300	2013- 2016	Cleveland, USA; Charleston, USA; Bronx, NY, USA; ~38°	Neonates	55	Any BF	100% Black or African Americ an	100% preterm (mean GA=33); NR	6 months	Hypercalcemia: VD3 400 IU/d: 6.72%; Placebo: 12.12%
Holmlund- Suila et al. (2012) 35	RCT; N= 113	2010- 2011	Helsinki, Finland; 60°	Neonates	50.4	Any BF	NR	100% Healthy; NR	10 weeks	Hypercalciuria [spot urine]: VD3 400 IU/d vs. 1200 IU/d vs. 1600 IU/d: "Hypercalciuria occurred in 39% of all subjects, but U-Ca/Cr level was the same between intervention groups (ANOVA, p=0.623)." Gender was used a covariate for this assessment.
										Symptoms of hypercalcemia: VD3 400 IU/d: 0%; VD3 1200 IU/d: 0%; VD3 1600 IU/d: 0%
Huynh et al. (2017) ³⁶	RCT; N= 70	2013- 2014	St. Albans, Australia; -38°	Neonates	NR	Any BF	NR	100% Healthy; VD deficiency	3.5 months	Hypercalcemia: VD3 400 IU/d: 26.9%; VD3 50,000 IU single dose: 6.9%

Author (year) Kumar et al.	Study design; N randomized RCT; N=	Enroll ment years 2007-	Location; latitude New Delhi,	Mean age (SD) [range] Neonates	Mal e (%) 46.7	Breast feedin g status Any	Race or ethnicit y Presum	Health status; nutrition status 100% with low	Interven tion duration 6 months	Upper limit outcome incidence by intervention group All-cause incidence of death:
(2011) 42	2079	2010	India; 29°			BF	ed 100% Asian Indian	birthweight (range 1.8-2.5 kg); 100% with severe VD deficiency		VD3 1400 IU once weekly: 1.92%; Placebo: 1.83%
Natarajan et al. (2014) ³⁹	RCT; N=96	2011- 2012	North India; ~29°	Neonates	56.3	Any BF	Presum ed 100% Asian Indian	100% preterm infants (mean GA = 32.5); 81% with VD deficiency	12 weeks	Hypercalcemia: VD3 400 IU/d: 0%; VD3 800 IU/d: 0% Hypercalciuria [spot urine]: VD3 400 IU: 0%;
Shajari et al. (2009) 92	RCT; N= 90	NR	Yazd, Iran; 32°	Neonates	NR	Exclus ively BF	Presum ed 100% Iranian	100% Healthy; Presumed normal	10 weeks	VD3 800 IU: 0% Hypercalciuria [spot urine]: VD3 200 IU/d: 83.3%; VD3 400 IU/d: 76.7%; VD3 50,000 IU at baseline and 6 weeks: 93.3%
Siafarikas et al. (2011)	RCT; N= 40	NR	Berlin, Germany; 52.5°	Neonates	NR	Any BF	NR	100% Healthy; NR	6 weeks	Hypercalcemia: VD3 250 IU/d: 0%; VD3 500 IU/d: 0%
Singh et al. (2018) 44	RCT; N= 100	2013- 2014	New Delhi, India; 29°	Neonates	55	Exclus ively BF	Presum ed 100% Asian Indian	100% Healthy; ~47% with VD deficiency	6 months	Hypercalciuria [spot urine]: VD3 400 IU/d: 0%; Without intervention (no placebo was used): 0% Nephrocalcinosis: VD3 400 IU/d: 0%; Without intervention (no placebo was
Valkama et al. (2017)	RCT; N= 987	2013	Helsinki, Finland [60.2]	Neonates	50	Any BF	Mothers >90% Caucasi an	100% Healthy; NR	12 months	used): 0% Severe hypercalcemia: VD3 400 IU/d: 0% VD3 1200 IU/d: 0%

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

Author (year)	Study design; N randomized	Enroll ment years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breast feedin g status	Race or ethnicit y	Health status; nutrition status	Interven tion duration	Upper limit outcome incidence by intervention group
Zhou et al. (2018) 31	RCT; N= 400	2015- 2016	Yongkang, China; Wenzhou, China; Jinhua, China; ~29°	0.65 (0.22) years	52.3	Any BF	Presum ed 100% Chinese	Generally healthy; Presumed normal	4 months	Hypercalcemia: VD3 400 IU/d: 0%; VD3 1200 IU/d: 0%

BF = breastfeeding; d = day; GA = gestational age; IU = international units; N = sample size; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; U-Ca/Cr = urinary calcium to creatinine ratio; VD = vitamin D; VD3 = vitamin D3

^a No studies conducted in children 1-9 years were identified were identified.

Table VDUL-2a. Characteristics and key findings of interventional studies reporting the effects of a single large dose of vitamin D on upper limit
outcomes in children 0-12 months

Author (year)	Study design; N randomized	Enroll ment years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breast feedin g status	Race or ethnicit y	Health status; nutrition status	Follow- up	Upper limit outcome incidence by intervention group
Markestad et al. (1987) ¹¹⁷	Single-arm intervention; N= 43	NR	Jena, Germany; 50.9°	~8.7 (~5.6) [1- 20] months	NR	Any BF	NR	100% Healthy; NR	20 months	Hypercalcemia: 600,000 IU once every 3-5 months: "None of the infants were hypercalcemic before the first dose but 14 of the treated infants (34%) later had one or both Ca values above the high normal limit. The infants with high Ca levels did not differ from the others with respect to the vitamin D metabolites." "All infants had normal Ca levels before the first dose but 14 infants (34%) later had one or both Ca values above the upper normal limit of 2.80 mmol/L (2.81-3.32 mmol/L), indicating that the vitamin D doses were excessive despite the lack of accumulative increases in serum vitamin D concentrations."
Zeghoud et al. (1994) (1984-1985 study) 96	Single-arm intervention; N= 30	1984- 1992	Constantine, Algeria; 36.4°	Neonates	NR	NR	NR	100% Healthy; 100% with VD deficiency	2 weeks 6 months	Hypercalciuria [spot urine]: VD3 600,000 IU single dose: 0% Hypercalciuria [spot urine]: VD3 600,000 IU single dose: 0%
Zeghoud et al. (1994) (1991-1992 study) 96	RCT; N= 30	1991- 1992	Constantine, Algeria; 36.4°	NR [0- 0.75 years]	NR	NR	NR	100% Healthy; 100% with VD deficiency	9 months	 VD3 600,000 IU single dose: 0% Hypercalcemia: VD3 100,000 IU single dose: 0%; VD3 200,000 IU single dose: 0%; VD3 600,000 IU single dose: 0%

BF = breastfeeding; IU = international units; N = sample size; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; VD = vitamin D; VD3 = vitamin D₃

Table VDUL-2b. Characteristics and key findings of interventional studies reporting the effects of a single large dose of vitamin D on upper limit outcomes in children 1-9 years

Author (year)	Study design; N randomized	Enroll ment years	Location; latitude	Mean age (SD) [range]	Mal e (%)	Breast feedin g status	Race or ethnicit y	Health status; nutrition status	Follow- up	Upper limit outcome incidence by intervention group
Harnot et al. (2017) ⁸⁵	RCT; N= 60	2012- 2013	Chandigarh, India; 31°	1.2 (0.79) years	68.3	NR	Presum ed 100% Asian Indian	100% with evidence of VD deficiency; VD deficiency	30 days	 Hypercalcemia and hypercalciuria [spot urine] at 7-10th day post therapy: VD3 300,000 IU single dose: 10.71%; VD3 600,000 IU single dose: 18.52% Hypercalcemia and hypercalciuria [spot urine] at 25-30th day post therapy: VD3 300,000 IU single dose: 10.71%; VD3 600,000 IU single dose: 18.52% Hypercalciuria [spot urine] at 3-5th day post therapy: VD3 300,000 IU single dose: 7.14%; VD3 600,000 IU single dose: 18.52%
Mittal et al. (2014) ⁹⁹	RCT; N= 76	2010- 2012	Delhi, India; ~29°	~17.5 (13.2- 14.4) months	55	NR	Presum ed 100% Asian Indian	100% with clinical evidence of rickets	12 weeks	Hypercalcemia: VD3 300,000 IU single dose: 2.6% VD3 600,000 IU single dose: 5.3%
Oliveri et al. (1996)	Single-arm intervention; N= 79	NR	Ushuaia, Argentina; - 55°	8.6 (1.4) years	58.2	NR	NR	100% Healthy; NR	6 weeks	Hypercalcemia: VD2 150,000 IU single dose: 0%
	IN- /9		55						5 months	Hypercalcemia: VD2 150,000 IU single dose: 0%
									6 weeks	Hypercalciuria [spot urine]: VD2 150,000 IU single dose: 0%
									5 months	Hypercalciuria [spot urine]: VD2 150,000 IU single dose: 0%

 $BF = breastfeeding; d = day; IU = international units; N = sample size; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; VD = vitamin D; VD2 = vitamin D_2; VD3 = vitamin D_3$

Observational Studies

Table VDUL-3 shows the characteristics and results for three cross-sectional studies, one casecohort study, and one cohort study included in our review. The studies investigated the association between vitamin D intake and upper limit outcomes,¹¹⁹ serum 25(OH)D,^{77,120,121} or both.¹²² Sample sizes ranged from six to 1,718. Most studies were conducted in the northern hemisphere in healthy or generally healthy children or in children who were presumed healthy before nutrient intoxication. Three studies were conducted in infants,^{77,119,122} and two were conducted in seven- and nine-year-old children.^{120,121}

Hypercalcemia was a reported outcome in two studies. Both studies included children with acute or subacute vitamin D intoxication and found a high proportion with hypercalcemia. One study including children with a median vitamin D dose of 600,000 IU and serum 25(OH)D level of 322 ng/mL (805 nmol/L) found almost 60% had severe hypercalcemia, which was defined as serum calcium levels >14 mg/dL.¹²² They found a significant association between serum 25(OH)D and serum calcium (rs = 0.402; *P*<0.001). The other study included children with a total vitamin D intake ranging from 264,000 to 1,500,000 IU who were found to have serum calcium levels ranging from 15.2 to 19.1 mg/dL.¹¹⁹ These children were also found to have elevated calcium to creatinine ratios ranging from 1.17-2.08 (mg/mg).

Nephrocalcinosis and kidney stone findings were reported together in one study of children suffering from vitamin D intoxication. The study found that almost 50% of children had clinical findings of Nephrocalcinosis and/or kidney stones.¹²²

Lastly, obesity or overweight was reported in three studies, two of which found an association between lower serum 25(OH)D and overweight or obesity in children.^{120,121} The other study reported an association between higher serum 25(OH)D at birth and overweight and obesity in women, but not in men, at age 35 years.⁷⁷

Case Reports

Table VDUL-4 summarizes 26 unique case reports of excessive vitamin D intake from 14 articles included in our review.

Table VDUL-3. Characteristics and key findings of observational studies reporting the association between vitamin D intake and upper limit outcomes

Author (year)	Study design; N enrolled	Enrol lment years	Location; latitude	Mean age (SD); median age [IQR]	Male (%)	Breas tfeedi ng status	Race or ethnicity	Health status; nutritional status	Foll ow- up	Exposure or comparisons	Results ^a
Demir et al. (2019) 122	Cross- sectional; N= 74	2002- 2014	Turkey; 39°	1.06 [0.65- 1.60] years	61	NR	Presumed 100% Turkish	Generally healthy; 100% VD intoxication	NA	VD [median dose = 600,000 IU]; Median serum 25(OH)D = 803 nmol/L	Serum Ca mean (SD): 15 (3.2) mg/dL; Severe hypercalcemia (>14 mg/dL) rate: 58.1%; Serum Ca associated with serum
											25(OH)D (rs=0.402, p<0.001); Nephrocalcinosis and/or kidney stone rate: 48.5%
Jensen et al. (2017) ¹²⁰	Case- cohort; N= 1718	1981- 1991	Copenaga n, Denmark; 56°	7 (NR) years	Cases (49); Cohor t (51)	NR	Maternal ethnicity: 73% Danish, 3% Western, 24% Non- western	Generally healthy; NR	7 year s	Serum 25(OH)D quintiles at birth (nmol/l): <12.0, 12.0-19.6, 19.6- 28.0, 28.0-40.8, >40.8	Overweight (>90th percentile of sex-specific BMI in parent cohort): 0 (serum 25(OH)D quintiles vs. middle quintile (ref.)) ^b
Lee et al. (2013) ¹²¹	Cross- sectional; N=1660	2006	Seoul, Korea; 37.6°	9 (NR) years	54	NR	100% Asian	100% healthy; NR	NA	Serum 25(OH)D quartiles (nmol/L): <38.4, 38.4-45.9, 45.9- 54.2, >54.2	Obesity: ++ (all serum 25(OH)D quartiles; 4 vs 1, OR = 2.59; 4 vs. 2, OR=1.87; 4 vs. 3, OR=1) ^{c, d} Increased waist circumference: ++ (all serum 25(OH)D quartiles; 4 vs 1, OR=2.96; 4 vs. 2, OR=2.32, 4 vs. 3, OR = 2.08) ^{c, e}
Sezer et al. (2012) ¹¹⁹	Cross- sectional; N= 6	2005- 2010	Istanbul, Turkey; 41°	8.0 (2.1) months	NR	NR	NR	Presumed previously healthy; 100% with	NA	264,000- 1,500,000 IU total	Hypercalcemia (serum Ca concentration range) = 15.2-19.1 mg/dL;

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al. Supplement

								VD intoxication			Hypercalciuria (Urinary Ca/Cr ratio range) [spot urine] = 1.17-2.08 mg/mg
Tornhamm ar et al.	Cohort; N=282	1975- 2010	Sweden	Neonate s	56	NR	100% Swedish	Generally healthy; NR	35 year	Serum 25(OH)D at birth	Obesity in women: ++ Obesity in men: 0
(2014) 77									S		Overweight in women: ++ Overweight in men: 0

Ca = Calcium; IU = international units; NA = not applicable; NR = not reported; OR = odds ratio; RCT = randomized controlled trial; ref. = reference group; rs = Spearman's rank correlation coefficient; SD = standard deviation; VD = vitamin D

^a Results: ++ Significant difference indicating benefit of higher serum 25(OH)D levels (p < 0.05); + Marginally significant difference indicating benefit (0.05); 0 No significant difference; - Marginally significant difference indicating detriment (<math>0.05); -- Significant difference indicating detriment (<math>p < 0.05).

^bAdjusts for maternal ethnicity, educational level, civil status, parity, season and year of birth, and offspring PI.

[°] Adjusts for age and sex.

^d Quartiles of serum 25(OH)D levels: 1 indicates lowest group with 4 indicating highest group.

^e Quintiles of serum 25(OH)D levels: 1 indicates lowest group with 5 indicating highest group.

Supplement

Author, year	Age, sex	Location ; latitude	Vitamin D exposure	Clinical findings	Serum 25(OH)D	Serum calcium	Urinary Ca or Ca/Cr Ratio ^a	Nephro- calcinosis	Kidney stones
Gurkan, 2004 123	6 mo, F	Diyarbak ir, Turkey; 40°	300,000 IU/d for 10 days	Anorexia, nausea, vomiting, polydipsia, polyuria, constipation, hypertension, positive craniotabes	340 ng/ml (850 nmol/L)	16.8 mg/dL	UCa/Cr: 2.0 mg/mg	No abnormality on renal US	
Vanstone, 2012 124	2 mo, F	NR	1400 IU/d for 2 months	NR	84 ng/mL (210 nmol/L)	10.7 mg/dL	NR		
Vanstone, 2012	2 yr, F	NR	2000 IU/d for 3 months	NR	102 ng/mL (255 nmol/L)	10.9 mg/dL	NR		
Andersen, 1954	16 mo, F	Oslo, Norway; 59.9°	250000 IU/d for 6 weeks	Vomiting, lethargy, anorexia, polydipsia, polyuria	NR	17.9 mg/dL	NR		No calcifications on ABX
Barrueto, 2005	2 yr, M	New York, USA; 40.7°	600,000 IU/d for 4 days	Vomiting, constipation, abdominal pain, lethargy, hypertension, anorexia	106 ng/mL (265 nmol/L)	14.4 mg/dL	NR		
Elarqam, 2007 127	3 mo, M	Fes, Morocco ; 34°	600,000 IU/d for 3 weeks	Vomiting, dehydration, polyuria, polydipsia, cardiac arrest	NR	18.1 mg/dL	UCa: 270 mg/24 hours; UCa/Cr: 1.06	Hyperechoic lesions of renal pyramids on renal US	
Evliyaoglu, 2001 ¹²⁸	11 mo, F	NR	400 IU/d for 1 mo; 600,000 IU in two doses, 15 days apart	Polyuria, polydipsia, vomiting, dehydration, dyslipidemia	NR	22.0 mg/dL	NR		
Garbim, 2017 129	8 yr, M	NR	2,000 IU/d	Vomiting, anorexia, myalgias, polyuria, nocturia, weight loss	>150 ng/mL (375 nmol/L)	18.5 mg/dL	UCa: 439 mg/24 hrs		
Hoppe, 1992	3 mo, F	NR	300,000 IU twice daily	Failure to thrive, microscopic hematuria	108 ng/mL (270 nmol/L)	15.6 mg/dL	UCa/Cr:4.8 mol/mol	Medullary nephron- calcinosis on renal US	
Hoppe, 1992	4 mo, F	NR	300,000 IU twice daily	Hematuria, abdominal pain,	NR	NR	UCa/Cr: 1.0 mol/mol	No findings on renal US	Possible stones

Table VDUL-4. Case reports of excessive vitamin D intake in children 0 to 4 years

Location Vitamin D Serum Urinary Ca or Nephro-Serum Age, ; latitude exposure **Clinical findings** 25(OH)D calcium Ca/Cr Ratio^a calcinosis Author, year sex **Kidney stones** Vomiting, constipation, Misselwitz, 600,000 IU once NR 8 NR NR 18.4 fever, hypotonia, areflexia 1986 at 2, 4, and 7 mg/dL mo, 131 Μ months 7 Misselwitz, NR 600,000 IU at 2, Vomiting, constipation, 176 ng/mL 14.0 UCa/Cr: 1.04 No findings on No 1986 mo, 4. and 6 months polyuria, polydipsia, (>440 nmol/L) mg/dL renal US calcifications on 131 F of age anorexia, intermittent fevers, ABX hypotonia 4 NR 600.000 IU at 2 Anorexia, constipation, NR 10.4 UCa/Cr: 0.361 No findings on No Misselwitz. 1986 and 4 months lethargy renal US calcifications on mo, mgl/dL 131 Μ ABX Lethargy, irritable, anorexia, Otto-11 Poland 300,000 IU at 5 NR 16.0 NR Contrasting weeks and 10 vomiting, general malaise deposits in the Buczkowska, mg/dL wk, urinary tract 1982 F weeks 132 were not detected 5 300.000 IU Constipation, vomiting, 12.7 NR Otto-Poland 250 ng/mL (625 alacrima, irritability, Buczkowska, mo, twice followed nmol/L) mg/dL F 1982 by daily 132 unknown dose Ross, 1952 14 NR 10.000 IU/d for Fever, irritability, weight NR 17.8 NR No 133 loss, vomiting, polyuria, calcifications on 10 months mg/dL mo, F facial palsy, leukocytosis followed by ABX 30,000 IU/d for 2 months 8 NR Ross, 1952 NR 10,000-30,000 Anorexia, constipation, 18.7 NR 133 IU/d for 4 vomiting, failure to thrive mo, mg/dL F months Ünal, 2007 2 NR 300,000 IU once Irritability, failure to thrive, >160 ng/mL 18 UCa/Cr: 3.1 Bilateral 134 weekly pallor, weight loss (400 nmol/L) mg/dL medullary mo, F nephrocalcinosis on renal US Ünal, 2007 8 NR 300,000 IU Diarrhea, anorexia, 90 ng/mL (225 11.7 UCa/Cr: 0.58 Bilateral 134 dehvdration. renal twice nmol/L) mg/dL minimal mo. Μ parenchymal calcification calcification of renal parenchyma on renal US

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.

Age, Location Vitamin D Serum Urinary Ca or Nephro-Serum ; latitude **Clinical findings** 25(OH)D calcium Ca/Cr Ratio^a calcinosis **Kidney stones** Author, year sex exposure 45,000 IU/d for Polyuria, vomiting, lethargy, UCa/Cr: 1.3 No findings on Besbas, 1989 19.5 3 Ankara, NR Bilateral 135 45 days decreased muscle tone. medullarv intravenous Turkey; mg/dL mo, decreased turgor, dry nephrocalcinosis Μ 39.9° pyelogram mucosa, sunken eyes on renal US 60,000 IU/d for Vomiting, lethargy, failure to 17.6 Besbas, 1989 4 Ankara, NR UCa/Cr: 0.7 Densely No 135 Turkey; 4 weeks thrive mg/dL echogenic calcifications on mo, Μ 39.9° pyramids on ABX renal US NR 9.000 IU/d for NR 15.4 NR Nanulescu, 1984 3 mo Anorexia, vomiting, 136 total 800000 IU polyuria, hypotonia mg% 6 mo NR NR Nanulescu, 1984 10000 IU/d for Anorexia, vomiting, 12.4 NR 136 total 1800000 IU constipation, polyuria, mg% dehydration, failure-to-thrive 13000 IU/d for Anorexia, vomiting, NR Nanulescu, 1984 NR 14.4 NR 6 mo 136 constipation, polyuria, total 1600000 IU mg% irritability Anorexia, vomiting, failure Nanulescu, 1984 10 NR 16000 IU/d for NR 20 mg% NR 136 to thrive, arrythmia, total 4200000 IU mo hypotonia Anorexia, polyuria, failure-Nanulescu, 1984 8500 IU/d for 14 NR NR 13 mg% NR 136 to-thrive, hypotonia total 3600000 IU mo

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.

Supplement

ABX = abdominal x-ray (plain film); d = day; F = female; IU = international units; M = male; mo = month; NR = not reported; UCa = urinary calcium; UCa/Cr = urinary calcium; to creatinine ratio; US = Ultrasound; wk = week

^a Reported as mg/mg unless otherwise specified.

ULs KQ1b. What are levels of vitamin D intake at which a prespecified threshold of serum 25(OH)D is reached in children aged 0 to 4 years?

This section includes all randomized and nonrandomized controlled trials assessing the effect of vitamin D intake on achieving prespecified thresholds of serum 25(OH)D. As indicated below, separate tables show the results of the included studies using daily dose interventions, single and intermittent large dose interventions, or interventions with fortified and non-fortified foods. The characteristics of these studies are reported in Table KQ3-1.

Daily dose interventions

Table VDUL-5 shows the 21 included studies that reported the effect of a daily dose of vitamin D on achieving prespecified thresholds of serum 25(OH)D. The table reports studies by prespecified thresholds of serum 25(OH)D, with one study reporting thresholds of 30 nmol/L (12 ng/mL), nine studies of 50 nmol/L (20 ng/mL), five studies of 75 nmol/L (30 ng/mL), five studies of 125 nmol/L (50 ng/mL), and one study of 150 nmol/L (60 ng/mL). Interventions ranged from 200 to 2,000 IU/d with intervention durations ranging from 6 weeks to 12 months. A variety of assay methods were used. In addition to daily vitamin D administration, some studies in this section also reported results for intake of placebos, no intervention (no placebo), once weekly vitamin D dosing, and maternal vitamin D exposures. Intervention groups ranged in size from 13 to 354.

Figure VDUL-2 displays the summary and individual study risk of bias (ROB) results for studies included in this section. Many studies were prone to bias for deviations from intended interventions, and this was often due to high levels of non-adherence to the intervention or the use of statistical analyses that did not aim to measure the effect of adhering to the intervention. Some included studies were also prone to bias for missing outcome data with no evidence to suggest results were not biased due to this missingness. Other potential bias arose from poorly described or inappropriate randomization processes and a lack of evidence or indication that detailed analysis and statistical plans were pre-specified before unblinded outcome data were available. Of note, all included studies had a low risk of bias in measurement of the outcome, serum 25(OH)D.

Table VDUL-5 reports the last follow-up data, but one study's primary outcome was the percentage of participants achieving serum 25(OH)D levels of 75 nmol/L (30 ng/mL).³⁸ In a model adjusted for race, gender, and period of birth, the results for achieving the 75 nmol/L (30 ng/mL) threshold were as follows: 800 IU/d vs. 400 IU/d (OR = 3.5; 95% CI 1.1, 11.0); 1,200 IU/d vs. 400 IU/d (OR = 9.7; 95% CI 1.9, 49.7).

As seen in Table VDUL-5, the percentage of participants reaching the prespecified threshold was variable and may have depended on the threshold level, intervention dose, and intervention duration. One study reported that 100% and 90% of participants achieved a threshold of 30 nmol/L (12 ng/mL) in the 400 IU/d of vitamin D₃ and control arms, respectfully.¹¹³ At a threshold of 50 nmol/L (20 ng/mL), with participants receiving 400 IU/d of vitamin D₃ for durations of seven weeks to eight months, the percentage above threshold varied from 60% to 97%. For participants receiving 800 IU/d of vitamin D₃ for durations of 12 weeks to eight months, the percentage above threshold of 75 nmol/L (30 ng/mL), with participants receiving 400 IU/d of vitamin D₃ for durations of 10 weeks to eight months, the percentage above threshold varied from 55% to 93%. In two studies where participants received 800 IU/d of vitamin D₃ for durations of 6 weeks and 11 months, the percent above this threshold was 73% to 81%. The percentage of participants achieving a threshold of 75 nmol/L (30 ng/mL) was variable for other interventions and duration; however, similar to studies using a threshold of 50 nmol/L (20 ng/mL), the results consistently show that higher doses of vitamin D resulted in more

participants achieving a threshold of 75 nmol/L (30 ng/mL). Finally, at a threshold of 125 nmol/L (50 ng/mL), no participants in any of the four studies, with interventions of 400 IU/d or 800 IU/d vitamin D₃ for durations of 12 weeks to 12 months, achieved serum 25(OH)D levels above threshold. Serum 25(OH)D levels of 125 nmol/L (50 ng/mL) was achieved in 6% of participants receiving 1,000 IU/d of vitamin D₃ for eight weeks.¹⁰¹ Notably, in one study reporting a threshold of 150 nmol/L (60 ng/mL), one participant (8%) receiving 400 IU/d achieved this threshold after 6 months.⁹³

Single and intermittent large dose interventions

Table VDUL-6 shows the six included studies that reported the effect of a single, large dose of vitamin D or intermittent large doses of vitamin D on prespecified thresholds of serum 25(OH)D. One study used a prespecified threshold of serum 25(OH)D of 50 nmol/L (20 ng/mL), three studies used 75 nmol/L (30 ng/mL), one study used 120 nmol/L (48 ng/mL), and one study used 250 nmol/L (100 ng/mL). Interventions ranged from a single dose of 50,000 to 600,00 IU at baseline, with some arms reporting a second, large dose of vitamin D administered one month to three months after baseline dose. Comparison groups included daily vitamin D dosing and placebo groups. Studies ranged in intervention duration from 2 weeks to 6 months.

Figure VDUL-3 displays the summary and individual ROB results for studies included in this section. Almost all included studies had a high risk of bias for deviations from intended interventions, and this was most often due to high levels of non-adherence to the intervention or the use of statistical analyses that did not aim to measure the effect of adhering to the intervention. Some included studies were also prone to bias for missing outcome data with no evidence to suggest results were not biased due to this missingness. Other potential bias arose from poorly described or inappropriate randomization processes and a lack of evidence or indication that detailed analysis and statistical plans were prespecified before unblinded outcome data were available. Of note, all included studies had a low risk of bias in measurement of the outcome, serum 25(OH)D.

As seen in Table VDUL-6, the percentage of participants reaching the prespecified threshold after receiving a single, large dose of vitamin D or intermittent large doses of vitamin D is variable. At a threshold of 120 nmol/L (48 ng/mL), 23% of participants receiving a single dose of 100,000 IU of vitamin D had achieved threshold at two weeks, while 58% receiving a single dose of 200,000 IU of vitamin D had achieved threshold.⁹⁶ In a different study, 86% of participants who received a single dose of 50,000 IU of vitamin D had achieved the lower threshold of 50 nmol/L (20 ng/mL) despite a longer follow up of 3.5 months.³⁶ Relatedly, 64% of participants who received a single dose of 50,000 IU of vitamin D had achieved the moderate threshold of 75 nmol/L (20 ng/mL) at six months.⁹⁰ Despite the heterogenicity of intervention dose, form of vitamin D used, follow-up duration, and threshold used, the results demonstrate higher doses of vitamin D resulted in more participants achieving the prespecified thresholds.

Food and fortified food interventions

Table VDUL-7 shows the two included studies that reported the effect of vitamin D from food and fortified food on prespecified thresholds of serum 25(OH)D. One study used an intervention of food fortified with vitamin D with a comparison group without food fortified with vitamin D.¹⁰⁴ The duration of this study was six months, but results were reported at both three and six months. The other study had two intervention arms with food fortified with different levels of vitamin D as well as one intervention arm without food fortified with vitamin D for a duration of three months.¹¹² Both studies used prespecified thresholds of vitamin D of 50 nmol/L (20 ng/mL). Intervention group sizes ranged from 23 to 84.

Figure VDUL-4 displays the summary and individual study ROB results for studies included in this section. Both studies had some risk of bias for deviations from intended interventions and bias due to reporting of results. Both studies had low risk of bias due to the randomization process, missing outcome data, and measurement of the outcome.

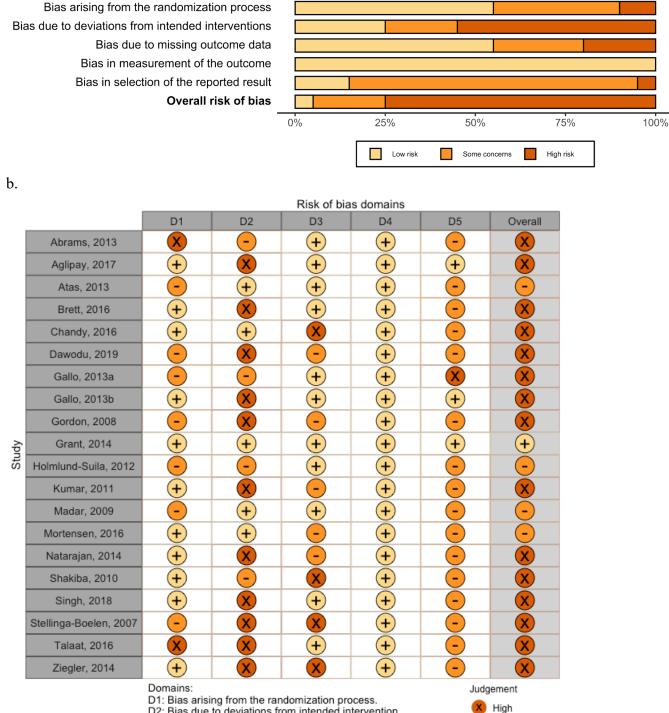
The two studies in this section included interventions arms of fortified food containing 466 IU/d and 480 IU/d of vitamin D_3 .^{104,112} The percentage of participants with serum 25(OH)D levels higher than 50 nmol/L (20 ng/mL) after three months was 88% and 92%, respectively. All participants in the group receiving 880 IU/d of vitamin D₃ through fortified food achieved this threshold.¹¹² Lower percentages of participants in arms receiving food not fortified with vitamin D achieved the threshold in both studies.

Table VDUL-5. Characteristics and key findings of studies that report the effect of a daily dose of vitamin D on prespecified thresholds of serum 25(OH)D

Author (year)	Assay	Intervention	Follow-up	N analyzed	N (%) above threshold
25(OH)D threshold: 30 nmol/L (12 ng/mL)			•		
Stellinga-Boelen et	RIA kits	VD3 400 IU/d	3 month	26	26 (100)
al. (2007)		Without intervention (no placebo)		31	28 (90)
25(OH)D threshold: 50 nmol/L (20 ng/mL)					
Dawodu et al. (2019)	EIA/Chemiluminescenc	Maternal VD3 6000 IU/day	6 month	55	49 (89)
	e	Maternal VD3 600 IU/day + infant VD3 400 IU/day		47	43 (91)
Gallo et al. (2013)	LC-MS/MS	VD2 400 IU/d	3 month	24	~18 (75)
82		VD3 400 IU/d		26	~25 (96)
Gordon et al. (2008)	EIA/Chemiluminescenc	VD2 2000 IU/d	6 week	NR	NR (100)
83	e	VD2 50,000 IU once weekly		NR	All but one participant
		VD3 2000 IU/d		NR	All but two participants
Kumar et al. (2011)	RIA kits	VD3 1400 IU once weekly	6 month	216	122 (57)
72		Placebo		237	63 (27)
Madar et al. (2009)	HPLC	VD2 400 IU/d	7 week	22	19 (86)
07		Without intervention (no placebo)		29	19 (66)
Mortensen et al.	LC-MS/MS	VD3 400 IU/d	20 week	38	35 (92)
(2019) ¹³⁷		VD3 800 IU/d		39	39 (100)
		Placebo		40	0 (0)
Natarajan et al.	EIA/Chemiluminescenc	VD3 400 IU/d	12 week	45	31 (65)
(2014) ³⁹	e	VD3 800 IU/d		42	37 (88)
Singh et al. (2018)	EIA/Chemiluminescenc	VD3 400 IU/d	6 month	49	~24 (60)
44	e	Without intervention (no placebo)		48	~12 (24)

Author (year)	Assay	Intervention	Follow-up	N analyzed	N (%) abov threshold
Ziegler et al. (2014)	RIA kits	VD3 200 IU/d	8 month	38	37 (97)
40		VD3 400 IU/d		30	29 (97)
		VD3 600 IU/d		27	26 (96)
		VD3 800 IU/d		24	24 (100)
25(OH)D threshold: 75 nmol/L (30 ng/mL)					
Aglipay et al. (2017)	Protein-binding assay	VD3 400 IU/d	4 month	354	276 (78)
		VD3 2000 IU/d		349	329 (94)
Atas et al. (2013)	HPLC	VD 200 IU/d	3.5 month	75	59 (79)
		VD 400 IU/d		64	64 (100)
Gallo et al. (2013)	LC-MS/MS	VD3 400 IU/d	11 month	29	~16 (55)
50		VD3 800 IU/d		32	~26 (81)
		VD3 1200 IU/d		27	~25 (92)
		VD3 1600 IU/d		13	13 (100)
Grant et al. (2014)	LC-MS/MS	VD3 400 IU/d	6 month	77	55 (74)
84		VD3 800 IU/d		74	51 (73)
		Placebo		70	44 (57)
Holmlund-Suila et al.	EIA/Chemiluminescenc	VD3 400 IU/d	10 week	29	~27 (93)
(2012) 35	e	VD3 1200 IU/d		32	32 (100)
		VD3 1600 IU/d		32	32 (100)
25(OH)D threshold: 125 nmol/L (50 ng/mL)					
Abrams et al. (2013)	EIA/Chemiluminescenc	VD3 1000 IU/d	8 week	32	2 (6)
	e	Placebo		31	1 (3)
Brett et al. (2016)	EIA/Chemiluminescenc	VD3 400 IU/d	12 week	27	0 (0)
	e	VD3 600 IU/d		26	0 (0)
		Without intervention (no placebo)		24	0 (0)

Vitamin D Intakes and Health Outcomes in Children Aged 0-4 Years, Beauchesne et al.	Supplement
---	------------


Author (year)	Assay	Intervention	Follow-up	N analyzed	N (%) above threshold
Brett et al. (2016)	RIA kits	Placebo	9 month	54	0 (0)
		VD3 400 IU/d		47	0 (0)
		Maternal VD3 120,000 IU once monthly		51	1 (2)
Mortensen et al. (2016)	LC-MS/MS	VD3 400 IU/d	20 week	38	0 (0)
111		VD3 800 IU/d		39	0 (0)
		Placebo		40	0 (0)
Talaat et al. (2016)	EIA/Chemiluminescenc e	VD3 400 IU/d	12 month	196	0 (0)
	C	VD3 45,000 IU once weekly for 2 months followed by VD3 400 IU almost daily		247	2(1)
		annost dany		194	0 (0)
		VD3 2000 IU once daily for 3 months followed by VD3 1000 IU almost daily			
25(OH)D threshold: 150 nmol/L (60 ng/mL)					
Shakiba et al. (2010) 93	EIA/Chemiluminescenc e	VD3 200 IU/d	6 month	19	0 (0)
	~	VD3 400 IU/d		26	1 (8)
		VD3 50,000 IU once every two months		30	6 (20)

d = day; EIA = enzyme immunoassay; HPLC = high performance liquid chromatography; IU = international units; LC-MS = liquid chromatography mass spectrometry; RIA = radioimmunoassay; VD = vitamin D; VD2 = vitamin D₂; VD3 = vitamin D₃

Figure VDUL-2. Summary ROB plot (panel a) and individual study ROB plot (panel b) for daily dose studies included in vitamin D upper limit key question 1b

a.

Bias Summary for Vitamin D Upper Limit KQ 1b

D2: Bias due to deviations from intended intervention.

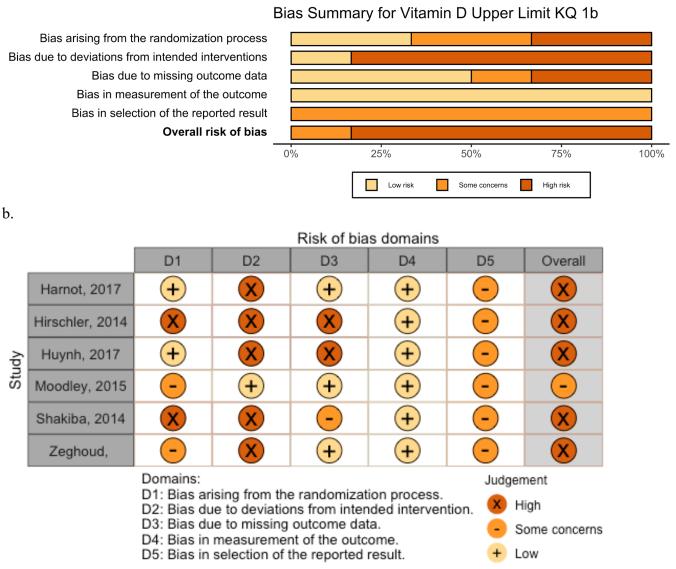
D3: Bias due to missing outcome data.

D4: Bias in measurement of the outcome.

D5: Bias in selection of the reported result.

Some concerns

+ Low

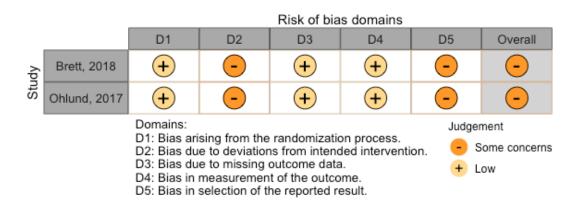

Table VDUL-6. Characteristics and key findings of studies that report the effect of a single large dose or intermittent large doses of vitamin D on prespecified thresholds of serum 25(OH)D

Author (year)	Assay	Intervention	Follow-up	N analyzed	N (%) above threshold
25(OH)D threshold: 50 nmol/L (20 ng/mL)			•		
Huynh et al. (2017)	EIA/ Chemiluminescense	VD3 400 IU/d	3.5 month	22	20 (91)
		VD3 50,000 IU single dose		26	23 (86)
25(OH)D threshold: 75 nmol/L (30 ng/mL)					
Hirschler et al. (2014)	EIA/ Chemiluminescense	VD 50,000 IU once at baseline and once at one	2 month	36	6 (18)
		month		60	32 (53)
		VD 100,000 IU once at baseline and once at one month			
Moodley et al. (2015) 90	LC-MS/MS	VD3 50,000 IU single dose	6 month	11	7 (64)
		-		10	4 (40)
		Placebo			
Shakiba et al. (2014) 94	EIA/ Chemiluminescense	VD3 300,000 single dose	4 month	30	28 (93)
		-		43	12 (28)
		VD3 400 IU/d			
25(OH)D threshold: 120 nmol/L (48 ng/mL)					
Zeghoud et al. (1994) 96	RIA kits	VD3 100,000 IU single dose	2 week	13	3 (23)
		VD3 200,000 IU single dose		NR	NR (58)
25(OH)D threshold: 250 nmol/L (100 ng/mL)					
Harnot et al. (2017) 85	EIA/ Chemiluminescence	VD3 600,000 IU single dose	1 month	27	0 (0)
		-		28	0 (0)
		VD3 300,000 IU single dose			

 $\overline{d} = day$; EIA = enzyme immunoassay; IU = international units; LC-MS = liquid chromatography mass spectrometry; NR = not reported; RIA = radioimmunoassay; VD = vitamin D; VD3 = vitamin D₃

Figure VDUL-3. Summary ROB plot (panel a) and individual study ROB plot (panel b) for single or large dose studies included in vitamin D upper limit key question 1b

a.



Author (year)	Assay	Intervention	Follow-up	N analyzed	N (%) above threshold
25(OH)D threshold: 50 nmol/L (20 ng/mL)			•		
Brett et al. (2018) ¹⁰⁴	HPLC	VD3 fortified food: 466 IU/d	3 month	26	~23 (88)
		VD3 fortified food:	6 month	26	21 (85)
		486 IU/d	3 month	23	~15 (67)
		Food: 239 IU/d	6 month	23	~16 (70)
Ohlund et al. (2017) ¹¹²	LC- MS/MS	Food: 241 IU/d VD3 fortified food: 480 IU/d	3 month	69	~64 (92)
		VD3 fortified food:		84	84 (100)
		880 IU/d		35	~17 (48)
		Food: 80 IU/d			

Table VDUL-7. Characteristics and key findings of studies that report the effect of vitamin D in food or fortified food on prespecified thresholds of serum 25(OH)D

d = day; HPLC = high performance liquid chromatography; LC-MS/MS = liquid chromatography mass spectrometry; IU = international units; N = sample size; VD3 = vitamin D₃

Figure VDUL-4. Individual study ROB plot for food and fortified food studies included in vitamin D ULs KQ1b

Conclusions

The following conclusions focusing on are based on evidence described above as well as strength of evidence results evaluated by the GRADE approach and summarized in **Appendix 1: GRADE Evidence Profile Tables**. A bibliography is presented in **Appendix 2**.

Vitamin D Requirements

KQ1. What is the effect of different levels of vitamin D intake on health outcomes in children aged 0 to 4 years?

- Evidence is **low** on the effect of different levels of vitamin D intake in children 0 to 4 years old for several health outcomes including atopic outcomes (i.e., asthma, wheeze, eczema), infectious diseases, growth, neurodevelopment, rickets, bone mineral content, and bone mineral density. For all or some of these outcomes, evidence was imprecise, inconsistent, without dose-response relationship, and with some or serious limitations due to risk-of-bias.
 - For asthma outcomes, the three identified RCTs reported mixed results comparing different levels of vitamin D supplementation. Two of these studies reported no significant findings,^{24,25} and the other reported neonates receiving 400 IU/d of vitamin D had lower risk of asthma compared to placebo (RR = 0.06; 95% CI 0.003, 0.94).²⁶ For eczema,^{24,25,27} three RCTs found no significant differences between groups. Results from two RCTs were mixed for wheeze outcome such that one study reported no significant findings,²⁷ but the other, an RCT in preterm Black infants, found significantly reduced risk of recurrent wheezing at 12 months with sustained vitamin D supplementation compared to diet-limited supplementation (adjusted RR = 0.62; 95% CI 0.44, 0.87; P = 0.005).²⁴
 - \circ For infectious disease outcomes, the eight identified RCTs reported a total of 20 infectious disease outcomes. Of these, 19 outcomes were not significantly different between intervention groups. One RCT found participants who received 1,200 IU/d of vitamin D₃ were significantly less likely to develop influenza A after 4 months compared to those receiving 400 IU/d of vitamin D₃ (RR = 0.54; 95% CI 0.42, 0.77).³¹
 - For growth and neurodevelopment outcomes, 12 RCTs in 100% healthy infants and two RCTs in low birth weight and/or preterm infants were identified. Ten of the studies in healthy infants reported no significant findings, and the other two reported mixed results. One study with a non-randomized comparison group reported benefits to length at 12 months for infants given formula with vitamin D vs. a placebo.³⁷ Another study reported significantly lower Alberta Infant Motor Scale (AIMS) total scores, prone scores, and/or sitting scores after six months for infants randomized to higher vs. lower doses of vitamin D₃ (800 vs. 400 IU/d; 1,200 vs. 400 IU/d).⁴⁷ The two RCTs in low birth weight and/or preterm infants reported mixed results. One reported no significant findings for all growth measures.³⁹ The other reported significant benefits with 1,400 IU/week of vitamin D₃ vs. placebo for weight- and length-for-age z scores and arm circumference.⁴² At 3-6 years post intervention, a follow-up study found significantly lower body mass index (BMI), BMI z scores, and arm muscle area in the vitamin D supplemented group but no significant differences for all other measures.⁴⁸
 - For rickets, eight RCTs and one non-randomized controlled trial were identified, and all eight RCTs found no significant findings. The non-randomized controlled trial included

interventions with calcium, vitamin D, or calcium plus vitamin D supplementation and reported rickets in <2% of the study population.⁵⁰ While results showed no difference in rickets incidence by supplementation (P = 0.214), there was a significant interaction for time and supplementation over the 3-year study period (P = 0.001).

- For bone mineral content and density (BMC/BMD) outcomes, nine RCTs and one nonrandomized controlled trial were identified and these reported mixed results. Five RCTs plus one three-year follow-up reported no difference in outcomes between any study groups.^{29,38,39,43,56,57} Two studies reported benefits to BMC/BMD outcomes for vitamin D supplementation vs. placebo but did not report p-values or confidence intervals.^{24,37} Two studies reported significant benefits for BMC/BMD when comparing higher vs. lower doses of vitamin D (1,600 IU/d vs. 400 IU/d; 1,600 IU/d vs. 1,200 IU/d)³⁵ or when comparing vitamin D supplementation with human milk alone.⁵⁵ One study reported moderately significant (0.05 < P < 0.1) benefits for one bone measurement when comparing vitamin D supplementation to a placebo.⁴⁸
- Evidence is **insufficient** on the effect of different levels of vitamin D intake on blood pressure, as only one RCT was identified that assessed this outcome.
- Evidence is **insufficient** on the effect of different levels of vitamin D intake on autoimmune disease and fracture, as no interventional studies were identified that assessed these outcomes.

KQ2. What is the association between serum 25(OH)D concentrations and health outcomes in children aged 0 to 4 years?

- Evidence is **very low** on the association between serum 25(OH)D concentration and several health outcomes including atopic outcomes (i.e., asthma, wheeze, eczema), autoimmune diseases, and infectious diseases.
 - For asthma, three cohort studies reported mixed results with two cohorts finding no association^{61,62} and one cohort reporting that lower 25(OH)D concentrations were associated with increased risk of non-medicated asthma.⁶³ Wheeze and eczema outcomes also had mixed results. For wheezing, one cohort study found no association,⁶² while another reported lower 25(OH)D concentrations being associated with increased risk of wheezing.⁶³ For eczema, one cohort found no association,⁶⁰ while another reported lower 25(OH)D concentrations being associated with increased risk of wheezing.⁶³ For eczema, one cohort found no association,⁶⁰ while another reported lower 25(OH)D concentrations being associated with increased risk of eczema.⁶³
 - For autoimmune disease outcomes, seven studies reporting on three outcomes (i.e., type 1 diabetes, islet autoimmunity, and JIA) were identified. For type 1 diabetes, four studies from three publications found no association.⁶⁶⁻⁶⁸ For islet autoimmunity, one case-cohort found no association,⁷⁰ while a nested case-control study found high serum 25(OH)D in the first year of life and in childhood associated with decreased risk of islet autoimmunity.⁶⁹ For JIA, one case-cohort study found no association.⁷¹
 - For infectious disease outcomes, four cohort studies were identified which reported on eight infectious diseases. Higher serum 25(OH)D was associated with three of the eight outcomes: decreased risk of oral candidiasis,⁶⁵ increased risk for URTI (in underweight children),⁶⁴ and increased risk of malaria infection (between highest and second highest quartiles of serum 25OHD).⁶⁵
- Evidence is **low** on the association between serum 25(OH)D concentration and growth and neurodevelopment in children 0 to 4 years of age.
 - For growth and neurological development outcomes, six observational studies, including four cohorts and two case-control studies, were identified. No linear associations were

found between serum 25(OH)D and these outcomes; however, when serum 25(OH)D was analyzed as a categorical exposure, one study found higher 25(OH)D levels were positively associated with IQ scores at age 19,⁷⁴ and another study showed significantly positive associations with weight-for-length z scores for serum 25(OH)D levels of 20-29.9 ng/mL compared to < 10 ng/mL.⁶⁵

- Evidence is **insufficient** on the association between serum 25(OH)D concentration and fracture, as only one case-cohort study was identified that assessed the association.
- Evidence is **insufficient** on the association between serum 25(OH)D concentration and blood pressure, as only one cohort study was identified that assessed the association.

KQ3. What is the effect of vitamin D intake on serum 25(OH)D concentrations in children aged 0 to 4 years?

- Evidence is **moderate** on the effect of vitamin D intake on serum 25(OH)D concentration in children aged 0 to 4 years.
 - Thirty trials (reported in 31 publications) conducted in children aged 0-12 months, and one RCT in children aged 1 to 4 years, were identified. A random effects meta-regression analysis of these age groups combined showed that each 100 IU/d increase in vitamin D supplementation was associated with an average of 1.92 (95% CI 0.28, 3.56) nmol/L increase in achieved 25(OH)D concentration (n = 53 intervention arms; P = 0.022; adjusted R² = 9.07%).
 - Seven studies were identified in children aged 3-9 years old, and a random-effects metaregression for this age group showed that each 100 IU/d increase in vitamin D supplementation was associated with an average of 2.49 (95% CI -0.24, 5.22) nmol/L increase in achieved 25(OH)D concentration (n = 16 intervention arms; P = 0.071; adjusted R² = 19.96%).

Vitamin D Upper Limits

ULs KQ1a. At what levels of vitamin D intake are adverse effects observed in children aged 0 to 4 years?

- Evidence is **very low** on the association between vitamin D intake or serum 25(OH)D and two upper limit outcomes, hypercalcemia and hypercalciuria. Generally, the rate of hypercalcemia increased with dose of vitamin D; however, no significant differences between groups were reported, and studies were graded as inconsistent and imprecise. The rate of hypercalciuria was variable among studies and intervention arms.
- Evidence is **insufficient** on the association between vitamin D intake or serum 25(OH)D and other upper limit outcomes (including nephrocalcinosis, kidney stones, and mortality) due to limited high-quality studies assessing the outcomes.

ULs KQ1b. What are levels of vitamin D intake at which a prespecified threshold of serum 25(OH)D is reached in children aged 0 to 4 years?

The levels of vitamin D intake at which prespecified thresholds of serum 25(OH)D is reached in children aged 0 to 4 years was considered in studies with daily dose interventions (n = 21), single and intermittent large dose interventions (n = 6), and food and fortified food interventions (n = 2). It is difficult to draw a conclusion since the included studies reported the percentage of participants achieving various prespecified serum 25(OH)D thresholds as the outcome, and the

percentage of participants reaching the prespecified thresholds was variable and may have depended on the threshold level, intervention dose, and intervention duration.

References

- 1. World Health Organization. FAO/WHO nutrient requirements for children aged 0–36 months. https://apps.who.int/nutrition/topics/nutrient-requirements-children-overview/en/index.html. Published 2020. Accessed June 6, 2022.
- 2. Chung M, Ruan M, Cara KC, Yao Q, Penkert LP, Chen J. Vitamin D and Calcium in Children 0-36 Months: A Scoping Review of Health Outcomes. *J Am Coll Nutr.* 2021;40(4):367-396.
- 3. Russell R, Chung M, Balk EM, et al. Opportunities and challenges in conducting systematic reviews to support the development of nutrient reference values: vitamin A as an example. *Am J Clin Nutr.* 2009;89(3):728-733.
- 4. Chung M, Balk EM, Brendel M, et al. Vitamin D and calcium: a systematic review of health outcomes. *Evid Rep Technol Assess (Full Rep)*. 2009(183):1-420.
- 5. Yetley EA, MacFarlane AJ, Greene-Finestone LS, et al. Options for basing Dietary Reference Intakes (DRIs) on chronic disease endpoints: report from a joint US-/Canadian-sponsored working group. *Am J Clin Nutr.* 2017;105(1):249S-285S.
- 6. National Academies of Sciences E, and Medicine. *Harmonization of Approaches to Nutrient Reference Values: Applications to Young Children and Women of Reproductive Age.* Washington (DC): The National Academies Press;2018. 9780309477697

0309477697.

- 7. Holden JM, Lemar LE. Assessing vitamin D contents in foods and supplements: challenges and needs. *Am J Clin Nutr.* 2008;88(2):551S-553S.
- 8. In: Eden J, Levit L, Berg A, Morton S, eds. *Finding What Works in Health Care: Standards for Systematic Reviews.* Washington (DC)2011.
- 9. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097.
- 10. Huey SL, Acharya N, Silver A, et al. Effects of oral vitamin D supplementation on linear growth and other health outcomes among children under five years of age. *Cochrane Database Syst Rev.* 2020;12:CD012875.
- 11. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. *Syst Rev.* 2016;5(1):210.
- 12. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:14898.
- Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>. Published 2013. Accessed June 27, 2020.
- 14. Lichtenstein AH, Yetley EA, Lau J. Application of systematic review methodology to the field of nutrition. *J Nutr.* 2008;138(12):2297-2306.
- 15. Johansson ALV. The Case-Cohort design: What it is and how it can be used in register-based research. Stata. <u>https://www.stata.com/meeting/nordic-and-baltic16/slides/norway16_johansson.pdf</u>. Published 2016. Accessed.
- Barlow WE, Ichikawa L, Rosner D, Izumi S. Analysis of case-cohort designs. J Clin Epidemiol. 1999;52(12):1165-1172.
- 17. Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Using the whole cohort in the analysis of case-cohort data. *Am J Epidemiol*. 2009;169(11):1398-1405.

- 18. Kim RS. Analysis of Nested Case-Control Study Designs: Revisiting the Inverse Probability Weighting Method. *Commun Stat Appl Methods*. 2013;20(6):455-466.
- 19. Guyatt GH, Oxman AD, Kunz R, et al. What is "quality of evidence" and why is it important to clinicians? *BMJ*. 2008;336(7651):995-998.
- 20. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. 2008;336(7650):924-926.
- 21. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. *J Clin Epidemiol*. 2011;64(4):383-394.
- 22. Harbord R, Higgins J. Meta-Regression in Stata. *Stata Journal*. 2008;8:493-519.
- 23. Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. *Biom J.* 2013;55(2):231-245.
- 24. Hibbs AM, Ross K, Kerns LA, et al. Effect of Vitamin D Supplementation on Recurrent Wheezing in Black Infants Who Were Born Preterm: The D-Wheeze Randomized Clinical Trial. *Jama*. 2018;319(20):2086-2094.
- 25. Rosendahl J, Pelkonen AS, Helve O, et al. High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants. *J Pediatr*. 2019;209:139-145 e131.
- 26. Grant CC, Crane J, Mitchell EA, et al. Vitamin D supplementation during pregnancy and infancy reduces aeroallergen sensitization: a randomized controlled trial. *Allergy*. 2016;71(9):1325-1334.
- 27. Rueter K, Jones AP, Siafarikas A, et al. Direct infant UV light exposure is associated with eczema and immune development. *J Allergy Clin Immunol.* 2019;143(3):1012-1020 e1012.
- 28. Manaseki-Holland S, Maroof Z, Bruce J, et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. *Lancet*. 2012;379(9824):1419-1427.
- 29. Rosendahl J, Valkama S, Holmlund-Suila E, et al. Effect of Higher vs Standard Dosage of Vitamin D3 Supplementation on Bone Strength and Infection in Healthy Infants: A Randomized Clinical Trial. *JAMA Pediatr*. 2018;172(7):646-654.
- 30. Grant CC, Kaur S, Waymouth E, et al. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial. *Acta Paediatr.* 2015;104(4):396-404.
- 31. Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive Effects of Vitamin D on Seasonal Influenza A in Infants: A Multicenter, Randomized, Open, Controlled Clinical Trial. *Pediatr Infect Dis J.* 2018;37(8):749-754.
- 32. Aglipay M, Birken CS, Parkin PC, et al. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. *Jama*. 2017;318(3):245-254.
- 33. Alonso A, Rodriguez J, Carvajal I, et al. Prophylactic vitamin D in healthy infants: assessing the need. *Metabolism.* 2011;60(12):1719-1725.
- 34. Enlund-Cerullo M, Koljonen L, Holmlund-Suila E, et al. Genetic Variation of the Vitamin D Binding Protein Affects Vitamin D Status and Response to Supplementation in Infants. *J Clin Endocrinol Metab.* 2019;104(11):5483-5498.
- 35. Holmlund-Suila E, Viljakainen H, Hytinantti T, Lamberg-Allardt C, Andersson S, Makitie O. High-dose vitamin d intervention in infants--effects on vitamin d status, calcium homeostasis, and bone strength. *J Clin Endocrinol Metab.* 2012;97(11):4139-4147.
- 36. Huynh J, Lu T, Liew D, et al. Vitamin D in newborns. A randomised controlled trial comparing daily and single oral bolus vitamin D in infants. *J Paediatr Child Health.* 2017;53(2):163-169.

- 37. Greer FR, Searcy JE, Levin RS, Steichen JJ, Steichen-Asche PS, Tsang RC. Bone mineral content and serum 25-hydroxyvitamin D concentrations in breast-fed infants with and without supplemental vitamin D: one-year follow-up. *J Pediatr*. 1982;100(6):919-922.
- 38. Gallo S, Comeau K, Vanstone C, et al. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial. *Jama*. 2013;309(17):1785-1792.
- 39. Natarajan CK, Sankar MJ, Agarwal R, et al. Trial of daily vitamin D supplementation in preterm infants. *Pediatrics*. 2014;133(3):e628-634.
- 40. Ziegler EE, Nelson SE, Jeter JM. Vitamin D supplementation of breastfed infants: a randomized dose-response trial. *Pediatr Res.* 2014;76(2):177-183.
- 41. Wagner CL, Hulsey TC, Fanning D, Ebeling M, Hollis BW. High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. *Breastfeed Med.* 2006;1(2):59-70.
- 42. Kumar GT, Sachdev HS, Chellani H, et al. Effect of weekly vitamin D supplements on mortality, morbidity, and growth of low birthweight term infants in India up to age 6 months: randomised controlled trial. *BMJ*. 2011;342:d2975.
- 43. Chan GM, Roberts CC, Folland D, Jackson R. Growth and bone mineralization of normal breastfed infants and the effects of lactation on maternal bone mineral status. *Am J Clin Nutr*. 1982;36(3):438-443.
- 44. Singh H, Maria A, Shukla A, Sharma N, Mani K, Das MK. Relation of Vitamin D supplementation, upto six months of age with total and bone specifc alkaline phosphatase: a randomised control trial. *Journal of clinical and diagnostic research*. 2018;12(10):SC01-SC05.
- 45. Chandy DD, Kare J, Singh SN, et al. Effect of vitamin D supplementation, directly or via breast milk for term infants, on serum 25 hydroxyvitamin D and related biochemistry, and propensity to infection: a randomised placebo-controlled trial. *Br J Nutr.* 2016;116(1):52-58.
- 46. Dawodu A, Salameh KM, Al-Janahi NS, Bener A, Elkum N. The Effect of High-Dose Postpartum Maternal Vitamin D Supplementation Alone Compared with Maternal Plus Infant Vitamin D Supplementation in Breastfeeding Infants in a High-Risk Population. A Randomized Controlled Trial. *Nutrients*. 2019;11(7):17.
- 47. Wicklow B, Gallo S, Majnemer A, et al. Impact of Vitamin D Supplementation on Gross Motor Development of Healthy Term Infants: A Randomized Dose-Response Trial. *Phys Occup Ther Pediatr.* 2016;36(3):330-342.
- 48. Trilok-Kumar G, Kaur M, Rehman AM, et al. Effects of vitamin D supplementation in infancy on growth, bone parameters, body composition and gross motor development at age 3-6 years: follow-up of a randomized controlled trial. *Int J Epidemiol.* 2015;44(3):894-905.
- 49. Hazell TJ, Gallo S, Vanstone CA, Agellon S, Rodd C, Weiler HA. Vitamin D supplementation trial in infancy: body composition effects at 3 years of age in a prospective follow-up study from Montreal. *Pediatr Obes.* 2017;12(1):38-47.
- 50. Rooze S, Mathieu F, Claus W, et al. Effect of calcium and vitamin D on growth, rickets and Kashin-Beck disease in 0- to 5-year-old children in a rural area of central Tibet. *Trop Med Int Health.* 2016;21(6):768-775.
- 51. Ala-Houhala M. 25-Hydroxyvitamin D levels during breast-feeding with or without maternal or infantile supplementation of vitamin D. *J Pediatr Gastroenterol Nutr.* 1985;4(2):220-226.
- 52. Siafarikas A, Piazena H, Feister U, Bulsara MK, Meffert H, Hesse V. Randomised controlled trial analysing supplementation with 250 versus 500 units of vitamin D3, sun exposure and surrounding factors in breastfed infants. *Arch Dis Child.* 2011;96(1):91-95.

- 53. Ponnapakkam T, Bradford E, Gensure R. A treatment trial of vitamin D supplementation in breast-fed infants: universal supplementation is not necessary for rickets prevention in Southern Louisiana. *Clin Pediatr (Phila)*. 2010;49(11):1053-1060.
- 54. Alizade P, Naderi F, Sotoudeh K. A randomized clinical trial of prophylactic effects of vitamin D on different indices of osteopenia of prematurity. *Iranian Journal of Public Health*. 2006;35(3):58-63.
- 55. Bagnoli F, Casucci M, Toti S, et al. Is vitamin D supplementation necessary in healthy full-term breastfed infants? A follow-up study of bone mineralization in healthy full-term infants with and without supplemental vitamin D. *Minerva Pediatr.* 2013;65(3):253-260.
- 56. Rao YK, Midha T, Singh S, Bajpai A, Tilak A. Increment in vitamin D level and bone mineral accrual in children with vitamin D deficiency. *Korean J Pediatr.* 2016;59(7):292-297.
- 57. Gallo S, Hazell T, Vanstone CA, et al. Vitamin D supplementation in breastfed infants from Montreal, Canada: 25-hydroxyvitamin D and bone health effects from a follow-up study at 3 years of age. *Osteoporos Int.* 2016;27(8):2459-2466.
- 58. Zhang H, Liu S, Si Y, et al. Natural sunlight plus vitamin D supplementation ameliorate delayed early motor development in newborn infants from maternal perinatal depression. *J Affect Disord*. 2019;257:241-249.
- 59. Ho ML, Yen HC, Tsang RC, Specker BL, Chen XC, Nichols BL. Randomized study of sunshine exposure and serum 25-OHD in breast-fed infants in Beijing, China. *J Pediatr*. 1985;107(6):928-931.
- 60. Molloy J, Koplin JJ, Allen KJ, et al. Vitamin D insufficiency in the first 6 months of infancy and challenge-proven IgE-mediated food allergy at 1 year of age: a case-cohort study. *Allergy*. 2017;72(8):1222-1231.
- 61. Navas-Nazario A, Fangyong L, Northrup V, et al. Effect of vitamin D binding protein (DBP) genotype on the development of asthma in young children. *American Journal of Respiratory and Critical Care Medicine*. 2011;183(1).
- 62. Anderson LN, Chen Y, Omand JA, et al. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. *J Dev Orig Health Dis.* 2015;6(4):308-316.
- 63. Hollams EM, Teo SM, Kusel M, et al. Vitamin D over the first decade and susceptibility to childhood allergy and asthma. *J Allergy Clin Immunol*. 2017;139(2):472-481 e479.
- 64. Ahmed AMS, Ahmed T, Soares Magalhaes RJ, et al. Association between serum Vitamin D, retinol and zinc status, and acute respiratory infections in underweight and normal-weight children aged 6-24 months living in an urban slum in Bangladesh. *Epidemiology and Infection*. 2016;144(16):3494-3506.
- 65. Sudfeld CR, Duggan C, Aboud S, et al. Vitamin D status is associated with mortality, morbidity, and growth failure among a prospective cohort of HIV-infected and HIV-exposed Tanzanian infants. *J Nutr.* 2015;145(1):121-127.
- 66. Cadario F, Savastio S, Pagliardini V, et al. Vitamin D levels at birth and risk of type 1 diabetes in childhood: a case-control study. *Acta Diabetol*. 2015;52(6):1077-1081.
- 67. Jacobsen R, Thorsen SU, Cohen AS, et al. Neonatal vitamin D status is not associated with later risk of type 1 diabetes: results from two large Danish population-based studies. *Diabetologia*. 2016;59(9):1871-1881.
- 68. Makinen M, Mykkanen J, Koskinen M, et al. Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. *J Clin Endocrinol Metab.* 2016;101(2):723-729.

- 69. Norris JM, Lee HS, Frederiksen B, et al. Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. *Diabetes*. 2018;67(1):146-154.
- 70. Simpson M, Brady H, Yin X, et al. No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY). *Diabetologia*. 2011;54(11):2779-2788.
- 71. Thorsen SU, Pipper CB, Alberdi-Saugstrup M, et al. No association between vitamin D levels around time of birth and later risk of developing oligo- and polyarticular juvenile idiopathic arthritis: a Danish case-cohort study. *Scand J Rheumatol.* 2017;46(2):104-111.
- 72. Chowdhury R, Taneja S, Bhandari N, Kvestad I, Strand TA, Bhan MK. Vitamin-D status and neurodevelopment and growth in young north Indian children: a secondary data analysis. *Nutr J*. 2017;16(1):59.
- 73. Pludowski P, Jaworski M, Niemirska A, et al. Vitamin D status, body composition and hypertensive target organ damage in primary hypertension. *J Steroid Biochem Mol Biol.* 2014;144 Pt A:180-184.
- 74. Specht IO, Janbek J, Thorsteinsdottir F, Frederiksen P, Heitmann BL. Neonatal vitamin D levels and cognitive ability in young adulthood. *Eur J Nutr.* 2020;59(5):1919-1928.
- 75. Wu DM, Wen X, Han XR, et al. Relationship Between Neonatal Vitamin D at Birth and Risk of Autism Spectrum Disorders: the NBSIB Study. *J Bone Miner Res.* 2018;33(3):458-466.
- 76. Handel MN, Frederiksen P, Cohen A, Cooper C, Heitmann BL, Abrahamsen B. Neonatal vitamin D status from archived dried blood spots and future risk of fractures in childhood: results from the D-tect study, a population-based case-cohort study. *Am J Clin Nutr.* 2017;106(1):155-161.
- 77. Tornhammar P, Ueda P, Hult M, Simila H, Eyles D, Norman M. Season of birth, neonatal vitamin D status, and cardiovascular disease risk at 35 y of age: a cohort study from Sweden. *Am J Clin Nutr.* 2014;99(3):472-478.
- 78. Ala-Houhala M, Koskinen T, Terho A, Koivula T, Visakorpi J. Maternal compared with infant vitamin D supplementation. *Arch Dis Child*. 1986;61(12):1159-1163.
- 79. Aluisio AR, Maroof Z, Chandramohan D, et al. Vitamin D(3)supplementation and childhood diarrhea: a randomized controlled trial. *Pediatrics*. 2013;132(4):e832-840.
- 80. Atas E, Karademir F, Ersen A, et al. Comparison between daily supplementation doses of 200 versus 400 IU of vitamin D in infants. *Eur J Pediatr.* 2013;172(8):1039-1042.
- 81. Ekbote VH, Khadilkar AV, Chiplonkar SA, Hanumante NM, Khadilkar VV, Mughal MZ. A pilot randomized controlled trial of oral calcium and vitamin D supplementation using fortified laddoos in underprivileged Indian toddlers. *Eur J Clin Nutr.* 2011;65(4):440-446.
- 82. Gallo S, Phan A, Vanstone CA, Rodd C, Weiler HA. The change in plasma 25-hydroxyvitamin D did not differ between breast-fed infants that received a daily supplement of ergocalciferol or cholecalciferol for 3 months. *J Nutr.* 2013;143(2):148-153.
- 83. Gordon CM, Williams AL, Feldman HA, et al. Treatment of hypovitaminosis D in infants and toddlers. *J Clin Endocrinol Metab.* 2008;93(7):2716-2721.
- 84. Grant CC, Stewart AW, Scragg R, et al. Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. *Pediatrics*. 2014;133(1):e143-153.
- 85. Harnot J, Verma S, Singhi S, Sankhyan N, Sachdeva N, Bharti B. Comparison of 300,000 and 600,000 IU Oral Vitamin-D Bolus for Vitamin-D Deficiency in Young Children. *Indian J Pediatr.* 2017;84(2):111-116.
- 86. Hollis BW, Wagner CL, Howard CR, et al. Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. *Pediatrics*. 2015;136(4):625-634.

- 87. Holstgemeiner D, Gemeiner M, Pilz I, Swoboda W. PLASMA 25-HYDROXYCHOLECALCIFEROL AFTER DAILY VITAMIN-D ADMINISTRATION IN COMPARISON WITH MASSIVE SINGLE-DOSE PROPHYLAXIS. *Wiener Klinische Wochenschrift.* 1978;90(14):509-512.
- 88. Kunz C, von Lilienfeld-Toal H, Niesen M, Burmeister W. [25-hydroxy-vitamin-D in serum of newborns and infants during continuous oral vitamin D treatment (author's transl)]. *Padiatr Padol.* 1982;17(2):181-185.
- 89. Madar AA, Klepp KI, Meyer HE. Effect of free vitamin D(2) drops on serum 25-hydroxyvitamin D in infants with immigrant origin: a cluster randomized controlled trial. *Eur J Clin Nutr*. 2009;63(4):478-484.
- 90. Moodley A, Spector SA. Single high-dose vitamin D at birth corrects vitamin D deficiency in infants in Mexico. *Int J Food Sci Nutr.* 2015;66(3):336-341.
- 91. Pittard WB, 3rd, Geddes KM, Hulsey TC, Hollis BW. How much vitamin D for neonates? *Am J Dis Child*. 1991;145(10):1147-1149.
- 92. Shajari A, Shakiba M, Nourani F, Zaki M, Kheirandish M. Urinary Calcium/Creatinin Ratio with Different Dosages of Vitamin D3 Prophylaxis in Infants. *Iranian Journal of Pediatrics*. 2009;19(2):159-163.
- 93. Shakiba M, Sadr S, Nefei Z, Mozaffari-Khosravi H, Lotfi MH, Bemanian MH. Combination of bolus dose vitamin D with routine vaccination in infants: a randomised trial. *Singapore Med J*. 2010;51(5):440-445.
- 94. Shakiba M, Pahloosye A, Mirouliaei M, Islami Z. Comparison of two regimens of vitamin D supplementation for vitamin D-deficient neonates. *Singapore Med J.* 2014;55(5):266-270.
- 95. Sharma AK, Gallo S, Vanstone CA, et al. Parathyroid hormone-ionized calcium dynamics over the first year of life. *J Pediatr Endocrinol Metab.* 2016;29(6):709-714.
- 96. Zeghoud F, Benmekhbi H, Djeghri N, Garabedian M. VITAMIN-D PROPHYLAXIS DURING INFANCY COMPARISON OF THE LONG-TERM EFFECTS OF 3 INTERMITTENT DOSES (15-MG, 5-MG, OR 2.5-MG) ON 25-HYDROXYVITAMIN-D CONCENTRATIONS. *American Journal of Clinical Nutrition.* 1994;60(3):393-396.
- 97. Zeghoud F, Vervel C, Guillozo H, Walrant-Debray O, Boutignon H, Garabedian M. Subclinical vitamin D deficiency in neonates: definition and response to vitamin D supplements. *Am J Clin Nutr.* 1997;65(3):771-778.
- 98. Greer FR, Searcy JE, Levin RS, Steichen JJ, Asch PS, Tsang RC. Bone mineral content and serum 25-hydroxyvitamin D concentration in breast-fed infants with and without supplemental vitamin D. *The Journal of Pediatrics*. 1981;98(5):696-701.
- 99. Mittal H, Rai S, Shah D, et al. 300,000 IU or 600,000 IU of oral vitamin D3 for treatment of nutritional rickets: a randomized controlled trial. *Indian Pediatr.* 2014;51(4):265-272.
- 100. Mittal M, Yadav V, Khadgawat R, Kumar M, Sherwani P. Efficacy and Safety of 90,000 IU versus 300,000 IU Single Dose Oral Vitamin D in Nutritional Rickets: A Randomized Controlled Trial. *Indian J Endocrinol Metab.* 2018;22(6):760-765.
- 101. Abrams SA, Hawthorne KM, Chen Z. Supplementation with 1000 IU vitamin D/d leads to parathyroid hormone suppression, but not increased fractional calcium absorption, in 4-8-y-old children: a double-blind randomized controlled trial. *Am J Clin Nutr.* 2013;97(1):217-223.
- 102. Alahouhala M, Koskinen T, Koskinen M, Visakorpi JK. DOUBLE-BLIND STUDY ON THE NEED FOR VITAMIN-D SUPPLEMENTATION IN PREPUBERTAL CHILDREN. *Acta Paediatrica Scandinavica*. 1988;77(1):89-93.

- 103. Brett NR, Lavery P, Agellon S, et al. Dietary vitamin D dose-response in healthy children 2 to 8 y of age: a 12-wk randomized controlled trial using fortified foods. *Am J Clin Nutr.* 2016;103(1):144-152.
- 104. Brett NR, Parks CA, Lavery P, et al. Vitamin D status and functional health outcomes in children aged 2-8 y: a 6-mo vitamin D randomized controlled trial. *Am J Clin Nutr.* 2018;107(3):355-364.
- 105. Economos CD, Moore CE, Hyatt RR, et al. Multinutrient-fortified juices improve vitamin D and vitamin E status in children: a randomized controlled trial. *J Acad Nutr Diet*. 2014;114(5):709-717.
- 106. Hirschler V, Maccallini G, Tamborenea MI, et al. Improvement in lipid profile after vitamin D supplementation in indigenous argentine school children. *Cardiovasc Hematol Agents Med Chem.* 2014;12(1):42-49.
- 107. Karlsland Akeson P, Akesson KE, Lind T, Hernell O, Silfverdal SA, Ohlund I. Vitamin D Intervention and Bone: A Randomized Clinical Trial in Fair- and Dark-skinned Children at Northern Latitudes. *J Pediatr Gastroenterol Nutr*. 2018;67(3):388-394.
- 108. Loeb M, Dang AD, Thiem VD, et al. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. *Influenza Other Respir Viruses*. 2019;13(2):176-183.
- 109. Mandlik RM, Mughal ZM, Khadilkar AV, et al. Paradoxical Response of Parathyroid Hormone to Vitamin Da[Euro sign]"Calcium Supplementation in Indian Children. *J Pediatr.* 2019.
- Marwaha RK, Mithal A, Bhari N, et al. Supplementation with Three Different Daily Doses of Vitamin D3 in Healthy Pre-pubertal School Girls: A Cluster Randomized Trial. *Indian Pediatr.* 2018;55(11):951-956.
- 111. Mortensen C, Damsgaard CT, Hauger H, et al. Estimation of the dietary requirement for vitamin D in white children aged 4-8 y: a randomized, controlled, dose-response trial. *Am J Clin Nutr.* 2016;104(5):1310-1317.
- 112. Ohlund I, Lind T, Hernell O, Silfverdal SA, Karlsland Akeson P. Increased vitamin D intake differentiated according to skin color is needed to meet requirements in young Swedish children during winter: a double-blind randomized clinical trial. *Am J Clin Nutr.* 2017;106(1):105-112.
- 113. Stellinga-Boelen AA, Wiegersma PA, Storm H, Bijleveld CM, Verkade HJ. Vitamin D levels in children of asylum seekers in The Netherlands in relation to season and dietary intake. *Eur J Pediatr.* 2007;166(3):201-206.
- 114. Talaat IM, Kamal NM, Alghamdi HA, Alharthi AA, Alshahrani MA. A randomized clinical trial comparing 3 different replacement regimens of vitamin D in clinically asymptomatic pediatrics and adolescents with vitamin D insufficiency. *Ital J Pediatr.* 2016;42(1):106.
- 115. Mandlik R, Mughal Z, Khadilkar A, et al. Occurrence of infections in schoolchildren subsequent to supplementation with vitamin D-calcium or zinc: a randomized, double-blind, placebo-controlled trial. *Nutr Res Pract.* 2020;14(2):117-126.
- 116. Valkama S, Holmlund-Suila E, Enlund-Cerullo M, et al. No Severe Hypercalcemia with Daily Vitamin D3 Supplementation of up to 30 microg during the First Year of Life. *Horm Res Paediatr.* 2017;88(2):147-154.
- 117. Markestad T, Hesse V, Siebenhuner M, et al. Intermittent high-dose vitamin D prophylaxis during infancy: effect on vitamin D metabolites, calcium, and phosphorus. *Am J Clin Nutr*. 1987;46(4):652-658.
- 118. Oliveri B, Cassinelli H, Mautalen C, Ayala M. Vitamin D prophylaxis in children with a single dose of 150000 IU of vitamin D. *Eur J Clin Nutr*. 1996;50(12):807-810.

- 119. Sezer RG, Guran T, Paketci C, Seren LP, Bozaykut A, Bereket A. Comparison of oral alendronate versus prednisolone in treatment of infants with vitamin D intoxication. *Acta Paediatr.* 2012;101(3):e122-125.
- Jensen CB, Lundqvist M, Sorensen TIA, Heitmann BL. Neonatal Vitamin D Levels in Relation to Risk of Overweight at 7 Years in the Danish D-Tect Case-Cohort Study. *Obes Facts*. 2017;10(3):273-283.
- 121. Lee SH, Kim SM, Park HS, et al. Serum 25-hydroxyvitamin D levels, obesity and the metabolic syndrome among Korean children. *Nutr Metab Cardiovasc Dis.* 2013;23(8):785-791.
- 122. Demir K, Doneray H, Kara C, et al. Comparison of Treatment Regimens in Management of Severe Hypercalcemia Due to Vitamin D Intoxication in Children. *J Clin Res Pediatr Endocrinol.* 2019;11(2):140-148.
- 123. Gurkan F, Davutoglu M, Bosnak M, et al. Pamidronate treatment in acute vitamin D intoxication. *J Endocrinol Invest*. 2004;27(7):680-682.
- 124. Vanstone MB, Oberfield SE, Shader L, Ardeshirpour L, Carpenter TO. Hypercalcemia in children receiving pharmacologic doses of vitamin D. *Pediatrics*. 2012;129(4):e1060-1063.
- 125. Andersen B. [Vitamin D poisoning]. Tidsskr Nor Laegeforen. 1954;74(12):419-420.
- 126. Barrueto F, Jr., Wang-Flores HH, Howland MA, Hoffman RS, Nelson LS. Acute vitamin D intoxication in a child. *Pediatrics*. 2005;116(3):e453-456.
- 127. Elarqam L, Babakhouya A, Chaouki S, Atmani S, Bouharrou A, Hida M. L'intoxication par la vitamine D chez le nourrisson. *Journal de Pédiatrie et de Puériculture*. 2007;20(5):203-205.
- 128. Evliyaoglu O, Berberoglu M, Ocal G, Adiyaman P, Aycan Z. Severe hypercalcemia of an infant due to vitamin D toxicity associated with hypercholesterolemia. *J Pediatr Endocrinol Metab.* 2001;14(7):915-919.
- 129. Garbim BB, L DA, Rigatto SZP, Quadros K, Belangero VMS, Oliveira RB. Hypercalcemia in children: three cases report with unusual clinical presentations. *J.* 2017;39(2):213-216.
- 130. Hoppe B, Gnehm HE, Wopmann M, Neuhaus T, Willi U, Leumann E. [Vitamin D poisoning in infants: a preventable cause of hypercalciuria and nephrocalcinosis]. *Schweiz Med Wochenschr*. 1992;122(8):257-262.
- 131. Misselwitz J, Hesse V. [Hypercalcemia following prophylactic vitamin D administration]. *Kinderarztl Prax.* 1986;54(8):431-438.
- 132. Otto-Buczkowska E, Kokot F. [Hypercalcemia after oral administration of preventive doses of vitamin D]. *Pol Tyg Lek.* 1982;37(32):943-945.
- 133. Ross SG. Vitamin D intoxication in infancy; a report of four cases. *J Pediatr*. 1952;41(6):815-822.
- 134. Ünal E, Koksal Y, Keles S, Artac H, Reisli I, Energin M. Iatrogenic vitamin D intoxiciation in infancy: Three cases. *Marmara Medical Journal*. 2007;20(1):47-51.
- 135. Besbas N, Oner A, Akhan O, Saatci U, Bakkaloglu A, Topaloglu R. Nephrocalcinosis due to vitamin D intoxication. *Turk J Pediatr*. 1989;31(3):239-244.
- 136. Nanulescu M, Manasia R. Hypercalcemia due to intoxication with vitamin D. *Pediatrie*. 1984;33(3):279-284.
- 137. Mortensen C, Molgaard C, Hauger H, Kristensen M, Damsgaard CT. Winter vitamin D3 supplementation does not increase muscle strength, but modulates the IGF-axis in young children. *Eur J Nutr.* 2019;58(3):1183-1192.

Appendix 1: GRADE Evidence Profile Tables

Vitamin D Requirements and Upper Limits

The effect of vitamin D intake on blood pressure and fracture outcomes were rated insufficient due to less than three unique studies meeting the inclusion criteria for this systematic review. Therefore, these outcomes were not included in the GRADE evidence profile table below.

Qualit	y assess	ment		•	*			Strength of evidence
No. of studie s		Limitations	Inconsistency	Indirectne ss	Imprecisi on	Dose- response	Summary of findings	
KQ1.	Atopic o	utcomes: asth	ma, wheeze, eo	czema				
	RCTs	Some limitations: 100% of trials have some or high ROB in at least 1 ROB domain, and 50% of trials have high or some ROB in 3 domains.	No serious inconsistency: Most trials reported no significant differences in atopic outcomes comparing	Direct: Clinical outcomes.	Imprecise : Small number of events with large confidence intervals.	response is present.	Asthma: 3 RCTs reported mixed results comparing higher to lower doses of Vit D supplementation. Two RCTs found no significant differences between groups. One RCT found participants who received 400 IU/d of vitamin D3 were at lower risk of developing asthma at 6 months, compared to those who received placebo (RR = 0.055; 95% CI 0.003, 0.94), but there were no significant differences in the risk of asthma when comparing 800 IU/d of vitamin D ₃ to placebo, or when comparing 800 IU/d to 400 IU/d of vitamin D ₃ supplementation. ²⁶ Wheeze: 2 RCTs reported mixed results. One study reported no significant findings, ²⁷ but another RCT in preterm Black infants, found significantly reduced risk of recurrent wheezing at 12 months with sustained vitamin D supplementation compared to diet-limited supplementation (adjusted RR = 0.62; 95% CI 0.44, 0.87; $P = 0.005$). ²⁴	LOW
							Eczema: 3 RCTs found no significant differences between groups.	
KQ1.	Infectiou	us diseases						

GRADE evidence profile table: vitamin D requirements and upper limits

		88% of trials have some or high ROB in at least 2 ROB domains. The other trial (12%) has high risk in one ROB domain.	inconsistency: Most trials reported no significant differences in infectious disease outcomes comparing higher to lower doses of vitamin D supplementati on		No dose- response is present.	Out of the 20 infectious disease outcomes (respiratory, n = 15; gastrointestinal, n = 1; and other or unspecified infections, n = 4), 19 were not significantly different between intervention groups. One RCT found participants who received 1,200 IU/d of vitamin D ₃ were significantly less likely to develop influenza A after 4 months compared to those receiving 400 IU/d of vitamin D ₃ (RR = 0.54; 95% CI 0.42, 0.77). ³¹	LOW
13	RCT (1 study with a non- randomi zed control group ³⁷)	Serious limitations: All trials have some concern or high ROB in at least 2 domains, and 85% had high ROB for deviations from intended intervention.	Consistent: 85% of studies showed no significant association between VD intervention and growth outcomes. Only 2 studies	imprecisio		Eleven RCTs reported no association between VD interventions and growth and development outcomes when comparing higher to lower doses or when comparing VD supplementation to a placebo.	LOW

		some concern						
		or high ROB.						
KQ1.	Rickets							
	non- randomi zed controll ed trial	limitations: All trials have some concern or high ROB in at least 3 domains. For all ROB domains, > 50% of studies had some concern or high ROB.	89% of trials reported no rickets, and 11% reported no significant association between rickets and VD supplements.		small number of events.	response is present.	Eight RCTs reported no rickets. One non-randomized controlled trial reported rickets in <2% of the study population, and while there was no association with study arm (calcium, vitamin D, or calcium plus vitamin D supplementation) ($P = 0.214$), there was a significant interaction between time and supplementation over the three-year study period ($P = 0.001$). ⁵⁰	LOW
_	1		and bone mine			, ,		
10	(1 study with a non- randomi zed control group ³⁷), non- randomi zed controll	limitations: All trials have some or high ROB in at least 1 ROB domain. For each ROB domain, except for measurement of outcome, at least 50% of studies have some or	inconsistency: 50% of the studies reported no association between VD interventions and BMC/BMD	Surrogate outcome.		Dose- response is present.	There were mixed results for BMC/BMD outcomes. Five RCTs from six publications reported no difference in BMC/BMD outcomes between any study groups. ^{29,38,39,43,56,57} Two studies reported benefits to BMC/BMD outcomes for VD supplementation vs. placebo but did not report p-values or confidence intervals, and one included a non-randomized comparison group. ^{24,37} Two studies reported statistically significant (P <0.05) benefits for various BMC/BMD measures when comparing randomized groups with higher vs. lower doses of VD (1,600 IU/d vs. 400 IU/d; 1,600 IU/d vs. 1,200 IU/d) ³⁵ or when comparing non- randomized groups with VD supplementation or breast milk alone. ⁵⁵ One study reported moderately significant ($0.05 < P < 0.1$) benefits for one bone measurement when comparing VD supplementation to a placebo. ⁴⁸	LOW

			BMC/BMD outcomes (0.05 < P<0.1, or p-values and 95% CI not reported). 20% reported significant associations between higher vs. lower VD doses or VD supplementati on vs. breast milk alone and BMC/BMD		Mostly narrow confidence intervals for BMD/BM C outcomes.			
KO2	Atonic o		outcomes. ma, wheezing,	and eczem	<u> </u>			
4	Cohorts		,		a Imprecise	No dose-	Asthma: Three cohort studies had mixed results	
			inconsistency:		-	response is	measuring the association between serum 25(OH)D and	
	cohorts	63% of outcomes of interest were not demonstrated to be absent	Most studies reported no significant association between serum 25(OH)D and risk of atopic outcomes.	outcomes.	confidence intervals.		asthma outcomes. Two cohort studies found no association. A third cohort study found participants with higher numbers of follow-up visits with deficient serum 25(OH)D had significantly increased risk of asthma, but not medicated asthma. ⁶³ Wheeze: Two cohort studies had mixed results measuring serum 25(OH)D and wheeze outcomes. One study found no association, while the other found participants with higher numbers of follow-up visits with deficient serum 25(OH)D had significantly increased risk of wheeze. ⁶³	VERY LOW

K02.		outcomes had significant lost to follow- up nune diseases					Eczema: Two studies had mixed results measuring serum 25(OH)D and eczema outcomes. One case-cohort study found no association, while the other cohort found participants with higher numbers of follow-up visits with deficient serum 25(OH)D had significantly increased risk of eczema. ⁶³	
					Imprecise		Type 1 diabetes: Four observational studies found no	
			inconsistency:			response is	association between serum vitamin D and type 1	
				indirectne		present.	diabetes.	
			1		with wide confidence		Islet autoimmunity: Two observational studies	
	controls	significant lost to follow-	0		intervals		reported mixed results. One case-cohort found no association between serum 25(OH)D and islet	
			between serum		or large		autoimmunity. ⁷⁰ One nested case-control study found an	
		-		immediate	U		association between serum 25(OH)D (in the first year of	
					of		life and in childhood) and decreased risk of islet	VERY
		selecting all	autoimmune	to clinical	variability.		autoimmunity. ⁶⁹	LOW
		,	disease	outcome			Juvenile idiopathic arthritis (JIA): One case-cohort	
		0		(e.g., islet			study found no association between serum 25(OH)D and	
		non-optimal		autoimmu			oligoarticular and polyarticular JIA. ⁷¹	
		or poorly		nity)				
		described						
		analytic methods						
KU)		is diseases						
-	Cohorts		Some	Direct:	Imprecise	No dose-	Most associations between serum 25(OH)D and	
т			inconsistency:			response is	infectious disease outcomes were not significant.	
			•			present.	Significant associations were found for three of eight	
		reporting one			with wide	1	total infectious disease outcomes, with higher serum	VEDV
			significant		confidence		25(OH)D associated with a reduced risk of oral	VERY LOW
		`	association or		intervals		candidiasis ⁶⁵ but an increased risk for URTI (in	LUW
		,	an association		or large		underweight children) and malaria infection (between	
		had major	between serum		measures			

limitations: 25(OH)D and of highest and second highest quartiles of serum decreased risk assessed via of infection, of of infection,	
assessed via of infection,	
self-report, with one study	
outcome not reporting	
demonstrated increased risk	
to be absent for one	
at start of infectious	
study, disease	
analysis not outcome (oral	
optimally candidiasis)	
controlled,	
and poor	
adequacy of	
cohort	
follow-up	
KQ2. Growth and neurological development	
6 Cohorts Some Consistent: Direct: Some Dose In 6 observational studies assessing 25(OH)D 1	evels and
(n=4), limitations : 100% of Clinical imprecisio response, growth and development or neurological development	opment
nested 83% of studies outcome. n: but outcomes, no linear association was found betw	veen
case- studies had reported no Power relationship 25(OH)D in infancy and any development outc	comes.
controls ROB in at significant calculation with growth Categorical 25(OH)D analyses showed some	
(n=2) least 1 linear s not and statistically significant benefits in development	[
domain, and association reported development outcomes with higher 25(OH)D levels compared	ed to the
50% had between for most and lowest levels.	
ROB in two 25(OH)D and studies, neurological	LOW
or more growth and but most development	
domains. development had large appears to	
50% reported outcomes. sample be non-	
high loss to sizes; linear.	
follow-up studies	
rates or gave reported	
no statement. wide CIs	

KO3	Daily vit	amin D suppl	ementation on	50rum 25/(or did not report CIs.			
	RCTs	Some limitations: In 4 of 5 ROB domains, greater than 50% of trials were assessed as having some or high ROB.	No serious inconsistency: Consistency in direction but some inconsistency in magnitude of the achieved	Indirect: serum 25(OH)D, a marker of vitamin D status.	Some imprecisio n: Meta- regression analysis demonstrat ed wide CIs. Also, the residual heterogene	response is present within most studies comparing different levels of daily vitamin D supplementa tion.	In infants 0-12 months old, random-effects meta- regression analysis showed that each 100 IU/d increase in vitamin D supplementation was associated with an average of 1.92 (95% CI 0.28, 3.56) nmol/L increase in achieved 25(OH)D concentration (n=53 intervention arms; P =0.022; adjusted R ² = 9.07%). Only one study was in infants 1 to 4 years, which showed serum 25(OH)D unchanged in the 400 IU/d group but significantly increased from 89.6 to 121.6 nmol/L in the 2000 IU/d group after 16 weeks. In children 3-9 years old, random-effects meta-regression showed that each 100 IU/d increase in vit D supplementation was associated with an average of 2.49 (95% CI -0.24, 5.22) nmol/L increase in achieved 25(OH)D concentration (n = 16 intervention arms; P = 0.071; adjusted R ² = 19.96%).	Moderate
KQ3.]	Non-dail	y vitamin D s	upplementatio	n on serum	25(OH)D			
11		limitations:	Some inconsistency: Consistency of	serum	Imprecisi	response is	Single doses of 200,000 IU of vitamin D ₃ increased serum 25(OH)D to 317 nmol/L at one week and 246 nmol/L at 5 weeks in one study, ⁸⁷ and 150 nmol/L at 2	LOW

domains, approximatel y 50% or more trials were assessed as having some or high ROB.	some inconsistency in magnitude of the achieved 25(OH)D concentration.	of vitamin D status.	some trial arms.	studies comparing different levels of vitamin D supplementa tion.	weeks in another study. ⁹⁶ A single dose of 100,000 IU of vitamin D ₃ resulted in serum 25(OH)D levels of 92 at 2 weeks. ⁹⁶ Single doses of 50,000 IU of vitamin D ₃ resulted in serum 25(OH)D levels of 154 and 62 nmol/L at 1.5 and 14 weeks in one study, ³⁶ and 85 and 91 nmol/L at 8 and 14 weeks in the other study. ⁹⁰ Single doses of 300,000 and 600,000 IU resulted in serum 25(OH)D levels of 16.1 and 17.6 nmol/L, respectively, after 12 weeks. ⁹⁹ Other dose regimens, including weekly or monthly doses of vitamin D, resulted in increased 25(OH)D. 14,000 IU of vitamin D ₃ weekly to resulted in mean 25(OH)D increased to 91.8 nmol/L in the vitamin D ₃ supplementation. ¹⁰⁸	
 	ost-partum mo					
limitations: In 4 of 5 ROB domains, at least 50% of trials were assessed as having some or high ROB.	inconsistency: Studies	serum 25(OH)D, a marker of vitamin D status.	studies with wide CIs or small sample sizes.	response unable to assess.	Breastfed infant serum 25(OH)D had decreased in one maternal 1000 IU/d supplementation group in one trial. ⁵¹ Baseline serum 25(OH)D was not provided in the other three trials; however, maternal supplementation of 400 IU daily resulted in higher infant serum 25(OH)D compared to placebo at 14 weeks in one study, ⁴⁵ and no significant difference between maternal 6400 IU/d and infant 300 IU/d (with maternal 400 IU/d) supplementation in another study. ⁴¹ In the last trial, maternal supplementation of 1000 IU daily, but not 2000 IU daily, resulted in infant serum 25(OH)D significantly lower than that of infants receiving direct 400 IU vitamin D ₂ daily at 8 weeks. This difference was also significant at 15 weeks, but differences between the other groups were not significant. ⁷⁸	VERY LOW

	RCTs	ROB in 2 ROB domains.	inconsistency: Studies reported differences in the effect magnitude despite food intervention arms containing similar amounts of vitamin D.	serum 25(OH)D, a marker of vitamin D status.	imprecisio n: Some studies with wide CIs or small sample sizes.	unable to assess.	Serum 25(OH)D decreased in groups receiving both fortified (with mean vitamin D dose of 466-486 IU/d) and non-fortified food, although none of the changes were significant in one study. ¹⁰⁴ In a second study, fortified formula (400 IU/L) saw no significant increase in serum 25(OH)D. ⁴³ The last trial reported significant increases in 25(OH)D after 12 weeks of food fortified with 1,000 IU daily and 400 IU daily in both fair- and dark-skinned children, but no significant increase in the groups receiving 80 IU daily in food. ¹¹²	VERY LOW
KQ3.	Combin	ed vitamin D	and calcium su	pplementa	tion on infa	ant serum 2	5(OH)D	
	RCTs	100% of studies had some or high ROB in 3 ROB domains.	inconsistency: Direction of effect consistent; unable to assess consistency of effect magnitude.	serum 25(OH)D, a marker of vitamin D status.	imprecisio n: Studies with wide CIs.	unable to assess.	In one study, serum 25(OH)D levels increased significantly more in the 200 IU/d of vitamin D3 plus 700 mg/d of calcium supplementation group compared to the calcium only group after 12 weeks (+12.7 nmol/L [5.09 ng/mL]; 95% CI 1.3, 24.1). ¹⁰⁵ In another study, mean serum 25(OH)D levels did not significantly differ between groups that received 30,000 IU once monthly of vitamin D ₃ plus either 405 mg or 156 mg of calcium 5 times weekly after 48 weeks; however, both groups resulted in significantly higher 25(OH)D at the end of the study. ⁸¹ In the last study where both groups got 50 mg/kg/d of calcium supplementation, there was no significant difference in mean serum 25(OH)D levels at 48 weeks between the 30,000 IU once weekly group and the 4,000 IU/d group. , mortality, and kidney stones	VERY LOW

47	RCTs,	Some	Some	Direct:	Imprecise	Dose-	Hypercalcemia: Generally, the rate of hypercalcemia	
	single-	limitations:	inconsistency:	Clinical	: Rates of	response is	increased with the dose of vitamin D administered;	
	arm	100% of	Studies	outcomes.	upper limit	present	however, the rate of hypercalcemia was variable, even	
	interven	outcomes	showed		outcomes	within some	comparing the same or similar intervention dose and	
	tions,	from RCTs	consistency		are	studies	durations.	
	cohorts,	have high or	among		variable	assessing	Hypercalciuria: The rate of hypercalciuria was variable	
	case-	some	hypercalcemia		across	hypercalcem	among studies and interventions arms.	
	cohorts,	concerns in at	outcome, but				Other upper limit outcomes: few high-quality studies	
	nested	least 2 ROB	inconsistency		even	hypercalciuri	reported on nephrocalcinosis, kidney stones, and	
	case-		among		among	а	mortality.	
	controls		hypercalciuria		groups			VERY
	, cross-		outcome.		with			LOW
	sectiona		Other upper		similar			
	1		limit outcomes		dose and			
	studies,		were unable to		follow-up			
	and		be assessed		durations.			
	case		due to few					
	reports		data (i.e.,					
			mortality,					
			nephrocalcinos					
			is).					

BMC = bone mineral content; BMD = bone mineral density; CI = confidence interval; d = day; GRADE = Grading of Recommendations, Assessment, Development and Evaluations; IU = international units; KQ = key question; RCT = randomized controlled trial; ROB = risk of bias; UL = upper limit; URTI = upper respiratory tract infection; VD = Vitamin D

Appendix 2: Bibliography

Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). 2019. ed J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page and V.A. Welch: Cochrane.

Abrams, S. A., K. C. Copeland, S. K. Gunn, J. E. Stuff, L. L. Clarke, and K. J. Ellis. 1999. "Calcium absorption and kinetics are similar in 7- and 8-year-old Mexican-American and Caucasian girls despite hormonal differences." *Journal of Nutrition* 129 (3): 666-71.

Abrams, Steven A., Keli M. Hawthorne, and Zhensheng Chen. 2013. "Supplementation with 1000 IU vitamin D/d leads to parathyroid hormone suppression, but not increased fractional calcium absorption, in 4-8-y-old children: a double-blind randomized controlled trial." *American Journal of Clinical Nutrition* 97 (1): 217-223. <u>https://doi.org/10.3945/ajcn.112.046102.</u>

Abrams, S. A., and J. E. Stuff. 1994. "Calcium metabolism in girls: current dietary intakes lead to low rates of calcium absorption and retention during puberty." *American Journal of Clinical Nutrition* 60 (5): 739-43.

Abrams, S. A., J. Wen, and J. E. Stuff. 1997. "Absorption of calcium, zinc, and iron from breast milk by five- to seven-month-old infants." *Pediatric Research* 41 (3): 384-90.

Aglipay, M., C. S. Birken, P. C. Parkin, M. B. Loeb, K. Thorpe, Y. Chen, A. Laupacis, M. Mamdani, C. Macarthur, J. S. Hoch, T. Mazzulli, J. L. Maguire, and T. ARGet Kids! Collaboration. 2017. "Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children." *JAMA* 318 (3): 245-254. https://doi.org/https://dx.doi.org/10.1001/jama.2017.8708.

Ahmed, A. M. S., T. Ahmed, R. J. Soares Magalhaes, K. Z. Long, M. A. Alam, M. I. Hossain, M. M. Islam, M. Mahfuz, D. Mondal, R. Haque, and A. Al Mamun. 2016. "Association between serum Vitamin D, retinol and zinc status, and acute respiratory infections in underweight and normal-weight children aged 6-24 months living in an urban slum in Bangladesh." *Epidemiology and Infection* 144 (16): 3494-3506.

Ala-Houhala, M., T. Koskinen, A. Terho, T. Koivula, and J. Visakorpi. 1986. "Maternal compared with infant vitamin D supplementation." *Archives of Disease in Childhood* 61 (12): 1159-63.

Alahouhala, M. 1985. "25-HYDROXYVITAMIN-D LEVELS DURING BREAST-FEEDING WITH OR WITHOUT MATERNAL OR INFANTILE SUPPLEMENTATION OF VITAMIN-D." *Journal of Pediatric Gastroenterology and Nutrition* 4 (2): 220-226. <u>https://doi.org/10.1097/00005176-198504000-00011.</u>

Alahouhala, M., T. Koskinen, M. Koskinen, and J. K. Visakorpi. 1988. "DOUBLE-BLIND STUDY ON THE NEED FOR VITAMIN-D SUPPLEMENTATION IN PREPUBERTAL CHILDREN." *Acta Paediatrica Scandinavica* 77 (1): 89-93.

Alonso, A., J. Rodriguez, I. Carvajal, M. A. Prieto, R. M. Rodriguez, A. M. Perez, A. Cepeda, F. Nuno, F. Santos, and D. in Asturias Collaborative Group on Prophylaxis with Vitamin. 2011. "Prophylactic vitamin D in healthy infants: assessing the need." *Metabolism: Clinical & Experimental* 60 (12): 1719-25. <u>https://doi.org/10.1016/j.metabol.2011.04.011.</u>

Aluisio, A. R., Z. Maroof, D. Chandramohan, J. Bruce, M. Z. Mughal, Z. Bhutta, G. Walraven, M. I. Masher, J. H. Ensink, and S. Manaseki-Holland. 2013. "Vitamin D3supplementation and childhood

diarrhea: a randomized controlled trial." *Pediatrics* 132 (4): e832-40. <u>https://doi.org/https://dx.doi.org/10.1542/peds.2012-3986.</u>

Ames, S. K., B. M. Gorham, and S. A. Abrams. 1999. "Effects of high compared with low calcium intake on calcium absorption and incorporation of iron by red blood cells in small children." *American Journal of Clinical Nutrition* 70 (1): 44-8.

Andersen, B. 1954. "[Vitamin D poisoning]." Tidsskrift for Den Norske Laegeforening 74 (12): 419-20.

Anderson, L. N., Y. Chen, J. A. Omand, C. S. Birken, P. C. Parkin, T. To, J. L. Maguire, and T. ARGet Kids Collaboration. 2015. "Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing." *Journal of Developmental Origins of Health and Disease* 6 (4): 308-16. https://doi.org/https://dx.doi.org/10.1017/S2040174415001063.

Atas, E., F. Karademir, A. Ersen, C. Meral, S. Aydinoz, S. Suleymanoglu, M. Gultepe, and I. Gocmen. 2013. "Comparison between daily supplementation doses of 200 versus 400 IU of vitamin D in infants." *European Journal of Pediatrics* 172 (8): 1039-42. <u>https://doi.org/https://dx.doi.org/10.1007/s00431-013-1997-4</u>.

Bagnoli, F., M. Casucci, S. Toti, S. Cecchi, C. Iurato, G. Coriolani, M. Tiezzi, and L. Vispi. 2013. "Is vitamin D supplementation necessary in healthy full-term breastfed infants? A follow-up study of bone mineralization in healthy full-term infants with and without supplemental vitamin D." *Minerva Pediatrica* 65 (3): 253-60.

Barlow, William E., Laura Ichikawa, Dan Rosner, and Shizue Izumi. 1999. "Analysis of Case-Cohort Designs." *Journal of Clinical Epidemiology* 52 (12): 1165-1172. https://doi.org/https://doi.org/10.1016/S0895-4356(99)00102-X.

Barltrop, D., R. H. Mole, and A. Sutton. 1977. "Absorption and endogenous faecal excretion of calcium by low birthweight infants on feeds with varying contents of calcium and phosphate." *Archives of Disease in Childhood* 52 (1): 41-9.

Barnes, L. A., G. Morrow, 3rd, J. Silverio, L. P. Finnegan, and S. E. Heitman. 1974. "Calcium and fat absorption from infant formulas with different fat blends." *Pediatrics* 54 (2): 217-21.

Barrueto, F., Jr., H. H. Wang-Flores, M. A. Howland, R. S. Hoffman, and L. S. Nelson. 2005. "Acute vitamin D intoxication in a child." *Pediatrics* 116 (3): e453-6.

Begum, A., and S. M. Pereira. 1969. "Calcium balance studies on children accustomed to low calcium intakes." *British Journal of Nutrition* 23 (4): 905-11.

Besbas, N., A. Oner, O. Akhan, U. Saatci, A. Bakkaloglu, and R. Topaloglu. 1989. "Nephrocalcinosis due to vitamin D intoxication." *Turkish Journal of Pediatrics* 31 (3): 239-44.

Bonjour, J. P., A. L. Carrie, S. Ferrari, H. Clavien, D. Slosman, G. Theintz, and R. Rizzoli. 1997. "Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial." *Journal of Clinical Investigation* 99 (6): 1287-94.

Boteju, P. R. D., P. Bhaskaram, and V. Reddy. 1982. "Vitamin D requirements of Indian children." *Nutrition Reports International* 26 (1): 135-139.

Breslow, Norman E., Thomas Lumley, Christie M. Ballantyne, Lloyd E. Chambless, and Michal Kulich. 2009. "Using the whole cohort in the analysis of case-cohort data." *American journal of epidemiology* 169 (11): 1398-1405. <u>https://doi.org/10.1093/aje/kwp055.</u>

Brett, N. R., P. Lavery, S. Agellon, C. A. Vanstone, J. L. Maguire, F. Rauch, and H. A. Weiler. 2016. "Dietary vitamin D dose-response in healthy children 2 to 8 y of age: a 12-wk randomized controlled trial using fortified foods." *American Journal of Clinical Nutrition* 103 (1): 144-52. https://doi.org/https://dx.doi.org/10.3945/ajcn.115.115956.

Brett, N. R., C. A. Parks, P. Lavery, S. Agellon, C. A. Vanstone, M. Kaufmann, G. Jones, J. L. Maguire, F. Rauch, and H. A. Weiler. 2018. "Vitamin D status and functional health outcomes in children aged 2-8 y: a 6-mo vitamin D randomized controlled trial." *American Journal of Clinical Nutrition* 107 (3): 355-364. <u>https://doi.org/https://dx.doi.org/10.1093/ajcn/nqx062.</u>

Cadario, F., S. Savastio, V. Pagliardini, M. Bagnati, M. Vidali, F. Cerutti, I. Rabbone, F. Fontana, R. Lera, V. De Donno, A. Valori, G. Gruden, G. Bona, and G. Bruno. 2015. "Vitamin D levels at birth and risk of type 1 diabetes in childhood: a case-control study." *Acta Diabetologica* 52 (6): 1077-81.

Chan, G. M., C. C. Roberts, D. Folland, and R. Jackson. 1982. "Growth and bone mineralization of normal breast-fed infants and the effects of lactation on maternal bone mineral status." *American Journal of Clinical Nutrition* 36 (3): 438-43.

Chandy, D. D., J. Kare, S. N. Singh, A. Agarwal, V. Das, U. Singh, V. Ramesh, and V. Bhatia. 2016. "Effect of vitamin D supplementation, directly or via breast milk for term infants, on serum 25 hydroxyvitamin D and related biochemistry, and propensity to infection: a randomised placebocontrolled trial." *British Journal of Nutrition* 116 (1): 52-8. https://doi.org/https://dx.doi.org/10.1017/S0007114516001756.

Chen, Y., Y. Liu, H. Xue, Y. Bao, J. Luo, G. Tian, and G. Cheng. 2016. "[Association between dietary calcium/dairy intakes and overweight/obesity]." *Wei Sheng Yen Chiu/Journal of Hygiene Research* 45 (3): 402-8.

Chowdhury, R., S. Taneja, N. Bhandari, I. Kvestad, T. A. Strand, and M. K. Bhan. 2017. "Vitamin-D status and neurodevelopment and growth in young north Indian children: a secondary data analysis." *Nutrition Journal* 16 (1): 59.

Chung, M., E. M. Balk, M. Brendel, S. Ip, J. Lau, J. Lee, A. Lichtenstein, K. Patel, G. Raman, A. Tatsioni, T. Terasawa, and T. A. Trikalinos. 2009. "Vitamin D and calcium: a systematic review of health outcomes." *Evid Rep Technol Assess (Full Rep)* (183): 1-420.

Chung, M., M. Ruan, K.C. Cara, Q. Yao, L.P. Penkert, and J. Chen. 2020. "Vitamin D and calcium in children 0-36 months: a scoping review of health outcomes." *Journal of the American College of Nutrition*. [in press].

Clemente Yago, F., E. Cortes Castell, M. Moya Benavent, I. Ballester Galindo, A. Herrero Galiana, and M. J. Campello Oltra. 1989. "[Mineral metabolism of calcium, magnesium and phosphorus in the normal newborn infant]." *Anales Espanoles de Pediatria* 31 (6): 533-6.

Creo, A. L., J. S. Rosen, A. J. Ariza, K. M. Hidaka, and H. J. Binns. 2013. "Vitamin D levels, insulin resistance, and cardiovascular risks in very young obese children." *Journal of Pediatric Endocrinology* & *Metabolism* 26 (1): 97-104.

Dawodu, A., K. M. Salameh, N. S. Al-Janahi, A. Bener, and N. Elkum. 2019. "The Effect of High-Dose Postpartum Maternal Vitamin D Supplementation Alone Compared with Maternal Plus Infant Vitamin D Supplementation in Breastfeeding Infants in a High-Risk Population. A Randomized Controlled Trial." *Nutrients* 11 (7): 17. <u>https://doi.org/https://dx.doi.org/10.3390/nu11071632.</u>

Demir, K., H. Doneray, C. Kara, Z. Atay, S. Cetinkaya, A. Cayir, A. Anik, E. Eren, A. Ucakturk, G. Can Yilmaz, A. Torel Ergur, M. Kendirci, Z. Aycan, A. Bereket, M. Aydin, Z. Orbak, and B. Ozkan. 2019. "Comparison of Treatment Regimens in Management of Severe Hypercalcemia Due to Vitamin D Intoxication in Children." *Journal of clinical research in pediatric endocrinology* 11 (2): 140-148. https://doi.org/https://dx.doi.org/10.4274/jcrpe.galenos.2018.2018.0131.

DerSimonian, R., and N. Laird. 1986. "Meta-analysis in clinical trials." *Control Clin Trials* 7 (3): 177-88.

DeVizia, B., S. J. Fomon, S. E. Nelson, B. E. Edwards, and E. E. Ziegler. 1985. "Effect of dietary calcium on metabolic balance of normal infants." *Pediatric Research* 19 (8): 800-6.

Döneray, H., B. Özkan, A. Özkan, C. Koşan, Z. Orbak, and C. Karakelleoğlu. 2009. "The clinical and laboratory characteristics of vitamin D intoxication in children." *Turkish Journal of Medical Sciences* 39 (1): 1-4.

Down, P. F., A. Polak, and R. J. Regan. 1979. "A family with massive acute vitamin D intoxication." *Postgraduate Medical Journal* 55 (654): 897-902.

Economos, C. D., C. E. Moore, R. R. Hyatt, J. Kuder, T. Chen, S. N. Meydani, M. Meydani, E. Klein, R. M. Biancuzzo, and M. F. Holick. 2014. "Multinutrient-fortified juices improve vitamin D and vitamin E status in children: a randomized controlled trial." *Journal of the Academy of Nutrition & Dietetics* 114 (5): 709-17. https://doi.org/https://dx.doi.org/10.1016/j.jand.2013.07.027.

Eden, Jill. *Finding What Works in Health Care: Standards for Systematic Reviews*, edited by J. Eden, L. Levit, A. Berg and S. Morton. Washington (DC).:National Academies Press, 2011.

Ekbote, V. H., A. V. Khadilkar, S. A. Chiplonkar, N. M. Hanumante, V. V. Khadilkar, and M. Z. Mughal. 2011. "A pilot randomized controlled trial of oral calcium and vitamin D supplementation using fortified laddoos in underprivileged Indian toddlers." *European Journal of Clinical Nutrition* 65 (4): 440-6.

Elarqam, L., A. Babakhouya, S. Chaouki, S. Atmani, A. Bouharrou, and M. Hida. 2007. "Intoxication by vitamin D in infant." *Journal de Pediatrie et de Puericulture* 20 (5): 203-205. <u>https://doi.org/10.1016/j.jpp.2007.07.001.</u>

Enlund-Cerullo, M., L. Koljonen, E. Holmlund-Suila, H. Hauta-Alus, J. Rosendahl, S. Valkama, O. Helve, T. Hytinantti, H. Viljakainen, S. Andersson, O. Makitie, and M. Pekkinen. 2019. "Genetic Variation of the Vitamin D Binding Protein Affects Vitamin D Status and Response to Supplementation in Infants." *J Clin Endocrinol Metab* 104 (11): 5483-5498. <u>https://doi.org/10.1210/jc.2019-00630.</u>

Escribano, J., C. Rubio-Torrents, N. Ferre, V. Luque, V. Grote, M. Zaragoza-Jordana, M. Gispert-Llaurado, R. Closa-Monasterolo, and Group European Childhood Obesity Project. 2014. "Reduced bone mass in 7-year-old children with asymptomatic idiopathic hypercalciuria." *Annals of Nutrition & Metabolism* 64 (3-4): 304-13. <u>https://doi.org/https://dx.doi.org/10.1159/000365038.</u>

Evliyaoglu, O., M. Berberoglu, G. Ocal, P. Adiyaman, and Z. Aycan. 2001. "Severe hypercalcemia of an infant due to vitamin D toxicity associated with hypercholesterolemia." *Journal of Pediatric Endocrinology & Metabolism* 14 (7): 915-9.

Fabian, K., L. Velkey, and E. Fodor. 1990. "[Preventive value of vitamin D in various doses based on a prospective study of healthy infants]." *Orvosi Hetilap* 131 (9): 447-50.

Gallo, Sina, Kathryn Comeau, Catherine Vanstone, Sherry Agellon, Atul Sharma, Glenville Jones, Mary L'Abbe, Ali Khamessan, Celia Rodd, and Hope Weiler. 2013. "Effect of Different Dosages of Oral Vitamin D Supplementation on Vitamin D Status in Healthy, Breastfed Infants A Randomized Trial." *Jama-Journal of the American Medical Association* 309 (17): 1785-1792. <u>https://doi.org/10.1001/jama.2013.3404.</u>

Gallo, S., T. Hazell, C. A. Vanstone, S. Agellon, G. Jones, M. L'Abbe, C. Rodd, and H. A. Weiler. 2016. "Vitamin D supplementation in breastfed infants from Montreal, Canada: 25-hydroxyvitamin D and bone health effects from a follow-up study at 3 years of age." *Osteoporosis International* 27 (8): 2459-66. <u>https://doi.org/https://dx.doi.org/10.1007/s00198-016-3549-z.</u>

Gallo, S., A. Phan, C. A. Vanstone, C. Rodd, and H. A. Weiler. 2013. "The change in plasma 25hydroxyvitamin D did not differ between breast-fed infants that received a daily supplement of ergocalciferol or cholecalciferol for 3 months." *Journal of Nutrition* 143 (2): 148-53. <u>https://doi.org/https://dx.doi.org/10.3945/jn.112.167858.</u>

Garbim, B. B., D. Avila L, S. Z. P. Rigatto, Krds Quadros, V. M. S. Belangero, and R. B. Oliveira. 2017. "Hypercalcemia in children: three cases report with unusual clinical presentations." *Jornal Brasileiro de Nefrologia* 39 (2): 213-216. <u>https://doi.org/https://dx.doi.org/10.5935/0101-2800.20170036.</u>

Giunta, J. L. 1998. "Dental changes in hypervitaminosis D." Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics 85 (4): 410-3.

Gordon, Catherine M., Avery LeBoff Williams, Henry A. Feldman, Jessica May, Linda Sinclair, Alex Vasquez, and Joanne E. Cox. 2008. "Treatment of hypovitaminosis D in infants and toddlers." *Journal of Clinical Endocrinology & Metabolism* 93 (7): 2716-2721. <u>https://doi.org/10.1210/jc.2007-2790.</u>

Grant, C. C., J. Crane, E. A. Mitchell, J. Sinclair, A. Stewart, T. Milne, J. Knight, C. Gilchrist, and C. A. Camargo, Jr. 2016. "Vitamin D supplementation during pregnancy and infancy reduces aeroallergen sensitization: a randomized controlled trial." *Allergy* 71 (9): 1325-34. <u>https://doi.org/https://dx.doi.org/10.1111/all.12909.</u>

Grant, C. C., S. Kaur, E. Waymouth, E. A. Mitchell, R. Scragg, A. Ekeroma, A. Stewart, J. Crane, A. Trenholme, and C. A. Camargo, Jr. 2015. "Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial." *Acta Paediatrica* 104 (4): 396-404. <u>https://doi.org/https://dx.doi.org/10.1111/apa.12819.</u>

Grant, C. C., A. W. Stewart, R. Scragg, T. Milne, J. Rowden, A. Ekeroma, C. Wall, E. A. Mitchell, S. Crengle, A. Trenholme, J. Crane, and C. A. Camargo, Jr. 2014. "Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration." *Pediatrics* 133 (1): e143-53. <u>https://doi.org/10.1542/peds.2013-2602.</u>

Greenland, S., and M. P. Longnecker. 1992. "Methods for trend estimation from summarized dose-response data, with applications to meta-analysis." *Am J Epidemiol* 135 (11): 1301-9.

Greer, F. R., J. E. Searcy, R. S. Levin, J. J. Steichen, P. S. Steichen-Asche, and R. C. Tsang. 1982. "Bone mineral content and serum 25-hydroxyvitamin D concentrations in breast-fed infants with and without supplemental vitamin D: one-year follow-up." *Journal of Pediatrics* 100 (6): 919-22.

Gurkan, F., M. Davutoglu, M. Bosnak, A. Ece, B. Dikici, M. Bilici, and K. Haspolat. 2004. "Pamidronate treatment in acute vitamin D intoxication." *Journal of Endocrinological Investigation* 27 (7): 680-2. Guyatt, G., A. D. Oxman, E. A. Akl, R. Kunz, G. Vist, J. Brozek, S. Norris, Y. Falck-Ytter, P. Glasziou, H. DeBeer, R. Jaeschke, D. Rind, J. Meerpohl, P. Dahm, and H. J. Schunemann. 2011. "GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables." *J Clin Epidemiol* 64 (4): 383-94. https://doi.org/10.1016/j.jclinepi.2010.04.026.

Guyatt, G. H., A. D. Oxman, R. Kunz, G. E. Vist, Y. Falck-Ytter, H. J. Schunemann, and Grade Working Group. 2008. "What is "quality of evidence" and why is it important to clinicians?" *BMJ* 336 (7651): 995-8. <u>https://doi.org/10.1136/bmj.39490.551019.BE.</u>

Guyatt, G. H., A. D. Oxman, G. E. Vist, R. Kunz, Y. Falck-Ytter, P. Alonso-Coello, H. J. Schunemann, and Grade Working Group. 2008. "GRADE: an emerging consensus on rating quality of evidence and strength of recommendations." *BMJ* 336 (7650): 924-6. <u>https://doi.org/10.1136/bmj.39489.470347.AD.</u>

Handel, M. N., P. Frederiksen, A. Cohen, C. Cooper, B. L. Heitmann, and B. Abrahamsen. 2017. "Neonatal vitamin D status from archived dried blood spots and future risk of fractures in childhood: results from the D-tect study, a population-based case-cohort study." *American Journal of Clinical Nutrition* 106 (1): 155-161.

Hanna, F. M., D. A. Navarrete, and F. A. Hsu. 1970. "Calcium fatty acid absorption in term infants fed human milk and prepared formulas simulating human milk." *Pediatrics* 45 (2): 216-224.

Harbord, RM, and JPT Higgins. 2008. "Meta-Regression in Stata." The Stata Journal 8 (4): 493-519.

Harmonization of Approaches to Nutrient Reference Values: Applications to Young Children and Women of Reproductive Age. Washington (DC). The National Academies Press, 2018.

Harnot, J., S. Verma, S. Singhi, N. Sankhyan, N. Sachdeva, and B. Bharti. 2017. "Comparison of 300,000 and 600,000 IU Oral Vitamin-D Bolus for Vitamin-D Deficiency in Young Children." *Indian Journal of Pediatrics* 84 (2): 111-116. <u>https://doi.org/https://dx.doi.org/10.1007/s12098-016-2233-9.</u>

Hazell, T. J., S. Gallo, C. A. Vanstone, S. Agellon, C. Rodd, and H. A. Weiler. 2017. "Vitamin D supplementation trial in infancy: body composition effects at 3 years of age in a prospective follow-up study from Montreal." *Pediatric Obesity* 12 (1): 38-

47. https://doi.org/https://dx.doi.org/10.1111/ijpo.12105.

Heras Gironella, M., M. J. Olivan del Cacho, and J. Sierra Sirvent. 1982. "Renal complaints in vitamin D intoxication." *Revista Espanola de Pediatria* 38 (227): 319-326.

Hibbs, A. M., K. Ross, L. A. Kerns, C. Wagner, M. Fuloria, S. Groh-Wargo, T. Zimmerman, N. Minich, and C. Tatsuoka. 2018. "Effect of Vitamin D Supplementation on Recurrent Wheezing in Black Infants Who Were Born Preterm: The D-Wheeze Randomized Clinical Trial." *JAMA* 319 (20): 2086-2094. <u>https://doi.org/https://dx.doi.org/10.1001/jama.2018.5729.</u>

Hillman, L. S., E. Tack, D. G. Covell, N. E. Vieira, and A. L. Yergey. 1988. "Measurement of true calcium absorption in premature infants using intravenous 46Ca and oral 44Ca." *Pediatric Research* 23 (6): 589-94.

Hirschler, V., G. Maccallini, M. I. Tamborenea, C. Gonzalez, M. Sanchez, C. Molinari, Group San Antonio de Los Cobres Study, L. Castano, G. Colque, M. Hidalgo, and M. Urzagasti. 2014. "Improvement in lipid profile after vitamin D supplementation in indigenous argentine school children." *Cardiovascular & Hematological Agents in Medicinal Chemistry* 12 (1): 42-9. Ho, M. L., H. C. Yen, R. C. Tsang, B. L. Specker, X. C. Chen, and B. L. Nichols. 1985. "Randomized study of sunshine exposure and serum 25-OHD in breast-fed infants in Beijing, China." *Journal of Pediatrics* 107 (6): 928-31.

Holden, J. M., and L. E. Lemar. 2008. "Assessing vitamin D contents in foods and supplements: challenges and needs." *Am J Clin Nutr* 88 (2): 551S-553S. <u>https://doi.org/10.1093/ajcn/88.2.551S.</u>

Hollams, E. M., S. M. Teo, M. Kusel, B. J. Holt, K. E. Holt, M. Inouye, N. H. De Klerk, G. Zhang, P. D. Sly, P. H. Hart, and P. G. Holt. 2017. "Vitamin D over the first decade and susceptibility to childhood allergy and asthma." *Journal of Allergy & Clinical Immunology* 139 (2): 472-481.e9.

Hollis, B. W., C. L. Wagner, C. R. Howard, M. Ebeling, J. R. Shary, P. G. Smith, S. N. Taylor, K.
Morella, R. A. Lawrence, and T. C. Hulsey. 2015. "Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial." *Pediatrics* 136 (4): 625-34. <u>https://doi.org/https://dx.doi.org/10.1542/peds.2015-1669.</u>

Holmlund-Suila, Elisa, Heli Viljakainen, Timo Hytinantti, Christel Lamberg-Allardt, Sture Andersson, and Outi Makitie. 2012. "High-Dose Vitamin D Intervention in Infants-Effects on Vitamin D Status, Calcium Homeostasis, and Bone Strength." *Journal of Clinical Endocrinology & Metabolism* 97 (11): 4139-4147. <u>https://doi.org/10.1210/jc.2012-1575.</u>

Holstgemeiner, D., M. Gemeiner, I. Pilz, and W. Swoboda. 1978. "PLASMA 25-HYDROXYCHOLECALCIFEROL AFTER DAILY VITAMIN-D ADMINISTRATION IN COMPARISON WITH MASSIVE SINGLE-DOSE PROPHYLAXIS." *Wiener Klinische Wochenschrift* 90 (14): 509-512.

Hoppe, B., H. E. Gnehm, M. Wopmann, T. Neuhaus, U. Willi, and E. Leumann. 1992. "[Vitamin D poisoning in infants: a preventable cause of hypercalciuria and nephrocalcinosis]." *Schweizerische Medizinische Wochenschrift. Journal Suisse de Medecine* 122 (8): 257-62.

Huynh, J., T. Lu, D. Liew, J. C. Doery, R. Tudball, M. Jona, R. Bhamjee, and C. P. Rodda. 2017. "Vitamin D in newborns. A randomised controlled trial comparing daily and single oral bolus vitamin D in infants." *Journal of Paediatrics & Child Health* 53 (2): 163-169. <u>https://doi.org/https://dx.doi.org/10.1111/jpc.13338.</u>

Institute of Medicine, . 2011. *Finding What Works in Health Care: Standards for Systematic Reviews*. Edited by J. Eden, L. Levit, A. Berg and S. Morton. Washington, D.C.

Jackson, D., I. R. White, and R. D. Riley. 2013. "A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression." *Biom J* 55 (2): 231-45. <u>https://doi.org/10.1002/bimj.201200152.</u>

Jacobsen, R., S. U. Thorsen, A. S. Cohen, M. Lundqvist, P. Frederiksen, C. B. Pipper, F. Pociot, L. C. Thygesen, A. Ascherio, J. Svensson, and B. L. Heitmann. 2016. "Neonatal vitamin D status is not associated with later risk of type 1 diabetes: results from two large Danish population-based studies." *Diabetologia* 59 (9): 1871-81.

Jensen, C. B., M. Lundqvist, T. I. A. Sorensen, and B. L. Heitmann. 2017. "Neonatal Vitamin D Levels in Relation to Risk of Overweight at 7 Years in the Danish D-Tect Case-Cohort Study." *Obesity Facts* 10 (3): 273-283. <u>https://doi.org/https://dx.doi.org/10.1159/000471881.</u>

Johansson, Anna L.V. 2016. "The Case-Cohort design: What it is and how it can be used in registerbased research." 13 September, 2016, Presentation for Stata Users Group Meeting, Oslo. stata.com: Stata.

Jung, H., H. Borowiec, and R. Grenda. 1984. "[Renal failure in hypercalcemic nephropathy caused by vitamin D 3 poisoning]." *Pediatria Polska* 59 (1): 51-5.

Karlsland Akeson, P., K. E. Akesson, T. Lind, O. Hernell, S. A. Silfverdal, and I. Ohlund. 2018. "Vitamin D Intervention and Bone: A Randomized Clinical Trial in Fair- and Dark-skinned Children at Northern Latitudes." *Journal of Pediatric Gastroenterology & Nutrition* 67 (3): 388-394.

Ketha, H., H. Wadams, A. Lteif, and R. J. Singh. 2015. "Iatrogenic vitamin D toxicity in an infant--a case report and review of literature." *Journal of Steroid Biochemistry & Molecular Biology* 148: 14-8. <u>https://doi.org/https://dx.doi.org/10.1016/j.jsbmb.2015.01.022.</u>

Kienzle, E. 1998. "Factorial calculation of nutrient requirements in lactating queens." *J Nutr* 128 (12 Suppl): 2609S-2614S. <u>https://doi.org/10.1093/jn/128.12.2609S.</u>

Kim, Ryung S. 2013. "Analysis of Nested Case-Control Study Designs: Revisiting the Inverse Probability Weighting Method." *Communications for statistical applications and methods* 20 (6): 455-466. <u>https://doi.org/10.5351/CSAM.2013.20.6.455.</u>

Kumar, G. T., H. S. Sachdev, H. Chellani, A. M. Rehman, V. Singh, H. Arora, and S. Filteau. 2011. "Effect of weekly vitamin D supplements on mortality, morbidity, and growth of low birthweight term infants in India up to age 6 months: randomised controlled trial." *BMJ* 342: d2975. https://doi.org/https://dx.doi.org/10.1136/bmj.d2975.

Kunz, C., H. Vonlilienfeldtoal, M. Niesen, and W. Burmeister. 1982. "25-HYDROXY-VITAMIN-D IN SERUM OF NEWBORNS AND INFANTS DURING CONTINUOUS ORAL VITAMIN-D TREATMENT." *Padiatrie Und Padologie* 17 (2): 181-185.

Lee, S. H., S. M. Kim, H. S. Park, K. M. Choi, G. J. Cho, B. J. Ko, and J. H. Kim. 2013. "Serum 25hydroxyvitamin D levels, obesity and the metabolic syndrome among Korean children." *Nutrition Metabolism & Cardiovascular Diseases* 23 (8): 785-91. https://doi.org/https://dx.doi.org/10.1016/j.numecd.2012.04.013.

Lee, W. T., S. S. Leung, S. J. Fairweather-Tait, D. M. Leung, H. S. Tsang, J. Eagles, T. Fox, S. H. Wang, Y. C. Xu, W. P. Zeng, and et al. 1994. "True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca)." *British Journal of Nutrition* 72 (6): 883-97.

Lee, W. T., S. S. Leung, D. M. Leung, H. S. Tsang, J. Lau, and J. C. Cheng. 1995. "A randomized double-blind controlled calcium supplementation trial, and bone and height acquisition in children." *British Journal of Nutrition* 74 (1): 125-39.

Lee, W. T., S. S. Leung, D. M. Leung, S. H. Wang, Y. C. Xu, W. P. Zeng, and J. C. Cheng. 1997. "Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement." *Acta Paediatrica* 86 (6): 570-6.

Lee, W. T., S. S. Leung, S. H. Wang, Y. C. Xu, W. P. Zeng, J. Lau, S. J. Oppenheimer, and J. C. Cheng. 1994. "Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet." *American Journal of Clinical Nutrition* 60 (5): 744-50.

Lichtenstein, A. H., E. A. Yetley, and J. Lau. 2008. "Application of systematic review methodology to the field of nutrition." *J Nutr* 138 (12): 2297-306. <u>https://doi.org/10.3945/jn.108.097154.</u>

Loeb, M., A. D. Dang, V. D. Thiem, V. Thanabalan, B. Wang, N. B. Nguyen, H. T. M. Tran, T. M. Luong, P. Singh, M. Smieja, J. Maguire, and E. Pullenayegum. 2019. "Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial." *Influenza & Other Respiratory Viruses* 13 (2): 176-183. <u>https://doi.org/https://dx.doi.org/10.1111/irv.12615.</u>

Lynch, M. F., I. J. Griffin, K. M. Hawthorne, Z. Chen, M. Hamzo, and S. A. Abrams. 2007. "Calcium balance in 1-4-y-old children." *American Journal of Clinical Nutrition* 85 (3): 750-4.

Madar, A. A., K. I. Klepp, and H. E. Meyer. 2009. "Effect of free vitamin D(2) drops on serum 25hydroxyvitamin D in infants with immigrant origin: a cluster randomized controlled trial." *European Journal of Clinical Nutrition* 63 (4): 478-84. <u>https://doi.org/https://dx.doi.org/10.1038/sj.ejcn.1602982.</u>

Makinen, M., J. Mykkanen, M. Koskinen, V. Simell, R. Veijola, H. Hyoty, J. Ilonen, M. Knip, O. Simell, and J. Toppari. 2016. "Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes." *Journal of Clinical Endocrinology & Metabolism* 101 (2): 723-9. <u>https://doi.org/https://dx.doi.org/10.1210/jc.2015-3504.</u>

Manaseki-Holland, S., Z. Maroof, J. Bruce, M. Z. Mughal, M. I. Masher, Z. A. Bhutta, G. Walraven, and D. Chandramohan. 2012. "Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial." *Lancet* 379 (9824): 1419-27. <u>https://doi.org/https://dx.doi.org/10.1016/S0140-6736(11)61650-4.</u>

Mandlik, R., Z. Mughal, A. Khadilkar, S. Chiplonkar, V. Ekbote, N. Kajale, V. Patwardhan, R. Padidela, and V. Khadilkar. 2020. "Occurrence of infections in schoolchildren subsequent to supplementation with vitamin D-calcium or zinc: a randomized, double-blind, placebo-controlled trial." *Nutr Res Pract* 14 (2): 117-126. <u>https://doi.org/10.4162/nrp.2020.14.2.117.</u>

Mandlik, R. M., Z. M. Mughal, A. V. Khadilkar, V. H. Ekbote, N. A. Kajale, V. G. Patwardhan, V. V. Khadilkar, and R. Padidela. 2019. "Paradoxical Response of Parathyroid Hormone to Vitamin Da[Euro sign]"Calcium Supplementation in Indian Children." *Journal of pediatrics*.

Manz, F., L. Diekmann, and G. J. Stock. 1989. "Effect of calcium supplementation on calcium and phosphorus balance and renal net acid excretion in preterm infants fed a standard formula." *Acta Paediatrica Scandinavica* 78 (4): 525-31.

Markestad, T., V. Hesse, M. Siebenhuner, G. Jahreis, L. Aksnes, W. Plenert, and D. Aarskog. 1987. "INTERMITTENT HIGH-DOSE VITAMIN-D PROPHYLAXIS DURING INFANCY - EFFECT ON VITAMIN-D METABOLITES, CALCIUM, AND PHOSPHORUS." *American Journal of Clinical Nutrition* 46 (4): 652-658.

Marwaha, R. K., A. Mithal, N. Bhari, G. Sethuraman, S. Gupta, M. Shukla, A. Narang, A. Chadda, N. Gupta, V. Sreenivas, and M. A. Ganie. 2018. "Supplementation with Three Different Daily Doses of Vitamin D3 in Healthy Pre-pubertal School Girls: A Cluster Randomized Trial." *Indian Pediatrics* 55 (11): 951-956.

Misselwitz, J., and V. Hesse. 1986. "[Hypercalcemia following prophylactic vitamin D administration]." *Kinderarztliche Praxis* 54 (8): 431-8.

Misselwitz, J., and E. Kauf. 1981. "[Urinary calcium in healthy children as the basis for hypercalciuria in calcium nephrolithiasis]." *Kinderarztliche Praxis* 49 (2): 64-71.

Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and Prisma Group. 2009. "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement." *PLoS Med* 6 (7): e1000097. <u>https://doi.org/10.1371/journal.pmed.1000097</u>.

Molloy, J., J. J. Koplin, K. J. Allen, M. L. K. Tang, F. Collier, J. B. Carlin, R. Saffery, D. Burgner, S. Ranganathan, T. Dwyer, A. C. Ward, M. Moreno-Betancur, M. Clarke, A. L. Ponsonby, P. Vuillermin, and B. I. S. Investigator Group. 2017. "Vitamin D insufficiency in the first 6 months of infancy and challenge-proven IgE-mediated food allergy at 1 year of age: a case-cohort study." *Allergy* 72 (8): 1222-1231. https://doi.org/https://dx.doi.org/10.1111/all.13122.

Moodley, A., and S. A. Spector. 2015. "Single high-dose vitamin D at birth corrects vitamin D deficiency in infants in Mexico." *International Journal of Food Sciences & Nutrition* 66 (3): 336-41. <u>https://doi.org/https://dx.doi.org/10.3109/09637486.2014.992006.</u>

Morawska, Z., D. Zwolinska, U. Berny, and I. Makulska. 1988. "[Urinary calculi in children]." *Wiadomosci Lekarskie* 41 (17): 1147-50.

Moreira, P., C. Padez, I. Mourao, and V. Rosado. 2005. "Dietary calcium and body mass index in Portuguese children." *European Journal of Clinical Nutrition* 59 (7): 861-7.

Mortensen, Charlotte, Camilla T. Damsgaard, Hanne Hauger, Christian Ritz, Susan A. Lanham-New, Taryn J. Smith, Aine Hennessy, Kirsten Dowling, Kevin D. Cashman, Mairead Kiely, and Christian Molgaard. 2016. "Estimation of the dietary requirement for vitamin D in white children aged 4-8 y: a randomized, controlled, dose-response trial." *American Journal of Clinical Nutrition* 104 (5): 1310-1317. <u>https://doi.org/10.3945/ajcn.116.136697.</u>

Mortensen, C., C. Molgaard, H. Hauger, M. Kristensen, and C. T. Damsgaard. 2019. "Winter vitamin D₃ supplementation does not increase muscle strength, but modulates the IGF-axis in young children." *European Journal of Nutrition* 58 (3): 1183-1192.

Moya, M., E. Cortes, M. Juste, A. Vera, and J. Gonzalez de Dios. 1998. "[Absorptive pattern of individual fatty acids and total fat in full term babies. Its stability in the absence of lactose]." *Anales Espanoles de Pediatria* 48 (5): 515-21.

Moya, M., and E. Domenech. 1982. "Role of calcium-phosphate ratio of milk formulae on calcium balance in low weight infants during the first three days of life." *Pediatric Research* 16 (8): 675-81.

Murthy, H. B., S. K. Reddy, M. Swaminathan, and V. Subrahmanyan. 1955. "The metabolism of nitrogen, calcium and phosphorus in undernourished children. 1. Adaptation to low intake of calories, protein, calcium and phosphorus." *British Journal of Nutrition* 9 (3): 203-9.

Nanulescu, M., and R. Manasia. 1984. "Hypercalcemia due to intoxication with vitamin D." *Pediatrie* 33 (3): 279-284.

Natarajan, C. K., M. J. Sankar, R. Agarwal, O. T. Pratap, V. Jain, N. Gupta, A. K. Gupta, A. K. Deorari, V. K. Paul, and V. Sreenivas. 2014. "Trial of daily vitamin D supplementation in preterm infants." *Pediatrics* 133 (3): e628-34. <u>https://doi.org/https://dx.doi.org/10.1542/peds.2012-3395.</u>

Navas-Nazario, A., L. Fangyong, V. Northrup, P. Weiss, D. Cole, T. Carpenter, and A. Bazzy-Asaad. 2011. "Effect of vitamin D binding protein (DBP) genotype on the development of asthma in young children." *American Journal of Respiratory and Critical Care Medicine* 183 (1).

Norris, J. M., H. S. Lee, B. Frederiksen, I. Erlund, U. Uusitalo, J. Yang, A. Lernmark, O. Simell, J. Toppari, M. Rewers, A. G. Ziegler, J. X. She, S. Onengut-Gumuscu, W. M. Chen, S. S. Rich, J.

Sundvall, B. Akolkar, J. Krischer, S. M. Virtanen, W. Hagopian, and Teddy Study Group. 2018. "Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity." Diabetes 67 (1): 146-154. https://doi.org/https://dx.doi.org/10.2337/db17-0802.

O'Brien, K. O., and S. A. Abrams. 1994. "Effects of development on techniques for calcium stable isotope studies in children." Biological Mass Spectrometry 23 (6): 357-61.

Ohlund, Inger, Torbjorn Lind, Olle Hernell, Sven-Arne Silfverdal, and Pia Karlsland Akeson. 2017. "Increased vitamin D intake differentiated according to skin color is needed to meet requirements in voung Swedish children during winter: a double-blind randomized clinical trial." American Journal of Clinical Nutrition 106 (1): 105-112. https://doi.org/10.3945/ajcn.116.147108.

Oliveri, B., H. Cassinelli, C. Mautalen, and M. Ayala. 1996. "Vitamin D prophylaxis in children with a single dose of 150000 IU of vitamin D." European Journal of Clinical Nutrition 50 (12): 807-810.

Otto-Buczkowska, E., and F. Kokot. 1982. "[Hypercalcemia after oral administration of preventive doses of vitamin D]." Polski Tygodnik Lekarski 37 (32): 943-5.

Ouzzani, Mourad, Hossam Hammady, Zbys Fedorowicz, and Ahmed Elmagarmid. 2016. "Rayyan-a web and mobile app for systematic reviews." Systematic Reviews 5 (1): 210. https://doi.org/10.1186/s13643-016-0384-4.

Park, M. J., R. Namgung, D. H. Kim, and R. C. Tsang. 1998. "Bone mineral content is not reduced despite low vitamin D status in breast milk-fed infants versus cow's milk based formula-fed infants." J Pediatr 132 (4): 641-5. https://doi.org/10.1016/s0022-3476(98)70353-1.

Pittard, W. B., 3rd, K. M. Geddes, T. C. Hulsey, and B. W. Hollis. 1991. "How much vitamin D for neonates?" American Journal of Diseases of Children 145 (10): 1147-9.

Pludowski, P., M. Jaworski, A. Niemirska, M. Litwin, M. Szalecki, E. Karczmarewicz, and J. Michalkiewicz. 2014. "Vitamin D status, body composition and hypertensive target organ damage in primary hypertension." Journal of Steroid Biochemistry & Molecular Biology 144 Pt A: 180-4. https://doi.org/https://dx.doi.org/10.1016/j.jsbmb.2013.10.026.

Ponnapakkam, T., E. Bradford, and R. Gensure. 2010. "A treatment trial of vitamin D supplementation in breast-fed infants: universal supplementation is not necessary for rickets prevention in Southern Louisiana." Clinical Pediatrics 49 (11): 1053-

60. https://doi.org/https://dx.doi.org/10.1177/0009922810376320.

Rooze, S., F. Mathieu, W. Claus, T. Yangzom, D. Yangzom, P. Goyens, and V. de Maertelaer. 2016. "Effect of calcium and vitamin D on growth, rickets and Kashin-Beck disease in 0- to 5-year-old children in a rural area of central Tibet." Tropical Medicine & International Health 21 (6): 768-75. https://doi.org/https://dx.doi.org/10.1111/tmi.12706.

Rosendahl, J., A. S. Pelkonen, O. Helve, H. Hauta-Alus, E. Holmlund-Suila, S. Valkama, M. Enlund-Cerullo, H. Viljakainen, T. Hytinantti, O. Makitie, S. Andersson, and M. J. Makela. 2019. "High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants." Journal of Pediatrics 209: 139-145.e1. https://doi.org/https://dx.doi.org/10.1016/j.jpeds.2019.02.021.

Rosendahl, J., S. Valkama, E. Holmlund-Suila, M. Enlund-Cerullo, H. Hauta-Alus, O. Helve, T. Hytinantti, E. Levalahti, E. Kajantie, H. Viljakainen, O. Makitie, and S. Andersson. 2018. "Effect of Higher vs Standard Dosage of Vitamin D3 Supplementation on Bone Strength and Infection in Healthy Infants: A Randomized Clinical Trial." *JAMA Pediatrics* 172 (7): 646-654. <u>https://doi.org/https://dx.doi.org/10.1001/jamapediatrics.2018.0602.</u>

Ross, S. G. 1952. "Vitamin D intoxication in infancy; a report of four cases." *Journal of Pediatrics* 41 (6): 815-22.

Rowicka, G., J. Ambroszkiewicz, M. Strucinska, H. Dylag, and M. Golebiowska-Wawrzyniak. 2012. "[The evaluation of selected parameters of calcium and phosphorus metabolism in children with cow's milk allergy]." *Medycyna Wieku Rozwojowego* 16 (2): 109-16.

Rueter, K., A. P. Jones, A. Siafarikas, E. M. Lim, N. Bear, P. S. Noakes, S. L. Prescott, and D. J. Palmer. 2019. "Direct infant UV light exposure is associated with eczema and immune development." *Journal of Allergy & Clinical Immunology* 143 (3): 1012-1020.e2. <u>https://doi.org/https://dx.doi.org/10.1016/j.jaci.2018.08.037.</u>

Russell, R., M. Chung, E. M. Balk, S. Atkinson, E. L. Giovannucci, S. Ip, A. H. Lichtenstein, S. T. Mayne, G. Raman, A. C. Ross, T. A. Trikalinos, K. P. West, Jr., and J. Lau. 2009. "Opportunities and challenges in conducting systematic reviews to support the development of nutrient reference values: vitamin A as an example." *Am J Clin Nutr* 89 (3): 728-33. <u>https://doi.org/10.3945/ajcn.2008.27154.</u>

Santos, F., D. Suarez, S. Malaga, and M. Crespo. 1987. "Idiopathic hypercalciuria in children: pathophysiologic considerations of renal and absorptive subtypes." *Journal of Pediatrics* 110 (2): 238-43.

Sezer, R. G., T. Guran, C. Paketci, L. P. Seren, A. Bozaykut, and A. Bereket. 2012. "Comparison of oral alendronate versus prednisolone in treatment of infants with vitamin D intoxication." *Acta Paediatrica* 101 (3): e122-5. <u>https://doi.org/https://dx.doi.org/10.1111/j.1651-2227.2011.02497.x.</u>

Shajari, Ahmad, Mehrdad Shakiba, Forough Nourani, Maryam Zaki, and Maryam Kheirandish. 2009. "Urinary Calcium/Creatinin Ratio with Different Dosages of Vitamin D3 Prophylaxis in Infants." *Iranian Journal of Pediatrics* 19 (2): 159-163.

Shakiba, M., A. Pahloosye, M. Mirouliaei, and Z. Islami. 2014. "Comparison of two regimens of vitamin D supplementation for vitamin D-deficient neonates." *Singapore Medical Journal* 55 (5): 266-70.

Shakiba, M., S. Sadr, Z. Nefei, H. Mozaffari-Khosravi, M. H. Lotfi, and M. H. Bemanian. 2010. "Combination of bolus dose vitamin D with routine vaccination in infants: a randomised trial." *Singapore Medical Journal* 51 (5): 440-445.

Sharma, A. K., S. Gallo, C. A. Vanstone, S. Agellon, M. L'Abbe, A. Khamessan, K. Comeau, H. A. Weiler, and C. Rodd. 2016. "Parathyroid hormone-ionized calcium dynamics over the first year of life." *Journal of Pediatric Endocrinology & Metabolism* 29 (6): 709-14. <u>https://doi.org/10.1515/jpem-2015-0240.</u>

Siafarikas, A., H. Piazena, U. Feister, M. K. Bulsara, H. Meffert, and V. Hesse. 2011. "Randomised controlled trial analysing supplementation with 250 versus 500 units of vitamin D3, sun exposure and surrounding factors in breastfed infants." *Archives of Disease in Childhood* 96 (1): 91-5. <u>https://doi.org/https://dx.doi.org/10.1136/adc.2009.178301.</u>

Simpson, M., H. Brady, X. Yin, J. Seifert, K. Barriga, M. Hoffman, T. Bugawan, A. E. Baron, R. J. Sokol, G. Eisenbarth, H. Erlich, M. Rewers, and J. M. Norris. 2011. "No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the

Diabetes Autoimmunity Study in the Young (DAISY)." *Diabetologia* 54 (11): 2779-88. <u>https://doi.org/https://dx.doi.org/10.1007/s00125-011-2278-2.</u>

Singh, H., A. Maria, A. Shukla, N. Sharma, K. Mani, and M. K. Das. 2018. "Relation of Vitamin D supplementation, upto six months of age with total and bone specifc alkaline phosphatase: a randomised control trial." *Journal of clinical and diagnostic research* 12 (10): SC01-SC05.

Specht, I. O., J. Janbek, F. Thorsteinsdottir, P. Frederiksen, and B. L. Heitmann. 2019. "Neonatal vitamin D levels and cognitive ability in young adulthood." *European Journal of Nutrition*.

Specker, B., and T. Binkley. 2003. "Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children." *Journal of Bone & Mineral Research* 18 (5): 885-92.

Specker, B. L., A. Beck, H. Kalkwarf, and M. Ho. 1997. "Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life." *Pediatrics* 99 (6): E12.

Stellinga-Boelen, A. A., P. A. Wiegersma, H. Storm, C. M. Bijleveld, and H. J. Verkade. 2007. "Vitamin D levels in children of asylum seekers in The Netherlands in relation to season and dietary intake." *European Journal of Pediatrics* 166 (3): 201-6.

Sterne, J. A. C., J. Savovic, M. J. Page, R. G. Elbers, N. S. Blencowe, I. Boutron, C. J. Cates, H. Y. Cheng, M. S. Corbett, S. M. Eldridge, J. R. Emberson, M. A. Hernan, S. Hopewell, A. Hrobjartsson, D. R. Junqueira, P. Juni, J. J. Kirkham, T. Lasserson, T. Li, A. McAleenan, B. C. Reeves, S. Shepperd, I. Shrier, L. A. Stewart, K. Tilling, I. R. White, P. F. Whiting, and J. P. T. Higgins. 2019. "RoB 2: a revised tool for assessing risk of bias in randomised trials." *BMJ* 366: 14898. <u>https://doi.org/10.1136/bmj.14898.</u>

Sudfeld, C. R., C. Duggan, S. Aboud, R. Kupka, K. P. Manji, R. Kisenge, and W. W. Fawzi. 2015. "Vitamin D status is associated with mortality, morbidity, and growth failure among a prospective cohort of HIV-infected and HIV-exposed Tanzanian infants." *Journal of Nutrition* 145 (1): 121-7. <u>https://doi.org/https://dx.doi.org/10.3945/jn.114.201566.</u>

Sutton, A., R. H. Mole, and D. Barltrop. 1977. "Urinary and faecal excretion of marker calcium (46Ca) by low birthweight infants." *Archives of Disease in Childhood* 52 (1): 50-55.

Talaat, I. M., N. M. Kamal, H. A. Alghamdi, A. A. Alharthi, and M. A. Alshahrani. 2016. "A randomized clinical trial comparing 3 different replacement regimens of vitamin D in clinically asymptomatic pediatrics and adolescents with vitamin D insufficiency." *Italian Journal of Pediatrics* 42 (1): 106.

Thacher, T. D., P. R. Fischer, C. O. Isichei, A. I. Zoakah, and J. M. Pettifor. 2012. "Prevention of nutritional rickets in Nigerian children with dietary calcium supplementation." *Bone* 50 (5): 1074-80. <u>https://doi.org/10.1016/j.bone.2012.02.010.</u>

Thorsen, S. U., C. B. Pipper, M. Alberdi-Saugstrup, S. Nielsen, A. Cohen, M. Lundqvist, L. C. Thygesen, A. Ascherio, and J. Svensson. 2017. "No association between vitamin D levels around time of birth and later risk of developing oligo- and polyarticular juvenile idiopathic arthritis: a Danish case-cohort study." *Scandinavian Journal of Rheumatology* 46 (2): 104-111.

Tornhammar, P., P. Ueda, M. Hult, H. Simila, D. Eyles, and M. Norman. 2014. "Season of birth, neonatal vitamin D status, and cardiovascular disease risk at 35 y of age: a cohort study from Sweden." *American Journal of Clinical Nutrition* 99 (3): 472-8.

Trilok-Kumar, G., M. Kaur, A. M. Rehman, H. Arora, M. M. Rajput, R. Chugh, A. Kurpad, H. S. Sachdev, and S. Filteau. 2015. "Effects of vitamin D supplementation in infancy on growth, bone parameters, body composition and gross motor development at age 3-6 years: follow-up of a randomized controlled trial." *International Journal of Epidemiology* 44 (3): 894-905. <u>https://doi.org/https://dx.doi.org/10.1093/ije/dyv116.</u>

Umaretiya, P. J., T. D. Thacher, P. R. Fischer, S. S. Cha, and J. M. Pettifor. 2013. "Bone mineral density in Nigerian children after discontinuation of calcium supplementation." *Bone* 55 (1): 64-8. <u>https://doi.org/https://dx.doi.org/10.1016/j.bone.2013.03.017.</u>

Ünal, E., Y. Koksal, S. Keles, H. Artac, I. Reisli, and M. Energin. 2007. "Iatrogenic vitamin D intoxiciation in infancy: Three cases." *Marmara Medical Journal* 20 (1): 47-51.

Valkama, S., E. Holmlund-Suila, M. Enlund-Cerullo, J. Rosendahl, H. Hauta-Alus, O. Helve, T. Hytinantti, H. Viljakainen, S. Andersson, and O. Makitie. 2017. "No Severe Hypercalcemia with Daily Vitamin D3 Supplementation of up to 30 micro g during the First Year of Life." *Hormone research in paediatrics* 88 (2): 147-154. <u>https://doi.org/https://dx.doi.org/10.1159/000477298.</u>

van Stuijvenberg, M. E., J. Nel, S. E. Schoeman, C. J. Lombard, L. M. du Plessis, and M. A. Dhansay. 2015. "Low intake of calcium and vitamin D, but not zinc, iron or vitamin A, is associated with stunting in 2- to 5-year-old children." *Nutrition* 31 (6): 841-6.

Vanstone, M. B., S. E. Oberfield, L. Shader, L. Ardeshirpour, and T. O. Carpenter. 2012. "Hypercalcemia in children receiving pharmacologic doses of vitamin D." *Pediatrics* 129 (4): e1060-3.

Videhult, F. K., I. Öhlund, O. Hernell, and C. E. West. 2016. "Body mass but not Vitamin D status is associated with bone mineral content and density in young school children in northern Sweden." *Food and Nutrition Research* 60.

Wadia, Ushma, Wayne Soon, Paola Chivers, Aesen Thambiran, David Burgner, Sarah Cherian, and Aris Siafarikas. 2018. "Randomised Controlled Trial Comparing Daily Versus Depot Vitamin D3 Therapy in 0-16-Year-Old Newly Settled Refugees in Western Australia Over a Period of 40 Weeks." *Nutrients* 10 (3). <u>https://doi.org/10.3390/nu10030348.</u>

Wells, G, B Shea, D O'Connell, J Peterson, V Welch, M Losos, and P Tugwell. 2013. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed 6/27/2020.

Wicklow, B., S. Gallo, A. Majnemer, C. Vanstone, K. Comeau, G. Jones, M. L'Abbe, A. Khamessan, A. Sharma, H. Weiler, and C. Rodd. 2016. "Impact of Vitamin D Supplementation on Gross Motor Development of Healthy Term Infants: A Randomized Dose-Response Trial." *Physical & Occupational Therapy in Pediatrics* 36 (3): 330-

42. https://doi.org/https://dx.doi.org/10.3109/01942638.2015.1050150.

World Health Organization, . 2020. "FAO/WHO nutrient requirements for children aged 0–36 months.". <u>https://www.who.int/nutrition/topics/nutrient-requirements-children-overview/en/.</u>

Wu, D. M., X. Wen, X. R. Han, S. Wang, Y. J. Wang, M. Shen, S. H. Fan, J. Zhuang, M. Q. Li, B. Hu, C. H. Sun, Y. X. Bao, J. Yan, J. Lu, and Y. L. Zheng. 2018. "Relationship Between Neonatal Vitamin D at Birth and Risk of Autism Spectrum Disorders: the NBSIB Study." *Journal of Bone & Mineral Research* 33 (3): 458-466. <u>https://doi.org/https://dx.doi.org/10.1002/jbmr.3326.</u>

Yetley, E. A., A. J. MacFarlane, L. S. Greene-Finestone, C. Garza, J. D. Ard, S. A. Atkinson, D. M. Bier, A. L. Carriquiry, W. R. Harlan, D. Hattis, J. C. King, D. Krewski, D. L. O'Connor, R. L. Prentice, J. V. Rodricks, and G. A. Wells. 2017. "Options for basing Dietary Reference Intakes (DRIs) on chronic disease endpoints: report from a joint US-/Canadian-sponsored working group." *Am J Clin Nutr* 105 (1): 249S-285S. <u>https://doi.org/10.3945/ajcn.116.139097.</u>

Zeghoud, F., H. Benmekhbi, N. Djeghri, and M. Garabedian. 1994. "VITAMIN-D PROPHYLAXIS DURING INFANCY COMPARISON OF THE LONG-TERM EFFECTS OF 3 INTERMITTENT DOSES (15-MG, 5-MG, OR 2.5-MG) ON 25-HYDROXYVITAMIN-D CONCENTRATIONS." *American Journal of Clinical Nutrition* 60 (3): 393-396.

Zeghoud, F., C. Vervel, H. Guillozo, O. WalrantDebray, H. Boutignon, and M. Garabedian. 1997. "Subclinical vitamin D deficiency in neonates: Definition and response to vitamin D supplements." *American Journal of Clinical Nutrition* 65 (3): 771-778.

Zhang, H., S. Liu, Y. Si, S. Zhang, Y. Tian, Y. Liu, H. Li, and Z. Zhu. 2019. "Natural sunlight plus vitamin D supplementation ameliorate delayed early motor development in newborn infants from maternal perinatal depression." *Journal of Affective Disorders* 257: 241-249.

Zhou, J., J. Du, L. Huang, Y. Wang, Y. Shi, and H. Lin. 2018. "Preventive Effects of Vitamin D on Seasonal Influenza A in Infants: A Multicenter, Randomized, Open, Controlled Clinical Trial." *Pediatric Infectious Disease Journal* 37 (8): 749-754. <u>https://doi.org/https://dx.doi.org/10.1097/INF.00000000001890.</u>

Ziegler, E. E., S. E. Nelson, and J. M. Jeter. 2014. "Vitamin D supplementation of breastfed infants: a randomized dose-response trial." *Pediatric Research* 76 (2): 177-83. <u>https://doi.org/https://dx.doi.org/10.1038/pr.2014.76.</u>