
Submitted to the Annals of Applied Statistics

SUPPLEMENT TO: “ESTIMATION OF CELL LINEAGE
TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS”

By Jean Feng, William S. DeWitt III, Aaron McKenna, Noah
Simon, Amy Willis, Frederick A. Matsen IV

APPENDIX A: USEFUL GUIDES FOR READING THE PROOFS

Symbol Description Eq.

XN(t) Markov process along branch ending with node N

aN Observed allele at leaf N
pos(j) Positions of target j in the unmodified barcode
c(j) Cut site of target j

Leaves(N) Leaves of node N

Desc(N) Descendants of node N

TargStat(a) Status of targets in allele a. 1 in position j indicates tar-
get j is inactive

(2)

IT[p0, p1, s, j0, j1] Indel tract that cuts targets j0 and j1, deletes positions
p0 to p1 − 1, inserts s

TT[j′0, j0, j1, j
′
1] Target tract: all indel tracts that cut targets j0 and j1

and deactivate targets j′0 to j′1

(3)

TT(d) The target tract that indel tract d belongs to
WC[j0, j1] Wildcard: any indel tract that only deactivates targets

with indices j0 to j1

(6)

SGWC[p0, p1, s, j0, j1] Singleton-wildcard: union of an indel tract and its inner
wildcard

(7)

AncState(N) The set of likely ancestral states for node N (5)

Table S1
Notation used in this paper

1

http://www.imstat.org/aoas/

2 FENG ET AL.

Assumption 1
Indels are introduced
by cuts at the
outermost cut sites

Assumption 2
A) Cut rates only depend on which
targets are unmodified

B) The conditional probability that an
index is introduced depends on which
targets were cut

C) Mutation process is irreversible

Theorem 1
The likelihood can be
computed with respect
to the lumped states
using Felsenstein’s
pruning algorithm.

Lemma 1
We can efficiently construct
the states to sum over for
approximating the likelihood.

We can efficiently calculate
the approximate likelihood

Approximation 1
Approximate the
likelihood by only

summing over
mutation histories

where no indel
tracts merge.

Fig S1: A guide for how assumptions, approximations, and derived results
connect and lead to our final algorithm for approximating the likelihood.

APPENDIX B: CALCULATING POSSIBLE ANCESTRAL STATES

B.1. Proof for Lemma 1. First, we present the following lemma.

Lemma 2. The intersection of any two wildcard/singleton-wildcards must
also be a wildcard, singleton-wildcard, or the empty set.

Proof. Consider the case where we intersect two distinct two singleton-
wildcardsD = SGWC[p0, p1, s, j0, j1] andD′ = SGWC[p′0, p

′
1, s
′, j′0, j

′
1]. Since

IT[p0, p1, s, j0, j1] 6= IT[p′0, p
′
1, s
′, j′0, j

′
1], then D ∩D′ does not contain either

indel tract and D ∩D′ is equal to the intersection of their inner wildcards
WC[j0 +1, j1−1] and WC[j′0 +1, j′1−1]. It is staightforward to show that the
intersection of a wildcard with another wildcard or with a singleton-wildcard
satisfies the lemma.

Next, we introduce some more notation. For indel tract setD, let targstart(D)
be the leftmost target that can be deactivated some d ∈ D and targend(D)
be the rightmost target that can be deactivated some d ∈ D.

We now present the proof for Lemma 1.

Proof. We prove the case where internal node N has two children nodes
C1 and C2. It is easy to prove the case where N has 3+ children by induction.

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 3

d2d1

pos(1) pos(2) pos(3) pos(4) pos(5)

?

Fig S2: Bottom: An example of an allele with two indel tracts d1 and d2 where d1
must have been introduced before d2, because d1 cuts target 2 while d2 deactivates
target 2 through 4. Top: A two-leaf tree where one leaf is the example allele and
the other leaf is an allele with only d2. Since d1 must be introduced before d2, the
only possible ancestral state of the parent is an unmodified allele. On the other
hand, if d2 did not overlap with pos(2), we can simply take the intersection of the
two alleles to get a possible ancestral state.

For each pair DC1,m1 and DC2,m2 , define its intersection as DN,m1,m2 . Then

AncState(N) = AncState(C1) ∩AncState(C2)(S1)

⊆ Alleles

 MC1⋃
m1=1

DC1,m1

 ∩Alleles

 MC2⋃
m2=1

DC2,m2

(S2)

= Alleles

 MC1⋃
m1=1

MC2⋃
m2=1

DN,m1,m2

(S3)

Consider any m1,m2. Per Lemma 2, if DN,m1,m2 is not the empty set, it
is a wildcard or a singleton-wildcard that satisfies:

targstart(DN,m1,m2) ≥ max (targstart(DC1,m1), targstart(DC2,m2))(S4)

targend(DN,m1,m2) ≤ min (targend(DC1,m1), targend(DC2,m2)) .(S5)

Since the associated wildcard/singleton-wildcards {DC,m : m = 1, ...,MC}
for each child node C are pairwise disjoint, then the set of intersections
{DN,m1,m2}must also be pairwise disjoint wildcards/singleton-wildcards.

B.2. Calculating AncState(·) exactly. For efficiency reasons, we are
not satisfied with computing supersets of AncState(·); rather, we would like
to concisely express the set of alleles that is exactly equal to AncState(·). The
only case in which the algorithm computes a strict superset of AncState(N)

4 FENG ET AL.

is when the alelles observed at the leaves of N imply that the observed indel
tracts must be introduced in a particular order. For example, if an allele
has indel tracts d1 and d2, we know that d1 must be introduced before d2

if d1 cuts target j and d2 deactivates target j (Figure S2). To indicate such
orderings, we use the notation d ∈ a⇒ d′ ∈ a to denote that “if indel tract
d is in allele a, then indel tract d′ must also be in a.” The set of alleles
respecting this ordering constraint is denoted

Order
(
d⇒ d′

)
=
{
a ∈ Ω : d ∈ a =⇒ d′ ∈ a

}
.

Note that Order(d⇒ d′) contains all alleles that do not include d.
The following lemma builds on Lemma 1. Whereas Lemma 1 constructed

supersets of AncState(·), the following lemma constructs sets exactly equal
to AncState(·). Using the following lemma, the recursive algorithm now also
requires parent nodes to adopt ordering requirements from their children.
Note that ordering requirements only involve observed indel tracts. The
proof for the lemma is straightforward so we omit it here.

Lemma 3. For any leaf node L, suppose its observed allele is {dm : m =
1, ...,ML} for some ML ≥ 0, where dm = IT[p0,m, p1,m, s, j0,m, j1,m]. Its set
of ordering requirements, denoted OrderlistL, is{

Order (dm ⇒ dm′) : m,m′ ∈ {1, ...,ML},m 6= m′, p1,m ∈ pos(j0,m′) or p0,m ∈ pos(j1,m′)
}
.

Then

AncState(L) = Alleles

(
ML⋃
m=1

DL,m

)
∩

 ⋂
Order(d⇒d′)∈OrderlistL

Order(d⇒ d′)


(S6)

where DL,m = SGWC[p0,m, p1,m, sj , j0,m, j1,m].
Similarly, for any internal node N, we can also write AncState(N) in the

form of (S6). If node N has children nodes C1, ..., CK , {DN,m}MN

m=1 are pair-
wise disjoint wildcards and/or singleton-wildcards satisfying (9) and

Orderlist
N

=

{
Order(d⇒ d′) ∈

[
K⋃
k=1

Orderlist
Ck

]
: d ∈

[
MN⋃
m=1

DN,m

]}
.

Proof. We will prove the lemma for any internal node with children
nodes C1 and C2. We can easily prove the case for nodes with more than two
children by applying the result iteratively.

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 5

We give a proof by induction. Recall the definition of AncState, which is
given in (5). Then it is easy to see that the base case at the leaf nodes, spec-
ified by (S6), holds. Any allele a � aL must be composed of observed indel
tracts in aL and/or indel tracts masked by the the observed indel tracts in
aL. It also must respect all the ordering requirements specified in OrderlistL,
since an indel tract cannot be introduced if its target is deactivated already.
Therefore the left hand side is a subset of the right hand side. Next, consider
any allele a from the right hand side. To see that a � aL, note that we can
apply the remaining indel tracts from aL (i.e. those not in a) in the order
they were introduced into aL.

The rest of the induction is simple. We defined AncState(N) is defined as
the intersection of AncState(C1) and AncState(C2). Likewise, the right hand
side for characterizing AncState(N) is simply an intersection of the right
hand sides characterizing the children nodes.

APPENDIX C: LUMPABILITY

C.1. Proof of lumpability. Under Assumption 2, we can show that
the instantaneous transition rate from any allele in g(b; N) to the set g(b′; N)
is the same. Assuming the transition rate between lumped states g(b; N) and
g(b′; N) is nonzero, we show that there are two types of transitions. Either
the only transition between the two lumped states is through an indel tract
d observed at the leaf nodes; or all indel tracts from a set of target tracts
are valid transitions between the lumped states.

Lemma 4. Suppose Assumptions 1 and 2 and Approximation 1 hold.
For node N, let SG(N) to be the singletons from the singleton-wildcards in
AncState(N). Consider any branch with child node C, and target statuses
b, b′ ∈ {0, 1}M where the sets g(b; C) and g(b′; C) are nonempty. For any
alleles a, a′ ∈ g(b; C), we have

qlump

(
g(b; C), g(b′; C)

)
= lim

∆→0

Pr (XC(∆) ∈ g(b′; C)|XC(0) = a)

∆

= lim
∆→0

Pr (XC(∆) ∈ g(b′; C)|XC(9) = a′)

∆
.

(S7)

If the only transition from an element in g(b; C) to g(b′; C) is via the unique
indel d ∈ SG(C) that deactivates the targets b′ \ b, then

qlump

(
g(b; C), g(b′; C)

)
= h(TT(d), b) Pr(d|TT(d))

6 FENG ET AL.

where h is defined in Assumption 2. Otherwise, we have

qlump

(
g(b; C), g(b′; C)

)
=

∑
τ :∃d∈τ=TT(d) s.t. Apply(d,a)∈g(b′;N)

h(τ, b).

Proof. The instantaneous transition rates for an allele a ∈ g(b; C) to the
set g(b′; C) is

lim
∆→0

Pr (X(∆) ∈ g(b′; C)|X(0) = a)

∆
=

∑
a′∈g(b′;C)

q(a, a′)

=
∑

d:Apply(d,a)∈g(b′;N)

h(τ, b) Pr(d|τ).

If d is an indel tract that can be introduced to the allele a ∈ g(b; C) and
Apply(a, d) has target status b′, then we can introduce the same indel tract
to any other allele a′ ∈ g(b; C) and Apply(a′, d) will also have the target
status b′. Therefore we have proven that (S7) must hold for all a, a′ ∈ g(b; C).

To calculate the hazard rate between these lumped states, we rewrite the
summation by grouping indel tracts with the same target tract:

qlump

(
g(b; C), g(b′; C)

)
=

∑
τ :∃d∈τ=TT(d)

s.t. Apply(d,a)∈g(b′;N)

 ∑
d∈τ :Apply(d,a)∈g(b′;N)

h(τ, b) Pr(d|τ)

 .

(S8)

One of the following two cases must be true:

1. From the decomposition (S6) of AncState(C), there is only one indel
tract d in the sets DC,m for m = 1, ...,MC such that Apply(a, d) ∈
g(b′, C) for all a ∈ g(b, C). d cannot be from a wildcard or the inner
wildcard of a singleton-wildcard since this would contradict the fact
that d is the only indel tract in {DC,m} such that Apply(a, d) ∈ g(b′, C)
for all a ∈ g(b, C). Therefore d must be the singleton for some singleton-
wildcard DC,m. In other words, the only possible transition from g(b; C)
to g(b′; C) is via the indel tract d.

2. Otherwise, for some target tract τ , there are at least two indel tracts
in d, d′ ∈ τ in the sets DC,m for m = 1, ...,MC that deactivate targets
b′ \ b such that Apply(a, d) ∈ g(b′, C) and Apply(a, d′) ∈ g(b′, C) for
all a ∈ g(b, C). In this case, d and d′ must be from a wildcard or the
inner wildcard of a singleton-wildcard (d and d′ cannot both be from
a singleton of a singleton-wildcard since d 6= d′). Therefore every indel
tract d in τ satisfies Apply(a, d) ∈ g(b′, C) for all a ∈ g(b, C).

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 7

Therefore (S8) simplifies to

qlump

(
g(b; C), g(b′; C)

)
=

{
h(τ, b) Pr(d|τ) if case (1)∑

τ :∃d∈τ=TT(d) s.t. Apply(d,a)∈g(b′;N) h(τ, b) if case (2).

Note that to construct the entire instantaneous transition rate matrix
of the aggregated process, we can easily calculate the total transition rate
away from a target status and then calculate the transition rate to sink state
g(other; C) using the fact that each row sums to zero. The transition rate
away from g(other; C) is zero.

C.2. Proof for Theorem 1.

Proof. For any internal node, we know that

pN(b) =
∏

C∈children(N)


∑

b′∈{0,1}M
g(b′;C)6=∅

pC(b
′) Pr

(
XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; N)

)
 .

(We do not need to sum over the partition g(other; N) since it contributes
zero probability.) By irreversibility of the mutation process, g(b; N) ⊆ g(b; C)
if C is a child of N. By (S7) in Lemma 4,

Pr
(
C(tC) ∈ g(b′; C)| C(0) ∈ g(b; N)

)
= Pr

(
C(tC) ∈ g(b′; C)| C(0) ∈ g(b; C)

)
,

which means (15) also holds for node N.

APPENDIX D: TUNING PENALTY PARAMETERS

By varying the value of the penalty parameters κ1 and κ2, we can control
the trade-off between minimizing the penalty versus maximizing the log
likelihood. Choosing appropriate values is crucial for estimation accuracy. A
common approach for tuning penalty parameters is to use cross-validation
(Arlot and Celisse, 2010); we use this procedure whenever possible. Note
that we keep the tree topology fixed when tuning the penalty parameter.

We can perform cross-validation when there are multiple barcodes. First
we partition the barcodes into training and valdation sets T and V , respec-
tively. Next we fit tree and mutation parameters ˆ̀

κ and θ̂κ, respectively,
for each κ using only the training data. We choose the κ with the highest
validation log likelihood

1

|V |
∑
i∈V

log Pr
(
X

(i)
L (tL) = aL∀ L ∈ Leaves(T); ˆ̀

κ, θ̂κ

)
.

8 FENG ET AL.

For our simulation studies with two and four barcodes, we used half of the
barcodes for the validation set and half for training.

Unfortunately cross-validation cannot be utilized when there is a single
barcode since we cannot split the dataset by barcodes. Instead we propose
a variant of cross-validation described in Algorithm 2. The main differences
are that we partition the leaves instead of the barcodes into training and
validation sets S and Sc, respectively; and we select the best penalty pa-
rameter that maximizes the conditional probability of the observed alleles
at Sc given the observed alleles at S.

To partition the leaves, we randomly select a subset of leaf children of each
multifurcating node to put in the validation set Sc. We partition leaves in
this manner, rather than simply dividing the leaves in half, because we must
be able to evaluate (or closely approximate) (S10) at the end of Algorithm 2
using the fitted branch length and mutation parameters. That is, we must
be able to regraft the leaves in the set Sc onto the fitted tree. Regrafting
is easy for the leaves in our specially-constructed set: The parent node of
each leaf in Sc must be located somewhere along the caterpillar spine cor-
responding to its original multifurcating parent. In our implementation, we
chose to regraft the leaves to the midpoints of their corresponding caterpillar
spines. The regrafting procedure is illustrated in Figure S3. Note that we
do not tune the branch lengths of these validation leaves since it amounts
to peeking at the validation data. In our simulations, we found that when
tuning the branch lengths to maximize the unpenalized (or penalized) log
likelihood, we nearly almost always choose the smallest penalty parameter
since it prioritizes maximizing the likelihood and, therefore, (S10).

To assess each candidate penalty parameter κ, we compare the conditional
probability of the observed alleles at Sc given the observed alleles at S. Our
motivation is similar to that in cross-validation: If the alleles are observed
from the tree with branch and mutation parameters `∗ and θ∗, we know that

E [log Pr(XL(tL)∀ L ∈ Sc | XL(tL∀ L ∈ S); `∗, θ∗); `∗, θ∗]

≥ E [log Pr(XL(tL)∀ L ∈ Sc | XL(tL∀ L ∈ S); `, θ); `∗, θ∗] ∀`, θ
(S9)

by Jensen’s inequality. (Note that this conditional probability is high only
for if we have good estimates of both the mutation parameters and branch
lengths of leaves Sc. It is not sufficient to only have an accurate estimate of
the mutation parameters.) Recall cross-validation is motivated by a similar
inequality but uses Pr(X; `, θ) rather than a conditional probability.

From a theoretical standpoint, using (S9) to select penalty parameters
makes the most sense if we have an unbiased estimate of the expected condi-
tional probability. Unfortunately, in our setting, the conditional probability

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 9

in (S10) is actually a biased estimate since the fitted parameters depended
on the observed alleles at leaves S. Nonetheless, in simulations (where the
truth is known), this biased estimate seemed to work well, as the selected
penalty parameter was typically close to the best penalty parameter.

Algorithm 2 Cross validation for a single barcode

1: Initialize S to be all the leaves in tree T. Throughout, let Sc denote all the leaves in
T not in S.

2: for each multifurcating node N where at least one children is a leaf do
3: Let C1, ..., Cm be the children nodes of N that are leaves. Randomly select m′ ≥ 1 of

them and remove these from S.
4: end for
5: Let TS be the subtree over the leaves S.
6: for each candidate penalty parameter κ do
7: Maximize the penalized log likelihood of the tree TS with respect to its branch

lengths ` and mutation parameters θ

ˆ̀
κ, θ̂κ = arg max

`,θ
log Pr (XL(tL) = aL∀ L ∈ S; `,θ)− Penκ (`,θ) .

8: end for
9: Return the penalty parameter that maximizes the conditional probability:

κ̂ = arg max
κ

Pr
(
XL(tL) = aL∀ L ∈ Sc | XL(tL) = aL∀ L ∈ S; ˆ̀

κ, θ̂κ
)
.(S10)

To perform the entire GAPML estimation procedure, we must tune the
penalty parameters and the topology of the tree. Our full algorithm alter-
nates between tuning the penalty parameters for a fixed tree topology and
running a single iteration of Algorithm 1 for a fixed penalty parameter.
After the penalty parameters are stable, we keep them fixed and only run
Algorithm 1.

APPENDIX E: SPECIFIC MODEL IMPLEMENTATION

First, let us define short and long deletions. The deletion to the left in
indel tract d = IT[p0, p1, s, j0, j1] is short if target j0−1 is unaffected or long
if target j0 − 1 is deactivated, i.e.

d has a short left deletion if p0 ∈ pos(j0)(S11)

d has a long left deletion if p0 ∈ pos(j0 − 1).(S12)

We define short and long deletions to the right similarly.

E.1. Rate parameterization. To parameterize the rate at which a
target tract τ = TT[j′0, j0, j1, j

′
1] is introduced, we decompose the rate into

10 FENG ET AL.

1. Partition leaves 2. Fit tree over

remaining leaves

3. Regraft held-out

leaves

Fig S3: Cross-validation to tune penalty parameters with only one barcode.
We split leaves into training and validation sets S and Sc, respectively as
follows (left): For each multifurcating node, randomly select a subset of its
children that are leaves to put in the “validation“ set, denoted by the gray
boxes. Fit branch lengths and mutation parameters on the subtree over the
remaining leaves (middle). Regraft the leaves in the “validation“ set back
onto the fitted tree (right).

a rate h0 that represents the rate at which the targets j0 and j1 are cut
and various scaling factors that control how often deletions are short or long
(recall the definition in (S11) and (S12)):

h (τ,TargStat(a)) = h0 (j0, j1,TargStat(a))
1∏
i=0

[
γi1{ji 6= j′i}+ 1{ji = j′i}

]
,

where γ0 and γ1 parameterize how often long deletions occur to the left and
right, respectively.

We specify h0 using the assumption that the cutting time for target j
follows an exponential distribution with rate of λj > 0. For focal target cuts
where j0 = j1, we define

h0 (j0, j0,TargStat(a)) = λj01{TargStat(j0, a) = 0}.

For double cuts at targets j0 and j1, we suppose the cut time follows an
exponential distribution with rate ω · (λj0 + λj1), where ω is an additional
model parameter that we estimate and does not depend on the targets. Our
parameterization of the double-cut rate is based on i) the assumption that
an inter-target deletion is introduced when the cuts at both targets occur
within a small time window of length ε and ii) approximating the probability
of such an event as follows. The probability that random cut times Xj0 and

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 11

Xj1 for targets j0 and j1 occur within a small window ε is approximately

p

(
|Xj0 −Xj1 | ≤ ε,

Xj0 +Xj1

2
= t

)
(S13)

≈Pr(|Xj0 −Xj1 | ≤ ε) p(Xj0 = Xj1 = t|Xj0 = Xj1)(S14)

≈ ω(λj0 + λj1).(S15)

Our approximation for the first line using the second improves as ε → 0.
Next, the first component in (S14) approaches zero as ε → 0 and does
not vary much for different values of λj0 , λj1 if ε is sufficiently small. Thus
we approximate it using the same value of ω for all targets. The second
component in (S14) corresponds to an exponential distribution with the
rate λj0 + λj1 .

We can interpret ω in two ways. First, ω controls how often a double
cut is introduced. In an unmodified barcode, the relative rate that a double
cut is introduced versus a single cut is ω

∑
j1<j2

(λj1 + λj2) versus
∑M

j=1 λj .
The second interpretation, based on (S15), is that ω serves as a proxy for
ε: Larger ω indicates that an inter-target deletion can be introduced by two
cuts spaced farther apart in time.

E.2. Deletion/insertion sequence parameterization. The second
major component of the GESTALT mutation model specifies the condi-
tional probability of introducing a particular indel tract given target tract
τ = TT[j′0, j0, j1, j

′
1]. An indel tract can be represented by its deletion lengths

to the left and right and the insertion sequence. We will suppose that the
probability of a single insertion sequence is uniform over all possible nu-
cleotide sequences of that length.

Let X0, X1, X2 be the random variables (RVs) that parameterize the
lengths of the left deletion, right deletion, and insertion, respectively. Let
xτ,min,i and xτ,max,i for i = 0 and 1 specify the minimum and maximum
deletion lengths to the left and right, respectively, for target tract τ . (For
example, if j0 = j′0, the left deletions must be short so xτ,min,i = 0 and
xτ,max,i is the longest deletion without deactivating target j0 − 1. As an-
other example, if j0 = j′0 + 1, the left deletion is long so xτ,min,i is the
minimum deletion length to deactivate target j′0 and xτ,max,i is the longest
length without deactivating target j′0 − 1.) For insertions, xτ,min,2 = 0 and
xτ,max,i =∞ regardless of the target tract.

In our implementation, X0 and X1 are zero-inflated truncated negative
binomial RVs for short trims and zero-inflated truncated poisson RVs for
long trims. X2 is a zero-inflated negative binomial RV. Let NB(m, q) denote
the negative binomial distribution, which is the distribution for the number

12 FENG ET AL.

of successes until m failures are observed and q is the probability of success.
Let Pois(r) be a poisson distribution with mean r. For i = 0, 1, define
Pr(Xi = xi|τ) as


pi,1{j0=j1} if xi = 0

(1− pi,1{j0=j1}) Pr (Xi = xi − xτ,min,i − 1|Xi < xτ,max,i − 1; NB(mi, qi)) if xi > 0, j′0 = j0

(1− pi,1{j0=j1}) Pr (Xi = xi − xτ,min,i − 1|Xi < xτ,max,i − 1; Pois(ri)) if xi > 0, j′0 6= j0

.

(S16)

Here, p0,1 and p1,1 are the probabilities of deleting zero nucleotides to the left
and right, respectively, in single-target indels; Likewise, p0,0 and p1,0 are the
probabilities of deleting zero nucleotides to the left and right, respectively,
in inter-target indels. The distribution of the insertion length is defined as

Pr(X2 = x2|τ) =

{
p2 if x2 = 0

(1− p2) Pr (X2 = x2 − 1; NB(m2, q2)) if x2 > 0
,

(S17)

where p2 is the probability of inserting zero nucleotides.
Using the building blocks from above, we model the conditional probabil-

ity of indel d with left deletion, right deletion, and insertion lengths x0, x1, x2

given target tract τ as

Pr (X0 = x0, X1 = x1, X2 = x2 | τ)

=

{
Pr(X0=x0|τ) Pr(X1=x1|τ) Pr(X2=x2|τ)

Pr(X0+X1+X2>0|τ) if j′0 = j0 = j1 = j′1

Pr(X0 = x0|τ) Pr(X1 = x1|τ) Pr(X2 = x2|τ) otherwise
.

(S18)

The case where j′0 = j0 = j1 = j′1 corresponds to single-target indels with
short left and right trims. We needed to separate out this special case because
we only observe indels in this category if there is some deletion or insertion,
i.e. X0 +X1 +X2 6= 0.

We chose to model the deletion/insertion lengths using these distribu-
tions primarily for their simplicity. In practice, the choice to use this model
should depend on the probability that the same indel will be introduced
independently in parallel lineages, also known as homoplasy. When homo-
plasy is rare, the tree estimate (topology and branch lengths) is not very
sensitive to the model used for deletion/insertion lengths, because Assump-
tion 2 assumes the mutation rates factorize into the target cut rates and
deletion/insertion probabilities. However, if homoplasy is likely to occur, we
suggest modeling the insertion and deletion process more carefully.

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 13

APPENDIX F: EXPERIMENTAL SETTINGS

F.1. Data pre-processing. The data in this paper are all from McKenna,
Findlay and Gagnon et al. (2016) and are available at the Gene Expression
Omnibus under GSE81713. We use the aligned data where each allele was
described with the observed insertion/deletions (indels) at each target. Each
CRISPR target can only be modified once and indels can only be introduced
via a double-stranded break at a target cut site, so we further processed the
aligned data accordingly: merging indels if there were more than one asso-
ciated with a given target, and extending the deletion lengths and insertion
sequences so that a target cut site was nested within each indel. For this
paper, we assume that the processed data is correct and do not attempt to
model the effects of alignment error.

F.2. Code implementation. The code is implemented in Python us-
ing Tensorflow (Abadi, Agarwal and Barham et al., 2015). We maximize the
penalized log likelihood using Adam (Kingma and Ba, 2014). We chose to
use an automatic differentiation software since it has enables us to quickly
iterate on the specific GESTALT model, without needing to recode the gradi-
ents. Just as automatic differentiation has greatly accelerated deep learning
research (Baydin, Pearlmutter and Radul et al., 2018), we believe that it can
also accelerate the development of maximum likelihood estimation methods
in phylogenetics.

Calculating the likelihood and its gradient can therefore become memory-
intensive when there are many branches and/or barcodes. For large trees,
we reduce memory usage by adding one more approximation. In particular,
we only sum over states in AncState(·) where at most one masked indel
tract occured along the branch. If there are still over 20 states, we only sum
over states where no masked indel tracts occur along that branch. This is
reasonable since it is unlikely for many hidden events to occur.

F.3. Comparison Methods. We use PHYLIP version 3.697 (Felsen-
stein, 1995), the neighbor-joining algorithm in Bio.Phylo (Biopython version
1.72) (Talevich, Invergo and Cock et al., 2012), and the chronos function in
R package ape version 5.2 (Paradis and Schliep, 2018).

F.4. Simulation setup and additional results. For the results in
Figure 10, the data was simulated with 5 synchronous cell division cy-
cles followed by a birth-death process where the birth rate decayed at a
rate of exp(−18t). The barcode was composed of six targets with λ =
0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6. The weight ω was set to 0.06 so that 20%

14 FENG ET AL.

Fig S4: Plot of bias and variance of the mutation parameter estimates versus
number of barcodes.

of the unique observed indel tracts were due to double cuts. We sampled
8% of the leaves so that the average number of unique observed alleles was
around 100 leaves. We refer to this simulation setup as Simulation A. We
ran 20 replicates of Simulation A. In addition, plots of the bias and variance
of the mutation parameter estimates are given in Figure S4.

The results in Figure 1 are from a larger simulation, which we will refer
to as Simulation B, that is closer to the data collected in McKenna et al.
(2016). Since zebrafish undergo around 11 synchronous cell division cycles at
the beginning of development, this larger simulation entailed 9 synchronous
cell division cycles followed by a birth-death process. We simulated with a
barcode composed of ten targets. The resulting tree had on average around
200 leaves. We ran GAPML for 8 topology tuning iterations; at each itera-
tion, we consider at most 15 SPR moves. The displayed results are from 20
replicates.

For this larger simulation, we also compared the runtimes of the methods
on a server with an Intel Xeon 2x8 core processor at 3.20GHz and 256 GB
RAM. Obtaining tree topologies from C-S parsimony and neighbor-joining
runs on the order of minutes. Branch length estimation using chronos runs
on the order of seconds. In contrast, GAPML required up to three hours.
Though the runtime of our method is much longer, it is still reasonable
compared to the amount of time spent on data collection, which includes
waiting until the organism is a certain age.

Using our simulation engine, we compare two very simple barcode de-
sign ideas: a single barcode with many targets, recommended in Salvador-
Mart́ınez, Grillo and Averof et al. (2018), or many identical barcodes. How-
ever we believe the latter is more effective since spreading the targets over

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 15

Fig S5: We compare the number of unique alleles obtained in GESTALT
using a single barcode with many targets versus splitting the targets over
multiple independent barcodes. The alleles are simulated on a full binary tree
with 1024 leaves. Each line corresponds to a simulation where we iteratively
add six targets, either by extending the single barcode or adding another
barcode with six targets. A positive difference that the multiple-barcode
design has more unique alleles, and vice versa.

separate barcodes tends to create more unique alleles. In particular, the
inter-target deletions tend to be shorter, which means fewer existing mu-
tations are deleted and fewer targets are deactivated. To test this idea, we
compared to the two design options in a simulation setup where we iter-
atively increased the number of targets by six, i.e. add six targets to the
existing barcode or add a new barcode with six targets. Here we observe
all 1024 leaves of a full binary tree with 10 levels. All targets had the same
single-cut rate. We calibrated the double-cut weight ω to be around 18% for
both barcode designs – this slightly favors the single-barcode design since
it would have a higher rate of double cuts in vivo compared to a multiple-
barcode design. Nevertheless, we find in our simulations that splitting the
targets over separate barcodes tends to result in a much larger number of
unique alleles than using a single barcode (Figure S5). At 30 targets, the
multiple-barcode design has roughly 200 more unique alleles on average than
the single-barcode design. Another reason we prefer the multiple-barcode
design is that our model and tree estimates improve as the number of inde-
pendent and identical barcodes increases, as illustrated in Figure 10.

Next, to better understand our algorithm GAPML, we show in-depth sim-
ulation results from a single replicate (Figure S6). Here we use the settings
from Simulation B. Starting from the initial tree topology, the algorithm

16 FENG ET AL.

(a) Example of how the BHV distance
changes as the branch lengths and mu-
tation parameters are updated using
gradient descent to maximize the pe-
nalized likelihood.

(b) Example of how the BHV distance
changes at each SPR iteration, where
we select the SPR with the highest like-
lihood with penalizaton over only the
shared tree.

Fig S6: Examples of how the BHV distance changes as the algorithm pro-
ceeds for one simulation replicate from the ten-target setting.

tunes the branch lengths and mutation parameters to maximize the penal-
ized likelihood. During the gradient descent algorithm, the BHV distance of
the tree estimate decreases (Figure S6a). In addition, we see that the BHV
distance of the tree estimate decreases as Algorithm 1 iteratively performs
SPR moves to update the tree topology.

Our method searches over the maximally parsimonious trees since they
tend to have the highest penalized log likelihood. To justify this restricted
search, we compared the penalized log likelihood for tree topology candidates
of different parsimony scores, where the data was generated using Simulation
A. To generate tree topologies with different parsimony scores, we started
with the maximally parsimonious tree fit from Camin-Sokal and iteratively
applied random SPR moves. For each of tree rearrangement, we fit a model
by maximizing the penalized log likelihood. The penalty parameter is the
same across all rearrangements. As seen in Figure S7, the most parsimonious
trees have the highest penalized log likelihoods. Since our method aims to
select a tree topology that maximizes the penalized log likelihood, it would
not benefit from considering SPR moves that make the tree less parsimo-
nious; instead, considering these additional moves would make the method
much slower.

F.4.1. Consistency. Here we evaluate the consistency of our method
through a simulation study. We consider barcodes with 6 targets and in-

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 17

Fig S7: We compare the maximized penalized log likelihood of maximally
parsimonious trees to less parsimonious trees. Each simulation replicate, rep-
resented by each line, shows four candidate tree topologies, starting from the
most parsimonious one (x = 0) to increasingly less parsimonious ones (large
differences in parsimony score). The y-value is the maximized penalized log
likelihood of the candidate tree topology minus that of the maximally par-
simonious tree.

sert 16, 64, and 256 barcodes into the embryo cell. We simulated trees with
roughly 110 leaves and sample 8% of the leaves. We then evaluated the BHV
distance between the estimated tree and the true tree, as well as the mean
squared error between the estimated and true mutation parameters as de-
fined in Section E. As seen Figure S8, the tree and the mutation parameter
estimates improve with the number of barcodes.

These simulation results complement the results in Section 4 of the main
manuscript. There, we considered a small number of barcodes, which is more
realistic with the current GESTALT technology. Here, we establish that
adding more barcodes will continue to improve estimates, even for much
larger numbers of barcodes.

F.4.2. Sensitivity analysis. We now evaluate the sensitivity of our algo-
rithm to errors when sequencing the mutated barcodes or ambiguities when
resolving indels. Recall that the main manuscript assumed that all indels
were sequenced and resolved accurately. This can be difficult to do in prac-
tice because there might be mixtures of insertions and deletions that cannot
be resolved unambiguously.

If the primary goal is to recover tree topology and branch lengths, we
find that the GAPML algorithm is relatively robust to errors when resolving
indels. We simply require the method for resolving indels to map each unique

18 FENG ET AL.

Fig S8: Mean squared error of estimated mutation parameters (left) and
BHV distance between the estimated and true trees (right). Data is gener-
ated using 16, 64, and 256 barcodes. Plot reflects 20 simulation replicates.

indel d to the same indel d′ from the same target tract (at least most of the
time). This robustness property is a natural consequence of Assumption 2,
which states that the mutation rate factors into the target cut rate and
the insertion/deletion probabilities. As such, our ability to estimate the tree
topology and branch lengths mostly depend on our ability to accurately
estimate the target cut rates.

We illustrate the robustness of our algorithm in the following simulation
study. For each unique indel, we introduced small perturbations to the re-
solved left deletion lengths, right deletion lengths, and the inserted sequence,
each with some probability p. Using this mapping, each sampled allele is re-
solved as a collection of these incorrectly observed indels. We varied this
error rate p from 0% to 20%. The barcode here is composed of six targets;
four barcodes are inserted into the embryo. We simulated trees with 400
leaves on average and sample 5% of the leaves. As expected, the BHV dis-
tance and the internal node time correlation are relatively constant across
the different error rates (Figure S9).

Finally, we note that this robustness property does not hold if the goal is
to accurately estimate the insertion/deletion parameters (e.g. those defined
in Section E.2). In that case, the indels need to be resolved correctly.

F.5. Zebrafish data analysis. For the zebrafish analyses, we esti-
mated the tree over at most 400 randomly selected alleles (without replace-
ment). 50% of the fish in this dataset had fewer than 400 alleles and the
median number of unique alleles over the zebrafish datasets was 443. 25%
of the fish in this dataset had more than 1000 alleles. We limit the number
of alleles analyzed due to runtime restrictions.

To test if the fitted trees are recovering similar developmental relation-
ships across fish rather than random noise, we ran a permutation test com-
paring the correlation between tissue distances from the estimated trees

ESTIMATION OF CELL LINEAGE TREES (SUPPLEMENT) 19

Fig S9: BHV distance and internal node time correlation between estimated
and true trees when the indels are resolved with error rates 0%, 5%, 10%,
and 20%. Plots reflect 50 simulation replicates.

to that from randomly-estimated trees over randomly-shuffled data. More
specifically, for a given tree topology, we randomly permute the observed
alleles at the leaves. Each allele is associated with the number of times it is
observed in each tissue type; we randomly shuffle these abundances over the
possible tissue types within each allele. Finally, we randomly assign branch
lengths along the tree by drawing samples from a uniform distribution and
using the t-parameterization of Gavryushkin and Drummond (2016) to as-
sign branch lengths. The correlation between tissue distances in these ran-
dom trees is close to zero. All permutation tests were performed using 2000
replicates.

We also tested if the Pearson correlation between the number of tissue
types/cell types and the internal node times is different from that of random
trees. The random trees were generated using the same procedure as above.

We conclude by noting that the random trees are generated using the esti-
mated tree topology from each method. Thus the null distributions are differ-
ent and the p-values are not directly comparable between methods. Though
this slightly complicates interpretation, we prefer this approach since the
estimated tree topology may naturally induce correlation between tissue
distances. For most validation tests, the mean of the null distribution was
similar across the different methods, and therefore the p-values are some-
what comparable. The major exception was the tests that checked recovery
of cell-type and germ-layer restriction: here the mean of the null distribution
were very different and we abstain from comparing p-values across methods.

For Figure 2, we bootstrapped fish replicates to estimate confidence in-
tervals for the average correlation between estimated target cut rates.

20 FENG ET AL.

Adult fish #1 Adult fish #2 72 hpf #1 30 hpf #5 4.3 hpf #1

Target 1, λ1 3.142 1.449 1.675 2.122 0.730
Target 2, λ2 1.591 0.393 0.560 1.262 0.125
Target 3, λ3 0.172 0.156 0.222 1.265 0.054
Target 4, λ4 1.555 1.228 0.593 1.151 0.288
Target 5, λ5 1.099 0.821 0.462 0.958 0.208
Target 6, λ6 1.854 0.969 0.613 1.723 0.199
Target 7, λ7 1.015 0.740 1.452 0.801 0.696
Target 8, λ8 0.183 0.270 0.261 1.763 0.076
Target 9, λ9 2.508 1.594 1.265 1.777 0.607
Target 10, λ10 0.367 0.428 0.181 1.333 0.049
Long factor left γ0 0.040 0.067 0.058 0.058 0.051
Long factor right γ1 0.102 0.122 0.092 0.025 0.133
Double cut rate ω 0.047 0.062 0.045 0.049 0.041

Left short trim zero prob 0.048 0.093 0.081 0.490 0.053
Left short trim length mean 6.142 6.381 6.210 2.244 5.123
Left short trim length sd 4.533 4.657 4.525 3.625 4.013
Left long trim length mean 25.302 25.210 25.617 24.592 25.335
Left long trim length sd 1.183 1.190 1.136 1.150 1.180
Right short trim zero prob 0.541 0.530 0.520 0.169 0.530
Right short trim length mean 2.141 2.058 2.105 4.721 2.028
Right short trim length sd 3.401 3.286 3.351 3.831 3.242
Right long trim length mean 25.254 25.563 26.173 25.012 25.939
Right long trim length sd 1.323 1.247 0.987 1.359 1.107
Insertion zero prob 0.548 0.614 0.618 0.629 0.622
Insertion length mean 5.161 4.504 4.575 5.446 5.635
Insertion length sd 5.898 5.479 4.711 7.291 5.209

Table S2
Fitted parameters in the adult fish as well as some other fish embryos. The parameters

above the line are related to target cut rates and the ones below the line are related to the
nucleotide deletion and insertion process. Short versus long deletions are defined in (S11)

and (S12), respectively.

E
S
T

IM
A

T
IO

N
O

F
C

E
L

L
L

IN
E

A
G

E
T

R
E

E
S

(S
U

P
P

L
E

M
E

N
T

)
21

Root

node

OrganAllele

Percentage of organ

0.
01 0.
1

1 10

Fig S10: Estimated cell lineage tree for 400 randomly selected alleles from the first adult zebrafish using GAPML.
Editing patterns in individual alleles are represented as shown previously. Alleles observed in multiple organs are
plotted on separate lines per organ and are connected with stippled branches. Two sets of bars outside the alleles
identify the organ in which the allele was observed and the proportion of cells in that organ represented by that
allele (log10 scale). The dashed lines correspond to the caterpillar spines.

22 FENG ET AL.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y. and Zheng, X. (2015). TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Software available from tensorflow.org.

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model
selection. Stat. Surv. 4 40–79.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A. and Siskind, J. M. (2018). Auto-
matic Differentiation in Machine Learning: a Survey. J. Mach. Learn. Res. 18 1–43.

Felsenstein, J. (1995). PHYLIP (phylogeny inference package), version 3.5 c.
Gavryushkin, A. and Drummond, A. J. (2016). The space of ultrametric phylogenetic

trees. J. Theor. Biol. 403 197–208.
Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
McKenna, A., Findlay, G. M., Gagnon, J. A., Horwitz, M. S., Schier, A. F. and

Shendure, J. (2016). Whole-organism lineage tracing by combinatorial and cumulative
genome editing. Science 353.

Paradis, E. and Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics
and evolutionary analyses in R. Bioinformatics xx xxx-xxx.

Salvador-Mart́ınez, I., Grillo, M., Averof, M. and Telford, M. J. (2018). Is it
possible to reconstruct an accurate cell lineage using CRISPR recorders?

Talevich, E., Invergo, B. M., Cock, P. J. A. and Chapman, B. A. (2012). Bio.Phylo:
a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopy-
thon. BMC Bioinformatics 13 209.

	Useful guides for reading the proofs
	Calculating possible ancestral states
	Proof for Lemma 1
	Calculating `39`42`"613A``45`47`"603AAncState() exactly

	Lumpability
	Proof of lumpability
	Proof for Theorem 1

	Tuning penalty parameters
	Specific model implementation
	Rate parameterization
	Deletion/insertion sequence parameterization

	Experimental settings
	Data pre-processing
	Code implementation
	Comparison Methods
	Simulation setup and additional results
	Consistency
	Sensitivity analysis

	Zebrafish data analysis

	References

