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1 Notation

Let V = {1 . . . p} index a set of variables that have been measured in molec-
ular assays and Xj,t be a random variable corresponding to the measurement
of variable j ∈ V at time point t. The data are observed at a set of discrete
time points, hence we write t ∈ {1 . . . T} where T is the total number of
time points.

We will use Xt ∈ Rp to denote the complete observed vector at time
t and X = (X1 . . . XT )T to denote the complete T×p data matrix. For a
subset A ⊆ V of variable indices, we use XA,t to denote the random vector
formed by selecting the corresponding elements of Xt.

Let G denote a graph-valued model parameter and Θ any other param-
eters needed to specify the model (e.g. regression coefficients, reaction rates
etc.). Then, we consider likelihoods of the form p(X1 . . . XT | G,Θ). We
denote the edge set of a graph G as E(G), or simply E when the graph of
interest is clear from context.

We will generically use G to denote the space of permissible graphs.
Additionally, we use N(· | µ,Σ) to denote a multivariate normal density
with mean µ and covariance matrix Σ, I to denote the identity matrix and
I(·) to denote the indicator function.

2 Dynamic Bayesian networks

Bayesian networks (BNs) are graphical models (Koller and Friedman, 2009)
based on directed acyclic graphs (DAGs). In a BN the likelihood factors
into terms in which each variable is conditioned only on its parents in the
DAG G, i.e.

p(X | G,Θ) =

p∏
j=1

p(Xj | XPaG(j), θj) (1)
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where PaG(j) = {i ∈ V : (i, j) ∈ E(G)} is the set of parents of node j in
the graph G and Θ = (θ1 . . . θp) are parameters required to fully specify the
conditional distributions.

In a dynamic Bayesian network (DBN) the model has an explicit discrete
time index. The model can be formulated as a BN whose DAG has one vertex
for each variable at each discrete time point, i.e. with p×T vertices in total
(Murphy, 2002; Husmeier, 2003; Hill et al., 2012). We denote this graph by
Gfull. We assume that the edges are only one step forward in time (i.e. the
model is first order Markov) and that neither the dependence pattern nor
parameters change with time in the sense that any edge between variables
i ∈ V and j ∈ V appears between all pairs of successive time points (or
none) and the required model parameters are also unchanging. This type
of DBN is often referred to as “feedforward” to reflect the graph structure
and stationary to reflect the unchanging nature of the model.

The network structure of such a model does not change over time and the
DAG Gfull is a redundant representation since each edge is repeated between
each pair of successive times. A more compact representation is as a bipartite
directed graph Gbipartite with only two time slices each with p nodes, with
the two slices understood to represent successive times (t−1, t). A still more
compact representation is as a p-node directed graph Greduced in which all
edges are understood to go forwards in time between successive time points.
Due to the fact that DAG Gfull can be obtained by “unrolling” Greduced

through time, it is often referred to as the “unrolled” representation. These
three representations are shown in Figure 1 for an illustrative example.

Although Gfull must be acyclic to obtain a valid overall BN model, the
reduced graph Greduced may have cycles. This is due to the fact that its
edges are understood to go forward in time, hence the full graph Gfull corre-
sponding to an arbitrary directed Greduced is always acyclic. For notational
simplicity in the remainder of this section we use the reduced graph and
denote it by G (= Greduced).

Using the reduced graph G the likelihood for a stationary feedforward
DBN can be written as

p(X | G,Θ) =

p∏
j=1

p(Xj,1 | θ(0)
j )

T∏
t=2

p(Xj,t | XPaG(j),t−1, θj), (2)

where as above, θj are parameters governing the conditional distributions,

θ
(0)
j are parameters governing the (marginal) distribution at the first time

point and Θ = (θ
(0)
j , θj)j=1...p. Note that due to the stationary nature of the

model, the parameters do not have a time index.
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Figure 1: Different graphical representations for a DBN. The top left shows
the reduced graph Greduced, where the temporal structure is implicit. The
top right shows the bipartite graph Gbipartite between any two time slices
t − 1 and t. The bottom shows the full (or “unrolled”) graph Gfull over all
time slices.

Thus, in our model each variable depends on a subset of variables at the
previous time point, with the subset given by the parent set of the variable in
the graph G. However, we additionally allow for dependence on the variables
correcting for ageing and circadian rhythms, which are observed at the same
time point as the dependent variables (see main text).

3 Model formulation

For stationary feedforward DBNs the likelihood Eq. (2) is expressed in
terms of the reduced graph G (= Greduced; see above) and it is this graph
that we treat as the estimand. A common way to proceed is via a Bayesian
formulation. Since the main object of interest is G, we consider the posterior
probability distribution over candidate graphs. This can be written as

P (G | X) =
p(X | G)P (G)∑

G∈G p(X | G)P (G)
(3)

where G is the space of all directed graphs (with p vertices; not necessarily
acyclic) and P (G) is the prior on the graph space. Note that the graph
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space is not restricted to acyclic graphs due to the fact that it is the reduced
graph that is the estimand (see above).

We select a truncated Poisson prior with mean Λ and maximum s̄ for the
number of parents sj for target gene j: P (shj |Λ) ∝ Λsj

sj ! I{sj≤s̄}. Conditional

on sj , the prior for the parent set Gj of target gene j is a uniform distribution
over all parent sets with cardinality sj : P (Gj | |Gj | = sj) = 1/( p

sj ). The
overall prior over the parent sets is given by marginalization:

P (Gj |Λ) =
∑s̄

sj=1
P (Gj |sj)P (sj |Λ). (4)

We can derive the posterior probability that a specific edge (i, j) is in-
cluded in the model as

P ((i, j) ∈ E(G) | X) =
∑
G∈G

I[(i, j) ∈ E(G)]P (G | X). (5)

The term p(X | G) is known as the marginal likelihood since it is ob-
tained by marginalizing over model parameters as

p(X | G) =

∫
p(X | G,Θ) p(Θ) dΘ (6)

=
T∏
t=2

p∏
j=1

∫
p(Xj,t | XPaG(j),t−1, θj) p(θj) dθj (7)

where we have used (2) and p(Θ) is a prior on model parameters, assumed
to factor as p(Θ) =

∏
j p(θj).

Under conjugate formulations the quantity∫
p(Xj,t | XPaG(j),t−1, θj) p(θj) dθj

can be obtained in closed form. We choose a normal linear model, i.e.

Xj,t | XPaG(j),t−1, θj ∼ N(XPaG(j),t−1βj , σ
2
j ), (8)

where θj = (βj , σ
2
j ), βj is a p-vector of model coefficients and σ2

j is a noise
variance.

Using a conjugate prior (here, normal-inverse-gamma) then allows the
marginal likelihood to be obtained in closed form (see Lèbre et al., 2010,
and references therein for details).

However, even with a closed-form marginal likelihood, characterizing the
posterior over G is complicated by the size of the space G, which absent any
further constraints has cardinality 2p

2
.
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4 Inference using MCMC

Markov chain Monte Carlo (MCMC) methods are widely used to sample
from the posterior P (G | X). These methods work by constructing a Markov
chain (whose states are in this case graphs in the space G), whose station-
ary distribution is the desired posterior. A common approach is to use a
Metropolis-Hastings sampler with small changes to the graph (e.g. single
edge changes) used to form the proposal distribution (this is the mecha-
nism by which the sampler explores the graph space). Such samplers are
asymptotically valid but can be very slow to converge for large graph spaces.
Efficient samplers for (D)BNs remain an active area of research (Grzegor-
czyk and Husmeier, 2008; Goudie and Mukherjee, 2016)

In the special case of feedforward DBNs posterior inference is greatly
simplified by the structure of the model. In particular, posterior edge prob-
abilities can be computed via a variable selection approach in which each
node is treated separately. An additional assumption of in-degree bounded
by ŝ = 3 then reduces the problem to polynomial in p.

This means that fully Bayesian analysis of feedforward DBNs with conju-
gate priors is in fact feasible for very large problems, with p in the hundreds
or thousands, and can be parallelized over target genes. In this work we
use the MCMC algorithm described in more detail in Lèbre et al., 2010;
Dondelinger, Lèbre, and Husmeier, 2012.
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