
SUPPLEMENTARY MATERIALS AND METHODS 

Image acquisition 

As previously described (1), all MRI scans were acquired using the same 3T Siemens 

Tim Trio whole-body scanner and 32-channel head coil at the Hospital of the University of 

Pennsylvania. 

 

Structural MRI: 

Prior to functional MRI acquisitions, a 5-min magnetization-prepared, rapid acquisition 

gradient-echo T1-weighted (MPRAGE) image (TR =1810ms; TE=3.51ms; TI=1100ms, 

FOV=180 x 240mm2, matrix=192 x 256, effective voxel resolution=0.9 x 0.9 x 1mm3) was 

acquired.  

 

Functional MRI:  

We used one resting-state and two task-based (i.e., n-back and emotion recognition) 

fMRI scans as part of this study. All fMRI scans were acquired with the same single-shot, 

interleaved multi-slice, gradient-echo, echo planar imaging (GE-EPI) sequence sensitive to 

BOLD contrast with the following parameters: TR = 3000 ms; TE = 32 ms; flip angle = 90°; FOV 

= 192 x 192 mm2; matrix = 64 x 64; 46 slices; slice thickness/gap = 3/0 mm, effective voxel 

resolution = 3.0 x 3.0 x 3.0 mm3. Resting-state scans had 124 volumes, while the n-back and 

emotion recognition scans had 231 and 210 volumes, respectively. Further details regarding the 

n-back (2) and emotion recognition (3) tasks have been described in prior publications. 

 

Field map:  

A B0 field map was derived for application of distortion correction procedures, using a 

double-echo, gradient-recalled echo (GRE) sequence: TR = 1000ms; TE1 = 2.69 ms; TE2 = 



5.27 ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; effective voxel resolution = 

3.8 x 3.8 x 4 mm. 

  

Image processing  

The structural images were processed using FreeSurfer (version 5.3) to allow for the 

projection of functional time series to the cortical surface (4). Functional images were processed 

using a top-performing preprocessing pipeline implemented using the eXtensible Connectivity 

Pipeline (XCP) Engine (5), which includes tools from FSL (6, 7) and AFNI (8). This pipeline 

included 1) correction for distortions induced by magnetic field inhomogeneity using FSL’s 

FUGUE utility, 2) removal of the initial volumes of each acquisition (i.e., 4 volumes for resting-

state fMRI and 6 volumes for emotion recognition task fMRI), 3) realignment of all volumes to a 

selected reference volume using FSL’s MCFLIRT, 4) interpolation of intensity outliers in each 

voxel’s time series using AFNI’s 3dDespike utility, 5) demeaning and removal of any linear or 

quadratic trends, and 6) co-registration of functional data to the high-resolution structural image 

using boundary-based registration. Images were de-noised using a 36-parameter confound 

regression model that has been shown to minimize associations with motion artifact while 

retaining signals of interest in distinct sub-networks. This model included the six framewise 

estimates of motion, the mean signal extracted from eroded white matter and cerebrospinal fluid 

compartments, the mean signal extracted from the entire brain, the derivatives of each of these 

nine parameters, and quadratic terms of each of the nine parameters and their derivatives. Both 

the BOLD-weighted time series and the artifactual model time series were temporally filtered 

using a first-order Butterworth filter with a passband between 0.01 and 0.08 Hz to avoid 

mismatch in the temporal domain (9). Furthermore, to derive ‘‘pseudo-resting state’’ time series 

that were comparable across runs, the task activation model was regressed from n-back or 

emotion recognition fMRI data (10). The task activation model and the nuisance matrix were 

regressed out using AFNI’s 3dTproject.  



For each modality, the fMRI time series of each individual were projected to each 

subject’s FreeSurfer surface reconstruction and smoothed on the surface with a 6-mm full-width 

half-maximum (FWHM) kernel. The smoothed data was projected to the fsaverage5 template, 

which has 10,242 vertices on each hemisphere (18,715 vertices in total after removing the 

medial wall). Finally, we concatenated the three fMRI acquisitions, yielding time series of length 

27 minutes, 45 seconds (555 time points) in total.  

As in prior work, we removed vertices with low signal-to-noise ratio (SNR) (11-13). To 

calculate a whole-brain SNR map, we extracted the first frame of acquisition (post steady-state 

magnetization) of each of the three runs for all participants. Next, we normalized each image to 

a mode of 1,000 and then averaged all of these images; this average image was further 

normalized to a mode of 1,000. A mean BOLD signal of 800 or less represents a substantial 

attenuation of signal (13); applying this threshold resulted in the exclusion of low SNR locations, 

which were primarily located in orbitofrontal cortex and ventral temporal cortex. Within this 

mask, 17,734 vertices were included in subsequent analyses.  

 

Regularized non-negative matrix factorization  

As previously described in detail (14), we used non-negative matrix factorization (NMF) 

(15) to derive individualized functional networks. NMF factors the data by positively weighting 

cortical elements that covary; the algorithm yields a highly specific and reproducible parts-based 

representation (15, 16). Our approach was enhanced by a group sparsity consensus 

regularization term that preserves inter-individual correspondence, as well as a data locality 

regularization term that makes the decomposition robust to imaging noise, improves spatial 

smoothness, and enhances functional coherence of subject-specific functional networks (see Li 

et al., 2017 (14) for method details; see also: 

https://github.com/hmlicas/Collaborative_Brain_Decomposition). Because NMF requires inputs 

to be nonnegative values, we re-scaled the data by shifting time series of each vertex linearly to 



ensure that all values were positive (14). To avoid features in greater numeric ranges 

dominating those in a smaller numeric range, we further normalized the time series by its 

maximum value so that all the time points have values in the range [0, 1].  
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The data locality regularization term was applied to encourage spatial smoothness and 

coherence of the functional networks using graph regularization techniques (17). The data 

locality regularization term was formulated as  

𝑅:! = 𝑇𝑟((𝑉!)′𝐿:! 𝑉!), 

where 𝐿:! = 𝐷:! −𝑊:
!  is a Laplacian matrix for subject i, 𝑊:

!  is a pairwise affinity matrix to 

measure spatial closeness or functional similarity between different vertices, and 𝐷:!  is its 

corresponding degree matrix. The affinity between each pair of spatially connected vertices (i.e., 

vertices a and b) was calculated as G1 + 𝑐𝑜𝑟𝑟/𝑋.,;! , 𝑋.,<! 0J /2, where 𝑐𝑜𝑟𝑟(𝑋.,;! , 𝑋.,<! ) is the Pearson 

correlation coefficient between time series 𝑋.,;!  and 𝑋.,<! , and others were set to zero so that 𝑊:
!  



had a sparse structure. We identified subject specific functional networks by optimizing a joint 

model with integrated data fitting and regularization terms formulated by 
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 are used to balance the data fitting, data locality, and 

group consensus regularization terms, 𝑛: is the number of neighboring vertices, 𝛼 and 𝛽 are 

free parameters. Here, we used the same parameter settings as those used in prior validation 

studies (14).  

 

Defining individualized networks 

Our approach for defining individualized networks included three steps (Figure 1). The 

first two steps yielded a consensus group atlas. In the third step, this group atlas was used to 

define individualized networks for each participant. The whole-brain was decomposed into 17 

networks for correspondence with commonly used atlases and prior work (18-21). 

 

Step 1: Group network initialization  

Although individuals exhibit distinct network topography, they are also broadly consistent 

(22, 23). Therefore, we first generated a group atlas and used this group atlas as an initialization 

to define individualized networks. By doing so, we ensured spatial correspondence across all 

subjects. This strategy has been applied in prior work (18, 19, 21). To avoid the group atlas 

being driven by outliers and to reduce the computational memory cost, a bootstrap strategy was 

utilized to perform the group-level decomposition multiple times on a subset of randomly 

selected subjects. Subsequently, the resulting decomposition results were fused to obtain one 

robust initialization that is highly reproducible. As in prior work (14), we randomly selected 100 

subjects and temporally concatenated their time series, resulting in a time series matrix with 



55,500 rows (time-points) and 17,734 columns (vertices). The choice of sub-sample size did not 

impact results (sub-samples of 100, 200, and 300 were previously evaluated (21)). We applied 

the above-mentioned regularized non-negative matrix factorization method with a random non-

negative initialization to decompose this matrix (15). A group-level network loading matrix V was 

acquired, which had 17 rows and 17,734 columns. Each row of this matrix represents a 

functional network, while each column represents the loadings of a given cortical vertex. This 

procedure was repeated 50 times, each time with a different subset of subjects (14); this yielded 

50 different group atlases.  

 

Step 2: Group network consensus  

Next, we used spectral clustering to combine the 50 group network atlases into one 

robust and highly reproducible group network atlas (14). Specifically, we concatenated the 50 

group parcellations together across networks and acquired a matrix with 850 rows (i.e., 

functional networks, abbreviated as FN) and 17,734 columns (i.e., vertices). Inter-network 

similarity was calculated as 
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where 𝑑!? = 1 − 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0, 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0 is the Pearson correlation coefficient between 𝐹𝑁!   

and 𝐹𝑁?, and 𝜎 is the median of 𝑑!? across all possible pairs of FNs. Then, we applied a 

normalized-cuts (17) based spectral clustering method to group the 850 FNs into 17 clusters. For 

each cluster, the FN with the highest overall similarity with all other FNs within the same cluster 

was selected as the most representative. The final group network atlas was composed of the 

representatives of these 17 clusters.  

 

Step 3: Individualized networks.  

In this final step, we derived each individual’s specific network atlas using regularized 



NMF based on the acquired group networks (17 x 17,734 loading matrix) as initialization and 

each individual’s specific fMRI times series (555 x 17,734 matrix). See Li et al., 2017 (14) for 

optimization details. This procedure yielded a loading matrix V (17 x 17,734 matrix) for each 

participant, where each row is a functional network, each column is a vertex, and the value 

quantifies the extent that each vertex belongs to each network. This probabilistic network 

definition (or soft partition) can be converted into a discrete network definition (or hard partition) 

for visual display by labeling each vertex according to its highest loading. 

 

Sensitivity analyses  

First, we investigated if age impacted the ability to classify sex based on multivariate 

patterns of topography. We divided our sample into 3 tertiles based on age: tertile 1 (n=231; 8.2 -

14.8 years), tertile 2 (n=231; 14.8-17.7 years), and tertile 3 (n=231; 17.8-23.0 years). As part of 

the PNC, subjects over 10 years old completed a validated self-report regarding their pubertal 

development; there were no differences in pubertal status between males and females in the third 

age tertile (80% post-pubertal). We ran SVM with 2F-CV on each tertile separately. Multivariate 

patterns of topography accurately predicted sex in each of these tertiles.  The consistency of 

results across these tertiles suggests that sex classification based on topography was not 

impacted by age or pubertal status. To further confirm that results were not driven by pubertal 

status, we repeated the classification in a subset of the sample composed of just post-pubertal 

youths. 

Next, to ensure that results were not driven by the unequal number of males and females 

in our sample, we repeated our multivariate analysis on a sex-balanced subsample of 602 

subjects: 301 males and 301 randomly selected females. Training and testing subsets within the 

2F-CV were also sex-balanced and included 50% males and 50% females. As in our primary 

analysis, we conducted a chromosomal enrichment analysis to quantify the degree of spatial 

correspondence between the map of summed absolute prediction weights from this machine 



learning model and chromosomal gene sets from the Allen Human Brain Atlas. 

We then conducted an additional analysis to ensure that results were not biased by data 

leakage or use of a population-level template built on data that was not sex-balanced. To address 

this, we built a group atlas using a sex-balanced group of subjects that was not involved in either 

model training or testing.  First, we randomly selected a sex-balanced group of 346 individuals 

(173 male and 173 female) from the original sample. Using this group, we created a consensus 

group atlas (Figure 1a, steps 1-2). Creating the consensus group atlas involves repeating step 1 

(Group Atlas Generation) 50 times, with each run including a different subset of 100 subjects. 

Although each subset of 100 randomly selected individuals was not sex-balanced, subsets were 

on average sex-balanced across the 50 repeats so the final group atlas was not biased towards 

either sex (mean 49.62% male, median 50% male, IQR 47-52% male). Next, we used this group 

atlas to derive individualized networks in the remaining 347 individuals. Finally, we used SVM with 

nested 2F-CV in this sample of 347 individuals to classify participant sex. 

 
SUPPLEMENTARY TABLES 
 

 

Table S1. Number of vertices in each network of the consensus group atlas 



 

Table S2. Cell-type sub-classes with expression patterns that correlate with sex 
differences in topography contain several X-linked genes. Regions exhibiting sex 
differences in the multivariate pattern of functional topography are enriched in astrocyte-related 
genes, as well as several excitatory neuron sub-classes, including Ex5b, Ex1, Ex3e, Ex6b, and 
Ex2. The X-linked genes contained in each of these sub-classes is listed in the table.   
 
  



SUPPLEMENTARY FIGURES 

 

Figure S1. Schematic of one outer loop of the nested 2-fold cross validation (2F-CV) 
framework. The sample was randomly divided into 2 subsets, with the first half used as a 
training set and the second half used as a testing set. Each feature was linearly scaled between 
zero and one across the training dataset; these scaling parameters were applied to the testing 
sample. An inner 2F-CV was applied within the training set to select the optimal C parameter. 
Based on the optimal C, we trained a model using all subjects in the training set, and then used 
that model to predict the outcome of all participants in the testing set.  
 

 

 



 

Figure S2. Network-specific multivariate models reveal that topography of association 
networks most accurately classify participant sex. Although the summed weights depicted 
in Figure 3C identify which networks contribute most to the prediction, this measure does not 
directly assess the extent to which each network independently contributes to prediction 
accuracy. Therefore, we ran 17 network-specific models: for each network, we ran SVM with 
nested 2F-CV using vertices only from that network. This generated 100 cross-validated 
prediction scores per network. Bars in the figure represent the average of the 100 cross-
validated predictions. These network-specific models revealed that topography of association 
networks, including the default mode and ventral attention networks, most accurately classified 
participant sex.  
 
 
 



 
Figure S3. Classification of sex based on multivariate patterns of topography was not 
impacted by age. We investigated if participant age impacted the ability to classify sex based 
on multivariate patterns of topography. SVM with nested 2F-CV was used to construct 
multivariate models that classified participants as male or female in each of three age tertiles. 
The ROC curves of the resulting models for each tertile are depicted. Inset histogram shows 
distribution of permuted accuracies. Average accuracy from real (non-permuted) data is 
represented by the dashed red line. A) In tertile 1, AUC was 0.87; average sensitivity and 
specificity of the model were 0.65 and 0.83, respectively. Models classified participants as male 
or female with 74.9% accuracy (p<0.0001). B) In tertile 2, AUC was 0.88; average sensitivity 
and specificity of the model were 0.50 and 0.90, respectively. Models classified participants as 
male or female with 74.7% accuracy (p<0.0001). C) In tertile 3, AUC was 0.88; average 
sensitivity and specificity of the model were 0.67 and 0.82, respectively. Models classified 
participants as male or female with 75.0% accuracy (p<0.0001).  
 
 
 
  



 
Figure S4. Multivariate pattern analysis using support vector machines predicts subject 
sex based on functional topography in post-pubertal youths. To ensure that results were 
not driven by differences in pubertal status, we repeated our multivariate analysis in a subset of 
the sample composed only of post-pubertal youths. SVM with nested 2F-CV were used to 
construct multivariate models that classified participants as male or female. The ROC curve of 
the resulting model is depicted. Area under the ROC curve was 0.88; average sensitivity and 
specificity of the model were 0.48 and 0.93, respectively. Models classified participants as male 
or female with 77.3% accuracy. Inset histogram shows distribution of permuted accuracies. The 
average accuracy of real (non-permuted) data is represented by the dashed red line. 
 
 
 
 
 
 
 
 
 
 
 

  



  

Figure S5. Multivariate pattern analysis using support vector machines predicts subject 
sex based on functional topography in the sex-balanced subset. A) To ensure that results 
were not driven by the unequal number of males and females in our sample, we repeated our 
multivariate analysis on a sex-balanced subsample of 602 subjects: 301 males and 301 
randomly selected females. Training and testing subsets within the 2F-CV were also sex-
balanced and included 50% males and 50% females. In this sex-balanced subsample, models 
were able to classify unseen participants as male or female with 83.4% accuracy (p<0.0001). 
Sensitivity and specificity of the model were 0.83 and 0.84, respectively; area under the ROC 
curve (AUC) was 0.94. The ROC curve of the resulting model is depicted. Inset histogram 
shows distribution of permuted accuracies. Average accuracy from real (non-permuted) data is 
represented by the dashed red line. B) At each location on the cortex, the absolute contribution 
weight of each vertex was summed across networks, revealing that association cortex 
contributed the most to the multivariate model predicting participant sex. 
 
  



 
Figure S6. Multivariate pattern analysis using support vector machines predicts subject 
sex based on functional topography defined with a sex-balanced group atlas. To ensure 
that results were not driven by potential data leakage resulting from building a group atlas using 
the entire sample, we built a group atlas using a sex-balanced group of subjects that was not 
involved in model training and testing. First, we randomly selected a sex-balanced group of 346 
individuals (173 male and 173 female). Using this group, we created a consensus group atlas. 
Next, we used this group atlas to derive individualized networks in the remaining 347 
individuals. Finally, we used SVM with nested 2F-CV in this sample of 347 individuals to classify 
participant sex. Using this approach, we were able to classify subjects as male or female with 
79.0% accuracy (p<0.0001). Sensitivity and specificity of the model were 0.58 and 0.91, 
respectively; AUC was 0.90.   
  



 
Figure S7. Multivariate pattern analysis following dimensionality reduction predicts 
subject sex based on functional topography. To ensure that our results were not driven by 
model-overfitting in the context of an excess number of features, we repeated our multivariate 
analysis after using principal components analysis (PCA) to reduce the number of features to 
100 components. Instead of scaling features between zero and one, features were normalized 
to a mean of zero and standard deviation of one, as required for PCA. All other SVM 
parameters were unchanged from our primary analysis. Using this approach, we were able to 
classify subjects as male or female with 79.1% accuracy (p<0.0001). Sensitivity and specificity 
of the model were 0.73 and 0.84, respectively; AUC was 0.93. The ROC curve of the resulting 
model is depicted. Inset histogram shows distribution of permuted accuracies. Average 
accuracy from real (non-permuted) data is represented by the dashed red line. B) At each 
location on the cortex, the absolute contribution weight of each vertex was summed across 
networks, revealing that association cortex contributed the most to the multivariate model 
predicting participant sex. 
 
 
 
 
 
 



 
Figure S8. Mass-univariate analyses identify significant sex differences in association 
networks. A generalized additive model (GAM) was fit at each vertex to evaluate the impact of 
sex on network loadings. Age (modeled using a penalized spline) and motion were included as 
covariates. Multiple comparisons within each network were accounted for by controlling the 
false discovery rate (Q<0.05).  To identify types of networks with the greatest sex differences, 
the number of vertices in network type with a significant sex effect was summed separately for 
males and females (e.g. the DM bar depicted represents the number of vertices with a 
significant sex effect in networks 1, 8, and 12—the three DM networks). This analysis revealed 
that sex differences were greatest in association networks. 
  



 
Figure S9. Mass-univariate analyses demonstrate sex differences are greatest in 
association networks after accounting for network size. A generalized additive model 
(GAM) was fit at each vertex to evaluate the impact of sex on network loadings. To ensure that 
results were not driven by network size, after FDR correction across each network, we 
calculated the percent of vertices in each network that showed a significant sex effect. Solid 
bars represent the percent of vertices where females had significantly higher loadings than 
males. Cross-hatched bars represent the percent of vertices where males had significantly 
higher loadings than females. 
  



 
Figure S10. Mass-univariate analyses identify significant sex differences in association 
networks. A generalized additive model (GAM) was fit at each vertex to evaluate the impact of 
sex on network loadings. Age (modeled using a penalized spline) and motion were included as 
covariates. Multiple comparisons within each network were accounted for by controlling the 
false discovery rate (Q<0.05). Significant vertices are displayed for all 17 networks. 
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Figure S11. Regions exhibiting sex differences in the multivariate pattern of functional 
topography are enriched in expression of neuron related genes. We explored whether 
areas with prominent sex differences in topography show enriched annotation for specific 
biological processes, cellular components, and molecular functions. We conducted a rank-
based gene ontology (GO) enrichment analysis using GOrilla to examine functional enrichment. 
Full output of cellular component GO terms is depicted. This analysis identified several GO 
terms relevant to brain anatomy including “neuron part,” “synapse,” and “glutamatergic 
synapse.”  
 

  



SUPPLEMENTARY REFERENCES 

1. T. D. Satterthwaite et al., Neuroimaging of the Philadelphia neurodevelopmental cohort. 
NeuroImage 86, 544-553 (2014). 

2. T. D. Satterthwaite et al., Functional maturation of the executive system during 
adolescence. J Neurosci 33, 16249-16261 (2013). 

3. D. H. Wolf et al., Functional neuroimaging abnormalities in youth with psychosis 
spectrum symptoms. JAMA Psychiatry 72, 456-465 (2015). 

4. B. Fischl, FreeSurfer. NeuroImage 62, 774-781 (2012). 
5. R. Ciric et al., Mitigating head motion artifact in functional connectivity MRI. Nat Protoc 

13, 2801-2826 (2018). 
6. M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, S. M. Smith, FSL. 

NeuroImage 62, 782-790 (2012). 
7. S. M. Smith et al., Advances in functional and structural MR image analysis and 

implementation as FSL. NeuroImage 23 Suppl 1, S208-219 (2004). 
8. R. W. Cox, AFNI: software for analysis and visualization of functional magnetic 

resonance neuroimages. Comput Biomed Res 29, 162-173 (1996). 
9. M. N. Hallquist, K. Hwang, B. Luna, The nuisance of nuisance regression: spectral 

misspecification in a common approach to resting-state fMRI preprocessing reintroduces 
noise and obscures functional connectivity. NeuroImage 82, 208-225 (2013). 

10. D. A. Fair et al., A method for using blocked and event-related fMRI data to study 
"resting state" functional connectivity. NeuroImage 35, 396-405 (2007). 

11. E. M. Gordon et al., Generation and Evaluation of a Cortical Area Parcellation from 
Resting-State Correlations. Cerebral cortex (New York, N.Y. : 1991) 26, 288-303 (2016). 

12. J. G. Ojemann et al., Anatomic localization and quantitative analysis of gradient 
refocused echo-planar fMRI susceptibility artifacts. NeuroImage 6, 156-167 (1997). 

13. G. S. Wig, T. O. Laumann, S. E. Petersen, An approach for parcellating human cortical 
areas using resting-state correlations. NeuroImage 93 Pt 2, 276-291 (2014). 

14. H. Li, T. D. Satterthwaite, Y. Fan, Large-scale sparse functional networks from resting 
state fMRI. NeuroImage 156, 1-13 (2017). 

15. D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix 
factorization. Nature 401, 788-791 (1999). 

16. A. Sotiras et al., Patterns of coordinated cortical remodeling during adolescence and 
their associations with functional specialization and evolutionary expansion. Proc Natl 
Acad Sci U S A 114, 3527-3532 (2017). 

17. D. Cai, X. He, J. Han, T. S. Huang, Graph Regularized Nonnegative Matrix Factorization 
for Data Representation. IEEE Trans Pattern Anal Mach Intell 33, 1548-1560 (2011). 

18. R. Kong et al., Spatial Topography of Individual-Specific Cortical Networks Predicts 
Human Cognition, Personality, and Emotion. Cerebral cortex (New York, N.Y. : 1991) 
29, 2533-2551 (2019). 

19. D. Wang et al., Parcellating cortical functional networks in individuals. Nat Neurosci 18, 
1853-1860 (2015). 

20. B. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J Neurophysiol 106, 1125-1165 (2011). 

21. Z. Cui et al., Individual Variation in Functional Topography of Association Networks in 
Youth. Neuron 106, 340-353.e348 (2020). 

22. E. M. Gordon et al., Precision Functional Mapping of Individual Human Brains. Neuron 
95, 791-807.e797 (2017). 

23. C. Gratton et al., Functional Brain Networks Are Dominated by Stable Group and 
Individual Factors, Not Cognitive or Daily Variation. Neuron 98, 439-452.e435 (2018). 

 


