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------------------ 

Box 1. The Structure of DynaMETE 

DynaMETE (1) is a theory of dynamic complex systems in which the state variables are changing 
over time.  It combines mechanistic, bottom-up, modeling to describe dynamics at the micro scale 
with top-down MaxEnt to infer distributions over the micro scale variables.  Instantaneous values 
of the macro scale state variables and their first time derivatives constrain the MaxEnt procedure, 
and at any moment in time, the transition functions incorporating mechanisms at the micro scale 
may depend on the macro scale state variables as well as on the micro scale variables.   

We illustrate the approach here with an ecosystem toy model that is simpler than the full 
DynaMETE described in the main text.  Consider a dynamic state variable, 𝑁, equal to the total 

number of trees in a forest, and a fixed number of species, 𝑆. In this toy model, the single micro 

scale variable, 𝑛, is the abundance of an arbitrary species, and its time derivative is given by the 
mechanistic transition function 𝑓(𝑛, 𝑁(𝑡)). The notation implies that micro scale dynamics may 

depend on the macro scale variable.  For simplicity, the METE variables, 𝐸 (total metabolic rate) 

and 𝜀 (an individual’s metabolic rate) are ignored here because we are focusing on the basic 
structure of this approach to hybridizing mechanism with MaxEnt. The goal is to calculate the 
probability distribution 𝑃(𝑛, 𝑁) and the expected time evolution of 𝑁 under a perturbation in the 

initial value of 𝑁 or in the transition function, 𝑓. 

Suppose at time 𝑡 we know 𝑁, 𝑑𝑁 𝑑𝑡⁄ , and the two Lagrange multipliers  𝜆1 and 𝜆2, which 
satisfy the constraints:  

𝑁(𝑡) = 𝑆 ∑ 𝑛𝑃(𝑛, 𝑁(𝑡),𝑛 𝜆1(𝑡), 𝜆2(𝑡))     (S1) 

 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑆 ∑ 𝑓(𝑛, 𝑁(𝑡))𝑃(𝑛, 𝑁(𝑡),𝑛  𝜆1(𝑡), 𝜆2(𝑡))    (S2) 

 

Under these constraints (see Box 1 in the main text) 

𝑃(𝑛, 𝑁(𝑡), 𝜆1(𝑡),  𝜆2(𝑡)) =
 𝑒−𝜆1(𝑡)𝑛𝑒−𝜆2(𝑡)𝑓(𝑛,𝑁(𝑡))

𝑧(𝑡)
    (S3) 

 

To update 𝑁, 𝑑𝑁 𝑑𝑡⁄ , 𝜆1 and 𝜆2 we first update 𝑁 by a unit time step: 𝑁(𝑡 + 1) = 𝑁(𝑡) + 𝑑𝑁 𝑑𝑡⁄ , 

and update 𝑓(𝑛, 𝑁) by substitution. 

Then we update 𝑑𝑁 𝑑𝑡⁄ :  

𝑑𝑁(𝑡+1)

𝑆𝑑𝑡
= ∑ 𝑓(𝑛, 𝑁(𝑡 + 1))𝑃(𝑛, 𝑁(𝑡 + 1),𝑛  𝜆1(𝑡), 𝜆2(𝑡)   (S4) 

 

Now using the constraints imposed by 𝑁(𝑡 + 1), 𝑑𝑁(𝑡 + 1) 𝑑𝑡⁄ , 𝑓(𝑛, 𝑁(𝑡 + 1)), we can update the 

𝜆𝑖 (again, see Box 1 in the main text). This iterative procedure readily generalizes to multiple 
macro- and micro-scale variables as shown in (1).          
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An Example: Population Dynamics in a Disturbed Multi-Species Ecosystem 

Ecologists typically model the density-dependent growth of a population using the logistic 
equation: 

𝑑𝑛 𝑑𝑡⁄ = 𝑏0𝑛 − 𝑑0𝑛2      (S5) 

 

where the birth rate is linear in the population size, 𝑛, while the death rate is quadratic, indicating 
that crowding increases the per-capita death rate.   

Suppose, however, that within a community of populations of multiple species, any one 
species feels the effect of crowding both from individuals, 𝑛, within that species, and also from the 

summed population of all the species, 𝑁. 𝑁 may vary in time as the individual populations of the 
species rise and fall over time. We modify Eq. S5 as: 

𝑑𝑛 𝑑𝑡⁄ = 𝑏0𝑛 − 𝑑0𝑛2𝑁 𝑁0⁄      (S6) 

 

where the right hand side of Eq. S6 is the transition function 𝑓(𝑛, 𝑁(𝑡)) appearing in Eqs. S2 – 

S4, and 𝑁0 is a constant which we take to be the initial steady-state, value of 𝑁.   

In the initial steady state, the mean of the transition function over the distribution 𝑃 is 

zero, the mean of 𝑛 is 𝑁0 𝑆0⁄ , and 𝑃 = 𝑍−1𝑒−𝜆1𝑛.  Using the iteration process described above, the 

time trajectories of 𝑁 and the Lagrange multipliers, 𝜆𝑖(𝑡), following a perturbation either in the 

demographic rate constants or in the initial value of 𝑁 can be computed.   

Stochasticity is easily introduced into the transition function, 𝑓, as is extinction or 

migration leading to changes in the value of 𝑆. For more realism, the state variable 𝐸 (the 
community metabolic rate), and the corresponding micro-level variable 𝜀, (the metabolic rate of an 
individual), can be included (1).   

Although a full analysis of the behavior of even just the simplified dynamical system (Eqs. 
S1-S6) is beyond the scope of this Perspective, preliminary analysis indicates multiple steady 
states, differing in the form of 𝑃(𝑛), accessible from other steady states by different types of initial 
perturbations in rate constants such as 𝑑0 or displacements of 𝑁, and exhibiting hysteresis when 
a rate constant is first increased, say, and then decreased to its original value. Thus examination 
of the shape of abundance distributions in ecology may be able to provide insight into the 
perturbation history of the system. Further analysis of the potentially rich array of behaviors of 
hybrid mechanism-plus-MaxEnt dynamics is underway. 

------------------ 
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------------------ 

Box 2.  A Conditional Markov Model  

This Box complements the written description in the text. 

Notations. The observed information in state 𝑗 (𝑗 = 1, … , 𝐾) of individual 𝑖 (𝑖 = 1, … , 𝑛) in period 𝑡 

(𝑡 = 1, … , 𝑇) is 𝑦𝑖,𝑡,𝑗. For each individual 𝑖, 𝑦𝑖,𝑡,𝑗 = 1 if state 𝑗 is observed at period 𝑡, and 𝑦𝑖,𝑡,𝑗 = 0 

for all other 𝐾 − 1 states. The observed states are connected to the individual’s unobserved 

probability 𝑞𝑖,𝑡,𝑗 in the following way: 𝑦𝑖,𝑡,𝑗 = 𝑞𝑖,𝑡,𝑗 + 𝜀𝑖,𝑡,𝑗  where 𝜀𝑖,𝑡,𝑗 captures the uncertainty.  

Object of interest. The 𝐾 × 𝐾 matrix of transition probabilities 𝑝𝑘𝑗 (𝑘, 𝑗 = 1, … , 𝐾), representing 

the probability of transitioning from state 𝑘 to state 𝑗 within time period 𝑡 to 𝑡 + 1. It relates to the 

unobserved probability 𝑞𝑖,𝑡,𝑗 via 𝑞𝑖,𝑡+1,𝑗 = ∑ 𝑝𝑘𝑗𝑦𝑖,𝑡,𝑘
𝐾
𝑘=1  where ∑ 𝑝𝑘𝑗𝑗 = 1.  

The Basic Model 

In terms of the observed states, the Markov model is  

 

𝑦𝑖,𝑡+1,𝑗 =  ∑ 𝑝𝑘𝑗𝑦𝑖,𝑡,𝑘 + 𝜀𝑖,𝑡,𝑗 𝐾
𝑘=1      (S7) 

 

where the uncertainty 𝜀𝑖,𝑡,𝑗 is now expressed as uncertainty on the model as a whole, such as 

possible misspecification or ambiguity. The goal of the MaxEnt approach is to is maximize the 
entropy of the 𝑃’s subject to the above constraints (Eq. S1) and the 𝐾 normalizations. This model, 
however, is too simple: it does not take advantage of all the available information.  

The Realistic and Generalized Model 

Introducing Covariates and Accommodating for Model Ambiguity. Let 𝑋 be 𝐿 exogenous 

and environmental variables with elements 𝑥𝑖,𝑡,𝑙 for 𝑙 = 1, … , 𝐿. The variables may be entity 

dependent or independent. The relationship between the observed states 𝑦𝑖,𝑡,𝑗, the unknown 

probabilities 𝑃, and the exogenous information 𝑋 is 

∑ ∑ 𝑦𝑖𝑡𝑗𝑥𝑖𝑡𝑙 =  ∑ ∑ ∑ 𝑝𝑘𝑗𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙

𝐾

𝑘=1

+ ∑ ∑ 𝜀𝑖𝑡𝑗𝑥𝑖𝑡𝑙

𝑛

𝑖=1

𝑇−1

𝑡=1

𝑛

𝑖=1

𝑇−1

𝑡=1

𝑛

𝑖=1

𝑇

𝑡=2

. 

These are just the product moments once we introduced the 𝑋’s into Eq. S1.  

We are interested in both 𝑃 and 𝜀 without imposing more structures. Therefore, the 
problem is underdetermined, so we follow the logic of the MaxEnt. But first, we need to convert 
the 𝜀’s to probabilities (Step 1). 

Step 1: Converting Uncertainty to Probability Distributions. Think of the 𝜀’s as expected 

values of a discrete random variable 𝑉 with corresponding probabilities 𝑊, so 𝜀𝑖𝑡𝑗 = ∑ 𝑤𝑖𝑡𝑗𝑚𝑣𝑡𝑗𝑚𝑚  

where ∑ 𝑤𝑖𝑡𝑗𝑚 = 1𝑚 , 𝑀 ≥ 2, and 𝑣𝑡𝑗𝑚 ∈ [−1, 1]. For example, if 𝑀 = 3, 𝑣𝑡𝑗 = (−1, 0, 1) for all 𝑡 and 

𝑗.  

Step 2: The Updated Constraints. We now express the constraints in terms of 𝑉 and 𝑊: 
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∑ ∑ 𝑦𝑖𝑡𝑗𝑥𝑖𝑡𝑙

𝑛

𝑖=1

𝑇

𝑡=2

=  ∑ ∑ ∑ 𝑝𝑘𝑗𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙

𝐾

𝑘=1

+ ∑ ∑ 𝜀𝑖𝑡𝑗𝑥𝑖𝑡𝑙

𝑛

𝑖=1

𝑇−1

𝑡=1

𝑛

𝑖=1

𝑇−1

𝑡=1

                     

                              =  ∑ ∑ ∑ 𝑝𝑘𝑗𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙

𝐾

𝑘=1

+  ∑ ∑ ∑ 𝑤𝑖𝑡𝑗𝑚𝑣𝑡𝑗𝑚𝑥𝑖𝑡𝑙

𝑀

𝑚=1

𝑛

𝑖=1

𝑇−1

𝑡=1

𝑛

𝑖=1

.

𝑇−1

𝑡=1

 

(S8) 

Finally, the information-theoretic goal is to maximize the Shannon entropy of 𝑃 and 𝑊 

subject to constraints (Eq. 2) and normalizations for 𝑃 and 𝑊. The inferred transitions are 

𝑝𝑘𝑗
∗ =  

exp (− ∑ ∑ 𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙𝜆𝑗𝑙
∗

𝑖𝑙
𝑇−1
𝑡=1 )

∑ 𝑒𝑥𝑝(− ∑ ∑ 𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙𝜆𝑗𝑙
∗

𝑖𝑙
𝑇−1
𝑡=1 )𝑗

≡
exp (− ∑ ∑ 𝑦𝑖𝑡𝑘𝑥𝑖𝑡𝑙𝜆𝑗𝑙

∗
𝑖𝑙

𝑇−1
𝑡=1 )

Z𝑘(𝜆∗)
 

where {𝜆𝑗𝑙
∗ } is the set of inferred Lagrange multipliers associated with the 𝐾 × 𝐿 constraints (Eq. 

S2). Similarly, the inferred uncertainty is 𝜀𝑖𝑡𝑘
∗ =  ∑ 𝑤𝑖𝑡𝑗𝑚

∗ 𝑣𝑡𝑗𝑚𝑚  where 

𝑤𝑖𝑡𝑗𝑚
∗ =  

𝑒𝑥𝑝(− ∑ 𝑥𝑖𝑡𝑙𝑣𝑡𝑗𝑚𝜆𝑗𝑙
∗

𝑙 )

∑ 𝑒𝑥𝑝(− ∑ 𝑥𝑖𝑡𝑙𝑣𝑡𝑗𝑚𝜆𝑗𝑙
∗

𝑙 )𝑚

=  
𝑒𝑥𝑝(− ∑ 𝑥𝑖𝑡𝑙𝑣𝑡𝑗𝑚𝜆𝑗𝑙

∗
𝑙 )

Ψ𝑖𝑡𝑘(𝜆∗)
. 

Though at a first glance it may seem that this is a complicated constrained optimization 
problem with many parameters, in fact it is not. The real parameters here are the Lagrange 
multipliers. The number of those is not changed with the generalization done here. Using duality 
theory – the principle that any optimization problem can be specified in two different ways, say 
one constrained with respect to the probabilities 𝑃’s and 𝑊’s, and one unconstrained with respect 
to the Lagrange multipliers – this can be easily observed via the unconstrained model (which is a 
function of the 𝜆’s): 

ℓ(𝜆) =  ∑ ∑ 𝑦𝑖𝑡𝑗𝑥𝑖𝑡𝑙𝜆𝑗𝑙

𝑖𝑗𝑙

+  ∑ 𝑙𝑜𝑔[Z𝑘(𝜆)]

𝑘

∑ 𝑙𝑜𝑔[Ψ𝑖𝑡𝑗(𝜆)].

𝑖𝑡𝑗

𝑇

𝑡=2

 

Technically, ℓ(𝜆) can be interpreted as a generalized likelihood function (2, 3). 

Inferred Causal Influence. The marginal effects of 𝑋 on 𝑃 capture the direct effect of a small 
change in 𝑋 on 𝑃 while holding everything else fixed. If 𝑋𝑙 is exogenous (it is some observed 
information that is determined outside the system; the value of this variable is independent of the 

states of the other variables in the system), then the change in 𝑝𝑘𝑗 as a result of a change in that 

variable is the inferred causal influence of that variable, such as the effect of global warming or a 
certain policy, on 𝑃. Mathematically, these causal effects can be calculated for both continuous 
and discrete causes.  

------------------ 
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