The American Journal of Human Genetics, Volume 109

## **Supplemental information**

# Germline thymidylate synthase deficiency impacts

## nucleotide metabolism and causes

## dyskeratosis congenita

Hemanth Tummala, Amanda Walne, Roberto Buccafusca, Jenna Alnajar, Anita Szabo, Peter Robinson, Allyn McConkie-Rosell, Meredith Wilson, Suzanne Crowley, Veronica Kinsler, Anna-Maria Ewins, Pradeepa M. Madapura, Manthan Patel, Nikolas Pontikos, Veryan Codd, Tom Vulliamy, and Inderjeet Dokal

## Table S1: Antibodies used in the study

| Antibody                  | Company                | Catalogue number | Dilution   |
|---------------------------|------------------------|------------------|------------|
| TYMS                      | Abcam                  | ab108995         | WB 1:2000  |
| TYMK (TK1)                | Cell signalling        | 8960S            | WB 1:1000  |
| RRM1                      | antibodies-online GmbH | ABIN2150979      | WB 1:1000  |
| RRM2                      | Insight Biotechnology  | GTX124441-S      | WB 1:1000  |
| HSP70                     | Enzo life sciences     | ADI-SPA-819-D    | CoIP 1:500 |
| HSP70                     | Insight Biotechnology  | SAB-40416-1      | CoIP 1:500 |
| NDPK                      | antibodies-online GmbH | ABIN5547672      | WB 1:1000  |
| β Actin                   | Abcam                  | ab8227           | WB 1:3000  |
| $\alpha$ tubulin          | Abcam                  | ab7291           | WB 1:3000  |
| GAPDH                     | Abcam                  | ab8245           | WB 1:3000  |
| АТМ                       | Abcam                  | ab78             | WB 1:1000  |
| Phospho-ATM Serine 1981   | Abcam                  | ab208775         | WB 1:1000  |
| CHK1                      | Abcam                  | ab79758          | WB 1:1000  |
| Phospho-CHK1 Serine 345   | Abcam                  | ab58567          | WB 1:1000  |
| CHK2                      | Abcam                  | ab109413         | WB 1:1000  |
| Phospho-CHK2 Threonine 68 | Abcam                  | ab32418          | WB 1:1000  |
| TP53                      | Cell signalling        | 48818S           | WB 1:1000  |
| Phospho p53 Serine 15     | Cell signalling        | 9284T            | WB 1:1000  |
| P21                       | Abcam                  | AB109520         | WB 1:500   |
| DKC1                      | Abcam                  | EPR10398         | WB 1:1000  |
| TERT Abcam                |                        | ab32020          | WB 1:1000  |
| SMUG                      | MUG Abcam              |                  | WB 1:1000  |
| TIN2                      | Abcam                  |                  | WB 1:1000  |
| POT1                      | Enzo life sciences     | PSC-15-787-R050  | WB 1:1000  |
| TPP1                      | antibodies-online GmbH | ABIN5074829      | WB 1:1000  |
| TRF1                      | Insight Biotechnology  | TA309899         | WB 1:1000  |
| H2AX serine 139           | Cell signalling        | 9718S            | IF 1:300   |

Source of antibody procurement and relevant dilutions used in experiments. WB refers to western blot and

ICC refers to immuno cyto chemistry.

# Table S2: Bone marrow failure gene panel

| ACD      | G6PC3  | RPL5   |
|----------|--------|--------|
| ADA2     | GATA1  | RPL9   |
| ANKRD26  | GATA2  | RPS10  |
| BRCA1    | GFI1   | RPS17  |
| BRCA2    | GRHL2  | RPS19  |
| BRIP1    | HAX1   | RPS24  |
| C15orf41 | HOXA11 | RPS26  |
| CDAN1    | JAGN1  | RPS27  |
| CEBPA    | KIF23  | RPS28  |
| CSF3R    | KLF1   | RPS29  |
| CTC1     | LIG4   | RPS7   |
| CXCR4    | LPIN2  | RTEL1  |
| CYCS     | MAD2L2 | RUNX1  |
| DCLRE1B  | MECOM  | SAMD9  |
| DDX41    | MPL    | SAMD9L |
| DKC1     | MYSM1  | SBDS   |
| DNAJC21  | NAF1   | SEC23B |
| DNAJC3   | NHP2   | SHQ1   |
| DUT      | NOP10  | SLX4   |
| EFL1     | NPM1   | SP1    |
| ELANE    | PALB2  | SRP54  |
| ERBB3    | PARN   | SRP72  |
| ERCC4    | POLA1  | STN1   |
| ERCC6L2  | POT1   | TAZ    |
| ETV6     | RAD51  | TERC   |
| FANCA    | RAD51C | TERT   |
| FANCB    | RBM8A  | тнро   |
| FANCC    | RECQL4 | TINF2  |
| FANCD2   | RFWD3  | TP53   |
| FANCE    | RMRP   | TYMS   |
| FANCF    | RPL11  | UBE2T  |
| FANCG    | RPL15  | USB1   |
| FANCI    | RPL18  | VPS45  |
| FANCL    | RPL26  | WAS    |
| FANCM    | RPL27  | WRAP53 |
| FYB1     | RPL31  | XRCC2  |
| G6PC     | RPL35A | ZCCHC8 |

## Table S3: Variants in TYMS- ENOSF1 locus

|        |                   |                              | Additional variant (NC_000018.10: |            |                  |
|--------|-------------------|------------------------------|-----------------------------------|------------|------------------|
| Family | Individual        | TYMS Variant                 | g.623000-716000)                  | gnomAD MAF | Location         |
| 1      | father            |                              |                                   |            |                  |
| 1      | Index/proband (M) | c.485_487delAA: pR163SfsTer3 |                                   |            |                  |
| 1      | mother            | c.485_487delAA: pR163SfsTer3 |                                   |            |                  |
| 2      | father            | c.485_487delAA: pR163SfsTer3 |                                   |            |                  |
| 2      | Index/proband (M) | c.485_487delAA: pR163SfsTer3 | NC_000018.10:g.706815A>T (LCR)    | NR         | ENOSF1, intron 1 |
| 2      | mother            | :                            | NC_000018.10:g.706815A>T (LCR)    | NR         | ENOSF1, intron 1 |
| 2      | U/A brother       | •                            | •                                 |            |                  |
| 3      | father            | c.343C>T: p.R115X            |                                   |            |                  |
| 3      | Index/proband (M) | c.343C>T: p.R115X            | NC_000018.10:g.694842T>C          | 0.0009     | ENOSF1, intron 3 |
| 3      | mother            |                              | NC_000018.10:g.694842T>C          | 0.0009     | ENOSF1, intron 3 |
| 4      | affected sister   | c.534_535insTG: p.M179X      | NC_000018.10:g.694842T>C          | 0.00026    | TYMSOS, intron 1 |
| 4      | father            | c.534 535insTG: p.M179X      |                                   |            |                  |
| 4      | Index/proband (M) | c.534_535insTG: p.M179X      | NC_000018.10:g.654556C>T          | 0.00026    | TYMSOS, intron 1 |
| 4      | mother            | •                            | NC_000018.10:g.654556C>T          | 0.00026    | TYMSOS, intron 1 |
| 5      | father            | c.A480T: p.Q160H             |                                   |            |                  |
| 5      | Index/proband (F) | c.A480T: p.Q160H             | NC_000018.10:g.696402C>T          | 0.0013     | ENOSF1, intron 3 |
| 5      | mother            |                              | NC_000018.10:g.696402C>T          | 0.0013     | ENOSF1, intron 3 |
| 5      | U/A brother       |                              |                                   |            |                  |
| 6      | Index/proband (M) | c.G259A: p.E87K              | NC_000018.10:g.694158C>T          | NR         | ENOSF1, intron 4 |
| 7      | Index/Proband (M) | c.556+1G>A                   | •                                 |            |                  |
| 8      | Index/proband (F) | c.C811T: p.R271X             | NC_000018.10:g.667547T>A (LCR)    | 0.0047     | TYMS, intron 3   |

U/A – unaffected; MAF- Minor allele frequency; LCR-Low complexity region; M – male; F- female.

## Figure S1: Sanger traces of TYMS coding sequence from control and proband's whole blood DNA



Representative Sanger traces showing the pathogenic variants identified in this study compared to an unaffected sample. Where RNA samples were available from the probands, we show that the variants in Families 1-3 cause nonsense mediated decay of the allele carrying the *TYMS* variant.

## Figure S2. Clustal Alignment of TYMS in different species

|       |                        |         | p.Q162QfsX3                      | p.l178fsX1 c.556+1G>A |                        |
|-------|------------------------|---------|----------------------------------|-----------------------|------------------------|
|       | p.E87K                 | p.R115X | p.Q160H                          |                       | p.R271X                |
| Human | VLE <mark>E</mark> LLW | SRDFL   | QG <b>VD<mark>Q</mark>LQRVID</b> | RIIMCAWNPRDL          | QLQ <mark>RE</mark> PR |
| Dog   | VLEELLW                | SRDFL   | QGVD <mark>Q</mark> LQKVID       | RIILCGWNPKDL          | QLQREPR                |
| Mouse | VLEELLW                | SRDFL   | QGVD <mark>Q</mark> LQKVID       | RIIMCAWNPKDL          | QLQREPR                |
| Rat   | VLEELLW                | SRDFL   | QGVD <mark>Q</mark> LQKVID       | RIIMCAWNPKDL          | QLQREPR                |
| Frog  | VLEELLW                | SREFL   | QGVD <mark>QLRNVIE</mark>        | RIIMCSWNPKDI          | QLQRTPR                |
| Fish  | ILEELLW                | SREFL   | EGVDQLQKVID                      | RIIMCAWNPKDL          | QIQREPR                |
| Worm  | VLEELLW                | DRAFL   | QGVD <mark>QLAEVI</mark> R       | RIIMSAWNPSDL          | QLDREPY.               |
| Yeast | IIL <mark>E</mark> LLW | SREYL   | QGID <mark>Q</mark> LKQVIH       | RIIMSAWNPADF          | QITRNPR                |
|       | <b>::</b> * * * *      | .* :*   | :*:* <mark>*</mark> * .**        | ***:*** *:            | *: * *                 |

Clustal alignment of TYMS showing a high level of conservation between species. The position of the variants identified in this study are highlighted.

Figure S3: Telomere and telomerase associated growth defects in TYMS deficient cells of affected individuals



Population doubling rate of probands' cell lines (1 and 2) compared to control.

## Figure S4: Assessment of DNA repair proteins in TYMS deficient individual cells along with control cells



Immunoblotting of several key proteins involved in telomere maintenance and DNA damage response pathway. Antibody against  $\beta$ -Actin is used to determine the loading control.



## Figure S5: Post transcriptional fate of TYMS is controlled by ENOSF1

- A) Reduced TYMS protein levels in proband samples over time at different passages. Antibody against α-tubulin is used to determine loading control.
- B) Schematic diagram of crosslinking and immunoprecipitation of translating ribosome with affinity beads that are covalently attached with anti-Hsp70 antibodies. The crosslinked and anti-Hsp70 immunoprecipitated mRNA complexes are subsequently eluted and analysed by qPCR.
- C) qPCR analysis shows a significant decrease in *TYMS* mRNA bound to the polysome when compared to input, while TP53 binding to polysome is increased in the proband samples. Bars represent the median of relative expression ratio.
- D) ENOSF1 transcript levels relative to TYMS expression in control and proband cells with increasing passage number.

#### Figure S6: Endogenous TYMS rescue and RNA-RNA interaction prediction between TYMS and ENOSF1



(A and B) Immunoblotting of TYMS protein in control and proband cells in two different transduction experiments at passage 3 (A) and passage 8 (B) transduced with lentivirus particles encoding GFP alone or GFP tagged *TYMS* cDNA. Antibody against  $\beta$ -Actin and  $\alpha$ -tubulin is used to determine loading control. (C and D) IntaRNA verison 2.4.1 was used for prediction of RNA sequences involved in mediating RNA-RNA interaction between *TYMS* and *ENOSF1*. The red highlighted region in the sequence shows putative and accurate interaction region involved between *TYMS* and *ENOSF1* using RactIP. The red arched lines indicate intergenic interactions between two different genes, in this proband *TYMS* and *ENOSF1*. The blue arched lines indicated intragenic interaction within the gene.



#### Features of individuals with biallelic DUT variants

| Family                              | 1     | 2              |
|-------------------------------------|-------|----------------|
|                                     |       |                |
| Gender                              | Μ     | М              |
| Country/ethnic origin               | Sudan | UK-Scotland    |
| Age at investigation (years)        | 5     | 16             |
| Parents first cousins/related       | Y     | Ν              |
| Skin pigmentation abnormalities     | Y     | Y              |
| Nail dystrophy                      | Ν     | ۲c             |
| Leucoplakia                         | Ν     | Ν              |
| Hair loss/thin eye lashes           | Ν     | Ν              |
| Haematological abnormalities        | Ya    | Y <sup>d</sup> |
| Immune defects                      | Ν     | Yď             |
| Learning/developmental difficulties | Ν     | Ν              |
| Microcephaly                        | Ν     | Ν              |
| Other features                      | Yb    | Ye             |

**Family 1** - (a) Investigations at age 5 years showed pancytopenia, hypocellular bone marrow with dyserythropoiesis and normal karyotype. This individual's history and clinical course have been documented in the European Journal of Haematology (1998; 60: 209-212). He was stable on oxymetholone and granulocyte colony stimulating factor therapy for several years; (b) developed insulin dependent diabetes mellitus while on oxymetholone therapy, at age 10 yrs progressed to myelodysplasia with monosomy 7. His family history was significant, 3 older siblings had died of bone marrow failure associated with diabetes mellitus in Sudan.

**Family 2** – (c) many toenails affected; (d) at age 16 years was blood transfusion dependent and lymphopenic. Bone marrow was hypercellular exhibiting marked dyserythropoiesis and associated with splenomegaly; (e) Abnormal facies, small jaw, overcrowded teeth, growth restriction, short stature and hypogonadism. F = female, M = male; Y = yes; N = normal/no