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ABSTRACT Single-molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magni-
tude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM data set is
an essential aspect of the image processing and analysis pipeline. Here, we present a simple method to estimate the localization
spread function (LSF) of a static SMLM data set directly from acquired localizations, exploiting the correlated dynamics of indi-
vidual emitters and properties of the pair autocorrelation function evaluated in both time and space. The method is demonstrated
on simulated localizations, DNA origami rulers, and cellular structures labeled by dye-conjugated antibodies, DNA-PAINT, or
fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are broader than expected from
the localization precision alone, due to additional uncertainty accrued when localizing molecules imaged over time.
SIGNIFICANCE Single-molecule localization microscopy (SMLM) is a class of imaging methods that resolve
fluorescently labeled structures beyond the optical resolution limit of visible light. SMLM detects stochastically blinking
labels over minutes and localizes each blink with precision of order 10 nm. We present a method to evaluate the accuracy
of localizations in a way that is analogous to the point spread function of a conventional light microscope. The LSF estimate
explicitly observes time-dependent factors that degrade image resolution and provides an objective tool to both optimize
imaging and guide image analysis. The estimate is robust on useful timescales for a range of SMLM probes.
INTRODUCTION

Single-molecule localization microscopy (SMLM) is a
powerful tool to image structures in cells with dimensions
ranging between tens of nanometers to tens of microns.
Methods such as (d)STORM (1,2), (F)PALM (3,4), and
PAINT (5) exploit the stochastic blinking of single fluoro-
phores to localize emitting molecules with a localization
precision much smaller than the diffraction limit of visible
light, by imaging only a small subset of probes in any given
image frame. These samples are then imaged over time, and
acquired localizations are typically assembled into a single
reconstructed superresolved image.

Assessing the quality of reconstructed images can be
challenging as numerous factors can contribute. These fac-
tors can include the labeling density, the types of structures
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being imaged, the brightness and blinking dynamics of the
fluorophore, the finite size of labeling antibodies, motions
of the stage or labeled molecules during acquisition, and
the analytical methods used in postprocessing. One impor-
tant measure of the quality of a measurement is the localiza-
tion precision of single fluorophores, which is influenced by
many of the factors listed above. Many localization algo-
rithms directly return estimates of the localization precision
of single fits, and similar information can be extracted
directly from the localizations themselves through the use
of pair-correlation functions or nearest neighbor analyses
that extract the distribution of positions of molecules de-
tected in adjacent frames (6,7). However, these methods
are not sensitive to errors introduced on timescales longer
than a few image frames. Other metrics of image quality
have been developed that integrate both precision and
spatial sampling. One widely used method, called Fourier
ring correlation (FRC) (8,9), effectively captures the impact
of factors that degrade quality over the entire span of image
acquisition. The FRC curve depends on the types of
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Localization spread function for SMLM
structures imaged, how well they are sampled, and the spe-
cific regions of interest used. The resolution value it reports
indicates the length scale below which the signal to noise ra-
tio falls below a specified limit. This value is useful for
comparing imaging conditions for a particular sample, but
hard to compare across sample types, making its use highly
context dependent.

Here, we present a simple method to estimate the
average localization spread function (LSF) of an SMLM
data set as a way to evaluate its resolution. The LSF is
analogous to the point spread function (PSF) of a conven-
tional microscopy measurement and can aid the interpreta-
tion of acquired images. The LSF reports on how
accurately distances can be measured between labeled ob-
jects within images, and can be used when constraining the
structure of a multiprotein complex or when estimating the
statistical codistribution of labeled components. The LSF
can also be used to evaluate optimizations all along the im-
age acquisition and processing pipelines. The method pre-
sented exploits temporal correlations in the blinking
dynamics of single fluorophores commonly used for local-
ization microscopy (10–12). This enables the method to
report on errors accumulated over time that do not typically
impact the accuracy of single-molecule fitting but impact
how accurately a molecule’s position is determined relative
to others (13,14). Here, we derive a method to isolate the
LSF directly from acquired localizations, validate it
through simulation and images of DNA origami rulers,
and apply it to several images of labeled structures in cells.
In all of the experimental examples interrogated, the LSF
width increases over timescales at and below that of drift
correction.
MATERIALS AND METHODS

Simulations

Simulations mimicking DNA origami rods were accomplished by

randomly placing pairs of fluorophores positioned 50 nm apart within

a 40 by 40 mm region of interest (ROI) at an average density of 1 pair

per mm2. A total of 20,000 individual image frames with an effective

frame time of 0.1 s were simulated by sampling a subset of molecular

positions with a localization precision of 10 nm in each lateral dimen-

sion. The dynamics of individual fluorophores were governed by a

continuous time Markov process involving five states: one on state (1),

three dark states (0, 01, 02), and an irreversible bleached state (B),

following the procedure described previously (12,15). The on state was

accessible from any of the dark states, while dark state 0 was accessible

only from the on state, and dark states 01 and 02 were accessible only

from the previous dark states, 0 and 01, respectively. We used the

following parameters (using the notation described in (12,15)) to capture

essential elements of our experimental observations: lð0/1Þ ¼ 1.2 Hz;

lð0/01Þ ¼ 0.05 Hz; lð01/02Þ ¼ 0.0033 Hz; lð01/1Þ ¼ 0.02 Hz;

lð02/1Þ ¼ 0.0005 Hz; lð1/0Þ ¼ 5 Hz; mð1/BÞ ¼ 0.05 Hz. The

continuous time Markov process was simulated in MATLAB

(MathWorks, Natick, MA) using File Exchange code ‘‘simCTMC.m’’

(16). When present, drift was applied to all molecular positions with a

constant rate of 0.3 nm/s in the x direction along with diffusive drift char-

acterized by a diffusion coefficient of D ¼ 2.5 nm2/s. Drift was corrected
using the mean shift algorithm described previously (17) using 1000

frames per alignment (10 s).
Experimental sample preparation

DNA origami ‘‘gatta-STORM’’ nanorulers were purchased from Gattaquant

(Grafelfing, Germany) and a sample was prepared following the manufac-

turer’s instructions. In brief, biotinylated bovine serum albumin (biotin-

BSA; Thermo Fisher, Waltham, MA, USA; 1 mg/mL) was absorbed to a

clean 35 mm no. 1.5 glass bottom dish (MatTek well; MatTek Life Sci-

ences, Ashland, MA, USA) for 5 min then washed. Streptavidin was then

applied (1 mg/mL) for 5 min, then washed with a solution of phosphate-

buffered saline (PBS) plus 10 mM MgCl2. A solution containing the bio-

tinylated DNA origami was then applied. Samples were then washed and

imaged in an imaging buffer supplemented with 10 mM MgCl2. ‘‘gatta-

PAINT’’ 80RG nanorulers in a sealed sample chamber were purchased

from Gattaquant and imaged in the Atto655 color channel following the

manufacturer’s recommendations.

Mouse primary neurons were isolated from P0 mouse pups as described

previously and cultured on MatTek wells (17). On day 10 of culture (days

in vitro 10), neurons were rinsed with sterile Hanks’ balanced salt solution

and fixed for 10 min with prewarmed 4% PFA (Electron Microscopy Sci-

ences, Hatfield, PA, USA) in PBS. The fixed neurons were rinsed three

times with PBS and permeabilized in 0.2% Triton X-100 (MilliporeSigma,

St. Louis, MO, USA) in PBS for 5 min. Neurons were then incubated in

blocking buffer containing 5% BSA for 30 min, and labeled with Nup210

polyclonal antibody diluted in PBS (1:200; Bethyl Laboratories, Montgom-

ery, TX, USA; A301-795A) overnight in 4�C. The following day, neurons

were washed three times in PBS and stained with goat anti-rabbit

AlexaFluor647 Fab Fragment (1:800; Jackson ImmunoResearch, West

Grove, PA, USA; 111-607-003) for an hour, washed three times with

PBS, then imaged.

CH27 B cells (mouse, MilliporeSigma, St. Louis, MO, USA); cat. no.

SCC115, RRID:CVCL_7178), a lymphoma-derived cell line (18) were ac-

quired from Neetu Gupta (Cleveland Clinic, OH). CH27 cells were main-

tained in culture as described previously (19). Cells were adhered to

MatTek wells coated with VCAM following procedures described previ-

ously (20). In brief 0.1 mg/mL IgG, Fcg specific was adsorbed to a plasma

cleaned well for 30 min at room temperature. Wells were rinsed with PBS,

then nonspecific binding was blocked with 2% BSA at room temperature

for 10 min, followed by incubation with 0.01 mg/mL recombinant human

VCAM-1/CD106 Fc chimera protein (R&D Systems, Minneapolis, MN,

USA) and 0.01 mg/mL ChromPure Human IgG, Fc fragment (Jackson

ImmunoResearch) for 1 h at room temperature or overnight at 4�C.
VCAM-1-coated dishes were stored up to 1 week in VCAM-1 and Fc at

4�C. Immediately before plating, dishes were blocked at room temperature

in 2% goat serum (Gibco, Thermo Fisher, Waltham, MA, USA) for

10 min, then cells were allowed to adhere for 15 min in medium before

chemical fixation in 2% PFA and 0.2% glutaraldehyde (Electron Micro-

scopy Sciences). F-Actin was stained by permeabilizing cells with 0.1%

Triton-X-100 before incubation with 3.3 mM phalloidin-AlexaFluor647

(Thermo Fisher, Waltham, MA, USA) for at least 15 min. Phalloidin-

stained cells were imaged immediately after removing label. Cells tran-

siently expressing Clathrin-GFP were permeabilized after fixation with

0.1% Triton-X-100 followed by labeling with a single domain anti-GFP

antibody (MASSIVE-TAG-Q ANTI-GFP) from Massive Photonics (Gra-

felfing, Germany) for 1 h at room temperature, then imaged in 0.5 nM

of imaging strand in the imaging buffer supplied by the manufacturer.

Cells expressing the membrane label Src15-mEos3.2 were prepared by

transiently transfecting 106 cells with 1 mg of plasmid encoding Src15-

mEos3.2 (N0-MGSSKSKPKDPSQRRNNNNGPVAT-[mEos3.2]-C0), which
was derived from a GFP-tagged version by replacing GFP with mEos3.2

(21,22). Transfection was accomplished using Lonza Nucleofector electro-

poration (Lonza, Basel, Switzerland) with program CA-137 and cells were

grown in flasks overnight before plating and fixation as described above.
Biophysical Journal 121, 2906–2920, August 2, 2022 2907



Shaw et al.
Single-molecule imaging and localization

Imaging was performed using an Olympus IX83-XDC inverted micro-

scope. TIRF laser angles were achieved using a 100� UAPO TIRF objec-

tive (NA ¼ 1.50), and active Z-drift correction (Olympus America, Center

Valley, PA, USA). AlexaFluor647 was excited using a 647 nm solid-state

laser (OBIS, 150 mW, Coherent, Santa Clara, CA, USA) and mEos3.2 was

excited using a 561 nm solid-state laser (Sapphire 561 LP, Coherent), both

coupled in free space through the back aperture of the microscope. Fluo-

rescence emission was detected on an EMCCD camera (Ultra 897, Andor,

Belfast, Northern Ireland). Samples containing AlexaFluor647 were

imaged in a buffer containing 100 mM Tris, 10 mM NaCl, 550 mM

glucose, 1% (v/v) b-mercaptoethanol, 500 mg/mL glucose oxidase (Sigma,

St. Louis, MO, USA), and 40 mg/mL catalase (Sigma), with 10 mM MgCl2
for the DNA origami sample. Samples with mEos3.2 or DNA PAINT

Atto655 probes were imaged in imaging buffer from Massive Photonics.

Single-molecule positions were localized in individual image frames using

custom software written in MATLAB. In most cases, peaks were

segmented and fit from background corrected images, where the back-

ground was estimated as the median signal over 500 acquisition frames.

Peaks were segmented using a standard wavelet algorithm (23) and

segmented peaks were then fit as single emitters on GPUs using previously

described algorithms for 2D (24), or as multiemitters on a CPU using the

ThunderStorm ImageJ plugin (25). After localization, points were culled

to remove outliers before drift correction (17). Images were rendered by

generating 2D histograms from localizations followed by convolution

with a Gaussian for display purposes. Rendering parameters are included

in captions and typically images showing larger regions are reconstructed

with large pixels and Gaussian filters (10–50 nm) while small regions are

rendered with small pixels and Gaussian filters (1 and 4–10 nm, respec-

tively). For the nanoruler samples, localizations were assigned to single

fluorophores using a home-built implementation of DBSCAN (26), with

ε ¼ 12 nm and minPts ¼ 15.
Evaluation of space-time autocorrelations

Space-time autocorrelations were obtained by first tabulating space and

time displacements between all pairs of localizations within a specified

ROI detected in a given data set. This was accomplished using a crosspairs
function based on the one from the R package spatstat (27), but used here as

a C routine with a MATLAB interface, as described previously (17). Lists of

displacements were converted into space-time autocorrelation functions by

binning in both time and space within the C routine for improved perfor-

mance, followed by a normalization implemented in MATLAB that pro-

duces a value gðr; tÞ ¼ 1 when localizations are randomly distributed in

both space and time within the specified ROI. A derivation of the form of

this normalization and an explanation of how it is computed are presented

in supporting material Note S1.
Estimation of gLSFðr; tÞ and sxyðtÞ
The core computations of the LSF estimation are gathered in a single

MATLAB function. First, gðri; tjÞ is computed as described above, for a

range of distance and time separation values. By default, ri; i ¼ 1;.;Nr

represent bins with bin edges from 0 to 250 nm with equal spacing of

5 nm, resulting in bin centers ranging between 2.5 and 247.5 nm, and

tj; j ¼ 1;.;Nt represent bins with edges that are log spaced. The lower

edge of the final time-separation bin is determined by identifying the lowest

t that satisfies gðr < 25 nm;tÞ=g�r < 25 nm;3
4
T < t % T

�
% 1:5, where T

is the time of the image acquisition. The tmax reported in figures is the bin

center of this final time-separation bin.

Then, Dgðr; tjÞ ¼ gðr; tjÞ � gðr; tmaxÞ are computed for each t,

normalized by their first spatial points (r < 5 nm), and fitted to a Gaussian

of the form A expð� r2 =4sxy;j
2Þ, using MATLAB’s nonlinear least-
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squares fitting routing fit. sxy;j is reported as the estimate of sxy;jðtjÞ. Boot-
strapped standard errors are determined by choosing eight subsamples of

the points, each containing one quarter as many points as the full data set,

and estimating sxyðtjÞk for each subsample k, in the same way as for the

full data set. The standard error is reported as 1
2
std:dev:ðsxyðtjÞkÞ, where

the 1
2
accounts for the overestimate of errors due to using 4 times fewer

points.
Estimating gLSFðr; tÞ by grouping localizations
with molecules

In simulations and DNA origami samples, localizations imaged at xi; yi; ti
are associated with the molecules that produced them. For the nanoruler

samples, localizations were assigned to single fluorophores using a home-

built implementation of DBSCAN (26), with ε ¼ 12 nm and minPts ¼ 15.

We tabulate displacements between all pairs associated with the same

molecule Drij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxij2 þ Dyij2

p
and Dtij . The list of all pairs is binned

into 2D histograms following the same r and t bin-edges as described for

computing gðr; tÞ above and are normalized by the number of pairs contrib-

uting to each bin. Distributions at each t bin are fit to the same Gaussian

form as applied to the gLSFðr; tÞ estimated from Dgðr;tÞ.
Measuring distances between distinct molecules
on the same ruler

In simulations, all localizations were associated with the molecules and

rulers that produced them. In DNA origami samples, DBSCAN segmented

molecules on the same ruler were identified as segments whose average

localization position was within 10 nm of the expected displacement be-

tween probes on rulers specified by the manufacturer (40–60 nm for 50

nm STORM origami and 70–90 nm for 80 nm PAINT origami). We then

tabulate displacements between all pairs of localizations associated with

different molecules on the same ruler Drij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxij2 þ Dyij2

p
.

Determining the resolution with FRC

The resolution of each data set was assessed with FRC (8). To produce the

FRC curves, localizations were divided into consecutive blocks of 500

frames, and these blocks were randomly placed into one of two statisti-

cally independent subsets. For the simulated and experimental DNA

origami data sets, as well as the nuclear pore complex (NPC) data set,

the pixel size for the FRC calculation was taken to be 5 nm, and square

regions (10 mm on each side) were used as a mask. For the actin and

Src15 data sets, the pixel size was 10 nm, with the mask 20 mm on

each side. Twenty randomly determined repetitions of the calculation

were performed for each data set.
Determining localization precision using nearest
neighbor distributions

Nearest neighbors were identified in adjacent image frames using the cross-

pairs algorithm using a time interval of 1 frame and a distance cutoff of

100 nm. The closest nearest neighbor was identified for each molecule

and included in the distribution PðrNNÞ. This distribution was then fit

using the MATLAB function fit to extract the localization precision

(sNN) using the functional form (7) PðrNNÞ ¼ ArNN
2s2NN

exp
n
�

r2NN
4s2NN

o
þ Bffiffiffiffiffiffiffiffi

2pw2
p exp

n
� ðrNN � roÞ2

2w2

o
þ C.

The second and third term correct for pairs of localizations not origi-

nating from the same molecule.
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RESULTS

Derivation of the estimated LSF

The spatial autocorrelation function describing a distribu-
tion of static molecules is given by gmoleculesðrÞ and is tabu-
lated as described in Materials and methods and supporting
material. This function can be divided into two components:

gmoleculesð~rÞ ¼ 1
r
dð~rÞ þ gpð~rÞ: (1)

The first term in Eq. 1 comes from counting single emit-
ters and is a Dirac delta function (dð~rÞ) with magnitude
equal to the inverse average density of molecules (r) over
the ROI. The second term in Eq. 1 comes from correlations
between distinct pairs of molecules and reports on the sam-
ple-dependent detailed structure present in the image. In the
special case of complete spatial randomness, gpð r.Þ ¼ 1.
In SMLM, single emitters labeling molecules have dy-
namics governed by the probe photophysics, which can be
described with the temporal autocorrelation function
geðtÞ. Probes can remain on for multiple sequential image
frames and can blink on again at a later time before eventu-
ally bleaching irreversibly (10–12). As a result, geðtÞ is
highly correlated (>1) at short time intervals and decays
sharply on timescales describing the average on-time of flu-
orophores. This function continues to decay slowly at long
t, both because some probes tend to flicker over medium
to long timescales and because some fluorophores eventu-
ally bleach. Including geðtÞ produces the following spatio-
temporal autocorrelation function for the emitting
molecules:

gemittersð~r; tÞ ¼ 1
r
dð~rÞgeðtÞ þ gpð~rÞ: (2)

In other words, the central peak due to the same fluoro-
phore being ‘‘on’’ at different times inherits the dynamics
of the probe, while the contributions from pairs of different
molecules remains time independent. Equation 2 assumes
the blinking statistics of fluorophores labeling different mol-
ecules are uncorrelated, which is why geðtÞ multiplies only
the first term.

When fluorophores are localized with finite spatial reso-
lution, the distribution of localization errors can be
described as a probability density function that characterizes
the resolution of the image. This distribution induces a char-
acteristic blurring of the true locations of the molecules, just
as a conventional microscope can be thought of as
convolving a true image with a PSF. By analogy, we instead
call this distribution the LSF. The autocorrelation function
of localizations, gð~r; tÞ, is the autocorrelation of the emit-
ters, gemittersð~r;tÞ, blurred (convolved) by the autocorrelation
of the LSF, or gLSFð~r; tÞ. Including this factor, gð~r; tÞ
becomes:

gð~r; tÞ ¼ 1
r
gLSFð~r; tÞgeðtÞþ gLSFð~r; tÞ � gpð~rÞ; (3)
where � indicates a convolution. The first term in Eq. 3 de-
scribes multiple observations of the same molecule and is
exactly proportional to the LSF at time interval t.

The goal of subsequent steps of this derivation is to isolate
gLSFð~r; tÞ from the first term of Eq. 3 by comparing gð~r; tÞ
tabulated from pairs of localizations acquired at different
time intervals t. In particular, we choose a long time interval
tmax and consider differences:

Dgð~r; tÞ ¼ gð~r; tÞ � gð~r; tmaxÞ: (4)

First consider the simple case where the LSF is indepen-

dent of t, gLSFð~r;tÞ ¼ gLSFð~rÞ. In this limit, the second term
of Eq. 3 is independent of t, so Dgð~r; tÞ is exactly propor-
tional to gLSFð~rÞ:

Dgð~r; tÞ ¼ 1
r
ðgeðtÞ � geðtmaxÞÞgLSFð~rÞfgLSFð~r; tÞ: (5)

Thus, the difference Dgð~r; tÞ can be taken as a direct mea-

surement of gLSFð~r;tÞ.

In practice, the above assumption does not hold exactly,
so we must consider the effects of time-varying gLSFð~r; tÞ.
In this more general case, the above equality becomes an
approximation. However, under reasonable experimental
conditions, the approximation often remains quite accurate.
In the following, we discuss the potential sources of error,
and relevant limits under which the errors become
negligible.

The first source of error in Eq. 5 under time-varying
gLSFð~r; tÞ arises because the second term of Eq. 3 is no
longer independent of t. The resulting error is given by

gLSFð~r; tÞ � gpð~rÞ � gLSFð~r; tmaxÞ � gpð~rÞ:

Note that gLSFð~r; tÞ is a PDF, so the magnitude of this error
can be at most gpð~rÞ. As a result, the approximation is likely
to be valid when 1

r
ðgeðtÞ � geðtmaxÞÞ[ gPðrÞ. In practice,

we find that even samples with relatively strong structure
satisfy this assumption for short t, where geðtÞ decays
rapidly. In addition, this source of error can be negligible if
gpð~rÞ is nearly constant, as is the case in a sample with
weak interactions between labeled molecules. Similarly, if
the LSF only broadens slightly, so gLSFð~r; tÞzgLSFð~r; tmaxÞ
the error will also be negligible. This condition often holds
for accurately drift-corrected images, where we find the
width of the LSF to be within a few nm of the localization
precision even at tmax.

A second source of error in Eq. 5 under time-varying
gLSFð~r; tÞ comes from the first term of Eq. 3. In particular,
assuming that the first source of error is negligible, Eq. 4
yields:

Dgð~r; tÞz1
r
ðgLSFð~r; tÞgeðtÞ � gLSFð~r; tmaxÞgeðtmaxÞÞ: (6)

In principle, Eq. 6 could be used to extract gLSFð~r; tÞ and
gLSFð~r; tmaxÞ through fitting. In practice, we make the
Biophysical Journal 121, 2906–2920, August 2, 2022 2909
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further approximation that ðgLSFð~r; tÞgeðtÞ � gLSFð~r; tmaxÞ
geðtmaxÞ ÞzgLSFð~r; tÞðgeðtÞ � geðtmaxÞ Þ yielding the sim-
ple relation:

Dgð~r; tÞfgLSFð~r; tÞ: (7)

This applies in the limit of geðtÞ>>geðtmaxÞ or gLSFð~r;
tÞzgLSFð~r;tmaxÞ, but introduces some practical limitations
that are discussed in detail in the next section.

Equation 7 can be used to estimate the full gLSFð~r; tÞ from
acquired localizations. To summarize the LSF using a single
number, we further assume that gLSFð~r; tÞ takes on a
Gaussian form:

gLSFð~r; tÞfexp
n
� x2

�
4s2

xðtÞ � y2
.
4s2

yðtÞ
o
;

where sxðtÞ is the standard deviation in the x direction of
the distance between the true position of the molecule at
time t and a localization at time t þ t. The extra factor
of 2 in the denominator accounts for the fact that gLSF
reports on the distribution of distances between pairs of lo-
calizations, resulting in twice the variance compared with
the error in a single localization. Typically, the LSF is
isotropic in the lateral dimensions, so we take sxy :¼
sx ¼ sy and compute angularly averaged correlation func-
tions resulting in:

gLSFðr; tÞfexp

(
� r2

4sxyðtÞ2
)
: (8)

It is convenient to also define the mean-squared displace-
ment s2r ðtÞ ¼ s2xðtÞ þ s2yðtÞ ¼ 2s2xyðtÞ, which accounts
for errors in both dimensions. When localizations are ac-
quired in three dimensions, the axial resolution often differs
from the lateral resolution, and this component can be
considered independently:

gLSFðz; tÞfexp

(
� z2

4szðtÞ2
)
:

We have implemented this method as MATLAB code,
which is available online (28).
Practical limitations of the LSF estimate

The derivation above mathematically demonstrates why it
is possible to simply isolate the autocorrelation of the LSF
from the full autocorrelation of the image by tabulating
the differences between measured autocorrelations ob-
tained at different time intervals (Eq. 7). This simple
method works because repeated observations of the
same molecule are typically correlated in time while
repeated observations of pairs of distinct molecules are
uncorrelated in time. Because of this, simply subtracting
2910 Biophysical Journal 121, 2906–2920, August 2, 2022
observations at different time intervals results in isolating
the average contribution from multiple observations of the
same molecule. As mentioned above, this simple view re-
quires a few assumptions that limit the applicability of
this approach.

The main assumption used to arrive at Eq. 7 is that indi-
vidual molecules on average produce localizations that are
correlated in time. These correlations are expected to extend
out to some finite time interval beyond which the method no
longer applies because repeated observations become un-
correlated. Past studies document surprisingly long correla-
tion times for many (d)STORM and (f)PALM probes (10–
12) under a range of imaging conditions, suggesting that
Eq. 7 should apply even at extended time intervals for im-
ages generated using these methods and probes. PAINT
probes, which produce localizations through binding and
unbinding of a probe fluorophore to a target molecule,
only produce temporal correlations up until the off-rate of
the specific binding interaction, since the binding of new
probes from solution does not depend on the history of
probe binding to a specific site (5,29). These reduced corre-
lations contribute to the more uniform appearance of FLM
images acquired using PAINT, and will also limit the appli-
cability of this method. Conveniently, plots of gðr < sr; tÞ
capture the time interval dependence of correlated observa-
tions from single molecules (geðtÞ) up to a numerical offset,
and examples showing this decay for several experiments
with different fluorophores are shown in Fig. S1. These
curves can be used to guide the range of t over which Eq.
7 is expected to apply.

For the case where gLSFð~r;tÞ ¼ gLSFð~r;tmaxÞ, Eq. 7 will
correctly estimate gLSFð~r; tÞ as long as geðtÞ>geðtmaxÞ,
since the two LSFs will have the same shape in space and
subtraction will not lead to distortion even when both com-
ponents have similar amplitudes (DgeðtÞ � geðtÞ). When
gLSFð~r; tÞ does not have exactly the same shape as gLSFð~r;
tmaxÞ, distortions can arise for small DgeðtÞ=geðtmaxÞ that
can lead to systematic errors in estimates of gLSFð~r;tÞ. These
systematic distortions are demonstrated in Fig. S2 for the
example of a Gaussian LSF with a standard deviation that
varies with t. For cases where gLSFð~r; tÞ broadens slightly
with increasing time interval, our approach will produce a
systematically narrow estimate of gLSFð~r; tÞ for small
DgeðtÞ=geðtmaxÞ. This occurs, for example, when labeled
molecules diffuse over length scales comparable to the
localization precision over the acquisition time, and is
demonstrated on the simulated example of Fig. S3. For
the purposes of this report, we do not include estimates
gLSFð~r; tÞ that may be subject to this systematic bias, using
a cutoff ofDgðr < 5 nm; tÞ=gðr < 5 nm; tmaxÞ< 0:5. In
principle, a user could extend the applicability of this
method to larger t by instead fitting to Eq. 6 which indepen-
dently models gLSFð~r; tÞ and gLSFð~r; tmaxÞ or could instead
tabulate Dgð~r; tÞ for closely spaced t where changes in
gLSFð~r; tÞ are expected to be more subtle.
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The decay of geðtÞ means that the signal to noise ratio of
Dgð~r; tÞ will degrade at longer time intervals, over which
fewer correlated pairs are observed. To increase statistical
stability, we group time intervals into increasingly large
disjoint t bins and estimate gðr; tÞ as a weighted average.
In this report, t bin edges are log spaced to account for
the exponential decay inherent in geðtÞ and we report the
average t value of the bin, but occasionally show the full
range of t values included in the bin. We typically use the
back quarter of the data set to initially tabulate gð~r; tmaxÞ,
meaning that 3

4
Tmax < tmax <Tmax, where Tmax is the acqui-

sition time. We then identify the cutoff by finding the t
where Dgðr < 5 nm; tÞ=gðr < 5 nm; tmaxÞ first falls below
0.5. We then recalculate gð~r; tmaxÞ using this cutoff as the
low t edge of the tmax bin. Statistical confidence is esti-
mated through bootstrapping and we estimate the statistical
power of Dgð~r; tÞ directly from gð~r;tÞ, as described in Ma-
terials and methods.
FIGURE 1 Validation of approach through simulation. (a) Simulations

consist of randomly positioned pairs of molecules positioned 50 nm apart

in random orientations. Reconstructed image (left; 1 nm pixels, 3 nm

Gaussian blur) and scatterplot of localizations with color representing the

observation time (right) for a small subset of the simulated plane. Scale

bar, 100 nm. A reconstructed image showing a larger field of view is shown

in Fig. S4. (b) Autocorrelations as a function of displacement gðr;tÞ, tabu-
lated from simulations for time interval windows centered at the values

shown. (c) Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 1206sÞ for the examples

shown in (b). (d) Dgðr; tÞ are fit to Dgðr; tÞfexpf � r2 =4s2xyg to extract

the width of the LSF in each lateral dimension, which in this case is the

same as the LSF width deduced by grouping localizations with their asso-

ciated molecules (from loc.) and the simulated localization precision (loc.

prec.) at all time intervals. Error bars represent estimates of the standard er-

ror obtained through bootstrapping. (e) The distribution of displacements

between different molecules on the same ruler are well described by a

model incorporating the localization precision (10 nm) and the separation

distance (50 nm). To see this figure in color, go online.
Validation through simulation

To validate this approach, we generated simulated data sets
of DNA origami nanorulers in which fluorophores are sepa-
rated by a fixed distance of 50 nm. Fluorophore blinking was
subject to a photophysical model based on (12,15). In brief,
fluorophores could exist in an ‘‘on’’ state, one of three dark
states, or a bleached state. Transitions between states were
governed by a continuous time Markov process, with transi-
tion rates roughly based on those measured in (12) but modi-
fied to reflect the experimental conditions used to obtain
experimental images in this work. Nanorulers were placed
randomly and uniformly with an average density of 1/mm2

across a 40 by 40 mm field of view with the molecules hav-
ing a localization precision of 10 nm in each lateral dimen-
sion. A total of 20,000 image frames were simulated with a
frame time of 0.1 s. Fig. 1 a illustrates a small field of view
containing 3 nanorulers, both as a reconstructed image and
with localizations colored by time. An image showing a
larger subset of the field of view is shown as Fig. S4.

Simulated localizations were subjected to a spatiotem-
poral autocorrelation analysis as described in Materials
and methods and representative plots of the spatial compo-
nent of gðr; tÞ are shown in Fig. 1 b. This family of curves
contains two major features: an initial peak at short dis-
placements (r < 40 nm) arising from multiple localizations
from the same molecule, and a second feature at wider radii
(40 nm < r < 100 nm) arising from displacements between
localizations from different molecules on the same ruler.
The amplitude of the initial peak decreases with increasing
t, while the second feature is largely independent of t. The
t-dependent component is isolated by subtracting gðr; tÞ at
long t from those arising from shorter t to obtain Dgðr; tÞ as
shown in Fig. 1 c. In this simulation, there are no t-depen-
dent effects that would impact resolution, resulting in
Dgðr; tÞ having the same width for all t. This is summarized
by fitting Dgðr; tÞ to the Gaussian function of Eq. 8 to
extract the LSF width, sxy, reported in Fig. 1 d. Representa-

tive Dgðr; tÞ with Gaussian fits are shown in Fig. S5. In this
simulated example, we can associate all localizations with
the molecules that produced them and can directly compute
gLSFðr; tÞ from the relative positions of localizations origi-
nating from the same molecule as described in Materials
and methods. This is followed by fitting to Eq. 8 to obtain
Biophysical Journal 121, 2906–2920, August 2, 2022 2911



FIGURE 2 Validation of approach through simulation with drift and drift

correction. (a) The simulation from Fig. 1 with applied drift (black) and drift

correction (red) as shown in the trajectory above. Reconstructed image (left;

1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color

representing the observation time (right) for a small subset of the simulated

plane. Scale bar, 100 nm. (b) Autocorrelations as a function of displacement

gðr;tÞ, tabulated from simulations for time interval windows centered at the

values shown. (c) Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 1211sÞ for the exam-

ples shown in (b). (d)Dgðr; tÞ are fit toDgðr; tÞfexpf � r2 =4s2xyg to extract
the width of the effective LSF in each lateral dimension. In this case, the LSF

width varies with time interval, closely following the LSF width measured by

grouping localizations with molecules (from loc.). Error bars represent esti-

mates of the standard error obtained through bootstrapping. (e) The distribu-

tion of displacements between different molecules on the same ruler are

well described by a model incorporating the average LSF width (CsxyD ¼
11:8 nm) and the known separation distance (50 nm). To see this figure in co-

lor, go online.
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sxy, which is also reported in Fig. 1 d. Finally, we tabulate

displacements between all localizations originating from
distinct molecules on the same ruler. The distribution
of these displacements is shown in Fig. 1 e, and its
properties are described by simulation parameters. The
line in Fig. 1 e has a Gaussian shape with the form:

PðrÞfexpf� ðr � CrDÞ2 =4s2xyg, where sxy is the localiza-

tion precision (10 nm) and CrD is the average displacement
between localizations originating at the ruler endpoints

(52 nm). The slight bias in CrD toward a value larger than
the actual separation between molecules (50 nm) arises
from the components of localizations that fall perpendicular
to the ruler axis and always contribute positive values to the

measured displacements (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
502 þ 2sxy2

p ¼ 52 nm).

The simulation of Fig. 1 does not contain any factors that
degrade image resolution over time. In Fig. 2, the same
simulation is subjected to a directed drift in the x direction
as well as diffusive drift in both x and y. Drift is corrected
using a mean shift algorithm (17) that works by evenly
dividing localizations into time-bins, then finding the
displacement that minimizes the mean distance between lo-
calizations across all time-bins. The applied drift and the
calculated drift correction are shown in Fig. 2 a along
with the resulting image reconstruction. gðr; tÞ curves
over different windows in time interval (Fig. 2 b) closely
resemble those shown in the static simulation, but Dgðr; tÞ
now broadens with increasing t (Fig. 2 c). This broadening
reflects a degradation of the LSF beyond the localization
precision at all but the shortest time intervals and plateaus
near the timescale of drift correction (Fig. 2 d). Here, the
measured LSF width reaches a local maximum at a time
separation somewhat smaller than the drift correction time-
scale, which we attribute to the drift correction algorithm it-
self as it is also apparent in the LSF width obtained by
associating localizations with their originating molecules.
Deviations from the expected distribution of pairwise dis-
tances between localizations of molecules from opposite
ends of the same nanoruler also exceed those of the static
case (Fig. 2 e) and are better described by a model that in-
corporates the measured LSF width, CsxyD ¼ 11:8 nm,
which is determined by averaging over estimated sxyðtÞ
weighted by the number of pairs associated with each
time interval window.

Observing a plateau in plots of sxyðtÞ is a good indicator
that the LSF estimator is generating reliable estimates, since
drift correction is designed to stabilize localization error on
long timescales. Fig. S3 shows an example of the same
simulation with drift and drift correction, but where individ-
ual molecules are also allowed to diffuse slowly such that
gLSFðrÞ broadens substantially with t in a way that is not ac-
counted for through drift correction. In that case, sxyðtÞ in-
creases with t and is underestimated byDgðr; tÞ. This is a
case where the approximations needed to estimate gLSFðrÞ
as Dgðr; tÞ are not appropriate.
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The simulated blinking dynamics of fluorophores includes
a chance of photobleaching, or an irreversible transition into a
dark state. In this example and inour experience in general,we
find that this analysis is largely independent of photobleaching
rates. This is because the normalization used to tabulate
gðr; tÞ accounts for any systematic reduction in the number
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of localizations over time. Photobleaching does reduce the
number of pairs observed at large separation times, and there-
fore the statistical performance of the measurement.
Estimating the LSF of DNA origami data sets

Fig. 3 demonstrates this approach on an experimental data
set of DNA origami nanorulers that resemble the simulated
FIGURE 3 Experimental observations of DNA origami rulers labeled

with AlexaFluor647. (a) Reconstructed image (left; 1 nm pixels, 3 nm

Gaussian blur) and scatterplot of localizations with color representing the

observation time (right) for a small subset of the observed plane. Scale

bars, 100 nm and 50 nm (inset). A larger field of view from this image is

shown in Figure S6. (b) Autocorrelations as a function of displacement

gðr; tÞ, tabulated from localizations for time interval windows centered at

the values shown. (c) Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 1976sÞ for the ex-
amples shown in (b). (d) Dgðr; tÞ are fit to Dgðr; tÞfexpf � r2 =4s2xyg to

extract the width of the LSF in each lateral dimension which varies with

time interval, closely following the LSF width measured by grouping local-

izations with DBSCAN segmented molecules (from loc.). Error bars repre-

sent estimates of the standard error obtained through bootstrapping. The

resulting average LSF width for this image is CsxyD ¼ 7.48 5 0.07 nm.

(e) The distribution of displacements between pairs of fluorophores on

the same ruler. Fitting to a Gaussian shape with width given by the

measured CsxyD produces CrD ¼ 52.2 5 0.2 nm. To see this figure in color,

go online.
rulers with AlexaFluor647 labeling sites separated by
50 nm. Fig. 3 a shows a small subset of the field of view
of the acquired image, that was reconstructed from 29,000
image frames acquired over 53 min at a frame rate of 0.1
s, with a total of over 126,000 individual localizations. In
postprocessing, a drift correction was applied with a time-
window width of 25 s or 250 image frames. As in the simu-
lated case, gðr; tÞ decays at short r with increasing t (Fig. 3
c), and Dgðr; tÞ is roughly Gaussian (Fig. 3 d). Fitting
Dgðr; tÞ yields the resolution sxyðtÞ. As in the simulated
example, the estimated LSF width is lowest at short time in-
tervals (6.55 0.1 nm) and plateaus at timescales somewhat
shorter than the frequency of the applied drift correction.

Since the localization clouds from individual Alexa Fluor
647 molecules were visually distinct, we applied a
DBSCAN segmentation algorithm (26) to associate locali-
zations with individual molecules. From this segmentation,
we tabulated the LSF width within segmented molecules
(Fig. 3 d) and find good general agreement with estimates
of the LSF width obtained from Dgðr; tÞ at short t, further
validating this approach. At longer t, the LSF width differs
somewhat by these two methods. We attribute this to inaccu-
rate segmenting of localizations to molecules by the
DBSCAN algorithm, which is expected to become more
prominent at longer t due to reduced temporal correlations
of emitters. The segmented localizations are also used to
tabulate the distribution of pairwise distances between
different molecules on the same origami (Fig. 3 e). This dis-
tribution is well described by a model applying the
measured CsxyðtÞD ¼ 7:5 nm with CrD ¼ 52:250:2 nm,
where the error is dominated by uncertainty in the sample
magnification at the camera. This yields a separation dis-
tance of 51.15 0.2 nm between labels on individual rulers,
which is within the manufacturer’s specifications.

We have conducted this same analysis on a similar DNA
origami sample that was imaged using DNA PAINT, this
time using rulers containing three collinear docking sites
separated by 80 nm and summarized in Fig. 4. In contrast
to the dSTORM fluorophores of Fig. 3, molecules imaged
by DNA PAINT do not exhibit long timescale correlations,
limiting the applicability of this method. The DNA PAINT
probes used for this image do remain correlated over time-
scales relevant for drift correction (�15 s), which is long
enough to provide a useful estimate of image resolution.
In this example, drift correction was applied with a time-
window width of 11 s or 110 image frames. Pairwise dis-
tances between labels on the center and ends of the origami
were measured after applying DBSCAN to segment locali-
zations from distinct docking sites and are well described by
a model applying the measured CsxyðtÞD ¼ 8:7 nm
withCrD ¼ 82:550:3 nm. This yields a separation distance
of 81.65 0.3 nm between the center and endpoint labels on
individual rulers. Since temporal correlations of the PAINT
probes used in this example only extend for a small fraction
of the acquisition time (20 min), the average sxy is given
Biophysical Journal 121, 2906–2920, August 2, 2022 2913



FIGURE 4 Experimental observations of DNA origami rulers imaged

with DNA PAINT, using an Atto655 imaging strand. (a) Reconstructed im-

age (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations

with color representing the observation time (right) for a small subset of the

observed plane. Scale bar, 100 nm. A larger field of view from this image is

shown in Figure S7. (b) Autocorrelations as a function of displacement gðr;
tÞ, tabulated from localizations for time interval windows centered at the

values shown. (c) Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 609sÞ for the exam-

ples shown in (b). (d) Dgðr; tÞ are fit to Dgðr; tÞfexpf � r2 =4s2xyg to

extract the width of the LSF in each lateral dimension, which varies with

time interval, closely following the LSF width measured by grouping local-

izations with DBSCAN segmented molecules (from loc.). Error bars repre-

sent estimates of the standard error obtained through bootstrapping. The

resulting average LSF width for this image isCsxyD ¼ 8.8 5 0.2 nm. (e)

The distribution of displacements between different molecules on the

same ruler. Fitting to a Gaussian shape with width given by the measured

CsxyD produces CrD ¼ 82.5 5 0.3 nm. To see this figure in color, go online.
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primarily by the value determined in the largest time interval
bin (t ¼ 15s). This is because the vast majority of pairs are
detected at time intervals grouped into tmax, where we do
not estimate sxy but instead apply the value estimated at
the previous time-window bin. The good agreement be-
tween the model and measured distributions in Fig. 3 e val-
idates this approach, at least for this specific example where
drift correction was accomplished on a shorter timescale.
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Estimating the LSF from data sets of labeled
structures in chemically fixed cells

We next apply this method to image labeled structures in
cells. Fig. 5 shows the method applied to NPCs within the
nuclear envelope of chemically fixed primary mouse neu-
rons. In these images, a protein component of NPCs,
NUP210, was labeled with a conventional primary antibody
and a Fab secondary directly conjugated to AlexaFluor647.
A total of 12,500 images were acquired over 23 min with an
integration time of 0.1 s and a total of 178,873 localizations
detected within the masked ROI at the nuclear envelope.
Drift correction was accomplished with a time-window of
8.3 s or 83 image frames. Reconstructed images of the entire
nucleus and single pores are shown in Fig. 5 a along with a
scatter plot demonstrating that individual NPC subunits are
sampled at times throughout the observation gðr; tÞ (Fig. 5
b). Curves extend to beyond 100 nm reflecting the extended
structure of individual labeled NPCs, but extended structure
is effectively removed by examining Dgðr; tÞ (Fig. 5 c).
Fitting Dgðr; tÞ to a Gaussian shape quantifies image LSF
width over time, which is smallest at short t (8.3 5
0.3 nm) and increases at larger time intervals. We estimate
CsxyD to be 10.9 5 0.8 nm.

Fig. 6 shows a similar class of cellular structure imaged
using DNA PAINT. In this example, clathrin-gfp is tran-
siently expressed in CH27 cells then labeled post fixation
with an anti-GFP nanobody conjugated to an ssDNA dock-
ing strand. Cells are then imaged in the presence of a
complementary imaging strand labeled with Atto 655.
Similar to the origami DNA PAINT sample of Fig. 4, tem-
poral correlations from single molecules remain for short to
medium timescales (�8 s), allowing for accurate estimation
of LSF broadening due to drift and drift correction. Here,
we estimate the average LSF width CsxyD to be 11.6 5
0.3 nm.

Fig. 7 shows the method applied to an image of F-actin
staining by phalloidin-AlexaFluor647 in chemically fixed
CH27 B cells adhered to a glass surface decorated with
VCAM. For this sample, 5000 images were acquired over
4.9 min with an integration time of 0.05 s and a total of
302,681 localizations within the masked ROI. Drift correc-
tion was accomplished with a time-window of 2.5 s or 50
image frames. Unlike Figs. 5 and 6, where labels decorate
isolated structures scattered over a surface, this recon-
structed image of F-actin is more space filling, making up
a web of fibers that extend across the entire ventral cell sur-
face (Fig. 7 a). This extended structure can be detected in
gðr; tÞ (Fig. 7 b) as increased intensity in the tail that ex-
tends to large separation distances for curves generated at
all t. This large-scale structure is effectively removed in
Dgðr; tÞ (Fig. 7 c) allowing for a determination of the LSF
width over a range of timescales as shown in Fig. 7 d. In
this example, the ROI was drawn within the cell boundary
to minimize the intensity of gpðrÞ which allows for accurate



FIGURE 5 Experimental observations of nuclear

pore complexes within primary mouse neurons, anti-

body-labeled with AlexaFluor647. (a) (Left) Recon-

structed image (10 nm pixels, 10 nm Gaussian blur)

with yellow dashed line indicating the region of inter-

est interrogated. (Right) A magnified subset from the

white square region of larger image (1 nm pixels,

4 nm Gaussian blur) along with a scatterplot of local-

izations with color representing the observation time.

Scale bars, 2 mm (left) and 200 nm (right top and bot-

tom). (b) Autocorrelations as a function of displace-

ment gðr; tÞ, tabulated from localizations for time

interval windows centered at the values shown. (c)

Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 685sÞ for the ex-

amples shown in (b). (d) Dgðr; tÞ are fit to

Dgðr; tÞfexpf � r2 =4s2xyg to extract the LSF width

in each lateral dimension. Error bars represent esti-

mates of the standarderror obtained throughbootstrap-

ping. The average LSFwidth for this image is CsxyD ¼
10.95 0.8 nm. To see this figure in color, go online.
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estimation of gLSFðr; tÞ out to longer time intervals. This is
because the amplitude of gðr; tmaxÞ includes contributions
from gpðrÞ, while the amplitude of Dgðr; tÞ only depends
on geðrÞ, therefore Dgðr < 25 nm; tÞ=gðr < 25 nm; tmaxÞ
will remain larger than the cutoff over a wider range of t.
The estimate for CsxyD is 11.8 5 1.5 nm.

As a final demonstration, Fig. 8 shows the method applied
to an image of Src15-mEos3.2, amyristoylated peptide bound
to the inner leaflet of the plasma membrane and directly con-
jugated to the photoswitchable protein fluorophore mEos3.2.
This peptide uniformly decorates the ventral surface of a
chemically fixed CH27B cell adhered to a glass surface deco-
ratedwithVCAM, as seen in the reconstructed image of Fig. 8
a. For this sample, 7000 images were acquired over 12.7 min
with an integration time of 0.1 s and a total of 240,503 local-
izations. Drift correction was accomplished with a time-win-
dow of 12.5 s or 125 image frames.mEos3.2 exhibits different
blinking dynamics thanAlexaFluor647, with some probes ex-
hibiting correlated blinking on long timescales. This can be
seen in plots of gðr; tÞ that take long timescales to decay
(Fig. 8 b). Again, Dgðr; tÞ curves isolate the initial peak, al-
lowing for the quantification of the LSF width. In this
example, the slow decay of gðr < 25 nm; tÞ with t allows
for estimation of sxy out to large time intervals. The estimate
for CsxyD is 13.75 0.2 nm.
Comparison with other measures of image
resolution

The data sets interrogated in Figs. 1, 2, 3, 4, 5, 6, 7, and 8were
also subjected to other methods that report on image resolu-
tion and results are summarized in Table 1. These include the
FRC (8,9), errors returned directly from fitting localizations
(Cramer-Rao lower bound or CRLB of the variance of a
maximum likelihood estimator (24,30)), and using the near-
est neighbor distribution in adjacent frames (nearest
neighbor-based analysis, or NeNA (7)).

TheFRCmethod involves reconstructing images and quan-
tifying them in Fourier space, identifying the highest fre-
quency signals that exceed some predetermined noise
threshold, as illustrated in Fig. S8. As a result, the resolution
values returned by the FRC algorithm depend on the localiza-
tion accuracy of single emitters but also the structure present
in images and the spatial sampling of that structure. Because
of this, the FRC resolutions reported in Table 1 do not trend
systematically with LSF widths extracted through Dgðr; tÞ,
as these report on the localization accuracy alone. The FRC
method is sensitive to factors that erode the LSF over time,
as indicated by the larger value generated from the simulated
data set with drift and imperfect drift correction (Fig. 2;
35 nm) as compared with the simulation without drift
(Fig. 1; 30 nm). TheFRC is also highly dependent on the types
Biophysical Journal 121, 2906–2920, August 2, 2022 2915



FIGURE 6 Experimental observations of clathrin-

coated pits within CH27 B cells, imaged using a

nanobody-coupled Atto655 DNA-PAINT scheme.

(a) (Left) Reconstructed image (16 nm pixels,

20 nm Gaussian blur) with yellow dashed line indi-

cating the region of interest interrogated. (Right) A

magnified subset from the white square region of

larger image (1 nm pixels, 4 nm Gaussian blur)

along with a scatterplot of localizations with color

representing the observation time. Scale bars, 2

mm (left) and 200 nm (right top and bottom). (b) Au-

tocorrelations as a function of displacement gðr; tÞ,
tabulated from localizations for time interval win-

dows centered at the values shown. (c)

Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 274sÞ for the ex-
amples shown in (b). (d) Dgðr; tÞ are fit to

Dgðr; tÞfexpf � r2 =4s2xyg to extract the LSF

width in each lateral dimension. Error bars represent

estimates of the standard error obtained through

bootstrapping. The average resolution for this image

is CsxyD ¼ 11.65 0.3 nm. To see this figure in color,

go online.
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of structures imaged, returning a very large value for the data
set containing F-actin localizations (Fig. 7; 285 nm) even
though the LSF width estimate from Dgðr; tÞ is similar to
the other samples imaged (11.8 nm). This is because this
data set contains the most space-filling structure so there is
less signal at high spatial frequencies, and because this struc-
ture is less spatially sampled than the other data sets shown.
We also note that long blinking time correlations can lead to
artificially low FRC resolution values (8), whereas the LSF
width estimate is dependent on these time correlations to
achieve accurate results.

The fitting algorithms used return estimated localization
precisions for each fit, known as the CRLB. These error es-
timates are obtained by applying a model that incorporates
photon counting statistics, the Gaussian shape of the PSF,
and specifics of the camera, such as its gain and offset. The
accuracy of the error estimates depends in turn on the accu-
racy of the assumptions used to build the fitting model. While
it is possible to achieve accurate error estimates with CRLBs
(24), we find that factors, such as imperfect gain calibration,
read noise, and nonuniform background fluorescence,
frequently lead to imperfect error estimates in realistic exper-
imental conditions. Our typical imaging processing pipeline
involves a preprocessing step in which the image background
is estimated then subtracted from raw image frames. The
mean of the background on each fitting region is added
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back to that region, to approximately reproduce the appro-
priate counting statistics. Since this background subtraction
is not incorporated into the model used to estimate errors,
the values returned by the fitting algorithm are inaccurate.
The values reported in Table 1 are obtained by re-fitting
the data set without background subtraction, leading to some-
what different values of sxyðtÞ as shown in supporting mate-
rial Fig. S9. For each data set, there is a broad distribution of
errors peaked at a value close to the LSF width estimated
from Dgðr; tÞ at the shortest time interval interrogated
(sxyðtframeÞ). This distribution extends asymmetrically to
larger errors, biasing the average error to larger values. We
speculate that the average error from fits differs from that
estimated by Dgðr; tÞ at short t due to simplifying or inaccu-
rate assumptions in the model employed by the fitting algo-
rithm. It is also possible that larger errors originate from
localizations that are not correlated in time and therefore
do not contribute to the estimate from Dgðr;tframeÞ.

A thirdmethoduses the distribution of nearest neighbor dis-
tances between probes imaged in adjacent frames to estimate
the average localization precision through fitting (supporting
material Fig. S10) (7). This method makes the often valid
assumption that the vast majority of neighbor localizations
in adjacent frames arise from the same labeled molecule,
therefore this distribution reports on the accuracy of localiza-
tion at short time intervals. As expected the localization



FIGURE 7 Experimental observations of F-actin

on the ventral surface of a CH27 B cell using phalloi-

din-AlexaFluor647. (a) (Left) Reconstructed image

(50 nm pixels, 50 nm Gaussian blur) with yellow

dashed line indicating the region of interest interro-

gated. (Right) A magnified subset from the white

square region of larger image (1 nm pixels, 10 nm

Gaussian blur) alongwith a scatterplot of localizations

with color representing the observation time. Scale

bars, 5 mm (left) and 500 nm (right top and bottom).

(b) Autocorrelations as a function of displacement

gðr; tÞ, tabulated from localizations for time

interval windows centered at the values shown. (c)

Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 150sÞ for the ex-

amples shown in (b). (d) Dgðr; tÞ are fit to

Dgðr; tÞfexpf � r2 =4s2xyg to extract the LSF width

in each lateral dimension. The timescale of the drift

correction is shown in red. Error bars represent esti-

mates of the standarderror obtained throughbootstrap-

ping. The average resolution for this image is CsxyD ¼
11.85 1.5 nm. To see this figure in color, go online.

Localization spread function for SMLM
precision reported by the nearest neighbordistributionmethod
is in goodgeneral agreement for theLSFwidth estimated from
Dgðr; tÞ at the shortest time interval interrogated (sxyðtframeÞ),
especially for data sets ofwell-separatedmolecules (Figs. 1, 2,
3, and 4). For imagesof cellular structures,wefinda slight bias
of the NeNA estimate toward smaller values than those esti-
mated from Dgðr; tÞ. In these samples, a larger fraction of
nearest neighbors originate from different molecules, and
we speculate that the correction terms used to fit these addi-
tional neighbors contribute to this bias. Finally, we note that
the NeNA estimates do not capture broadening of the LSF
by factors that erode localization precision over time. This
is expected since only nearest neighbors from adjacent frames
are incorporated in the analyzed distributions.
CONCLUSIONS

Here, we present a method to estimate the LSF of an SMLM
measurement directly from acquired localizations, relying
on a few reasonable assumptions. The basic method is vali-
dated through simulations and demonstrated using experi-
mental data of three commonly used localization
microscopy probes. The described method performs best
when used alongside fluorophores that exhibit blinking dy-
namics that remain correlated in time out to timescales rele-
vant to sources of error present in the imaging experiment.
The width of the LSF, here reported by fitting to a Gaussian
shape, directly reports on how accurately the positions of
molecules are recorded at the end of an experimental and
analytical pipeline, and can be used to optimize imaging
protocols or assist in the interpretation or further processing
of imaged structures.

Directly measuring the LSF allows experimenters to vali-
date and optimize imaging and processing methods, which
can be difficult to accomplish using existing metrics of im-
age resolution. For example, while commonly used fitting
algorithms return localization precisions, these estimates
are only valid when raw image frames are fit, prohibiting
the use of preprocessing steps, such as filtering or back-
ground subtraction. In contrast, the FRC resolution metric
can be used to compare processing steps accomplished on
the same set of observations, but variation across samples
can be hard to interpret since this measure depends on the
LSF, the sampling of the image, and the types of structures
being imaged. A distinct advantage of the LSF estimate
described here is that it directly reports on how accurately
one can measure distances between localized molecules in
an image. We expect this method to be useful when inter-
preting experiments that involve the measurement of dis-
tances between localizations in images, for example, in
nanometer precision distance measurement methods (31),
where an accurate estimate of the localization error is
Biophysical Journal 121, 2906–2920, August 2, 2022 2917



FIGURE 8 Experimental observations of mem-

brane anchor peptide Src15-mEos3.2 on the ventral

surface of a CH27 B cell. (a) (Left) Reconstructed im-

age (50 nm pixels, 50 nm Gaussian blur) with yellow

dashed line indicating the region of interest interro-

gated. (Right) A magnified subset from the white

square region of larger image (1 nm pixels, 6 nm

Gaussian blur) alongwith a scatterplot of localizations

with color representing the observation time. Scale

bars, 5 mm (left) and 200 nm (right top and bottom).

(b) Autocorrelations as a function of displacement

gðr; tÞ, tabulated from localizations for time interval

windows centered at the values shown. (c)

Dgðr; tÞ ¼ gðr; tÞ � gðr; tmax ¼ 533sÞ for the ex-

amples shown in (b). (d) Dgðr; tÞ are fit to

Dgðr; tÞfexpf � r2 =4s2xyg to extract the LSF width

in each lateral dimension. The timescale of the drift

correction is shown in red. Error bars represent esti-

mates of the standarderror obtained throughbootstrap-

ping. The average resolution for this image is CsxyD ¼
13.75 0.2 nm. To see this figure in color, go online.
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essential. We also expect it to be useful in the interpretation
of spatial auto- or cross-correlation analysis, which reports
on the statistical distribution or codistribution of labeled
components (6,32,33).

The values obtained using the described method depend
on long timescale correlations of fluorescent probes used
for imaging. For the examples shown, we find that it is
most important to characterize resolution lost on timescales
shorter than the timescale of drift correction, which appears
TABLE 1 Summary of values obtained for several resolution meas

Data set

LSF (from Dgðr; tÞ) LSF (from se

sxyðtframeÞ CsxyD sxyðtframeÞ
Fig. 1 10.1 (0.2) 10.02 (0.08) 10.1

Fig. 2 10.1 (0.1) 11.79 (0.07) 10.1

Fig. 3 6.5 (0.1) 7.48 (0.07) 6.4

Fig. 4 6.78 (0.02) 8.8 (0.2) 6.8

Fig. 5 8.3 (0.3) 10.9 (0.8) N/A

N/A

N/A

N/A

Fig. 6 10.1 (0.1) 11.6 (0.3)

Fig. 7 8.1 (0.1) 11.8 (1.5)

Fig. 8 11.0 (0.1) 13.7 (0.2)

All units are nm and errors, when evaluated, are included in parenthesis. LSF wi

ecules (from segments, not possible for cellular images). sxyðtframeÞ is the LSF wi

over all t. FRC are values obtained using the FRC. Full FRC curves are included

lower bounds returned by the fitting procedure for data sets processed without

differently processed images are included in Fig. S9. NeNA are obtained by fittin

tributions and fits are included in Fig. S9.
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to be the most important source of time-dependent degrada-
tion of the LSF in these cases. Fortunately, numerous
methods exist to correct for rigid drift on timescales relevant
to the temporal correlations of many SMLM probes (34–
41), suggesting that the method presented in this report is
broadly applicable for a range of experimental conditions.
Apart from drift, the estimated LSF is also sensitive to other
time-dependent sources of error (or their absence). For
example, a recent report observes residual motions of
ures for the data sets shown in figures

gments)

FRC

CRLB

NeNACsxyD Peak Avg

10.0 30 (1) N/A 10.0

11.5 35 (1) N/A 10.0

8.1 20 (1) 6.3 9.0 6.7

9.7 27 (1) 6.8 7.8 6.8

35 (1) 5.6 9.5 7.8

48 (2) 10.9 14.1 9.3

285 (6) N/A 7.5

59 (6) 9.9 14.2 9.9

dths are estimated from Dgðr; tÞ and by associating localizations with mol-

dth for t close to the frame time (tframe) and CsxyD is the LSF widths averaged
in Fig. S8. CRLB values describe features of the distribution of Cramer-Rao

background subtraction. Full distributions and sxyðtÞ estimated from these

g nearest neighbor distributions from localizations in adjacent frames. Dis-
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fluorescent labels in fixed samples, which would appear in
the LSF as a degradation of LSF width over the timescale
of the relevant motions (14).

The reported method estimates resolution by fitting the
estimated LSF at each time interval probed to a Gaussian
shape, followed by a weighted average to extract the esti-
mated error of the average localization in an image. This
approach is convenient because the resolution is summa-
rized as a single number. However, it is possible to extract
more detailed information about the LSF by not averaging
over angles, or by loosening the assumption of a Gaussian
shape. Fig. S11 shows the autocorrelation of the LSF,
gLSFð~r; tÞ, for the NPC data set of Fig. 5, expanded in x, y,
and t. Fig. S12 shows the weighted time average
CgLSFD :¼ CgLSFð~r; tÞDt for the six data sets of Figs. 3, 4, 5,
6, 7, and 8, with weights given by the observed number of
localization pairs separated by each time delay t. Beyond
quantifying resolution, we anticipate that the LSF could
prove useful for other purposes, such as deconvolution of re-
constructed images or spatial correlation functions, or as an
input to clustering algorithms or other analysis tools.
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Supplementary Figure 1.  Plots of ( 25nm, )g r τ< for the experimental samples shown the main 

text.  These curves capture ( )eg τ  up to a numerical offset that is dependent on the structure 

present in the image. Black lines are fit to a sum of exponentials and are present to highlight 
the monotonically decreasing trend. Dashed lines indicate the average value over the last ¼ of 
the dataset.  The red vertical line indicates where ( 25nm, )g r τ<  falls below 1.5 times the 
dashed line, indicating the maximumτ expected to yield an unbiased estimate of the LSF from

( , )g r τ∆ .  
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Supplementary Figure S2: Subtracting Gaussian shapes with different width leads to distortion 

in max( ) ( , ) ( , )g r g r g rτ τ∆ = − when ( , )g r τ and max( , )g r τ have similar amplitudes but different 

widths. (top) plots of { } { }2 2 2 2
max( ) ( ) exp 4 exp 4g r A A r A r τσ σ∆ = + ∆ − − − for max 1.1τσ σ=

(left) and max 0.9τσ σ= (right) and 0.25,0.5,1,2A∆ = from purple to red.  Curves are normalized 

so they pass through 1 at r=0.  The legend shows the width extracted when fitting ( )g r∆ to a 

single Gaussian shape { }2 2( ) exp 4 fitg r A r σ∆ = − .  A broader maxτσ  leads to systematic 

narrowing of fitσ , while a narrow maxτσ  leads to systematic broadening of fitσ when the 

difference in amplitudes is order 1. (bottom) a summary of results over a broad range of A∆
and maxτσ indicates that distortion is not a major concern over broad range of values 

interrogated.    
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Supplementary Figure S3: Simulation with drift, drift correction and incoherent single 
molecule motions.  (a.) The simulation from Fig 1 with applied drift (black) and drift correction (red) as 
shown in the trajectory above as well as single molecule diffusion with D=1 nm2/sec. Reconstructed 
image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color representing the 
observation time (right) for a small subset of the simulated plane. Scale-bar is 100 nm.  (b.) Auto-
correlations as a function of displacement, ( , )g r τ , tabulated from simulations for time-interval 

windows centered at the values shown. (c.) ( , ) ( , ) ( , 1500 )g r g r g r sτ τ τ∆ = − = for the examples 

shown in b.  (d.) ( , )g r τ∆ are fit to  { }2 2( , ) exp 4 xyg r rτ σ∆ ∝ − to extract the LSF width in each lateral 

dimension (from ( )g r∆ ).  The LSF width from ( , )g r τ∆ varies with time-interval and is systematically 
narrower than the LSF measured by grouping localizations with molecules (from loc.). Error bars 



4 
 

represent estimates of the standard error obtained through bootstrapping. This is due to the distortion 

effect demonstrated in Fig S1 and is characterized by a xyσ that increases with τ . 
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Supplementary Figure S4.  10 μm by 10 μm region showing simulated localizations from Figs 1-
2.  The full simulated area was 40 μm by 40 μm.  Scale bar is 1 μm. 

 



6 
 

 

Supplementary Figure S5.  Localization spread functions (LSFs) estimated as ( , )g r τ∆ (points) 

are well described by Gaussian functions (Eqn. 8 of main text; solid lines).  Fits are used to extract 

( )xyσ τ  reported in the main text. 
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Supplementary Figure S6.  10 μm by 10 μm region showing DNA origami rulers analyzed in Fig 
3.  The full imaged area was 40 μm by 40 μm.  Scale bar is 1 μm. 
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Supplementary Figure S7.  10 μm by 10 μm region showing DNA origami rulers analyzed in Fig 
4.  The full imaged area was 40 μm by 40 μm.  Scale bar is 1 μm. 

 

 

  



9 
 

 

Supplementary Figure S8: Resolution calculation with Fourier Ring Correlation (FRC). FRC 
curves (1) are presented for all the datasets in the main text. The FRC is computed as a function 

of spatial frequency and smoothed with the LOESS method. The red line indicates the fixed 1
7
 

threshold. The first intersection of the FRC curve with this line yields the resolution 𝑅𝑅 =  1
𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟

.  
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Supplementary Figure S9.  Comparison of LSF widths (left) and distributions of CRLB localization 
errors returned from fits (right) for datasets fit without background subtraction.  For the 
origami samples, the LSF width was also estimated from the segmented images (from loc.) Error 
bars represent estimates of the standard error obtained through bootstrapping. The LSF widths 

( xyσ ) at the shortest time-interval interrogated are plotted on the right as lines for comparison 

purposes. 
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Supplementary Figure S10.  Localization precision determined by the Nearest Neighbor analysis 
(NeNA).  Distributions were generated and fit as described in Methods. The “same molecule” fit 
excludes the correction term that accounts for localizations originating from different 
molecules.  
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Supplementary Figure S11.  Estimates of the autocorrelation of the 2-dimensional LSF, 
( , )LSFg r τ  , for the Nuclear Pore Complex data of Fig 5. The first panel shows the weighted 

average LSFg  over all time-delaysτ , with weights determined by the number pairs of 

localizations observed at each time-delay. Subsequent panels show estimates of ( , )LSFg r τ  at 

the indicated time-delayτ . The scale bars are 40 nm. 
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Supplementary Figure S12.  Estimates of the weighted average of the autocorrelation of the 2-
dimensional LSF LSFg , for the indicated datasets. Weights are determined by the number of 

pairs of localizations observed at each time-delayτ . The scale bars are 40 nm. 
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Supplementary Note: Derivation of spacetime pair correlation function estimator, and related 
computations. 

N  localizations , ) ( , , ),  1, ,(i i i i i it x y t i Nr = == …u 

 are observed on a spatial window (region of 

interest/ROI) W  during a temporal window T . This set of points is considered as a realization of a 
space-time point process X , so that we may define a (first-order) density ( ) ( , )r tρ ρ=u  notionally as 

 Expected # of points in area  and time-interval  around ( , )dr dt r t
dr dt⋅

 



 

Or more formally by the following: 

 E ] ( )[ d1
A

X W T

A ρ
∈ ∩ ×

∈ =∑ ∫
u

u u u  (0.1) 

For any set A W T⊂ × , where 1[ ]⋅  is an indicator function, taking the value 1 when its argument is true, 

and 0 otherwise. For the purposes of this paper, we assume that ( )tρ ρ=  is constant in space but may 
vary in time, e.g. due to bleaching of the fluorophores of the sample.  

Further, define the second-order density (2)
1 2( , )ρ uu  notionally by 

 1 2
2

 neiE ghbd oro hop or d sf  p oi ft  xpecte  # f ai s o  o n s in the  and  respectively
( )

dtdr
dr dt
⋅
⋅

u u


 

Or more formally 

 
1 2

1
(2)

1 2 21 2
,

nE  a d ] ( , d)d1[
A B

X W T

A B ρ
≠

∈ ∩ ×

∈ ∈ =∑ ∫ ∫
u u

uu u u uu  (0.2) 

Now 
(2)ρ  describes the second-order properties of X , for example attraction or repulsion between 

points. It is convenient to normalize 
(2)ρ  so that it is dimensionless and easier to interpret. To that end, 

define the pair autocorrelation function 1 2 )( ,g u u : 

 
(2)

1 2
1 2

1 2

( , ), )
( , )

(g ρ
ρ

=
uu

u u
u u

 (0.3) 

Loosely, the pair autocorrelation function is the ratio of the actual probability of finding points at both 

1u  and 2u to the hypothetical probability under the assumption that 1u and 2u  are independent. We 

typically assume that  g is translation invariant in both space and time, and often further assume that it 

is rotationally invariant in space, so that it only depends on the separation of u1 and u2 in space and 

time, and we may write 1 2 2 1 2 1, ) ,( )( g rg tr t= − −uu  

. 
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We estimate g  using the standard kernel-based framework as laid out in e.g. (2, 3). Specifically, we use a 

box kernel with bandwidth rδ  in space and tδ  in time, and an isotropic edge-correction in space, and a 

density correction for the temporal edge correction, following the approach of (4). Briefly, consider the 
family of estimators for ( , )g r τ given by: 

 
,sp.

1ˆ ( , ) : / 2, / 2]1[
( ) ( )

i j

j i r j i t
X W Tt

rr trr
r

g tτ δ τ δ
γ γ τ

≠

∈ ∩ ×

− − < −= − <∑
u u

  (0.4) 

 

We wish to derive functions sp.γ  and tγ such that the resulting estimator is unbiased. The expectation 

value of the sum in the above expression can be determined from an appropriate Campbell’s theorem: 

 

 

2 1 2 1

2 1 2 1 2 1

(2)
1 2 1 2

sp. t

1 2 1 2
sp. t

1 2 2 12 1
sp.

2 1

1

E 1ˆ( , ) ( , )1 / 2, / 2]

1 ( ) ( ) ( )1 / 2][ 1[ / 2]

( ) 1 / 2]

[

( )

,

, [ ) (

W

T

r t
T W T

r t
T W

r
t

W

r r

r t r

g r r t t d d

g r t t t r t t d d

g r r dr

r

tdr tr r

τ ρ δ τ δ
γ γ

ρ ρ δ τ δ
γ γ

τ δ ρ ρ
γ γ

× ×

× ×

≈

=

−

− < −−

= −

− <

− − − <

−

< −

− <

∫

∫

∫

∫

u u u u

u u



 





 

 

1 12 2[ / 2]
W T T

t
W

t t dt dtτ δ−− <∫ ∫ ∫ ∫

 

Where the approximation in line 3 is due to the assumption that ( , )g r τ  is almost constant within 

/ 2rδ  in space and / 2tδ  in time.  

From the above derivation, it follows that ˆ ( , )g r τ  is unbiased for the choices 

sp. 2 1 2 1[( ) 1 / 2]
W

r
W

r r drr r drγ δ−= − <∫ ∫
   

 2 11 2 1 2) ( ) ( ) ]( 1[ / 2t t
T T

t t t t dt dtγ τ ρ ρ τ δ− − <= ∫ ∫  

For computational considerations, we make further approximations on sp.γ : 
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sp. 1 1

2

1 1
0

/2 2

1 1
/2 0

2

1 1
0

( cos , sin

( ) 1[ / 2]1[ ]

1[ / 2]1[ ( cos , sin ) ]

1[ ( cos , sin ) ]

1[ ( cos , sin ) ]

r

r

r
W

r
W

r

W r

r
W

r r r

r h r r h W dhdr

h r r h h W hdhd dr

h r h h W d dhdr

r r r r W d

r

dr

W W

π

δ π

δ

π

θ θ

γ δ

δ θ θ θ

θ θ θ
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δ

+

−

−

=

=

− < + ∈
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=

=

+ ∈

≈ + ∈

∩

∫ ∫

∫ ∫ ∫
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∫ ∫

  

 

 

 

 

)

2

0

d
π

θ∫

 

where A  indicates the area of the set A , and hA indicates the translation of the set A by the vector

h


. The first line is a change of variables to 2 1h rr= −
 



, with the extra indicator functions reflecting the 

integration bounds on 2r


, followed by a change to polar coordinates for h


. The approximation in the 

fourth line is justified by the fact that angular integral varies slowly with h , so the radial part of the 
integral can be approximately separated. 

For the purposes of our matlab code, we represent the spatial window/ROI W as a polygon with vertices 
[mask.x(i),mask.y(i)]. We translate the ROI by a vector [hx,hy] by simply adding hx and hy 
to mask.x and mask.y, respectively. Matlab provides functions polybool to compute the 

intersection hW W
−

∩  , and polyarea to compute the area of the resulting polygon. It remains to 

complete the angular integral, which we compute by discretizing theta into 32 equally spaced points 

 
32

sp. ( cos , sin )
1

2 2( )
32 32

,       
i i

r
r r i

i

r ir WW θ θ
π δ πγ θ−

=

= ∩ =∑  
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