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SUPPLEMENTAL MATERIAL 

Use of simulation and machine learning to identify key levers for 
maximising the benefit of thrombolysis in acute stroke 
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1 Data  
Data was obtained from the Sentinel Stroke National Audit Programme (SSNAP, 

https://www.strokeaudit.org/ ), managed through the Healthcare Quality Improvement Partnership 

(https://www.hqip.org.uk/). SSNAP has near-complete coverage of all acute stroke admissions in the UK 

(outside Scotland). All hospitals admitting acute stroke participate in the audit, and year-on-year comparison 

with Hospital Episode Statistics confirms estimated case ascertainment of 95% of coded cases of acute 

stroke. The NHS Health Research Authority decision tool (http://www.hra-decisiontools.org.uk/research/)  

https://www.strokeaudit.org/
https://www.hqip.org.uk/
http://www.hra-decisiontools.org.uk/research/
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was used to confirm that ethical approval was not required to access the data. Data access was authorised 

by the UK Healthcare Quality Improvement Partnership  (reference HQIP303). 

Data was retrieved for all 246,676 emergency stroke admissions to acute stroke teams in England and Wales 

in SSNAP between 2016 and 2018 (three full years, covering a period where high SSMAP completion rates 

had been achieved). 

2 SSNAP data fields 
The data fields provided were as below: 

Hospital ID 

• StrokeTeam: Pseudonymised SSNAP ‘routinely admitting team‘ unique identifier. For emergency care 

it is expected that each hospital has one stroke team (though post-72 hour care may be reported 

under a different team at that hospital). 

Patient – general 

• PatientUID: Pseudonymised patient unique identifier 

• Pathway: Total number of team transfers, excluding community teams 

• S1AgeOnArrival: Age on arrival aggregated to 5 year bands 

• MoreEqual80y: Whether the patient is >= 80 years old at the moment of the stroke 

• S1Gender: Gender 

• S1Ethnicity: Patient Ethnicity. Aggregated to White, Black, Mixed, Asian and Other 

Patient – pathway information 

• S1OnsetInHospital: Whether the patient was already an inpatient at the time of stroke 

• S1OnsetToArrival_min: Time from symptom onset to arrival at hospital in minutes, where known and if 

out of hospital stroke 

• S1OnsetDateType: Whether the date of onset given is precise, best estimate or if the stroke occurred 

while sleep 

• S1OnsetTimeType: Whether the time of symptom onset given is precise, best estimate, not known 

• S1ArriveByAmbulance: Whether the patient arrived by ambulance 

• S1AdmissionHour: Hour of arrival, aggregated to 3 hour epochs 

• S1AdmissionDay: Day of week at the moment of admission 

• S1AdmissionQuarter: Year quarter (Q1: Jan-Mar; Q2:April-Jun; Q3: Jul-Sept; Q4: Oct-Dec) 

• S1AdmissionYear: Year of admission 

• S2BrainImagingTime_min: Time from Clock Start to brain scan. In minutes. “Clock Start” is used 

throughout SSNAP reporting to refer to the date and time of arrival at first hospital for newly arrived 

patients, or to the date and time of symptom onset if the patient is already in hospital at the time of 

their stroke. 

• S2ThrombolysisTime_min: Time from Clock Start to thrombolysis. In minutes. “Clock Start” is used 

throughout SSNAP reporting to refer to the date and time of arrival at first hospital for newly arrived 

patients, or to the date and time of symptom onset if patient already in hospital at the time of their 

stroke. 

Patient – comorbidities 

• CongestiveHeartFailure: Pre-Stroke Congestive Heart Failure 

• Hypertension: Pre-Stroke Systemic Hypertension 
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• AtrialFibrillation: Pre-Stroke Atrial Fibrillation (persistent, permanent, or paroxysmal) 

• Diabetes: Comorbidities: Pre-Stroke Diabetes Mellitus 

• StrokeTIA: Pre-Stroke history of stroke or Transient Ischaemic Attack (TIA) 

• AFAntiplatelet: Only available if “Yes” to Atrial Fibrillation comorbidity. Whether the patient was on 

antiplatelet medication prior to admission 

• AFAnticoagulent: Prior to 01-Dec-2017: Only available if “Yes” to Atrial Fibrillation comorbidity; From 

01-Dec-2017: available even if patient is not in Atrial Fibrillation prior to admission. Whether the 

patient was on anticoagulant medication prior to admission 

• AFAnticoagulentVitK: If the patient was receiving anticoagulant medication, was it vitamin K 

antagonists 

• AFAnticoagulentDOAC: If the patient was receiving anticoagulant medication, was it direct oral 

anticoagulants (DOACs) 

• AFAnticoagulentHeparin: If the patient was receiving anticoagulant medication, was it Heparin 

Patient – National Institutes of Health Stroke Scale (NIHSS) 

• S2NihssArrival: National Institutes of Health Stroke Scale score on arrival at hospital 

• BestGaze: National Institutes of Health Stroke Scale Item 2 Best Gaze (higher values indicate more 

severe deficit) 

• BestLanguage: National Institutes of Health Stroke Scale Item 9 Best Language (higher values indicate 

more severe deficit) 

• Dysarthria: National Institutes of Health Stroke Scale Item 10 Dysarthria (higher values indicate more 

severe deficit) 

• ExtinctionInattention: National Institutes of Health Stroke Scale Item 11 Extinction and Inattention 

(higher values indicate more severe deficit) 

• FacialPalsy: National Institutes of Health Stroke Scale Item 4 Facial Paresis (higher values indicate 

more severe deficit) 

• LimbAtaxia: National Institutes of Health Stroke Scale Item 7 Limb Ataxia (higher values indicate more 

severe deficit) 

• Loc: National Institutes of Health Stroke Scale Item 1a Level of Consciousness (higher values indicate 

more severe deficit) 

• LocCommands: National Institutes of Health Stroke Scale Item 1c Level of Consciousness Commands 

(higher values indicate more severe deficit) 

• LocQuestions: National Institutes of Health Stroke Scale Item 1b Level of Consciousness Questions 

(higher values indicate more severe deficit) 

• MotorArmLeft: National Institutes of Health Stroke Scale Item 5a Motor Arm - Left (higher values 

indicate more severe deficit) 

• MotorArmRight: National Institutes of Health Stroke Scale Item 5b Motor Arm - Right (higher values 

indicate more severe deficit) 

• MotorLegLeft: National Institutes of Health Stroke Scale Item 6a Motor Leg - Left (higher values 

indicate more severe deficit) 

• MotorLegRight: National Institutes of Health Stroke Scale Item 6b Motor Leg - Right (higher values 

indicate more severe deficit) 

• Sensory: National Institutes of Health Stroke Scale Item 8 Sensory (higher values indicate more severe 

deficit) 

• Visual: National Institutes of Health Stroke Scale Item 3 Visual Fields (higher values indicate more 

severe deficit) 

Patient – other clinical features 
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• S2INR: Patient’s International Normalised ratio (INR) on arrival at hospital (available since 01-Dec-

2017) 

• S2INRHigh: INR was greater than 10 on arrival at hospital (available since 01-Dec-2017) 

• S2INRNK: INR not checked (available since 01-Dec-2017) 

• S2NewAFDiagnosis: Whether a new diagnosis of Atrial Fibrillation was made on admission 

• S2RankinBeforeStroke: Patient’s modified Rankin Scale score before this stroke (Higher values indicate 

more disability) 

• S2StrokeType: Whether the stroke type was infarction or primary intracerebral haemorrhage 

• S2TIAInLastMonth: Whether the patient had a Transient Ischaemic Attack during the last month. Item 

from the SSNAP comprehensive dataset questions (not mandatory) 

Patient – thrombolysis given 

• S2Thrombolysis: Whether the patient was given thrombolysis (clot busting medication) 

Patient – Reason stated for not giving thrombolysis 

• Age: If the answer to thrombolysis given was “no but”, the reason was Age 

• Comorbidity: If the answer to thrombolysis given was “no but”, the reason was comorbidity 

• Haemorrhagic: If the answer to thrombolysis given was “no but”, the reason was Haemorrhagic stroke 

• Improving: If the answer to thrombolysis given was “no but”, the reason was Symptoms Improving 

• Medication: If the answer to thrombolysis given was “no but”, the reason was Medication 

• OtherMedical: If the answer to thrombolysis given was “no but”, the reason was Other medical reason 

• Refusal: If the answer to thrombolysis given was “no but”, the reason was Refusal 

• TimeUnknownWakeUp: If the answer to thrombolysis given was “no but”, the reason was Symptom 

onset time unknown/wake-up stroke 

• TimeWindow: If the answer to thrombolysis given was “no but”, the reason was that thrombolysis 

could not be given in the permitted time from onset. 

• TooMildSevere: If the answer to thrombolysis given was “no but”, the reason was Stroke too mild or 

too severe 

Machine learning uses all fields apart from ‘Patient – thrombolysis given’ and ‘Patient – Reason stated for not 

giving thrombolysis’ which directly inform whether thrombolysis was given or not. 

3 General machine learning methodology 
For detailed code see: https://samuel-book.github.io/samuel-1 

3.1 Key descriptive statistics of patients used in machine learning model 
Table S1 shows key descriptive statistics for patients used in machine learning models (patients arriving at 

hospital within 4 hours of known stroke onset). 

Table S1: Key descriptive statistics for patients used in machine learning models (patients arriving at hospital within 4 hours of known 
stroke onset). 

 All 
(n=88,928) 

Thrombolysis 
(n=26,257) 

No Thrombolysis 
(n=62,671) 

Thrombolysis given 0.295 1.000 0.000 
Age on arrival 75 73 76 
Male 0.518 0.540 0.509 
Ischaemic (vs. haemorrhagic) stroke 0.850 1.000 0.787 
Onset to arrival (minutes) 111 97 117 
Onset known precisely (vs. best estimate) 0.620 0.820 0.537 

https://samuel-book.github.io/samuel-1
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Proportion scanned within 4 hours of arrival 0.948 1.000 0.926 
Arrival to imaging (minutes, for those scanned within 
4 hours) 

117 23 157 

Rankin before stroke 1.060 0.728 1.199 
NIHSS on arrival 9.3 11.6 8.4 

 

3.2 General machine learning methodology 
Machine learning models were used to predict whether a patient will receive thrombolysis or not, based on 

a range of patient-related features in SSNAP including which hospital the patient attended. Machine learning 

models were restricted to those patients arriving at hospital within 4 hours of known stroke onset. And to 

those 132 units that over three years had at least 300 admissions (average 100 per year) and gave 

thrombolysis to at least 10 people (in total over the three years). 

As we restrict machine learning to those patients who arrive within 4 hours of known stroke onset, the mean 

use of thrombolysis is 29.5% (c.f. 11.8% of all arrivals receiving thrombolysis). 

This is a supervised learning problem where we train a model using a training set of data that has all the 

features (variables) for the patient and has the label of whether a patient received thrombolysis or not. The 

model is then tested on data that has not been used in training (see section on stratified k-fold validation 

below). We test three different types of machine learning: 1) logistic regression, 2) random forest, and 3) 

neural networks (with alternative architectures). 

3.2.1 Handling hospital ID 
We use three alternative ways of handling hospital ID in our models:  

1. One-hot encoding: A single model is built which predicts use of thrombolysis in all hospitals. Hospital 

ID is encoded in a vector whose length is equal to the number of hospitals. All values are set to zero, 

except one value is set to one (one-hot) using the hospital ID as the index. For example if there were 

5 hospitals, the one-hot encoding of hospital 2 would be [0, 1, 0, 0, 0]. This one-hot vector is then 

joined to the rest of the input data. In our models the one-hot vector has 132 values, one of which 

has the value 1 with all others having the value 0. 

2. Hospital-specific models: A model is built for each hospital. No encoding of hospital is needed. 

3. Embedding layer (neural networks only): The hospital ID is first one-hot encoded. The one-hot vector 

is used as the input into an embedding layer which reduces the one-hot vector to a reduced 

dimensions size (in this project we reduce the one-hot vector to either a one-dimension or two-

dimensional vector). The embedding value is optimised during neural network training so that 

similar hospitals (from the perspective of decision-making) have embedding values that are similar. 

3.2.2 Imputation 
Imputation is only used for machine learning (where those patients with unknown stroke onset time, or who 

have arrived too late for thrombolysis have been removed prior to imputation). We impute either by using 

an extreme value for numerical fields (e.g. if no time from arrival to scan is recorded we impute the value 

9999 mins, or if NIHSS values are missing we impute with the value 0), or if it is a missing categorical value 

we add a coding category of ‘missing’ for that variable. 

The percentage of missing data and the imputation method is shown in Table S2:. 
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Table S2: Features with missing data, with proportion of rows missing data and imputation method used  (‘missing’: one-hot encode 
as missing, ‘0’: replace with zero,’9999’: replace with 9999). 

 

3.2.3 Stratified k-fold validation 
When assessing accuracy of the machine learning models, stratified k-fold splits were used. We used 5-fold 

splits where each data point is in one, and only one, of five test sets (the same point is in the training set for 

the four other splits). This is represented schematically in Figure S1. Data is stratified such that the test set is 

representative of hospital mix in the whole data population, and within the hospital level data the use of 

thrombolysis is representative of the whole data for that hospital. 
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Figure S1: Schematic representation of k-fold splits with five splits. 

3.3 Logistic regression 
Logistic Regression is a probabilistic model, meaning it assigns a class probability to each data point. 

Probabilities are calculated using a logistic function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

Here, x is a linear combination of the variables of each data point, i.e. a + bx1 + cx2 + .., where x1 is the value 

of one variable, x2 the value of another, etc. The function f maps x to a value between 0 and 1, which may be 

viewed as a class probability. If the class probability is greater than the decision threshold, the data point is 

classified as belonging to class 1 (receives thrombolysis). For probabilities less than the threshold, it is placed 

in class 0 (does not receive thrombolysis). 

During training, the logistic regression uses the examples in the training data to find the values of the 

coefficients in x (a ,b ,c, …) that lead to the highest possible accuracy in the training data. The values of these 

parameters determine the importance of each variable for the classification, and therefore the decision-

making process. A variable with a larger coefficient (positive or negative) is more important when predicting 

whether or not a patient will receive thrombolysis.  

The logistic regression classifier used was from Scikit Learn. Default settings were used. 

3.4 Random forest 
A random forest is an example of an ensemble algorithm: the outcome (whether or not a patient receives 

thrombolysis) is decided by a majority vote of other algorithms. In the case of a random forest, these 'other 

algorithms' are decision trees (each of which is trained on a random subset of examples, and a random 

subset of features). A random forest is an ensemble of decision trees. Each tree is considered a weak learner, 

but the collection of trees together form a robust classifier that is less prone to over-fitting than a single full 

decision tree. 

We can think of a decision tree as similar to a flow chart. In Figure S2 we can see that a decision tree is 

comprised of a set of nodes and branches. The node at the top of the tree is called the root node and the 
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nodes at the bottom are leaf nodes. Every node in the tree, except for the leaf nodes, splits into two 

branches leading to two nodes that are further down the tree. A path through the decision tree always starts 

at the root node. Each step in the path involves moving along a branch to a node lower down the tree. The 

path ends at a leaf node where there are no further branches to move along. Leaf nodes will each have a 

particular classification (e.g. receives thrombolysis, or does not receive thrombolysis). 

 

Figure S2: Schematic of a decision tree showing root node (red), splitting nodes (yellow), and terminal leaf nodes (green). A random 
forest takes the majority vote from a multitude of decision trees. 

The path taken through a tree is determined by the rules associated with each node. The decision tree learns 

these rules during the training process. The goal of the training process is to find rules for each node such 

that a leaf node contains samples from one class only: the leaf node a patient ends up in determines the 

predicted outcome of the decision tree.  

Specifically, given some training data (variables and outcomes), the decision tree algorithm will find the 

variable that is most discriminative (provides the best separation of data based on the outcome). This 

variable will be used for the root node. The rule for the root node consists of this variable and a threshold 

value. For any data point, if the value of the variable is less than or equal to the threshold value at the root 

node, the data point will take the left branch and if it is greater than the threshold value it will take the right 

branch. The process of finding the most discriminative feature and a threshold value is repeated to 

determine the rules of the internal nodes lower down the tree. Once all data points in a node have the same 

outcome, that node is a leaf node, representing the end of a path through a tree. Once all paths through the 

tree end in a leaf node the training process is complete.  

A random forest is an ensemble of decision trees. During training the algorithm will select, with replacement, 

a random sample of the training data, and using a subset of the features will train a decision tree. This 

process is repeated many times, the exact number being a parameter of the algorithm corresponding to the 

number of decision trees in the random forest.  

The resulting random forest is a classifier that can be used to determine whether a data point belongs to 

class 0 (does not receive thrombolysis) or class 1 (receives thrombolysis). The path of the data point through 

every decision tree ends in a leaf node. If there are 100 decision trees in the random forest, and the data 

point's path ends in a leaf node with class 0 in 30 of the decision trees and a leaf node of class 1 in 70, the 

random forest takes the majority outcome and classifies the data point as belonging to class 1 (given 

thrombolysis) with a probability of 0.7 (70/100: number of trees voting class 1 / total number of trees). 
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The random forest classifier used was from SciKit Learn. Default settings were used, apart from balanced 

class weighting, where weights for samples are inversely proportional to the frequency of the class label. 

3.5 Neural networks 
The basic building block of neural networks is the perceptron (Figure S3). Each feature (including a 

constant/bias feature which usually has the value of one) has an associated weight. The product of each 

feature multiplied by its weight is summed. The sum is then passed to an activation function. The activation 

function may leave the input unchanged (often used for a regression output), may use a step function 

(whereby if the sum of weighted features is less than 0 the output is zero, and if the sum of weighted 

features is equal to or more than 0 the output is one); may use a logistic function (converting the input into a 

number between zero or one); or may use an other function. The weights are optimised during the learning 

process in order to minimise the inaccuracy (loss) of the model. Commonly, optimising is performed 

according to a variant of stochastic gradient descent, where an example is chosen at random (stochastic), 

the inaccuracy (loss) is calculated, and the weights are moved a little in the direction which reduced the loss 

(gradient descent). This learning process is repeated until the model converges on minimum loss. 

 

Figure S3: Schematic of a perceptron. Each feature (including a constant) is multiplied by an individual weight for that feature. These 
feature.weights are summed, and the output passed to an activation function (a simple activation function is a step function whereby 
if the sum of weighted features is less than 0 the output is zero, and if the sum of weighted features is equal to or more than 0 the 
output is one). 

A neural network is composed of a network of perceptrons, and is sometimes called a multi-layer-

perceptron. Input features are connected to multiple perceptrons (or neurones) each of which performs a 

weighted sum of feature.weights and passes the output through an activation function. The most common 

activation function used within a neural network is the rectified linear unit (ReLU). Using ReLU, if the 

weighted sum of inputs is less than zero, the output is zero, and if the weighted sum of inputs is greater than 

zero then the output is equal to the weighted sum of inputs. This simple function is computationally efficient 

and is enough for the neural network to mimic non-linear functions. The outputs from a layer in the network 

are passed as inputs to the next layer. The layers may be of any number of neurones, and may vary between 

layers (though it is common now to have the same number of neurones in all layers apart from the final 

layer). The final layer has an activation function depending on the purpose of the network. For example, a 

regressor network will often leave the weighted sum in the final layer unchanged. A binomial classification 

network will commonly use logistic/sigmoid activation in the final layer (usually with a single neurone in the 

output layer), and a multi-class network will often use softmax activation where there are as many output 

neurones as there are classes, and each will have an output equivalent to a probability of 0-1. A standard 
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approach is to have a ‘fully connected’ neural network, where each perceptron in the current layer is 

connected to all perceptrons in the following layer. It is possible to define a custom design with only specific 

connections chosen. 

 

Figure S4: An example neural network. In this ‘fully connected’ neural network there are as many perceptrons in each layer as there 
are features (in practice this number may be changed). Each feature is connected to all perceptrons in the first hidden layer, each with 
its own associated weight.  

Figure S4 shows a fully connected neural network where all neurones in a layer are connected to all 

neurones in the next layer. Each neurone sums all inputs multiplied by the weight for each input. This is then 

commonly passed through an activation function. We use ReLU activation for the hidden layers, whereby all 

outputs of less than zero are set to zero and all output of greater than zero are unchanged. The final layer is 

a sigmoid activation layer with an output of 0-1. If the network is well calibrated this output will be the 

probability of classification of a patient receiving thrombolysis. In order to prevent overfitting of the network 

we use dropout (where 50% of the neurones are randomly excluded in each training run), and early stopping 

(where training of the network is stopped when accuracy of an evaluation data set is no longer improving, 

and the network weights are rolled back to when the accuracy of the evaluation set was at its highest). 

Training a neural network is similar to a perceptron, using methods based on stochastic gradient descent. 

The additional component in neural network is back-propagation of loss, which distributes loss through the 

network according to how much individual neurones contribute to the overall loss. 

We used the Keras neural network library for Python/TensorFlow. General methodology for training and 

optimising neural networks using Keras is described by Chollet 28. 

3.6 Modular network with 1D hospital ID embedding 
Embedding uses a subnet (a distinct part of a larger neural network) to convert a categorical variable into a 

projection onto n-dimensional space 29, and has been shown to be an effective way to train neural networks 

when using categorical data, while also allowing a measure of similarity/distance between different values of 

the categorical data. Here we use subnet embedding for three groups of the data available for each patient: 

1) hospital ID, 2) patient/clinical characteristics (such as age, gender, stroke symptoms, etc.(see Table S3), 

and 3) pathway times/timings (such as time from onset to arrival, time to scan, etc). These are either based 

on a single categorical value (hospital ID), or a group of related data (clinical features, or pathway 

information). When we convert a set of related data to a smaller dimension space, it may also be known as 

encoding the data. 
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Table S3: List of features used for patient clinical embedding. 

S1AgeOnArrival S1Ethnicity_Asian AFAnticoagulent_missing 

S2RankinBeforeStroke S1Ethnicity_Black AFAnticoagulentVitK_No 

Loc S1Ethnicity_Mixed AFAnticoagulentVitK_Yes 

LocQuestions S1Ethnicity_Other AFAnticoagulentVitK_missing 

LocCommands S1Ethnicity_White AFAnticoagulentDOAC_No 

BestGaze CongestiveHeartFailure_No AFAnticoagulentDOAC_Yes 

Visual CongestiveHeartFailure_Yes AFAnticoagulentDOAC_missing 

FacialPalsy Hypertension_No AFAnticoagulentHeparin_No 

MotorArmLeft Hypertension_Yes AFAnticoagulentHeparin_Yes 

MotorArmRight AtrialFibrillation_No AFAnticoagulentHeparin_missing 

MotorLegLeft AtrialFibrillation_Yes S2NewAFDiagnosis_No 

MotorLegRight Diabetes_No S2NewAFDiagnosis_Yes 

LimbAtaxia Diabetes_Yes S2NewAFDiagnosis_missing 

Sensory StrokeTIA_No S2StrokeType_Infarction 

BestLanguage StrokeTIA_Yes S2StrokeType_Primary Intracerebral 
Haemorrhage 

Dysarthria AFAntiplatelet_No S2StrokeType_missing 

ExtinctionInattention AFAntiplatelet_No but S2TIAInLastMonth_No 

S2NihssArrival AFAntiplatelet_Yes S2TIAInLastMonth_No but 

MoreEqual80y_No AFAntiplatelet_missing S2TIAInLastMonth_Yes 

MoreEqual80y_Yes AFAnticoagulent_No S2TIAInLastMonth_missing 

S1Gender_Female AFAnticoagulent_No but   

S1Gender_Male AFAnticoagulent_Yes   

 

Hospitals that make similar decisions should end up close to each other in the embedded vector space. As 

with hospitals, patients that are similar (from the perspective of thrombolysis decision-making) should end 

up close to each other in the embedded vector space. 

Our modular neural networks split data into three subgroups: 1) hospital id, 2) patient/clinical 

characteristics, 3) pathway times/timings. Each subgroup of data is processed by a neural subnet to produce 

a vector. The architecture may be set to produce a vector of any number of dimensions - here we use one 

and two values per subnet output vector. The output from the subnets is combined in an additional layer in 

the neural network, the concatenation layer which outputs a sigmoid probability of receiving thrombolysis.  

When the subnets output a single value, this will condense each of the subgroups down to a single value that 

will be used in the final layer to determine probability of thrombolysis. This allows, for example, ranking of 

patients suitability for thrombolysis determined by a consensus view from all hospitals, and similarly allows 

ranking of hospitals by propensity to give thrombolysis, independent of their own patient population. When 

two or more output values are used for each subnet, this allows for more complex interactions between 

patients and hospitals to be represented, and offers the potential to cluster similar hospitals or patients by 

location of their output vectors. 

Figure S5 shows a schematic representation of the modular neural network with 1-dimensional embedding 

(hospital, pathway, and clinical features each get converted to a 1-dimensional vector - a single value), 

before being combined in a final concatenation layer with sigmoid activation. Pathway data and clinical data 

each have one hidden layer before being embedded by sigmoid activation. 
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Figure S5: Schematic representation of the modular neural network with 1D embedding.  

4 Thrombolysis pathway simulation 
The pathway simulation is constructed in Python, using NumPy 16. Code for the model may be found in the 

accompanying Jupyter Book in section: https://samuel-book.github.io/samuel-

1/pathway_sim/pathway_code.htmlThe stroke pathway simulation models the passage of a cohort of 

patients through a hospital’s stroke pathway. Timings in the simulation are sampled from distributions using 

NumPy's `random` library which uses the PCG-64 pseudo-random number generator. These distributions 

may be based on observed timings or may be ‘what if?’ scenarios such as ‘what if arrival-to-scan time was 

consistently 15 minutes?’ All process times are sampled from log normal distributions (see below for fitting 

of distributions). 

Figure S6 shows the distribution of process times across all hospitals. All timings show a right skew.  

 

Figure S6: Histograms of distribution of timings for onset-to-arrival (left), arrival-to-scan (middle) and scan-to-needle (right). 
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Ten candidate distribution types were fitted to the data. All three process times were best fitted by a log-

normal distribution (chosen by lowest chi-squared; distributions were fitted to 10K bootstrapped samples 

for each process time). Figure S7 to Figure S9 show log-normal distribution fits for the three process times. 

 

Figure S7: Distribution fitting to onset-to-arrival times. Left: Histogram of standardised values and fitted distribution (lognormal). 
Right: P-P plot of actual vs. theoretical (fitted) probabilities. 

 

Figure S8: Distribution fitting to arrival-to-scan times. Left: Histogram of standardised values and fitted distribution (lognormal). 
Right: P-P plot of actual vs. theoretical (fitted) probabilities. 
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Figure S9: Distribution fitting to scan-to-needle times. Left: Histogram of standardised values and fitted distribution (lognormal). 
Right: P-P plot of actual vs. theoretical (fitted) probabilities. 

 

The key process steps in the pathway are shown in Figure S10. Patients can leave the pathway at each step if 

their pathway durations exceed the permitted time limits, or they become ineligible for treatment. Only 

patients that satisfy all restrictions continue along the full length of the pathway and receive thrombolysis. 

The outcome is then calculated as a probability of having a good outcome (mRS 0-1). If the patient does not 

receive thrombolysis the probability of a good outcome is the baseline probability of a good outcome in the 

population age group (aged under 80 years, or aged 80+ years). If the patient received thrombolysis then the 

probability of a good outcome is based on age group and time to treatment. 

 

Figure S10: Schematic representation of the stroke pathway as simplified for the simulation. Patients can leave the pathway at each 
step if their pathway durations exceed the permitted time limits, or they become ineligible for treatment. Only patients that satisfy all 
restrictions continue along the full length of the pathway. 

The probability of having a good outcome (mRS0-1) is modelled based on time to treatment according to a 

meta-analysis of clinical trials 1, as shown in Figure S11. 
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Figure S11: Effect of time to treatment (onset-to-needle time) on the clinical benefit (probability of an outcome with modified Rankin 
Scale score of 0-1) from thrombolysis, as derived by a meta-analysis of clinical trials (Emberson et al. 2014). 

Individual patient pathways are modelled within a NumPy array for each hospital. The following fields are 

populated based on sampling from distributions: 

• Patient aged 80+ (Boolean, based on Bernoulli distribution) 

• Allowable onset-to-needle time (minutes, specified: may depend on age) 

• Stroke onset time known (Boolean, based on Bernoulli distribution) 

• Onset-to-arrival time is less than 4 hours (Boolean, based on Bernoulli distribution) 

• Stroke onset time known and onset-to-arrival time is less than 4 hours (Boolean, calculated based on 

values above) 

• Onset-to-arrival time (minutes, based on log normal distribution) 

• Arrival-to-scan time is less than 4 hours (Boolean, based on Bernoulli distribution) 

• Arrival-to-scan time (minutes, based on log normal distribution) 

• Time left to thrombolyse (minutes, calculated based on values above) 

• Stroke onset time known and time left to thrombolyse (Boolean, calculated based on values above) 

• Ischaemic stroke (if they are filtered at this stage. Boolean, based on Bernoulli distribution) 

• Assign eligible for thrombolysis (Boolean, based on Bernoulli distribution. Will receive thrombolysis if 

scanned within permitted treatment time) 

• Thrombolysis planned (Boolean, calculated: scanned within time and eligible) 

• Scan-to-needle time (minutes, based on log normal distribution) 

Each hospital has a base scenario based on its current performance. A statistical summary of these 

parameters across 132 hospitals is shown in Table S4 shows a description of the ranges used for model 

parameters. Full parameters for each hospital may be found at: https://samuel-book.github.io/samuel-

1/pathway_sim/base_parameters.html 

https://samuel-book.github.io/samuel-1/pathway_sim/base_parameters.html
https://samuel-book.github.io/samuel-1/pathway_sim/base_parameters.html
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Table S4: A summary of ranges of parameters determined and used in the pathway simulation model (each of 132 hospitals has 
it's own values that are used to define the distributions that individual patients will be sampled from). 

Parameter count mean std min 25% 50% 75% max 

thrombolysis_rate 132 0.115 0.035 0.015 0.093 0.110 0.133 0.243 

admissions 132 573 277 101 378 544 755 2039 

80_plus 132 0.426 0.056 0.292 0.387 0.428 0.458 0.576 

onset_known 132 0.666 0.134 0.345 0.574 0.642 0.753 0.988 

known_arrival_within_4hrs 132 0.601 0.090 0.257 0.558 0.609 0.662 0.814 

onset_arrival_mins_mu 132 4.572 0.098 3.768 4.530 4.580 4.629 4.763 

onset_arrival_mins_sigma 132 0.560 0.121 0.435 0.517 0.547 0.586 1.801 

scan_within_4_hrs 132 0.948 0.030 0.847 0.933 0.954 0.969 1.000 

arrival_scan_arrival_mins_mu 132 3.280 0.409 1.666 3.030 3.310 3.572 4.236 

arrival_scan_arrival_mins_sigma 132 0.941 0.221 0.549 0.788 0.891 1.034 1.751 

onset_scan_4_hrs 132 0.875 0.043 0.627 0.853 0.877 0.904 0.962 

eligable 132 0.338 0.083 0.111 0.276 0.332 0.399 0.532 

scan_needle_mins_mu 132 3.426 0.342 2.573 3.204 3.426 3.677 4.409 

scan_needle_mins_sigma 132 0.690 0.156 0.366 0.579 0.662 0.793 1.283 

 

Using these populated fields, the following process is carried out to calculate the probability of a good 

outcome. 

1. Clip onset to thrombolysis time to maximum allowable onset-to-needle time (minutes) 

2. Set baseline probability of good outcome based on age group (scalar probability) 

3. Convert baseline probability good outcome to odds (scalar odds) 

4. Calculate odds ratio of good outcome based on onset-to-needle time (scalar odds ratio) 

5. Patient odds of good outcome if given thrombolysis (scalar adjusted odds) 

6. Patient probability of good outcome if given thrombolysis (scalar adjusted probability) 

7. Clip patient probability of good outcome to minimum of zero (scalar adjusted probability) 

8. Individual patient good outcome if given thrombolysis (Boolean)* 

9. Individual patient good outcome if not given thrombolysis (Boolean)* 

*Net population outcome is calculated here by summing probabilities of good outcome for all patients, 

rather than using individual outcomes. These columns are added for potential future use. 

Replication was set to 100 x one year runs. This gave a precision (95% confidence limit) of less than 5% of 

mean values for thrombolysis use and predicted number of additional good outcomes. 

5 Qualitative research 

5.1 Objectives  
The overall objective of the qualitative research was to understand influence of modelling, 

including the use of machine learning techniques, in the context of the national audit, in order to 

support efforts to maximise the appropriate use of thrombolysis and reduce unnecessary variation.  

Specifically the aims were to: 

1. Explore current understanding and rationale for the use of thrombolysis for ischaemic stroke, in 

order to establish reasons for the variance in the use and speed of thrombolysis. 
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2. Understand physician perspectives on simulation and machine learning feedback, to influence how 

simulation can be incorporated into the Sentinel Stroke National Audi Programme (SSNAP) to have a 

positive impact on practice.  

3. Identify potential routes for the implementation of machine learning feedback, to inform and 

improve future stroke management. 

4. Explore how physicians interpret the potential consequences of following changes in pathway 

suggested by simulation. 

5.2 Data collection  
To pilot our interview approach, we undertook a face-to-face group interview with a small group of medical 

registrars on a regional rotation that included stroke, in their clinical setting. Having given written consent to 

interview, a senior modeller provided the registrars with a demonstration of the modelling process and 

outcomes, prior to the qualitative researchers piloting the topic guide. Feedback from the stroke physicians 

suggested that this approach was appropriate and produced data that was fit for purpose. 

Our approach was subsequently modified for remote delivery, with all interviews conducted via MS Teams, 

Skype or Zoom, dependant on the media that was allowed in each NHS Trust. At the beginning of each 

interview participants watched a 10-minute video made by the senior modeller that contained examples of 

the process and outcomes of the machine modelling and pathway analysis, as a stimulus for discussion 30. 

The topic guide was then used to elicit participants’ own experiences of thrombolysis and perspectives on 

machine learning, alongside observations of group interactions and clinical settings 31. 

During the interviews, we collected data about physicians’ backgrounds, their attitudes to thrombolysis and 

their understanding of variance, their perspectives on machine learning, and potential loci for the 

implementation of machine learning feedback (within and beyond SSNAP), established the physicians’ views 

on possible unintended consequences, which may result from changing the acute stroke pathway, and 

potential means of mitigation. Our fieldnotes reflected the challenges of conducting interviews via video, 

with physicians often in clinical settings and sometimes wearing Personal Protective Equipment (PPE), as 

well as capturing the dynamics between physicians, who were also remote working from each other 32,33. 

Towards the end of the project, and during the third lockdown for COVID-19, we undertook an online 

discussion of our results with a small group of physicians (N=3) who were identified via an annual meeting 

for trainees, organised by the British Association for Stroke Physicians (BASP). The modellers presented a 

further set of outputs from their analyses, and the discussion focused on how additional modelling outputs 

might be used to facilitate quality improvement and inform service delivery.  

The number of participants recruited was lower than originally planned. This was due to NHS focus on coping 

with Covid, and also reflected more challenge in accessing staff from units with lower thrombolysis use. The 

interview participants were also skewed heavily towards medics. In any future study we recommend having 

more qualitative resource in order to help recruit more staff, especially from units with lower thrombolysis 

use, and to broaden the interview base to include more non-medic staff (e.g. more specialist stroke nurses). 

5.3 Data analysis  
Interview data was transcribed by an independent GDPR-compliant transcriber, and fieldnotes were written 

up by the two researchers. All data were anonymised and managed in Nvivo for Teams 

(https://www.qsrinternational.com/). Both researchers read all the transcripts to develop preliminary ideas 

and understanding. We developed these ideas alongside further re-reading of the transcripts, using a 
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Framework Analysis aligned with the four broad exploratory objectives of the study, but crucially with an 

openness to any new insights from the physicians 34, 35. Analytical summaries across multiple cases were 

created independently by both researchers, and used to explore the data. We held repeat discussions to 

develop the analysis, looking for negative cases, and resolving differences of opinion about interpretation 36. 

In this way, we were able to examine these physicians’ accounts of their use of thrombolysis and orientation 

to machine learning and simulation. As our analyses developed, we also discussed our findings with 

members of the wider research team. 

5.4 Results 
We recruited nineteen participants, who took part in three individual and five group interviews. 

Eleven of the participants were consultants (specialising in stroke, neurology or elderly care) with 

four stroke registrars and one specialist stroke nurse. Ten participants were male and nine were 

female (see Table S5).  

Table S5: Qualitative research participants 

Thrombosis Interviews 

Low (Site A)  Group: 2 Stoke Consultants (2 x M) + I Specialist 
Stroke Nurse (1 x F) 

Low (Site B) Single: Consultant Stroke and elderly medicine 
(M) 

Low  (Site C) Group: 3 Stroke Consultants (1M/2F) 

Middle (Site D/Pilot) Group: 4 Registrars (4F) (Pilot interview)  

Middle (Site E) Single Consultant Geriatrician (M) 

Middle (Site F) Single:  Stoke Consultant(M) 

High (Site G) Group: 3 Consultants: Stroke & Geriatrician 
(1M/2F) 

High (Site H) Group: 3 Consultants:  Stroke, Neurologist, 
Geriatrician (2M/1F) 

 

5.4.1 Current attitudes to thrombolysis use 

Physicians working in hospitals with lower thrombolysis rates were more likely to suggest that a 

significant barrier to thrombolysis was the delayed presentation of patients, which could be 

magnified by suboptimal ambulance services: 

“A lot of patients present outside the window of thrombolysis at the hospital.” (Site B) 

“I think we rarely hit the 11% percent national numbers, probably because patients come 

just outside the thrombolysis window.” (Site A) 

Those working in hospitals with lower thrombolysis rates were more likely to report that their 

patients were ‘different’ to those presenting at other centres – in terms of rurality, ethnicity, frailty, 

or socio-demographic factors:  

“We’ve a slightly older population… we’ve slightly more bleeds than infarcts…we’re a 

slightly larger geographical area, so sometimes people are a bit delayed getting to hospital 

and we operate across two sites as well.” (Site C) 
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The above physician also highlighted that because of these complexities, decision making about 

thrombolysis was the most difficult part of their job.  

While population differences were also acknowledged by physicians at higher thrombolysing 

centres, they were more likely to articulate the centrality of patient heterogeneity in their decision 

making:  

Consultant 1:“I wouldn’t be giving thrombolysis for various reasons… They’re often late, or 

got a very mild deficit, or they’ve got something that makes you feel extra wary about 

treating them… we’ve got a population that’s increasingly frail, they’ve got multiple 

comorbidities… [but] every patient is unique.”  

Consultant 2: “We all have different approaches, I say to myself the first question is, if I 

don’t thrombolyse this patient, what is the worst neurological outcome they could have? 

What is the disability going to be? And then the next question is how far are we down the 

time pathway, what’s the risk of bleeding here? And then, what are the little things that 

feed into pros and cons, how does that alter the equation from a standard patient? is it that 

the benefits are going to outweigh the risks, how finely balanced is that decision?”  

Consultant 3: “The days of people being textbook strokes are long gone… we don’t see 

them… we don’t have a blanket policy. We eyeball them. And if they look dodgy we park 

them and work out what’s going on, if they don’t look dodgy, we go straight to the scanner.” 

(Site H) 

Those in mid-rate thrombolysis centres suggested that some of the delays in patient presentation 

could be mitigated through treatment by stroke physicians rather than generalists, or by the 

involvement of a Specialist Stroke Nurse:  

“We typically have a more deprived population, so accessing health care and time to 

hospital [and] our ambulance service is not as good…”, “a burden of disease due to 

deprivation… we do see a lot of young strokes… smoking, drinking, drug abuse… expertise is 

important there, so if you looked at our patients… the ones that had been thrombolysed 

under 30 minutes… nearly all of them had been managed by a stroke registrar or a geriatrics 

registrar or a geriatrics consultant.” (Site E) 

 “[a] stroke nurses being there increases the speed…”(Site D) 

Those physicians currently working in centres with low or medium thrombolysis rates seemed more 

likely to emphasise the equipment that they lacked, and which they perceived would improve the 

accuracy and speed of their decision making.  

Similarly, physicians working in hospitals with higher thrombolysis rates suggested that their higher 

rates were due to access to scans and other specialist facilities, as well as 24 hour stroke services:  

“We’re a big teaching hospital… that’s also got a trauma centre” (Site H) 
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“Thrombolysis is done by registrars with consultation on the phone with some access to the 

imaging for the consultant… there is no dedicated stroke team at night… we have a big 

variation between out of hours and in hours door to needle time… it’s 38 minutes, out of 

hours it’s 89 minutes… don’t thrombolyse wake up stroke… MRI… perfusion scan… we don’t 

have the facilities.” (Site F) 

“On SSNAP data, we are one of the top performing units in the country and that has 

happened through years of planning and hard work, where we take direct admissions, 

twenty-four seven, we don’t do remote assessments… it’s always face to face assessments 

by consultant… with a specialist nurse, to see a patient, etc. And we have access to scans 

directly, including vascular imaging…” (Site G) 

Thus, the provision of more diagnostic tools was perceived as enabling a more nuanced approach 

to risk management - that went beyond tallying risk factors, and individualised patient care for 

more ‘marginal’ case: 

“If I might manage a level of uncertainty about the onset time and some other 

characteristics, medications, for example, a slightly imperfect history that I have, if it’s a very 

severe stroke, it’s going to be a disabling stroke and I feel that the risks are outweighed by 

the benefits... I think that stroke severity and my perception of the ability to benefit from 

thrombolysis will then weigh into how much uncertainty I’m able to cope with, with the 

other things.”(Site G) 

Although the sample interviewed was small, they were diverse in their attitudes to thrombolysis 

use.  

5.4.2 Perspectives on simulation and machine learning 

Physicians who identified as confident thrombolysers had an initial scepticism of both the premise 

and methods employed in the simulations they were shown, although this scepticism was later 

dispelled:  

“The first thought that came to mind was [with the modelling] an innate assumption that 

doing more thrombolysis is a good thing... So, your machine learning may tell us how to do a 

lot of people who possibly don’t need it, possibly. I’m not saying that’s necessarily what 

you’re going to do, but it’s where it might go if we just say ‘more is better’.” (Site H) 

Physicians who both worked alone and were interviewed in isolation were more anxious about how 

the simulation might be used to hold them to account for their decision-making and identified 

perceived risks:  

“I’d be suspicious if such a tool was available and a patient wasn’t thrombolysed, then that 

might involve the lawyers and the legal teams.”(Site C) 

“I think safety would be the top thing, isn’t it, it’s got to be a hundred percent safe and I 

think if you are close to a hundred percent safe, if you can show that, if you can show that 
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it’s safe and it doesn’t cause any negative outcomes for patients, then -and it also enhances 

patient care by speeding the process up, then I think you’ve won. If there’s doubts about its 

safety, even if it does speed things up, people aren’t going to trust it… clinicians are always 

wary about litigation, as well… some of this software could be used retrospectively… it could 

lead to decision-making being criticised retrospectively.” (Site E) 

Those who had the benefit of working in a team with both a culture of collaboration and 

professional challenge were more inclined to see machine learning as a resource to draw upon for 

their own decision-making. For example, with those in low thrombolysing centres suggesting that it 

might augment their decision-making, while those in higher thrombolysing centres viewing it as a 

positive challenge to inherent assumptions that they might have developed: 

“I think it would be a help if there was a patient where, you know, maybe somebody else 

would have thrombolysed them and we might see something that we weren’t doing that we 

would then, you know, implement as an action, if there was something clearly that we could 

be doing, you know, that would improve the rates.” (Site B)  

“if you have a computer model you might get out these things out of, well, at least you think 

about it if the computer says something, then you have to have a strong kind of argument to 

refuse, to say no. [laughs] To say, well, the computer says, well the modelling comments 

that they should be thrombolysed, why do you say it’s not thrombolysed, you can’t just say 

oh, because he’s old or whatever.” (Site F) 

 “it would be useful to know what would somebody else do. Now, whether that’s presented 

as a number or as a likelihood for thrombolysis… the hospitals…” (Site F) 

In addition, those in the highest thrombolysing centre also thought that the modelling outputs 

could extend their quality improvement initiatives: 

“It’s just a tool, isn’t it, it’s just another tool. We would never – you’d never base your 

decision on what the machine said! I mean, not until it’s like, you know, the Star Trek 

computer!... You’re generating data for improving a process and for understanding of 

process, so it’s very helpful for that… And it might be useful to beat the managers and say 

we need help with this, that and the other, but then any audit does that.” (Site H different 

physician).  

Some participants suggested additional variables that they would like to see included in the 

modelling:  

“There are factors there which we would use in our decision-making  process which are not 

listed as inputs…active bleeding, head injuries, blood pressure, whether the patient assents 

or consents [inputs]are insufficient and superficial…”(Site G) 

“The other thing that feeds in is that not everyone’s comfortable looking at CT heads and 

some people are waiting for that to be reported and I think that can add considerable time… 
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especially down here, the radiology registrar is not always based in this hospital.  So, they 

cover the whole of the [area] and they might be based in [other centre], whereas in the 

daytime you can just walk round the corner and speak to the radiologist reporting the scan, 

and say “What do you think, is it OK”, or call the consultant on call.  But I think if you’re, for 

example, a med reg in another speciality thrombolysing at night, you wouldn’t have that 

confidence to say that and then having to call up a radiology reg on call in another hospital 

all takes time, doesn’t it… Say, at worst, half an hour.” (Site D). 

Centres with middle thrombolysis rates were keen to see the outcomes of employing machine 

learning included in the outputs:  

“How have you extrapolated your outcome data?... what I think would be useful to know is 

within that people of decision makers, who is making the decisions?... [I would want to see] 

median times with clear confidence intervals would be most useful...diagnosis at discharge 

comparative to decision making at the time.” (Site D) 

So I think that is, kind of, disabilities should be part of that pathway, some type of 

assessment for that, for instance, the things which I do is I have to try and identify a link 

between the disability they get and patient kind of function - that would be helpful.” (Site F) 

Perspectives on simulation and machine learning varied by the size and type of unit that the 

physicians worked in, with some participants welcoming the addition of modelling to their decision 

making tool kit, with others worried about the loss of their agency.   

5.4.3 Potential routes for the implementation of machine learning feedback  

Across centres, there was an understanding that modelling had the potential to identify which 

changes a particular centre could invest in to improve their stroke pathway:  

“Tell us we should do our scans quicker or hurry up with our CTAs”…“Placing them on the 

scanner table rather than wheeling them round… simple things.”(Site H) 

“the SSNAP data we have is great, but it’s difficult to apply that to solutions locally. Whereas 

if you could apply the modelling to a local set-up and find out where the delays are 

consistently across a number of cases, rather than just looking at one case…if you do that 

across hundreds of cases in the same centre, then you find local solutions to increase 

speed.” (High Site H, different physician).  

When asked to identify the potential routes by which machine learning might inform or improve 

future stroke management, physicians replied with suggestions that matched particular issues with 

which they were grappling. 

Those in low thrombolysing centres wanted a tool that could help them to improve care with a 

particular patient or type of patient, via a prototypical patient: 

“[I] Would value a prototype patient… where it showed you which hospital would or 

wouldn’t thrombolyse… I would trust the data… we could get some advice on where to 

improve… there might be some big gains from that, if we did it.” (Site B) 
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“If we had the information that over the country [about older frail people from care homes], 

it would probably give those hospitals that are more cautious, more confidence to give that 

thrombolysis” (Site D).  

“People are quite afraid of the risk of bleeding and things like that. If they produce a type of 

individualised risk and benefit for the patient, on the information that’s provided on 

algorithm, that would be very helpful… and also the ability to be updated quickly, that 

would be very helpful, because the texts change every year and then sometimes you can’t 

keep up with all those protocols and pathways.” (Site H) 

Physicians working in the highest thrombolysing unit, who expressed greater familiarity with SSNAP 

as well as other performance indicators, wanted a more sophisticated instrument that could 

compare treatment across consultants or centres:  

Consultant 1: “internally we tend to look at consultant level data, just by looking at the 

thrombolysis data and picking that apart. But obviously the numbers are small, so the data 

can be quite varied… but I don’t mind seeing it at consultant level information as well as, 

then, hospital.” 

Consultant 2:  “You take a prototypical patient and apply them to the algorithms that you’ve 

constructed for our hospital and see what pops out the other end… These things rarely 

provide an answer; they just point you to something you can reflect on…” (Site H) 

Perspectives on the potential routes for the implementation of machine learning feedback were 

informed by physicians’ beliefs about their current needs, with the idea of a prototype patient 

proving popular. However, there was variance in beliefs about what variables should be included, 

and whether its objective should be direct patient care or as a quality improvement tool.  

5.4.4 Anticipated consequences of stroke pathway feedback 

Two physicians, both of whom worked on their own, in lower thrombolysing centres, were sceptical 

about the consequences of changes to the stroke pathway. Having identified that they found 

decision making about thrombolysis difficult, both then questioned the evidence base for 

increasing the rate of thrombolysis:  

“I do think it’s about, kind of, the personality of the person deciding it, it is very subjective, is 

thrombolysis, I mean, I know we have all the guidelines as to who we should and shouldn’t 

thrombolyse, but, you know, some consultants will aggressively continue to reduce the 

blood pressure with as much IV medication as they can until they can thrombolyse, others 

will say, well,  you know, a few doses and if it doesn’t come down, OK, it’s probably not 

meant to be, so yeah. And you know, I think I personally just sort of very much stay within 

the exact rules for whether you  should or shouldn’t thrombolyse.” (Site B) 

“more thrombolysis doesn’t mean better care... when I hear of hospitals that are 

thrombolysing,… twenty odd percent, I do sometimes question them. Are they really 

thrombolysing strokes? Is the clinical diagnosis of stroke really robust enough or are they 



S24 
 

thrombolysing mimics and then putting that into their SSNAP data anyway, just to make 

them look good. And then their mortality rates are lower because they’ve thrombolysed 

non-strokes anyway. So, some of me is – I’m a bit cynical with, of the SSNAP data 

sometimes, from some of the sites that appear to be doing really well.” (Site E) 

In contrast, those in higher thrombolysing centres had a more balanced perspective on the 

perceived benefits of implementation of machine learning in the stroke pathway but identified the 

likely enduring challenges of thrombolysis decision making:  

Consultant 1:“There’s been a gazillion studies looking at how to give TPA quicker, so the 

question, I think, for you guys, is what’s going to be different about this, compared to 

everybody else’s that tells us to get ready, get the ambulance there quicker, be more 

streamlined, have a checklist, der, der, der, you know, what’s going to be different?”  

Consultant 2: “Outcomes data with a comparator is a disaster, what does it mean?... I think 

you’re going to end up with a league table, but basically we already have one with SNAPP.”  

Consultant 1: “The implementation of artificial intelligence and automated reporting of 

scans would change the picture, would change the landscape, let’s say, of the speed of 

thrombolysis.” 

Consultant 2: “To be fair, the only aspect of machine learning I can see in this is the 

thrombolysis decision making process. The rest is all straightforward factors…. The only two 

parts machine learning is going to help is if the machine can actually interpret the head scan 

for us, which is really part of the decision to treat or not treat, and that’s the only real 

machine learning aspect of this, the rest is not… your decision to treat or not treat… That’s 

the difficult part. That’s the grey area where everyone does a different thing.” (Site H) 

 

Participants were clearly curious about machine learning and they welcomed the opportunity to 

discuss its potential benefits for stroke pathway feedback. Findings suggest that stroke physicians 

have doubts and concerns about the ability of machine learning to improve the pathway, 

suggesting that further dialogue is required.  


