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Fig. S1. Effect of warm temperature on ELF3 expression and protein abundance. 
(A) Total protein extracts from pELF3::ELF3-myc transgenic lines were analyzed by Western blot using 
an anti-myc antibody. RPT5 was used for loading control and detected using an anti-RPT5 antibody. 
Seedlings were grown for 5 days at 22ºC or 28ºC under short day conditions. Samples were collected at 
the indicated time points. (B) Bioluminescence detection of Col-0 lines expressing the pELF3::LUC 
construct, grown in short days. (C and D) Bioluminescence recorded from transgenic seedlings 
expressing the pELF3::ELF3-LUC and pELF3::LUC constructs, grown in long days and 22ºC/28ºC. Values 
represent mean ± SE of the 2 sec absolute bioluminescence of at least 24 seedlings. (E) ELF3 activity 
predicted by the model in long days.
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Fig S2. Effect of warm temperature on PIF4 expression and protein abundance. 
(A) Western blot of pPIF4::PIF4-HA transgenic lines. The PIF4-HA protein was detected using an anti-HA 
anti-body. Ponceau staining was used as loading control. Rectangles indicate light conditions: white, 
lights on, and grey, lights off. Samples were collected at the indicated time points. (B) Bioluminescence 
detection of Col-0 lines expressing pPIF4::LUC construct, grown in short days. (C and D) Bioluminescence 
recorded from transgenic seedlings expressing the pPIF4::PIF4-LUC and pPIF4::LUC constructs, grown in 
long days and 22ºC/28ºC. Values represent mean ± SE of 2 sec absolute bioluminescence of at least 24 
seedlings. (E) PIF4 activity predicted by the model in long days.
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Fig. S3. phyB nuclear bodies formation is affected by temperature.
35S::PHYB-GFP transgenic seedlings were grown for 5 days under 50 µmol.m-2.s-1 white light in short day 
cycles and 22ºC or 28ºC. (A) Total nuclear fluorescence expressed in arbitrary units (a.u.). (B) Nuclear 
photobodies mean size (µm2). (C) Number of total bodies per nucleus. (D-I) Number of phyB nuclear 
bodies, sorted by size categories, as measured with Matlab software. The rectangles indicate the light 
conditions: white, lights on, and grey, lights off. Values represent mean ± SE of two independent experi-
ments. Each replicate is the average of 3 seedlings and 3 nuclei/plant were analyzed. T(h) indicates time in 
hours. 
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Fig. S4. Impaired temperature-induced elongation of the weak cop1-6 allele. 
Seedlings were germinated at 22ºC and grown at either 22ºC or 28ºC and darkness, short days 
(8h light), 12h light, long days (16h light) and continuous white light. Plates were incubated for 
5 days under these conditions and photographed for hypocotyl length measurements with 
ImageJ. Circles represent mean ± SD, number of seedlings indicated in table S2. Solid lines 
show the growth fitted by the model as a reduction of COP1 activity. Note that cop1-6 is descri-
bed as a temperature-conditional mutation (75). The cop1-6 allele carries a G to A mutation at 
the intron 4 acceptor splicing junction that produces a full-length protein with a 5 amino acid 
insertion in the NLS. This insertion interferes with nuclear accumulation of the cop1-6 protein 
at low temperatures, but not in darkness and 28ºC (76). The cop1-6 allele thus shows an identi-
cal thermal behavior as cop1-4 in all growth conditions except in darkness and 28ºC, where it 
shows a wild type phenotype. This behavior is not described in the model, and for this reason it 
fails to reproduce it.
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Fig. S5. Thermal response of COP1 lines in red and blue light.
(A) Hypocotyl length phenotypes of the different COP1 overexpressor lines in continuous red (CRL) and 
continuous blue (CBL) light, n=27-57 seedlings (table S6). (B) Phenotypes of phyB-9 COP1-OE and PHYBox 
COP1-OE seedlings grown for 5 days either in darkness, CWL, CRL and CBL, at 22ºC or 28ºC. Bars indicate 
standard deviation of n=13-112 seedlings (table S5).
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Mathematical model

Final model

The mathematical model used to obtain the results in the main text is as follows:

dB(t)
dt

= pB(T )L(t)(mutB−B(t))− kr(T )B(t)

dE(t)
dt

= pE(t,T,D,mutE)−dEE(t)

dC(t)
dt

= mutC [pCL(T )L(t)+ pCD(1−L(t))]−dCC(t)

dP(t)
dt

= mutP
pP

1+ pPE(T )E(t)
− dP

1+ kPCC(t)
P(t)−dPBB(t)P(t)

dG(t)
dt

= pG + kG
pGPP(t)

1+ pGPP(t)+ pGEE(t)+ pGBB(t)+ pGH
1+pHCC(t)

,

(1)

where t is time, B(t) represents the concentration of the active form of phyB, Pfr, in the nucleus; E(t)

represents the concentration of ELF3 protein in the nucleus; P(t) represents the nuclear concentration of

PIF1, PIF3, PIF4 and PIF5; C(t) represents COP1 in the nucleus, and G(t) measures hypocotyl growth

in mm. G(t) is an effective variable used as proxy for the expression of PIF-targeted, growth related

genes. Parameters that are a function of T (temperature) can have different values at 22oC and 28oC.

L(t) represents light, and it is either 0 at night, or 1 during daytime.

Parameters have the following meaning: for a given species K, dK is the decay rate of molecule

K, pB is phyB’s rate of activation and traslocation to the nucleus under light; kr is the rate of dark

reversion, which following earlier reports (4,5) we assume happens during the day and night; pP is PIFs’

production rate; pPE is the intensity of ELF3’s inhibition of PIFs expression; kPC is the intensity of

COP1’s inhibition of PIFs degradation; dPB is the intensity of phyB’s promotion of PIFs degradation

and inactivation; pCL and pCD are, respectively, COP1’s production rates during the day and the night;

pG is the basal rate of hypocotyl growth; kG is the conversion between PIFs targets gene expression and

growth; pGK is molecule K’s intensity of its effect on growth, pGH is related to the levels of HY5 (see

below), and pHC is the intensity of COP1’s inhibtion (through degradation) of HY5. Finally, mutK is a

multiplier that alters molecule K’s production to acommodate knock-out and over-expressor lines; i.e.

mutK = 1 for the wild-type, mutK < 1 for weak mutants and mutK > 1 for over-expressor lines. In phyB

and ELF3’s case, knock-out mutants phyB and el f 3.8 have B = 0 and E = 0 at all times, respectively;

2



the mutE parameter in Eq. (2) below is only used with values greater than 1 to model over-expression.

ELF3’s expression follows a quasi-square wave:

pE(t,T )=


mutE pE1(T )+ pE2(T ) if D = 0 hours.

mutE pE1(T )− pE2(T )
(
−1+ 2

1+exp(−k0t0)
− 2

1+exp(−k0t1)
+ 2

1+exp(−k0t2)

)
if 0 < D < 24 hours.

mutE pE1(T )− pE2(T ) if D = 24 hours.

(2)

where D is the number of hours of light in the day; pE1+ pE2 and pE1− pE2 are ELF3’s average production

in darkness and light, respectively; t0 = t mod 24, t1 = t0−D and t2 = t0− 24, and k0 = 5 h−1. With

this function, ELF3 oscillates between pE1 + pE2 and pE1− pE2 rapidly. The advantage over using a

simpler square wave is that this function is smooth, which prevents numerical anomalies. The value

k0 = 5 h−1 defines the timescale of the rise and fall of the function when changing light conditions. It

has been assigned arbitrarily to produce a smooth function but maintaining a sharp distinction between

expression during light and darkness. Our results do not depend on the exact value, within reason, of

this parameter.

We also assume that the over-expressor line ELF3ox increases ELF3’s production level pE1, but that

day-night oscillations, represented by pE2, are maintained.

Development of the model

We have used the following experimental observations in order to develop the initial model:

1. phyB is activated by light and tends to spontaneously revert back to its inactive form. This ’dark

reversion’ is faster with higher temperatures. We follow the modeling in Jung et al. (4) of phyB’s

activation and dark reversion with small modifications.

2. phyB is marked for degradation by COP1, and this degradation constant is enhanced by PIFs

(27).

3. phyB mediates the degradation of PIF4 and PIFs enhance the degradation of phyB (29,30).

4. ELF3 is transcribed less during the day, and more during the night, in a sinusoidal pattern (15).

5. phyB physically interacts with ELF3, and this could potentially stabilize ELF3 (28).

6. COP1 also marks ELF3 for degradation (26).
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7. PIF4 expression is suppressed by ELF3 as part of the evening complex (15).This regulation is

weaker at warmer temperatures, as the EC is impaired by temperature (6).

8. COP1 stabilizes PIF4 and PIF5 (32,33).

9. COP1 is inactivated by phyB (19).

10. Hypocotyl growth is enhanced by the PIFs (10).

11. phyB prevents PIFs from binding to their targets (12,13).

12. ELF3 (independently from the evening complex) also prevents PIFs from binding to their targets

(7,28).

13. HY5 represses hypocotyl growth, while COP1 mediates degradation of HY5 (16).

From these interactions, we developed the following model:

dB(t)
dt

= pB(T )L(t)(mutB−B(t))− kr(T )B(t)−dBCC(t)B(t)−dBPP(t)B(t)

dE(t)
dt

= pE(t,T,D,mutE)−dECC(t)E(t)− dE

1+ kEBB(t)
E(t)

dC(t)
dt

= mutC [pCL(T )L(t)+ pCD(T )(1−L(t))]−dCC(t)−dCBB(t)C(t)

dP(t)
dt

= mutP
pP

1+ pPE(T )E(t)
− dP

1+ kPCC(t)
P(t)−dPBB(t)P(t)

dG(t)
dt

= pG + kG
pGPP(t)

1+ pGPP(t)+ pGEE(t)+ pGBB(t)+ pGHH(t)
.

(3)

Here H(t) is HY5 concentration. As we do not have an equation for HY5, we assume it is in equilibrium

and that its average levels are determined only by COP1: H(t) = pH/(1+ pHCC(t)). The parameter

pH is therefore no longer necessary and the effect of varying it is equivalent to variation of pGH . Due

to lack of additional information, we set the initial conditions for all variables to zero for our numerical

simulations. That is, B(0) = P(0) = E(0) =C(0) = G(0) = 0.
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Figure S6: Experimental data used to fit the model (I). We grew several mutant and over-expressor

lines under different temperature and photoperiod conditions for five days (Methods), and used final

hypocotyl length to fit our mathematical model. This figure is a replot of Fig. 1A, using a violin plot

that shows the distribution of all the individual values resulting in each data point.

Simulated annealing

We wrote a custom simulated annealing algorithm (74) to fit Eqs. (3) to our experimental data (Fig. 1A,

main text). We simulated the model for 5 days under all experimental conditions and for all genotypes

and tried to minimize an energy function that was the sum of all the squared errors between our exper-

imental data, fig. S6, and the model predictions. Together with growth data, we also used differences

between model predictions and ELF3 levels in Col-0 and phyB-9 backgrounds, fig. S7. The energy

function was

E = ∑
k∈G

(ok− ek)
2 +w ∑

k∈E
(ok− ek)

2 (4)
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Figure S7: Experimental data used to fit the model (II). We measured ELF3 levels using

pELF3::ELF3 LUC transgenic lines under two different backgrounds: Col-0 and phyB-9, and used that

information to fit our model. Data from a similar experiment in the Col-0 background is also plotted in

Fig. 4A.

where G and E are the sets of growth and expression datapoints, respectively, and w is the weight we

give to expression data. We used w = 1, that is, each datum contributed equally to the function.

We used 3,544 growth datapoints and 96 expression datapoints (see the Github repository for more

details). We fixed kr(22) = 0.232 h−1 and kr(28) = 0.411 h−1, based on experimental measurements

from Jorge Casal’s lab, see Ref. (5); pB(22) = 10 in order to follow Ref. (4); furthermore, pP and

pCL(22) were set to 1 in order to reduce the dimensionality of the search space. All other parameters

were set to 1 at the beginning of the search, allowing them to change (pE2(22) and pE2(28) were set

to 0.9 at the beginning of the search so as to allow variation in ELF3’s production).

We started the process with all parameters set to 1. At each step i, we perturbed a randomly chosen

parameter by adding to it a Gaussian random number with mean 0 and variance 0.1, always checking

that no parameter became negative. For this perturbed set of parameters, we computed the energy

function Enew, compared it with the energy of the old parameter set Eold, and accepted the set with

probability

pacc =

 1 if Eold/Enew ≥ 1,

Eold
Enew

TA if Eold/Enew < 1.

where TA =
0.8√
1+ i

; this particular form for TA was chosen after an initial trial-and-error stage. This

means that the probability of accepting changes that increase the error decreased with each annealing

step. A typical run for our model ran this process for 10,000 steps, after which the variable i was reset

to zero and the process was started again, using as initial condition the final parameters of the previous

run. This process was repeated 10 times, to ensure the process did not get trapped in suboptimal

6



minima. We then used the parameter configuration that minimized the energy function from among all

visited configurations.

After obtaining a stable set of parameters for Eqs. (3), a few parameters in the model were close to 0.

New fits were made forcing these parameters to be zero, and the values obtained for the energy function

were as good or even lower than those obtained considering the parameters free. The improvement in

the fit when excluding these parameters can be explained by the increase in the efficiency of sampling

the parameter space when its dimension is reduced. Finding this parameters consistent with zero in

our fit does not mean that the interactions they represent do not exist, but rather that they are not

important in our experimental conditions, or that their effect is already captured in an effective way

by other parameters of the model. After exclusion of the parameters deemed negligible by our fitting

procedure, the model given by Eqs. (3) is simplified to Eqs. (1). This final model was then fitted to

the data using the simulated annealing procedure. Independent runs of this process (with the same

initial conditions described above) converge to the same (or a very similar) set of parameters, shown in

table S1.
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Figure S8: ELF3 dynamics are not captured by the model if expression data is not included in

the training dataset. The two plots represent ELF3 dynamics from two parameter sets obtained in

two simulated annealing runs where the expression data had no weight on the energy function (w = 0

in Eq. (4)). These two parameter sets can fit the growth data as well as the parameter set we have

used in the main text (figures not shown). The result is that these ELF3 dynamics are not similar to

the ones we observe experimentally.

The need for ELF3 expression

Ideally, we would like to use the least amount of data to fit our model, in order to increase its predictive

capabilities. If a model trained only with growth data is able to predict with some precision expression

timeseries, then it means that the model is somewhat accurate and we can use it for further predictions

that we can test later. When we tried to do this, however, the model was not able to accurately

reproduce ELF3 expression timeseries. We ran two simulated annealing runs with an energy function

that did not give any weight to the expression data. In other words, we set w = 0 in Eq. (4). The

resulting sets of parameters were able to fit the growth data as well as the final parameters used in the

main text. However, they did not reproduce ELF3 expression accurately. In both cases, levels of ELF3

at 22oC were much higher than those at 28oC, which are almost null, fig. S8.

As a result, we decided to set w = 1 in Eq. (4), so as to force the model to reproduce the expression

dynamics of ELF3.
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Figure S9: Several parameter sets reproduce the growth data accurately. The plot shows the

growth predictions of 48 different parameter sets obtained from independent simulated annealing runs

(solid lines). Most lines overlap and their discrepancies are small in comparison with the experimental

variance of the dataset (filled circles are averages, lines represent one standard deviation).

Robustness of the fit

We ran several independent runs of the simulated annealing algorithm, where the initial values for the

parameters were chosen at random from a normal distribution of mean 1 and standard deviation 0.1

(except those that were fixed at the beginning, as explained above). We obtained 48 parameter sets

(including the one we used in the main text) that accurately reproduced our growth data, fig. S9.

Parameter values, however, varied widely between fits fig. S10.

The explanation for this is that the optimal set of parameters lies on a high-dimensional manifold.

This is especially clear in the case of the ELF3 parameters, which lie on a one-dimensional manifold in

R5, fig. S11. In fact, the line given by the equation

pE1(22) = 1.806pE1(28)−0.759pE2(22)−0.611pE2(28)−3.213dE −0.616
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Figure S10: Parameter values vary widely among parameter sets. Histograms of all parameters in

the model (including the energy function, first subplot)) made from 48 independent parameter sets that

accurately fit our growth data. y axes represent histogram counts, while x axes represent parameter

values. While some paremeters are more restricted in their values, most of them have a wide range of

variation. Red dots mark the value of the parameter corresponding to the set that has a minimal energy

function, while black dots represent the value of the parameter corresponding to the set used in the main

text, table S1. Parameter labels: mutBox represents the multiplier associated with phyB’s overexpressor

line (and similarly with mutCox, mutEox and mutPox), mutPko1 and mutPko2 represent the multiplier

associated with pif4 and pifq, respectively, while mutCko represents the multiplier associated with

cop1-4.

fits the five-dimensional data extremely well (R2 = 0.9997). If we had experimental information to fix

one of these ELF3 parameters, the others would be automatically determined. In the case of parameters

10



related to other variables, the relationships are harder to infer, due to their nonlinear nature and the

high dimensionality of the problem.
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Figure S11: ELF3 parameters lie on a five dimensional line in R5. Parameters pE1(22), pE1(28),

pE2(22), pE2(28) and dE vary widely among parameter sets that reproduce the growth data, fig. S10.

However, their values are highly correlated: representing the values of one parameter in all sets against

the values of another parameter, we see that the points lie on lines for all parameter combinations. This

means that they are actually lying on a five dimensional line, which we can find numerically (see text).
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It is not the case that, given a parameter set, we can change one of the parameter values within the

observed range of variation in fig. S10 with complete freedom. This can be checked with a sensitivity

analysis, where we study the change in the energy function due to a small perturbation in each of

the parameters, fig. S12. More precisely, we estimate the partial derivative of the energy function

E(θ1, . . . ,θn) in Eq. (4) with respect to each of the parameters θi using the central finite difference, that

is
∂E
∂θi
≈ E(. . . ,θi +h, . . .)−E(. . . ,θi−h, . . .)

2h
, (5)

where we have used h = 5 ·10−5 ∗θi (i.e. a 0.005% change in θi), although the results are not dependent

on the exact value of h. We then normalize this approximate derivative by the value of E at the original

parameter set, in order to represent this sensitivity relative to the value of E.

While some parameters can be changed for some parameter sets, thus informing us that the fit could

be improved, every parameter has a non-zero effect on E for at least one parameter set. In some cases

this change is quite large, even greater than 100%. This informs us that all remaining parameters in

the model are necessary and cannot be removed without incurring a cost in our ability to reproduce the

growth data.

Different model topologies

In minimizing our energy function, we found that some parameters in the original model Eqs. (3) were

close to zero, and so we removed them from the model for computational purposes. But is this final

topology of interactions between molecular species the only one that can fit the data? The number of

combinations of possible topologies is astronomically high, but we can try to answer this question by

performing some tests. We can set to zero one of the nonzero parameters in the final model Eqs. (1),

and substitute it for one of the parameters that was discarded from the original model Eqs. (3). We

have done this three times:

1. We set kr to zero in the dB/dt equation of Eqs. (1), and include the terms dBC and dBP discarded

from Eqs. (3). The modified equation for phyB is then

dB(t)
dt

= pB(T )L(t)(mutB−B(t))−dBCB(t)C(t)−dBPB(t)P(t).

That is, we neglect the thermal reversion rate in phyB and instead model the decay of phyB in

dependence with PIF4 and COP1.
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Figure S12: Sensitivity of the energy function to small changes in the parameters. Histograms

showing sensitivity in the energy function E due to small changes in each of the parameters, Eq. (5).

Each subplot represents small changes in one parameter, listed in the subtitle. Histograms made from 48

independent parameter sets that accurately fit our growth data. y axes represent histogram counts, while

x axes represent percent sensitivity. Small changes in some parameters can cause very large changes in

the energy function.

2. We set dE to zero in the dE/dt equation of Eqs. (1), and include the term dEC that was discarded

13



a) kr=0, dBC and dBP not zero

b) dE=0, dEC not zero

c) dC=0, dCB not zero

Figure S13: Alternative network topologies can reproduce the growth data. We performed nine

simulated annealing runs with three alternative models (see text for an extended explanation), obtaining

nine parameter sets that were able (in some cases) to reproduce the growth data as well as the final

model Eqs. (1). (Upper row) Setting kr = 0 and including in the model the terms dBC and dBP results

in fits that reproduce the data very well. (Middle row) Similarly, setting dE = 0 and including in the

model the term dEC results in a very good fit of the data, visually indistinguishable from the fits obtained

in fig. S9. (Lower row) Setting dC = 0 and including in the model the term dCB from Eqs. (3) results

in fits that do not reproduce the data accurately (notice in particular the bad fits of Col, pif4, phyB-9,

elf3-8 and ELF3ox.
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from Eqs. (3). The modified equation for ELF3 is then

dE(t)
dt

= pE(t,T,D,mutE)−dECE(t)C(t).

That is, we neglect the decay of ELF3 due to any reason except its interaction with COP1.

3. We set dC to zero in the dC/dt equation in Eqs. (3), and include the term dCB that was discarded

from Eqs. (3). The modified equation for COP1 is then

dC(t)
dt

= mutC [pCL(T )L(t)+ pCD(1−L(t))]−dCBC(t)B(t).

That is, we neglect the decay of COP1 due to any reason except its interaction with phyB.

We performed three simulated annealing runs with each of the modified models, thus obtained nine

parameter sets. This is not an exhaustive computational experiment by any means, but it serves to test

the hypothesis that these alternative models could fit the data as well as our final model Eqs. (1). The

results are very instructive:

1. Setting kr = 0 and allowing the model to change both dBC and dBP results in fits that are visually

indistinguishable from Eqs. (1) at predicting the growth data (predictions shown in fig. S13, upper

row). Whereas the minimum value of the energy function E is 242 in fig. S9, here we obtain

E < 237 for all three parameter sets. However, we cannot conclude from this that the dark reversion

of phyB does not occur. Indeed, this molecular process has been extensively documented and is

essential in understanding phyB’s dynamics. These results simply show that, mathematically, a

model including phyB’s degradation by both PIFs and COP1 is enough to reproduce our growth

data. The reason for this is that all three terms are correlated: the role of phyB’s dark reversion is

more relevant during the night. The same happens with PIF and COP1-mediated degradation: as

the activity of these proteins is higher during the night, so too is their inhibitory effect on phyB.

The three terms therefore send a coherent signal downstream: phyB levels go down during the

night. This coherence makes sense from the biological point of view, as systems benefit from being

robust and typically have many redundant components (56). However, from the mathematical

point of view, this means that the model has some flexibility in the sense of accepting different

terms that act in the same direction.

2. Setting dE = 0 and allowing the model to change dEC results in fits that are slightly worse than

the original model at capturing the growth data (predictions shown in fig. S13, middle row).

However, visually there is no big difference with the fits we found for the simple model (compare
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with fig. S9). Since the energy function is slightly higher (E = 256 and E = 259 for the two left

subplots in the middle row of fig. S13), it makes sense that the simulated annealing algorithm

“chooses” to discard dEC and focuses on a fit using dE alone. Note that values of the energy

function for the simple model Eqs. (1) are on average lower than 250 (fig. S10, first subplot).

However, from a biological standpoint, the difference is not high enough for us to claim that

COP1-mediated degradation of ELF3 is not relevant in our system. We would need additional

studies to separate the effect of COP1 and other elements that can contribute to the decay of ELF3

protein levels. As in the previous example, the model shows some flexibility when incorporating

terms that act in the same direction.

3. Finally, setting dC = 0 and allowing the model to change dCB results in fits that do not capture

the growth data accurately enough, with values of the energy function higher than 280 in all

three cases (fig. S13, lower row). Notice for instance the bad fits of Col, pif4, phyB-9 or elf3-8

mutants. This suggests that the removal of COP1 from the nucleus is dependent not only on

phyB but also on other photoreceptors, in line with our experimental data, fig. S5.

In summary, a closer inspection of alternative topologies allows us to conclude that COP1 dynamics

are not mediated by phyB alone, and needs additional elements. However, we cannot conclude that

COP1 and PIF-mediated inhibition of phyB is biologically irrelevant, or that COP1-mediated degradation

of ELF3 does not have a role in the regulation of hypocotyl growth. In its current version, the model

accepts some flexibility regarding these terms, as they all act in a correlated manner. In further works

we will develop and impove the model in order to discern these contributions.

Heatmaps

As a final robustness test, we recreated the thermoelongation heatmaps in Fig. 6 (main text) for several

parameter sets, in order to check whether model predictions were consistent. Results are shown in

figs. S14, S15, and S16. The heatmaps change quantitatively (as expected), but not qualitatively. The

“blue” and “red” regions remain invariant, and only some minor quantitative features change. The

consistency of predictions among parameter sets proves that our results are not dependent on specific

parameter values, thus supporting our main conclusions.
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Figure S14: Heatmap plots representing hypocotyl thermoelongation for several genotypes under

different experimental conditions (I). As in Fig. 6 (main text), but re-created using a different

parameter set.
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Figure S15: Heatmap plots representing hypocotyl thermoelongation for several genotypes under

different experimental conditions (II). As in Fig. 6 (main text), but re-created using a different

parameter set.
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Figure S16: Heatmap plots representing hypocotyl thermoelongation for several genotypes under

different experimental conditions (III). As in Fig. 6 (main text), but re-created using a different

parameter set.
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Supplementary Tables

Table S1 shows the parameters used for the simulation results shown in the main text. Tables S2 to S6

show the number of seedlings used to quantify each experimental condition.

Table S1: Parameters used in Eq. (1). The unit used for time is hours, concentrations are taken

as non-dimensional.

pB(22) 10.0 pB(28) 0.860

kr(22) 0.232 kr(28) 0.411

pE1(22) 108 pE1(28) 127

pE2(22) 39.8 pE2(28) 7.29

dE 27.2

pCL(22) 1.00 pCL(28) 5.37

pCD 112 dC 1.79

pP 1 dPB 0.313

pPE(22) 0.332 pPE(28) 0.028

dP 4.91 kPC 34.3

pG 0.009 kG 0.113

pGP 2.93 pGE 0.465

pGB 10.7 pGH 116

pHC 0.180

mutB(phyB−9) 0 mutB(PHY Box) 65.0

mutB(el f 3−8) 0 mutE(ELF3ox) 1.18

mutC(cop1−4) 0.032 mutC(COP1−OE) 499

mutP(cop1−6) 0.056

mutP(pi f 4) 0.495 mutP(PIF4ox) 6.37

mutP(pi f q) 0.198
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Table S2: Datapoints used to generate Fig. 1 and fig. S4, for every experimental treatment

measured. Seedlings of ELF3ox at 28oC and 16 hours of light and PHYBox at 22oC and 12

hours of light failed to germinate. Experiments of these conditions on different sets produced

results as expected with the behavior in Fig. 1, but were not included for consistency of the

dataset.
Genotype Daylength Temperature Datapoints Genotype Daylength Temperature Datapoints Genotype Daylength Temperature Datapoints

Col 0 22 20 elf3-8 phyB-9 0 22 32 PHYBox 0 22 16

Col 0 28 20 elf3-8 phyB-9 0 28 27 PHYBox 0 28 15

Col 8 22 19 elf3-8 phyB-9 8 22 35 PHYBox 8 22 12

Col 8 28 18 elf3-8 phyB-9 8 28 37 PHYBox 8 28 11

Col 12 22 15 elf3-8 phyB-9 12 22 27 PHYBox 12 22 0

Col 12 28 19 elf3-8 phyB-9 12 28 36 PHYBox 12 28 3

Col 16 22 30 elf3-8 phyB-9 16 22 31 PHYBox 16 22 2

Col 16 28 25 elf3-8 phyB-9 16 28 34 PHYBox 16 28 6

Col 24 22 13 elf3-8 phyB-9 24 22 36 PHYBox 24 22 2

Col 24 28 11 elf3-8 phyB-9 24 28 34 PHYBox 24 28 4

cop1-4 0 22 31 ELF3ox 0 22 34 pif4 0 22 21

cop1-4 0 28 30 ELF3ox 0 28 35 pif4 0 28 27

cop1-4 8 22 29 ELF3ox 8 22 33 pif4 8 22 27

cop1-4 8 28 33 ELF3ox 8 28 35 pif4 8 28 29

cop1-4 12 22 21 ELF3ox 12 22 17 pif4 12 22 29

cop1-4 12 28 20 ELF3ox 12 28 22 pif4 12 28 26

cop1-4 16 22 25 ELF3ox 16 22 22 pif4 16 22 15

cop1-4 16 28 29 ELF3ox 16 28 0 pif4 16 28 15

cop1-4 24 22 26 ELF3ox 24 22 27 pif4 24 22 18

cop1-4 24 28 26 ELF3ox 24 28 31 pif4 24 28 19

cop1-6 0 22 51 ELF3ox cop1-4 0 22 31 PIF4ox 0 22 1

cop1-6 0 28 59 ELF3ox cop1-4 0 28 31 PIF4ox 0 28 5

cop1-6 8 22 14 ELF3ox cop1-4 8 22 35 PIF4ox 8 22 8

cop1-6 8 28 13 ELF3ox cop1-4 8 28 29 PIF4ox 8 28 10

cop1-6 12 22 36 ELF3ox cop1-4 12 22 36 PIF4ox 12 22 12

cop1-6 12 28 37 ELF3ox cop1-4 12 28 25 PIF4ox 12 28 8

cop1-6 16 22 34 ELF3ox cop1-4 16 22 19 PIF4ox 16 22 14

cop1-6 16 28 38 ELF3ox cop1-4 16 28 24 PIF4ox 16 28 20

cop1-6 24 22 37 ELF3ox cop1-4 24 22 25 PIF4ox 24 22 4

cop1-6 24 28 41 ELF3ox cop1-4 24 28 20 PIF4ox 24 28 15

COP1-OE 0 22 74 hy5 0 22 24 pifq 0 22 6

COP1-OE 0 28 71 hy5 0 28 15 pifq 0 28 7

COP1-OE 8 22 14 hy5 8 22 21 pifq 8 22 10

COP1-OE 8 28 15 hy5 8 28 19 pifq 8 28 16

COP1-OE 12 22 43 hy5 12 22 14 pifq 12 22 5

COP1-OE 12 28 52 hy5 12 28 11 pifq 12 28 8

COP1-OE 16 22 74 hy5 16 22 13 pifq 16 22 2

COP1-OE 16 28 74 hy5 16 28 16 pifq 16 28 3

COP1-OE 24 22 56 hy5 24 22 14 pifq 24 22 2

COP1-OE 24 28 60 hy5 24 28 14 pifq 24 28 3

elf3-8 0 22 35 phyB-9 0 22 15

elf3-8 0 28 31 phyB-9 0 28 17

elf3-8 8 22 11 phyB-9 8 22 23

elf3-8 8 28 31 phyB-9 8 28 22

elf3-8 12 22 22 phyB-9 12 22 17

elf3-8 12 28 25 phyB-9 12 28 16

elf3-8 16 22 9 phyB-9 16 22 4

elf3-8 16 28 16 phyB-9 16 28 11

elf3-8 24 22 28 phyB-9 24 22 19

elf3-8 24 28 25 phyB-9 24 28 17

elf3-8 cop1-4 0 22 34 phyB-9 cop1-4 0 22 28

elf3-8 cop1-4 0 28 35 phyB-9 cop1-4 0 28 24

elf3-8 cop1-4 8 22 32 phyB-9 cop1-4 8 22 38

elf3-8 cop1-4 8 28 35 phyB-9 cop1-4 8 28 35

elf3-8 cop1-4 12 22 23 phyB-9 cop1-4 12 22 not measured

elf3-8 cop1-4 12 28 27 phyB-9 cop1-4 12 28 not measured

elf3-8 cop1-4 16 22 10 phyB-9 cop1-4 16 22 34

elf3-8 cop1-4 16 28 11 phyB-9 cop1-4 16 28 32

elf3-8 cop1-4 24 22 25 phyB-9 cop1-4 24 22 24

elf3-8 cop1-4 24 28 19 phyB-9 cop1-4 24 28 25
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Table S3: Datapoints used to generate Fig. 3, for every experimental treatment measured.

Genotype Daylength Light Temperature Datapoints

WT 4 White 22 33

WT 4 White 28 31

phyB-9 4 White 22 28

phyB-9 4 White 28 24

PHYBox 4 White 22 58

PHYBox 4 White 28 56

COP1-OE 4 White 22 29

COP1-OE 4 White 28 26

cop1-4 4 White 22 19

cop1-4 4 White 28 19

elf3-8 4 White 22 31

elf3-8 4 White 28 37

Table S4: Datapoints used to generate Fig. 5C, for every experimental treatment measured.

Genotype Daylength Light Temperature Datapoints

WT 24 White 22 23

WT 24 White 28 21

YFP-COP1 24 White 22 15

YFP-COP1 24 White 28 14

RFP-COP1 24 White 22 24

RFP-COP1 24 White 28 24

COP1-OE 24 White 22 24

COP1-OE 24 White 28 22

cop1-4 24 White 22 19

cop1-4 24 White 28 19

WT 0 White 22 14

WT 0 White 28 21

YFP-COP1 0 White 22 18

YFP-COP1 0 White 28 18

RFP-COP1 0 White 22 24

RFP-COP1 0 White 28 22

COP1-OE 0 White 22 23

COP1-OE 0 White 28 22

cop1-4 0 White 22 18

cop1-4 0 White 28 19
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Table S5: Datapoints used to generate Fig. 5G and fig. S5B, for every experimental treatment

measured.
Genotype Daylength Light Temperature Datapoints

PHYBox COP1OE 0 22 63

PHYBox COP1OE 0 28 57

PHYBox COP1OE 24 White 22 17

PHYBox COP1OE 24 White 28 34

PHYBox COP1OE 24 RED 22 26

PHYBox COP1OE 24 RED 28 20

PHYBox COP1OE 24 BLUE 22 30

PHYBox COP1OE 24 BLUE 28 31

phyB COP1 OE 0 22 111

phyB COP1 OE 0 28 87

phyB COP1 OE 24 White 22 112

phyB COP1 OE 24 White 28 91

phyB COP1 OE 24 RED 22 37

phyB COP1 OE 24 RED 28 28

phyB COP1 OE 24 BLUE 22 22

phyB COP1 OE 24 BLUE 28 20

PHYBox COP1OE 4 White 22 33

PHYBox COP1OE 4 White 28 30

PHYBox COP1OE 8 White 22 21

PHYBox COP1OE 8 White 28 16

PHYBox COP1OE 16 White 22 17

PHYBox COP1OE 16 White 28 18

phyB COP1 OE 4 White 22 52

phyB COP1 OE 4 White 28 44

phyB COP1 OE 8 White 22 13

phyB COP1 OE 8 White 28 26

phyB COP1 OE 16 White 22 39

phyB COP1 OE 16 White 28 42
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Table S6: Datapoints used to generate fig. S5A, for every experimental treatment measured.

Genotype Daylength Light Temperature Datapoints

WT 24 BLUE 22 39

WT 24 BLUE 28 46

YFP-COP1 24 BLUE 22 31

YFP-COP1 24 BLUE 28 27

RFP-COP1 24 BLUE 22 46

RFP-COP1 24 BLUE 28 48

COP1-OE 24 BLUE 22 43

COP1-OE 24 BLUE 28 46

WT 24 RED 22 44

WT 24 RED 28 49

YFP-COP1 24 RED 22 31

YFP-COP1 24 RED 28 31

RFP-COP1 24 RED 22 42

RFP-COP1 24 RED 28 35

COP1-OE 24 RED 22 57

COP1-OE 24 RED 28 46
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