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Figure S1.  Tumor and vasculature responses to sunitinib in CRC and NPC. 1 

(A) Representative micrographs of Ki67+ proliferative cells and cleaved caspase-3+ 2 

apoptotic cells in vehicle- or sunitinib-treated CRC and NPC tumors. Scale bar=50 μm. 3 

Quantification of Ki67+, cleaved caspase-3+ signals, and PA index in vehicle- or 4 

sunitinib-treated CRC and NPC tumors (n=8 random fields per group). (B) 5 

Representative micrographs of CD31+ microvessels and CA9+ hypoxic areas in vehicle- 6 

or sunitinib-treated CRC and NPC tumors. Scale bar in upper panel=100 μm, scale bar 7 

in lower panel=50 μm. Quantification of CD31+ tumor vessel parameters and CA9+ 8 

signals in vehicle- or sunitinib-treated CRC and NPC tumors (n=8 random fields per 9 

group). ***p<0.001. NS=not significant. Data presented as mean±SD. 10 
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Figure S2.  Expression levels of angiogenic factors in various types of cancer.  1 

 (A) Transcriptomic expression levels of angiogenic factors, including FGF1, VEGFB, 2 

and TPO in human KIRC tissues, COAD tissues, NPC tissues, STAD tissues, BRCA 3 

tissues, SKCM tissues, and their adjacent healthy tissues. KIRC, kidney renal clear cell 4 

carcinoma; COAD, colon adenocarcinoma; STAD, stomach adenocarcinoma; PAAD, 5 

pancreatic adenocarcinoma; LUAD, lung adenocarcinoma; BRCA, breast invasive 6 

carcinoma; SKCM, skin cutaneous melanoma. 7 
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Figure S3. Tumor cell-derived FGF-2 promotes angiogenesis and tumor 1 

metastasis in mouse models. 2 

(A and F) Tumor growth of vector- or FGF-2-transfected T241 or 4T1 tumors. (B and 3 

G) Representative micrographs of Ki67+ proliferative cells and cleaved caspase-3+ 4 

apoptotic cells in T241 or 4T1 tumors. Scale bar=50 μm. Quantification of Ki67+, 5 

cleaved caspase-3+ signals, and PA index in NPC (n=8 random fields per group). (C 6 

and H) Representative micrographs of CD31+ microvessels and CA9+ hypoxic areas in 7 

T241 or 4T1 tumors. Scale bar in upper panel=100 μm, scale bar in lower panel=50 μm. 8 

Quantification of CD31+ tumor vessel parameters and CA9+ signals in T241 or 4T1 9 

tumors. (n=8 random fields per group). (D and I) Quantification of pulmonary 10 

metastasis proportion in T241- or 4T1-bearing mice (n=6 mice per group). (E and J) 11 

Representative graphs of EGFP+ metastatic signals in the lung. Quantification of photon 12 

flux (n=6 lungs per group). *p<0.05; **p<0.01; ***p<0.001. NS=not significant. Data 13 

presented as mean±SD.  14 
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Figure S4. FGF-2 elevates phosphorylation of ERK and MYC in ECs. 1 

(A and B) Cell growth of VEGF-treated ECs receiving with or without AAD or FGF-2 2 

(n=5 samples per group). (C) Vehicle- or VEGF-treated ECs were challenged with or 3 

without VEGFR2 neutralizing antibody or FGF-2. Phosphorylation of AKT and ERK 4 

in ECs was detected. β-actin marks the loading level in each lane (n=3 samples per 5 

group). (D) QPCR quantification of FGFR1, FGFR2, FGFR3, and FGFR4 mRNA 6 

levels in human ECs (n=3 samples per group). (E) QPCR quantification of CD31 7 

mRNA levels in isolated CD31+ ECs from scramble- or FGF2 shRNA-transfected NPC 8 

tumor tissues (n=3 samples per group). (F) QPCR quantification of MYC mRNA levels 9 

in various groups of human ECs (n=3 samples per group). (G) Vehicle- or VEGF-10 

treated ECs were treated with or without AAD or FGF-2. MYC phosphorylation in ECs 11 

was detected. β-actin marks the loading level in each lane (n=3 samples per group). (H) 12 

Vehicle- or FGF-2-treated ECs were challenged with or without various inhibitors. 13 

Phosphorylation of MYC in ECs was detected. β-actin marks the loading level in each 14 

lane (n=3 samples per group). (I) QPCR quantification of Myc mRNA levels in 15 

scramble- or Myc siRNA-transfected ECs (n=3 samples per group). **p<0.01; 16 

***p<0.001. NS=not significant. Data presented as mean±SD. 17 
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Figure S5. Similar efficacy of anti-VEGF and lenvatinib in CRC xenografts.  1 

(A) Tumor growth was measured in vehicle-, anti-VEGF-, and lenvatinib-treated CRC 2 

tumors (n=6 samples per group). ***p<0.001. NS=not significant. Data presented as 3 

mean±SD. 4 
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 1 

Figure S6. Gating strategy for FACS analysis of immune landscape in NPC in 2 

humanized NSG mice.  3 

(A) Representative FACS profiles showing gating strategy of hCD45+ hCD14+ 4 

population, hCD45+ hCD19+ population, hCD45+ hCD3+ population, and hCD45+ 5 

hCD56+ population in the NPC TME. (B) Representative FACS profiles showing 6 

gating strategy of mCD45+ mCD11b+ mF4/80+ population, mCD45+ mB220+ 7 

population, mCD45+ mCD3+ population, and mCD45+ mCD49b+ population. 8 
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