1	Lenvatinib for effectively treating antiangiogenic drug-resistant
2	nasopharyngeal carcinoma
3	
4	Qi Sun ^{1#} , Yujie Wang ^{2#} , Hong Ji ^{3#} , Xiaoting Sun ^{1,4,5} , Sisi Xie ^{1,6} , Longtian Chen ⁶ , Sen
5	Li ¹ , Weifan Zeng ¹ , Ruibo Chen ¹ , Qi Tang ¹ , Ji Zuo ¹ , Likun Hou ⁷ , Kayoko Hosaka ⁴
6	Yongtian Lu ² , Ying Liu ^{8*} , Ying Ye ^{9*} and Yunlong Yang ^{1*}
7	
8	¹ Department of Cellular and Genetic Medicine, School of Basic Medical Sciences,
9	Fudan University, Shanghai 200032, China
10	
11	² Department of Otolaryngology, Shenzhen Key Laboratory of Nanozymes and
12	Translational Cancer Research, Shenzhen Institute of Translational Medicine, The First
13	Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital,
14	Shenzhen, Guangdong 518035, China
15	
16	³ Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of
17	Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University,
18	Nanjing, Jiangsu, China
19	
20	⁴ Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet,
21	Stockholm, Sweden.
22	
23	⁵ Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain
24	Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou,
25	P.R. China.
26	
27	⁶ Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000,
28	Fujian, China
29	
30	Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of
31	Medicine, Shanghai, PR China
32	
33 24	^o Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai
34 25	200444, China
33 26	⁹ Department of Oral Implantaleasy School and Heapital of Stematoleasy Tanaii
20 27	University: Shanghai Engineering Descerab Conter of Tooth Destoration and
38	Pageneration Shanghai China
30	Regeneration, Shanghai, China
40	Keywords : lenvatinib fibroblast growth factor-2 nasopharyngeal carcinoma
41	antiangiogenic drug drug resistance
42	unungiogenie urug, urug resistance
43	[#] These authors contributed equally.
44	*Corresponding authors. Galley proofs and reprint requests should be addressed to:
45	Ying Liu, Ph.D., Institute of Translational Medicine, Shanghai University, 99 Shangda
46	Road, Shanghai 200444, China, Email: liuchanger1984@163.com: Ying Ye, D.M.D.
47	Ph.D., Department of Oral Implantology, School and Hospital of Stomatology, Tongii
48	University; Shanghai Engineering Research Center of Tooth Restoration and
49	Regeneration, Shanghai, China. Email: ying.ye@tongji.edu.cn; Yunlong Yang, Ph.D.,

50 Department of Cellular and Genetic Medicine, School of Basic Medical Sciences,

- Fudan University, Shanghai 200032, P.R. China. Tel: (+86)-21-5423 7311, E-mail: yunlongyang@fudan.edu.cn

- Running title: Lenvatinib overcomes NPC antiangiogenic drug resistance

Supplemental Figure Legends

1 Figure S1. Tumor and vasculature responses to sunitinib in CRC and NPC.

2 (A) Representative micrographs of Ki67⁺ proliferative cells and cleaved caspase-3⁺ 3 apoptotic cells in vehicle- or sunitinib-treated CRC and NPC tumors. Scale bar=50 µm. 4 Quantification of Ki67⁺, cleaved caspase-3⁺ signals, and PA index in vehicle- or sunitinib-treated CRC and NPC tumors (n=8 random fields per group). (B) 5 6 Representative micrographs of CD31⁺ microvessels and CA9⁺ hypoxic areas in vehicleor sunitinib-treated CRC and NPC tumors. Scale bar in upper panel=100 µm, scale bar 7 8 in lower panel=50 µm. Quantification of CD31⁺ tumor vessel parameters and CA9⁺ 9 signals in vehicle- or sunitinib-treated CRC and NPC tumors (n=8 random fields per 10 group). ***p<0.001. NS=not significant. Data presented as mean±SD. 11

- 12

1 Figure S2. Expression levels of angiogenic factors in various types of cancer.

2 (A) Transcriptomic expression levels of angiogenic factors, including *FGF1*, *VEGFB*,

3 and TPO in human KIRC tissues, COAD tissues, NPC tissues, STAD tissues, BRCA

4 tissues, SKCM tissues, and their adjacent healthy tissues. KIRC, kidney renal clear cell

5 carcinoma; COAD, colon adenocarcinoma; STAD, stomach adenocarcinoma; PAAD,

6 pancreatic adenocarcinoma; LUAD, lung adenocarcinoma; BRCA, breast invasive

7 carcinoma; SKCM, skin cutaneous melanoma.

Figure S3. Tumor cell-derived FGF-2 promotes angiogenesis and tumor metastasis in mouse models.

3 (A and F) Tumor growth of vector- or FGF-2-transfected T241 or 4T1 tumors. (B and 4 G) Representative micrographs of Ki67⁺ proliferative cells and cleaved caspase-3⁺ 5 apoptotic cells in T241 or 4T1 tumors. Scale bar=50 µm. Quantification of Ki67⁺, 6 cleaved caspase-3⁺ signals, and PA index in NPC (n=8 random fields per group). (C and H) Representative micrographs of CD31⁺ microvessels and CA9⁺ hypoxic areas in 7 8 T241 or 4T1 tumors. Scale bar in upper panel=100 μ m, scale bar in lower panel=50 μ m. 9 Quantification of CD31⁺ tumor vessel parameters and CA9⁺ signals in T241 or 4T1 10 tumors. (n=8 random fields per group). (D and I) Quantification of pulmonary 11 metastasis proportion in T241- or 4T1-bearing mice (n=6 mice per group). (E and J) 12 Representative graphs of EGFP⁺ metastatic signals in the lung. Quantification of photon 13 flux (n=6 lungs per group). *p<0.05; **p<0.01; ***p<0.001. NS=not significant. Data 14 presented as mean±SD.

1 Figure S4. FGF-2 elevates phosphorylation of ERK and MYC in ECs.

2 (A and B) Cell growth of VEGF-treated ECs receiving with or without AAD or FGF-2 3 (n=5 samples per group). (C) Vehicle- or VEGF-treated ECs were challenged with or 4 without VEGFR2 neutralizing antibody or FGF-2. Phosphorylation of AKT and ERK 5 in ECs was detected. β -actin marks the loading level in each lane (n=3 samples per 6 group). (D) QPCR quantification of FGFR1, FGFR2, FGFR3, and FGFR4 mRNA 7 levels in human ECs (n=3 samples per group). (E) QPCR quantification of CD31 8 mRNA levels in isolated CD31⁺ ECs from scramble- or FGF2 shRNA-transfected NPC 9 tumor tissues (n=3 samples per group). (F) QPCR quantification of MYC mRNA levels 10 in various groups of human ECs (n=3 samples per group). (G) Vehicle- or VEGF-11 treated ECs were treated with or without AAD or FGF-2. MYC phosphorylation in ECs 12 was detected. β -actin marks the loading level in each lane (n=3 samples per group). (H) 13 Vehicle- or FGF-2-treated ECs were challenged with or without various inhibitors. 14 Phosphorylation of MYC in ECs was detected. β -actin marks the loading level in each 15 lane (n=3 samples per group). (I) QPCR quantification of Myc mRNA levels in 16 scramble- or *Myc* siRNA-transfected ECs (n=3 samples per group). **p<0.01; 17 ***p<0.001. NS=not significant. Data presented as mean±SD.

1 Figure S5. Similar efficacy of anti-VEGF and lenvatinib in CRC xenografts.

- 2 (A) Tumor growth was measured in vehicle-, anti-VEGF-, and lenvatinib-treated CRC
- 3 tumors (n=6 samples per group). ***p<0.001. NS=not significant. Data presented as
- 4 mean±SD.
- 5

Fig.S6

1

Figure S6. Gating strategy for FACS analysis of immune landscape in NPC in humanized NSG mice.

(A) Representative FACS profiles showing gating strategy of hCD45⁺ hCD14⁺
population, hCD45⁺ hCD19⁺ population, hCD45⁺ hCD3⁺ population, and hCD45⁺
hCD56⁺ population in the NPC TME. (B) Representative FACS profiles showing
gating strategy of mCD45⁺ mCD11b⁺ mF4/80⁺ population, mCD45⁺ mB220⁺
population, mCD45⁺ mCD3⁺ population, and mCD45⁺ mCD49b⁺ population.