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FIG. 7. Pairwise distance distortion using Gaussian
sensing matrices The pairwise distance distortion thresh-
old, ✓ as a function of the input dimension for 25-sparse vec-
tors projected using a N ⇥M Gaussian matrix with i.i.d en-
tries with zero mean and variance 1/N . The ration N/M is
fixed to be 24/110.

III. SUPPLEMENT

A. Decoding odor composition

To reconstruct ~x from measurements ~y = R~x, we used
the Iteratively Reweighted Least Squares (IRLS) algo-
rithm [80] to find the vector that minimizes the L1 norm
of ~x subject to the constraint ~y = R~x, with 500 maxi-
mum iterations and a convergence tolerance (in norm) of
10�6.

B. Distortion using Gaussian sensing matrices

We first generate 200 vectors ~xi with 25 non-zero el-
ements uniformly sampled between 0 and 2. We then
project these vectors by a matrix R of dimension N ⇥M
where the ratio between N and M is fixed such that
N/M = 24/110. The elements of matrix are independent
samples from a Gaussian distribution with zero mean and
variance 1/N . The distortion measure ✓ is defined as in
eq. 1.

C. Matrix extension and controlling structure

The starting point for generating extended ORN re-
sponse matrices is a log-normal model for the rates. Fig.
8 shows that the logarithm of the responses of all the

FIG. 8. log-normal distribution of rates Each black
line represents the cumulative distribution of the log-rates
for the repertoire for an odorant after subtracting the mean
and normalising by the variance (no. of lines is equal to the
number of odorants tested). The red line is the cumulative
distribution for a standard normal distribution. Data are for
Anopheles [46] (right) and Drosophila [45] (left)

receptors to all odors agrees well with a Gaussian dis-
tribution once we subtract the mean and normalize by
the standard deviations of the responses for that odor
(z-scoring). Thus in the space of log-rates, we model
the responses as a multi-dimensional Gaussian described
with the same mean and covariance between receptors as
in the Drosophila data. To extend the response matrix
along the odorant dimension we simply sample from this
multi-dimensional Gaussian and exponentiate the Gaus-
sian sample to get the rates. In order to extend along
the receptor dimension, we want to create new receptors
which share some features of the original data but are
not simply duplicates. To do this, if we want to expand
the number of receptors by a factor F , say, we create
a new covariance matrix (of size Fnrec ⇥ Fnrec) which
is a randomly rotated version of a block diagonal matrix
which has the receptor covariance matrix of the Hallem &
Carlson data replicated F times along the diagonal. We
generate a synthetic rate matrix by generating Gaussian
samples using this covariance matrix and then exponen-
tiating the samples to get the rates. There are small
number of outlier rates which we finally set to the maxi-
mum value in the Drosophila dataset.
To parametrically control the amount of structure in

the dataset, we use the fall-o↵ of the eigenvalues of the
covariance matrix of the log-rates as a measure of struc-
ture – faster fall-o↵ indicates most of the variance is along
a few directions and thus corresponds to more structure
since there is more redundancy in the receptor responses.
We vary this fall-o↵ while keeping the overall variance
the same. Specifically, we fit an exponential ↵ + e��⇤r

to the eigenvalue fall-o↵ in the Drosophila dataset, where
r is a number between 0 and 1 which specifies the nor-
malised rank of the sorted eigenvalue. The choice of this
fit was motivated by observing an approximately expo-
nential form for the intial fall-o↵ of eigenvalues. To in-
crease/decrease the structure we increase/decrease � re-
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FIG. 9. Covariance matrix eigenvalues for struc-
tured matrices Eigenvalues of the covariance matrix for
the extended response matrices (black lines) compared with
the eigenvalue fall-o↵ for the Drosophila dataset (red line).
A structure factor of 1.0 implies a fall-o↵ similar to the
Drosophila dataset

spectively by multiplying it with a structure factor, while
keeping the overall sum of the eigenvalues the same (for
a given no. of receptors and odors). Fig. 9 shows the
eigenvalue fall-o↵ for three di↵erent structure factors –
a structure factor of 1.0 indicates a fall-o↵ similar to
the Drosophila dataset, and higher values indicate more
structured responses.

D. Robust decoding from ORN responses

In the main text, we considered a simple linear model
of the responses of 24 ORN types in Drosophila respond-
ing to odor mixtures. Specifically, we extracted a firing
rate matrix R from the data in [45] (i.e. Rij is the re-
sponse of receptor i to odorant j), and we assumed that
the response to a mixture could be written as a linear
combination of responses to single odorants. We defined
a mixture by the composition vector x whose elements
specify the concentration of individual odorants in the
mixture. The ORN firing rates y could then be written
as ~y = R ~x. We then attempted to decode composition
vectors ~x from responses ~y using the optimal algorithm
of [55, 80]. We regarded the reconstruction as a failure
if the average squared di↵erence between components of
the reconstructed odor vector and the original exceeded
0.01. Decoding error was defined as the failure proba-
bility over an odorant mixture ensemble. This criterion
for successful reconstruction is equivalent to saying that
the reconstruction x̂ of the odor composition vector ~x
fails if the norm of the di↵erence k~x � x̂k exceeds a tol-
erance parameter of t = 1.1 (here we used the fact that
the odor composition vector ~x has 110 components). To
test the robustness of our conclusions we varied this tol-
erance parameter ten-fold, and found that the decoding
error curves were largely unchanged (Fig. 10A). Qualita-
tively, we observed this robustness because the decoding
of odors tends to either succeed very well, or fail very
badly. As a result, a broad range of criteria for defining
a successful reconstruction will give similar measures of
decoding error.

According to our general theory, and the results of

[55, 81], the quality of the olfactory code should not de-
pend on the details of how specific receptors respond to
di↵erent odorants. Rather, the key determinant should
be the overall distribution of responses. To test whether
this is the case, we scrambled the receptor and odor-
ant labels in the ORN response matrix (top inset in
Fig. 10B), thus constructing an artificial response ma-
trix with the same overall distribution of firing rates, but
with no odor- or receptor-dependent correlations (second
inset in Fig. 10B). We found that decoding performance
was essentially identical when using the scrambled and
unscrambled response matrices ( Fig. 10B), consistent
with the notion that the olfactory system seeks to employ
disordered and unstructured sensing. Interestingly, sep-
arate scrambling of the receptor labels and odor labels
either improved or degraded the decoding, presumably
because such scramblings removed correlations that were
either detrimental or beneficial for decoding ( Fig. 10B).
These opposite e↵ects compensated each other when the
sensing matrix was fully scrambled.

E. Divisive normalization in the Antennal Lobe
and decoding glomerular responses

In the Antennal lobe, a network of inhibitory interneu-
rons reorganizes the receptor responses for transmis-
sion downstream [59]. In the fly, the inhibitory net-
work is well-described as e↵ecting a divisive normaliza-
tion [57, 58] that scales the responses of each ORN type
in relation to the overall activity of all types . This lat-
eral inhibition in the can be modelled with the following
transformation [57]:

R(2)
i =

Rmax · (R(1)
i )1.5"

�1.5 + (R(1)
i )1.5 + (m ·

X

i

R(1)
i )1.5

# (2)

where R(1)
i is the response of the ith ORN type, R(2)

i is
the response of the ith glomerulus, � parametrizes spon-
taneous activity, and m controls the amount of normal-
ization. We use Rmax = 165.0, � = 10.5, and m = 0.05
[57]. We constructed an artificial glomerular response
matrix R(2) by applying this transformation separately
to the ORNs responding to each of the 110 odorants stud-

ied in [45]. Thus R(2)
ij represented the response of the ith

glomerulus to the jth odorant.
Applying this transformation to the Drosophila re-

sponse matrix, the glomerular responses become more
widely distributed and less correlated than their ORN
inputs as has been described before. Does this increased
disorder improve the representation of odor information?
Because the divisive normalization is nonlinear, we can-
not, strictly speaking, use the aforementioned decod-
ing algorithm to evaluate the information content of the
glomerular representation. However, we can instead cre-
ate an artificial benchmark in which mixtures ~x lead to
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FIG. 10. Odor decoding from Drosophila ORN responses is robust. (A) Decoding error is robust to ten-fold variations
in odor reconstruction tolerance. Mixture complexity = number of component odorants drawn from 110 possibilities. (B)
Decoding performance is unchanged after complete scrambling of the Drosophila response matrix, because of opposite e↵ects
of scrambling receptors vs. odors. Insets: Response matrices showing firing rates for 24 receptors (rows) responding to 110
monomolecular odorants (columns) without scrambling (solid green) and for models randomly scrambling receptors, odorants, or
both (dashed green). (C) Decoding performance is unchanged after complete scrambling of the divisively normalized responses
in the Antennal Lobe. Separately scrambling receptors or odors also has no e↵ect on performance. Insets: Response matrices
showing activity for 24 glomeruli (rows) responding to 110 monomolecular odorants (columns) without scrambling (solid blue)
and after scrambling receptors, odorants, or both (dashed blue). Results shown are averages over 100 iterations over model
scrambled response matrices. Decoding error is measured as the probability of decoding failure (see text) over an ensemble of
500 randomly chosen odor mixtures of a given complexity.

responses ~y via ~y = R(2)~x, where R(2) represents a ma-
trix of artificial glomerular responses obtained by trans-
forming experimentally measured ORN responses to an
odor panel in [45] via divisive normalization. Quanti-
tatively, 67% of mixtures with 7 or fewer components
drawn from 110 odorants can be accurately decoded from
the responses of 24 glomeruli, while similar accuracy
was achieved for mixtures with only 5 components when
decoding from ORNs (Fig. 10C). Because the number
of possible mixtures increases combinatorially with the
number of mixture components, this is a substantial im-
provement. When we scrambled the identity of odors and
receptors, all scramblings left the decoding performance
unchanged ( Fig. 10C). We thus conclude that after cor-
relations are removed by divisive normalization, the over-
all distribution of responses is the sole determinant of the
quality of the olfactory information representation.

We tested how our results for decoding error would
be a↵ected by changing the parameter m, which controls
the amount of inhibition in the Antennal Lobe, or the
exponent a, which controls the shape of the nonlinearity.
In order to simplify our presentation, we study depen-
dence on the parameters of the normalization for two
values of mixture complexity: i) K = 3, a value where
odor reconstruction from Antennal Lobe responses with
experimentally-measured parameters is near perfect (see
main text), and ii) K = 7, a value where a similar recon-

struction starts to degrade. We found that in both cases,
the experimentally measured values of m and a led to the
lowest decoding error (Fig. 11).

F. Linear classification

To measure how well a particular odor representation
(responses of ORNs, glomeruli, or Kenyon cells) facil-
itates learning flexible associations between odors and
valences, we randomly split the representation of input
mixtures into two classes and then trained a linear clas-
sifier (SVM with linear kernel [82]) to classify the inputs.

G. Generating Mushroom Body responses

We took each Kenyon cell to have non-zero connection
weights drawn uniformly between 0 and 1 with 8 ran-
domly selected glomeruli (see Results). Then, following
[20], we took the input to the ith Kenyon cell, evoked
by an odor with glomerular responses ~y in the Antennal
Lobe, to be hi = h ~wi, (~y � h~µ, ~yi ~µ)i, where h·, ·i is an
inner-product, ~wi is the vector of connection strengths,
and ~µ is the average Antennal Lobe response vector over
all odors, normalized to unit length. We chose a response
threshold so that a fraction f of neurons with inputs hi
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FIG. 11. The empirically determined divisive normalization in the Antennal Lobe is optimal assuming a linear
model for mixtures Decoding error (see main text for definition) shown as a function of the exponent a, and the inhibition
parameter m in the divisive normalization carried out by the Antennal Lobe. Left and right plots correspond to mixtures with
K = 3 and K = 7 components drawn randomly from 110 odorants, respectively. The experimentally measured operating point
is indicated by a cross in each plot (m = 0.05 and a = 1.5). Decoding error (definition in main text) is averaged over 500
iterations of mixture ensembles of a given complexity.

exceeding threshold are considered active, and normal-
ized the thresholded responses so that the maximum fir-
ing rate is 5 Hz, on the order of the maximum observed
Kenyon cell responses. We averaged results over 100 ran-
dom choices of connection strengths. The global inhibi-
tion required in this model for generating the disordered
responses observed in the Mushroom Body [20] could be
implemented by the APL neuron which makes inhibitory
connections to all the Kenyon cells

H. Structured vs. random connectivity and its
interaction with response variability

We constructed structured connectivity matrices be-
tween glomeruli in the Antennal Lobe and Kenyon cells
in the Mushroom Body by reordering the columns of the
corresponding random connectivity matrix so that the
two matrices model synapses with the same connection
strengths feeding into each Kenyon cell, but they sam-
ple di↵erent glomeruli. The reordering of the columns
was done so that the structured connectivity matrix ex-
hibited a block-diagonal structure as shown in Fig. 6C.
For analyses we chose the number of blocks to be 3. We
then permuted the rows and columns of the structured
connectivity matrix. To parametrically vary the amount
of structure between the block diagonal connectivity ma-
trix and the random matrix, we specified the probability
p that a Kenyon cell could connect to any glomerulus and
not just the ones in its preferred group.

Now, we discuss how the e↵ect of the structured and
random projections on the ability to learn arbitrary asso-
ciations in using Mushroom Body neurons (Fig. 6 B,D).
The main reason for the reduced classification perfor-
mance with the structured projection matrix from the

Antennal Lobe to Mushroom Body, relative to the ran-
dom projection matrix, is due to a higher “e↵ective noise”
in the most active neurons. This can be understood by
viewing the responses in the Mushroom Body as a linear
projection + thresholding of the responses in Antennal
Lobe. The e↵ect of increased structure in the projec-
tion matrix is to focus the projections from the Anten-
nal Lobe into a smaller subspace. Another way to see
this is by considering the fall-o↵ of the singular values of
the random and the structured projection matrices. The
structured matrix has a steeper fall-o↵ and larger out-
lier singular values compared to the random projection
matrix (Fig. 12, left ). A consequence of focusing the
Antennal Lobe responses into a smaller subspace is that
the elements of the modes corresponding to this subspace
will be larger (compare Fig. 12 right, top and bottom
panels), and thus response variability in the Antennal
Lobe will lead to a larger variability in the tail responses
(most active neurons) in the Mushroom Body for the
structured projection matrix. This can be seen in Fig.
13 left, where the histogram of residual responses (noise-
less response minus response with noise) of Mushroom
Body neurons is larger in magnitude, on average for the
structured projection matrix compared to the random
projection matrix.

How does this result depend on the form of sensing em-
ployed by the ORNs? Basically, the higher e↵ective-noise
property for structured matrices from Antennal Lobe to
Mushroom Body will hold regardless of the form of ORN
sensing. As an example, in Fig. 13 right, we show the
residual responses for random Gaussian sensing by the
ORNs, and even in this case, the structured matrix leads
to larger magnitude residual responses. What changes
with the sensing method is the quality of representation
of the external input in the ORN and Antennal Lobe
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FIG. 12. Left: Example plot showing ranked singular values of the random and structured projection matrices from Stage 2
(antennal lobe/bulb) to Stage 3 (cortex/mushroom body). For this example, the size of Stage 2 was 72 and the size of Stage
3 was 300 and there were 4 preferred groups in the structured projection matrix (see main text for the construction of the
structured matrix). Right: the components of the sum of the first four dominant singular vectors :

P4
i=1 �iui, where the full

projection matrix P is given by P =
P70

i=1 �iuiv
†
i . The components of the projection give a sense of how the input power is

distributed in the dominant subspace. From the top panel, we see that the structured projection matrix directs more of the
input power to the subspace.

FIG. 13. Histogram of residual responses at Stage 3 that are larger than a threshold (0.5 in this case), for random and structured
projection matrices. The residual response is defined as the response at Stage 3 without any noise in Stage 1 responses minus
the response at Stage 3 with noise in Stage 1 responses. Larger magnitudes for the residual response means that a classifier
trained on noiseless responses will have a higher error for the noisy responses. We see that on average, the structured projection
matrix leads to larger magnitude residual responses. The left plot corresponds to ORN-like sensing in Stage 1 (see main text;
matrix extension), and the right plot corresponds to a hypothetical random Gaussian sensing at Stage 1. In both cases, the
structured projection matrix from Stage 2 to Stage 3 leads to larger magnitude residual responses.

responses. So a poorer sensing method will lead to an
overall reduction in the ability to learn arbitrary associ-
ations.

I. Classification using Kenyon cells: role of sparsity
of responses and connections

Here, we studied the error in a 2-way classification task
for 5-component mixtures with varying readout popula-
tion sizes (n) and the number of Kenyon cells used as
readout in the Mushroom Body (details of classification
procedure and task in the main text). For a given pop-

ulation size n, increasing the fraction of active neurons
f barely changes the classification performance (bottom
panel of Fig. 14A). The classification error with a given
active fraction f decreases with the number n of neu-
rons being read out (left panel of Fig. 14A). However,
there is a law of diminishing returns – excellent perfor-
mance is achieved for relatively small n, and further in-
creasing the population size makes little di↵erence. The
disordered projections from the Antennal Lobe to the
Mushroom Body suggest that any subset of a given size
should be statistically equivalent. We tested this by
comparing the classification error obtained from di↵er-
ent subsets of Kenyon cells. The narrowness of the his-
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FIG. 14. A) Classification error from responses of model Kenyon cells in the Mushroom Body (MB) for arbitrarily separating
300 5-component mixtures into two classes as a function of the readout size (n) and the fraction (f) of active neurons. The
horizontal and vertical sections correspond to n = 105 and f = 0.2, respectively (section shown in panels below and to the left,
respectively). Bottom left panel: histogram of classification errors for 10000 di↵erent subsets of size n = 105 and f = 0.2. The
narrowness of the histogram shows that any two subsets of a given size are roughly equivalent for odor classification purposes.
B) Classification error at the Mushroom Body as a function of the number of glomeruli sampled by each Kenyon cell. Minimum
error is found for sparse sampling of glomeruli. All results shown are averages over 100 iterations over mixture ensembles, 100
labelings into appetitive/aversive classes, and 100 iterations over model connectivity matrices between the Antennal Lobe and
Mushroom Body (each using a di↵erent instantiation of noise). (See text for details regarding the generation of connectivity
matrices and noise.)

togram of classification error for 10000 di↵erent popu-
lations (n = 105, f = 0.2) (lower left panel, Fig. 14A)
shows that any subset of a given size is indeed equally
good at supporting flexible classification.

We also studied how the classification error (in the
presence of ORN response variability) depended on the
number of glomeruli sampled by each Kenyon cell in the
Mushroom Body. Figure 14B shows the classification er-
ror as a function of the number of glomeruli sampled, for
three di↵erent readout sizes. We see that the classifica-
tion error initially decreases and then gradually rises as
we increase the number of glomeruli sampled. This indi-
cates that there is an optimum for the number of sampled
glomeruli. Recent work [21] has examined this question
theoretically; here we show results with Drosophila data
which are consistent with [21].
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T. Völler, K. Erbguth, B. Gerber, T. Hendel, G. Nagel,
E. Buchner, et al., “Light-induced activation of distinct
modulatory neurons triggers appetitive or aversive learn-
ing in drosophila larvae,” Current biology, vol. 16, no. 17,
pp. 1741–1747, 2006.

[74] A. Fiala, “Olfaction and olfactory learning in drosophila:
recent progress,” Current opinion in neurobiology,
vol. 17, no. 6, pp. 720–726, 2007.

[75] M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D.
Daw, E. K. Miller, and S. Fusi, “The importance of mixed
selectivity in complex cognitive tasks,” Nature, vol. 497,
no. 7451, pp. 585–590, 2013.

[76] C. D. Wilson, G. O. Serrano, A. A. Koulakov, and D. Rin-
berg, “A primacy code for odor identity,” Nature com-
munications, vol. 8, no. 1, pp. 1–10, 2017.

[77] A. Dewan, A. Cichy, J. Zhang, K. Miguel, P. Feinstein,
D. Rinberg, and T. Bozza, “Single olfactory receptors
set odor detection thresholds,” Nature communications,
vol. 9, no. 1, pp. 1–12, 2018.

[78] G. Tavoni, D. Kersen, and V. Balasubramanian, “Corti-
cal feedback and gating in odor discrimination and gener-
alization,” PLoS Computational Biology, vol. 17, no. 19,
p. e1009479, 2021.

[79] D. Kersen, G. Tavoni, and V. Balasubramanian, “Con-
nectivity and dynamics in the olfactory bulb,” PLoS
Computational Biology, vol. 18, no. 2, p. e1009856, 2022.

[80] R. Chartrand and W. Yin, “Iteratively reweighted algo-
rithms for compressive sensing,” in 2008 IEEE interna-
tional conference on acoustics, speech and signal process-
ing, pp. 3869–3872, IEEE, 2008.

[81] E. J. Candes and T. Tao, “Near-optimal signal recov-
ery from random projections: Universal encoding strate-
gies?,” IEEE transactions on information theory, vol. 52,
no. 12, pp. 5406–5425, 2006.

[82] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning
research, vol. 12, pp. 2825–2830, 2011.


