Supplementary Figure S10. NET1-AKR1C3 and NET1-AKR1C4 fusion genes.

B

C

Fusion protein	Ingenuity canonical pathways	<i>P</i> -value
NET1-AKR1C3	1 Mitotic G1-G1/S phases	1.30E-03
	2 E2F transcription factor network	2.03E-03
	3 RhoA activity regulation	2.29E-03
	4 Cell cycle checkpoints	3.02E-03
	5 Cell cycle	3.64E-03
NET1-AKR1C4	1 E2F-mediated regulation of DNA replication	3.03E-04
	2 CTCF pathway	1.36E-03
	3 DNA replication	1.50E-03
	4 AP-1 transcription factor network	1.72E-03
	5 Cell cycle	1.73E-03

D

Fusion protein	Ki-67 index
Mock	17.0 %
NET1-AKR1C3	24.1 %
NET1-AKR1C4	37.8 %

A,Top: genomic alteration of *NET1-AKR1C3/AKR1C4* loci in samples with *NET1-AKR1C3* and *NET1-AKR1C4* fusion genes detected by WGS. Red lines indicate tandem duplication in each sample. Bottom: schematic representation and raw reads of *NET1* and *AKR1C3/AKR1C4* chimera transcripts detected by RNA-sequencing. **B**, Top five enriched canonical pathways in NET1-AKR fusion protein-expressing cells compared with mock transfected cells. **C**, Representative images of tissue sections with H&E staining and Ki-67 immunostaining from nude mice implanted with NET1-AKR fusion protein-expressing and mock transfected cells 60 days after subcutaneous implant (1 × 10^7 cells/mouse). Scale bars, 50 µm. **D**, Ki-67 indices obtained from C.