Supplementary information

$MNK2 \ deficiency \ potentiates \ \beta-cell \ regeneration \ via \ translational \ regulation$

In the format provided by the authors and unedited

Supplementary Note 1

Compilation of Experimental Protocols of the Synthesis of 7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*pyrido[3,2,1-ij]quinoline-6-carboxylic acid Derivatives

Chemical synthesis information for CID661578.6 (2), CID661578.6-derived bait (3) and analogues in Extended Data Figure 1

Content

1.	INTRODUCTION	3
2.	GENERAL METHODS	4
3.	SYNTHESIS OF AMIDES WITH THE 7-HYDROXY-3-METHYL-5-OXO-2,3-DIHYDRO-1H,5H-PYRIDO[3,2,:	1-
IJ]QU	NOLINE-6-CARBOXAMIDE CORES	4
3.1	QUINOLINE REDUCTION	4
3.2	CYCLIZATION	5
3.3	Ester hydrolysis	6
3.4	CONCOMINANT ETHER AND ESTER CLEAVAGE	7
3.5	Amide Couplings	8
4.	SYNTHESIS OF TRIMETHOPRIM-PEG ₆ - <i>N</i> -(3-(2-AMINO-2-OXOETHYL)BENZYL)-7-HYDROXY-3-METHYL-5-OXO-2,5	3-
DIHY	DRO-1H,5H-PYRIDO[3,2,1-IJ]QUINOLINE-6-CARBOXAMIDE	0
4.1	Amide coupling of core molecule with 3-(Methoxycarbonylmethyl)benzylamine1	.0
4.2	Ester hydrolysis	.1
4.3	Amide coupling with H_2N -PEG ₆ -TMP1	.1
4.4	Chromatograms and mass-spectra of the final product	.2

1. Introduction

Karolinska Institutet's Department of Cell and Molecular Biology as represented by Assoc. Prof. Olov Andersson (the customer) tasked Recipharm with compiling experimental protocols for the synthesis of 7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxylic acid derivates.

2. General Methods

All solvents were obtained from Chemtronica (Solna, Sweden) and were not purified or dried prior to use. H₂N-PEG₆-TMP was supplied by Hybrigenics SA (Evry, France). All other reagents were obtained from Sigma-Aldrich (Stockholm, Sweden). Reactions were monitored using an Agilent 1100 series Liquid Chromatograph/Mass Selective Detector (MSD) (Single Quadrupole) equipped with an electrospray interface, a UV diode array detector and an ACE3 C8 (3.0 x 50 mm) column with a gradient of acetonitrile (10 \rightarrow 97%) in 0.1% aqueous 2,2,2-trifluroacetic acid over 3 min and a flow of 1 mL/min or an XBrdige C18 (3.0 x 50 mm) column with a gradient of acetonitrile (5 \rightarrow 97%) in 10mM aqueous ammonium bicarbonate. Purification by means of preparative liquid chromatography were performed using a Gilson HPLC System equipped with a model 119 UV/Vis detector, a series 306 binary pump, an FC204 fraction collector and an ACE3 C18-HL (250 x 21.2 mm) column with a gradient of acetonitrile in 0.1% aqueous 2,2,2-trifluroacetic acid over 10 min and a flow of 25 mL/min.

- 3. Synthesis of amides with the 7-Hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide cores
- 3.1 Quinoline reduction

6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (7) and 2-methyl-1,2,3,4-tetrahydroquinoline (8)

6-Fluoro-2-methylquinoline (**5**, 300mg, 1.86mmol, 1.0eq.) was weighed into a flame-dried 50mL roundbottom flask, followed by PtO₂ (42mg, 0.19mmol, 0.1eq.) and a stirbar. The flask was sealed with a septum, the atmosphere was evacuated and backfilled with nitrogen three times. MeOH (7.5mL) and TFA (0.14mL, 1.0eq.) were added by syringe and a hydrogen atmosphere was applied. The resulting suspension was stirred at room temperature overnight. After approximately 18 hours, the solids were removed with the help of a syringe filter and the latter was washed with MeOH (2.5mL). Incrementally and while stirring, aqueous NH₄HCO₃ (20mL, 50mM) was added to neutralize the acid, and the resulting suspension was extracted with EtOAc (3 x 20 mL). The organic layers were pooled, dried over sodium sulfate and the solvent was removed *in vacuo* to yield an oily residue, which was filtered through silica (heptane/EtOAc 4:1) to yield a mixture of **7** and **8** in a ratio of approximately 4:1 (153mg) as a light brown oil, which corresponds to a yield of approximately 51% when taking into account the different molecular weights of the products. The mixture of the two compounds was used in the subsequent step without further purification. MS/ESI positive ionization: m/z=166 [M+H]⁺ (7) and m/z=148 [M+H]⁺ (8).

6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinoline (9)

An analogous procedure was used for the reduction of 300mg of 6-methoxy-2-methylquinoline (**6**) to **9**. The final filtration through silica was performed using DCM/MeOH/NEt₃ (19:1 + 0.1%) as the eluent. **9** was obtained as a light brown oil in 60% yield (183mg). The latter was used in the subsequent step without further purification. MS/ESI positive ionization: $m/z=178 [M+H]^+$.

3.2 Cyclization

Ethyl 9-fluoro-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6carboxylate (10) and

ethyl 7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate (11)

An open, 15mL microwave tube was charged with triethyl methanetricarboxylate (0.21mL, 0.99mmol, 3.3eq.) and a stir bar. The vial was immersed into a steel block approximately halfway and heated to 225°C while stirring, causing the triester to gently reflux inside of the vial. A mixture of compounds **7** and **8** (approximately 4:1 ratio, 49mg, 0.30mmol, 1.0eq.) was added by micropipette. The resulting solution was stirred at 225°C for 30 minutes, whereupon it was allowed to attain room temperature. Aqueous Na₂CO₃ (10% w/w, 15mL) was added, the resulting mixture was heated to 80°C for 20 minutes and the solids were removed by filtration. Once the aqueous layer had obtained room temperature, activated charcoal (approx. 300mg) was added, the resulting suspension was stirred for 20 minutes, filtered and the solids were washed with hot water (approx. 50mL). While cooling on ice, the new aqueous layer was acidified with 4M aqueous HCl to precipitate a mixture of **10** and **11** in a ratio of approximately 4:1 (64mg) as an off-white solid, which corresponds to a yield of approximately 71% when taking into account the different molecular weights of the products. The mixture of the two compounds was used in the subsequent step without further purification. MS/ESI positive ionization: m/z=306 [M+H]⁺ (10) and m/z=288 [M+H]⁺ (11).

Ethyl 7-hydroxy-9-methoxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate (12)

An analogous procedure was used for the conversion of 101mg of 6-methoxy-2-methyl-1,2,3,4-tetrahydroquinoline (**9**) to **12**, which was obtained as an off-white solid in 56% yield (102mg) after an additional recrystallization from acetonitrile. The product was used in the subsequent step without further purification. MS/ESI positive ionization: m/z=318 [M+H]⁺.

3.3 Ester hydrolysis

9-Fluoro-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylic acid (13) and

7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylic acid (14) A 5mL roundbottom flask was charged with a mixture of compounds **10** and **11** (approximately 4:1 ratio, 64mg, 0.21mmol), followed by a stir bar, glacial AcOH (2mL) and concentrated aqueous HCI (0.2mL, 35% w/w). A reflux condenser was installed and while stirring, the mixture was heated to 60°C, where it was kept overnight. After approximately 16 hours, the mixture was allowed cooled on ice for 20 minutes, and the solids were collected by filtration. The solids were washed with 1M HCI (1mL) and thereafter dried under fine vacuum overnight to obtain **13** and **14** in a ratio of approximately 4:1 (54 mg) as an off white solid, which corresponds to a yield of approximately 94% when taking into account the different molecular weights of the products. The mixture of the two compounds was used in the subsequent step without further purification. MS/ESI positive ionization: m/z=278 [M+H]⁺ (13) and m/z=260 [M+H]⁺ (14).

7-Hydroxy-9-methoxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxylic acid (15)

An analogous procedure was used for the conversion of 102mg of ethyl 7-hydroxy-9-methoxy-3-methyl-5oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate (**12**) to **15**, which was obtained as an offwhite solid in 97% yield (90mg). The product was used in the subsequent step without further purification. MS/ESI positive ionization: $m/z=290 [M+H]^+$.

3.4 Concominant ether and ester cleavage

7,9-Dihydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxylic acid (16)

Ethyl 7-hydroxy-9-methoxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate (**12**, 50mg, 0.16mmol) was dissolved in hydrogen bromide in acetic acid (33% w/w, 5mL) inside of a 50mL roundbottom flask and the resulting solution was heated to reflux for 12 hours. The reflux condenser was then removed to allow for the evaporation of hydrogen bromide,¹ the volume of the resulting mixture was reduced to about 1mL using a rotoary evaporator and water (3mL) and MeCN (9mL) were added to yield a slightly brown solution. The latter was slowly concentrated in vacuo, until the desired product began to precipitate. The mixture was cooled on ice for one hour and the solids were collected by filtration. **16** was obtained in 55% yield (24mg) as a faintly brown solid. The product was used in the subsequent step without further purification. MS/ESI positive ionization: $m/z=276 [M+H]^+$.

 $^{^1}$ Due to the extreme corrosiveness of hydrogen bromide vapors, they were sucked off using a suction pump, where the gas was automatically diluted with water.

3.5 Amide Couplings

23 R=F, R'=OH

Amide couplings were performed in ethyl acetate, using propylphosphonic anhydride (T3P[®]) as the coupling reagent and triethylamine as a base. The synthesis of compounds **18** and **19** is exemplary.

9-Fluoro-7-hydroxy-N-(3-methoxybenzyl)-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1ij]quinoline-6-carboxamide (18) and

7-hydroxy-*N*-(3-methoxybenzyl)-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxamide (19)

A 4mL vial was charged with a mixture of compounds **13** and **14** (approximately 4:1 ratio, 30mg, 0.11mmol). Added were EtOAc (0.9mL), followed by a stirbar and triethylamine (18µL, 0.12mmol, 1.1eq.). A solution of (3-methoxybenzyl)amine (40mg, 0.32mmol, 3.0eq.) in EtOAc (0.1mL) was added and finally, T3P-solution (\geq 50%w/w in EtOAc, 130µL, 0.22mmol, 2.0eq.) was added by micropipette. The resulting solution was stirred at room temperature over night. The resulting suspension was diluted with EtOAc (9mL), washed with water (5mL), and concentrated to dryness. The semi-solid residue was taken up in MeCN (3mL), aqueous TFA was added (0.5%, 1mL) and the resulting yellow solution was purified by preparative HPLC (60→80% MeCN in 0.5% aq. TFA, C18 column, ACE) to yield: **18** in 29% yield (17mg) and **19** in 10% yield (4mg), each as an off-white solid. MS/ESI positive ionization: m/z= 397 [M+H]⁺ (18) and m/z=379 [M+H]⁺ (19).

9-Fluoro-*N*-(furan-2-ylmethyl)-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxamide (1)

20mg of **13** (contaminated with approx. 20% of 14) were converted to **1** by T3P-mediated amide coupling with furfurylamine. **1** was obtained in 34% yield (26mg) as an off-white solid. MS/ESI positive ionization: $m/z=357 [M+H]^+$.

N-(furan-2-ylmethyl)-7,9-dihydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (17)

107mg of **16** were converted to **17** by T3P-mediated amide coupling with furfurylamine. The reaction was noticably less clean owing perhaps to instability of the phenol-group in the presence of phosphonic anhydride. **17** was obtained in 5% yield (7mg) as an off-white solid. MS/ESI positive ionization: m/z=355 [M+H]⁺.

N-benzyl-9-fluoro-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (20) and

N-benzyl-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (2)

35mg of **13** and **14** were converted to **20** and **2** by T3P-mediated amide coupling with benzylamine. **20** was obtained in 21% yield (10mg) and **2** was obtained in 10% yield (5mg), each as an off-white solid. MS/ESI positive ionization: $m/z = 367 [M+H]^+$ (20) and $m/z = 349 [M+H]^+$ (2).

7-Hydroxy-9-methoxy-*N*-(3-methoxybenzyl)-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (21)

44mg of **15** were converted to **21** by T3P-mediated amide coupling with (3-methoxybenzyl)amine. **21** was obtained in 60% yield (9mg) as an off-white solid. MS/ESI positive ionization: $m/z=409 [M+H]^+$.

N-benzyl-7-hydroxy-9-methoxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (22)

47mg of **15** were converted to **22** by T3P-mediated amide coupling with benzylamine. **22** was obtained in 35% yield (21mg) as an off-white solid. MS/ESI positive ionization: $m/z=379 [M+H]^+$.

9-Fluoro-7-hydroxy-*N*-(3-hydroxybenzyl)-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (23)

40mg of **13** (contaminated with approx. 20% of 14) were converted to **23** by T3P-mediated amide coupling with (3-hydroxybenzyl)amine. The reaction was noticably less clean owing perhaps to instability of the phenol-group in the presence of phosphonic anhydride. A total of ten molar equivalents of amine were added, instead of the usual three. **23** was obtained in 5% yield (3mg) as an yellow syrup. MS/ESI positive ionization: m/z=383 [M+H]⁺.

- 4. Synthesis of trimethoprim-PEG₆-*N*-(3-(2-amino-2-oxoethyl)benzyl)-7hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6carboxamide
- 4.1 Amide coupling of core molecule with 3-(Methoxycarbonylmethyl)benzylamine

Methyl 2-(3-((7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6carboxamido)methyl)phenyl)acetate (24)

A 100mL roundbottom flask was charged with **14** (503mg, 1.94mmol). Added were EtOAc (19mL), followed by a stirbar and triethylamine (292µL, 2.14mmol, 1.1eq.). A mixture consisting of 3-(methoxycarbonylmethyl)benzylamine hydrochloride (1.26g, 5.8mmol, 3.0eq.) and EtOAc (6mL) was added and finally, T3P-solution (\geq 50%w/w in EtOAc, 2.3mL, 3.88mmol, 2.0eq.) was added via syringe. The resulting solution was stirred at room temperature over night. The resulting suspension was diluted with EtOAc (25mL), washed with water (25mL), and concentrated to dryness. The residue was taken up in DMF (10mL) and dropwise, 0.1M HCl (10mL) was added to force the precipitation of product. The resulting suspension was cooled on ice for one hour, the solids were filtered and dried in vacuo overnight to yield **24** in 61% yield (498mg) as an off-white solid. The material was used in the subsequent step without further purification. MS/ESI positive ionization: m/z=421 [M+H]⁺.

4.2 Ester hydrolysis

2-(3-((7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6 carboxamido)methyl)phenyl)acetic acid (25)

A 100mL roundbottom flask was charged with **24** (469mg, 1.11mmol) and MeCN was added (50 mL). The resulting solution was stirred at room temperature while 1M aq. NaOH (5mL) was added. The resulting mixture was stirred overnight, whereupon it was concentrated to approximately 10% of its initial volume in vacuo. Slowly and while stirring, 1M aq. HCl (10 mL)§ was added and the resulting aqueous phase was extracted with DCM (5 x 25 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed in vacuo to yield **25** as a colorless foam in 89% yield (401mg). MS/ESI positive ionization: $m/z=407 [M+H]^+$.

4.3 Amide coupling with H_2N-PEG_6-TMP

N-(3-(20-(4-((2,4-diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)-2-oxo-6,9,12,15,18-pentaoxa-3-azaicosyl)benzyl)-7-hydroxy-3-methyl-5-oxo-2,3-dihydro-1*H*,5*H*-pyrido[3,2,1-ij]quinoline-6-carboxamide (3)

Compound **25** (31mg, 0.08mmol, 1.0eq.) and H₂N-PEG₆-TMP (45mg, 0.08mmol, 1.1eq.) were weighed into a 4mL vial. DMF (0.75mL) and NEt₃ (43µL, 0.31mmol, 4.1eq.) were added and the resulting mixture was agitated to yield a solution. Using a micropipette, T3P-solution (\geq 50%w/w in EtOAc, 50µL, 0.17mmol, 2.2eq.) was added and the resulting solution was stirred overnight. A drop of MeOH was added to quench any T3P-residues, the solvent was removed by repeated coevaporation with toluene to yield a yellow gum, and the latter was dispersed over SiO₂ (approx. 0.7g). The SiO₂-plug was washed with MeOH in DCM (0 \rightarrow 3%) and the product was eluted by repeated washed with MeOH/DCM 1:1. The residue obtained after evaporation of the solvent was purified by preparative HPLC (30 \rightarrow 50% MeCN in 50 mM aq. NH₄HCO₃ over 10 minutes, XBridge C18 column) to yield **3** in 57% yield (40mg) as a yellow gum. Analysis by HPLC revealed, that the product was 97.3% pure. MS/ESI negative ionization: m/z=926 [M-H]⁻.

4.4 Chromatograms and mass-spectra of the final product

Detection using DAD at 305 ± 90 nm (top panel), 254 ± 5 nm (second panel from top) and 214 ± 5 nM (bottom panel). Third panel from top: TIC (see mass spectrum on next page).

Certificate of analysis

Date: 2015-07-17

Batch: OLA3RWH6, -8 Amount: 255.0 mg

Compound: OLA3-f1

Chemical formula: C₂₁H₂₀N₂O₃

Molecular weight: 348.41 g/mol

Reference: Chem. Heterocycl. Compd., 2006, 42, 1208.

Test/Method	Specification	Reculte
Visual appearance	-	White coustals
HPLC purity acidic ACE C8, CF₃COOH (pH2), 3 min gradient, UV detection at 254 nm		>99.9%
HPLC purity basic XBridge C18, NH₄HCO₃ (pH10), 3 min gradient, UV detection at 254 nm	>95%	>99.9%
MS / ESI, positive ionization	Confirms sum formula	[M+H] ⁺ = 349, 350
¹ H NMR, 400 MHz, CDCl ₃	Confirms structure	Confirms structure

Responsible for synthesis:	1. Mat	
	1	Rafael Hartmann, M.Sc.
Analytical Review:	ueb Pri	Wei Berts, Ph.D.

OnTarget Chemistry AB Virdings allé 32b 75450 Uppsala Telefon: +46(0)76-614 8739

Org.nr: 556761-5439

E-post: info@ontargetchemistry.com Webb: www.ontargetchemistry.com

Bâëa

Sample Name: OLA3-fl-purity

a File C: (HPCHEM(I)DATA(ISU/RF(0506.D	 OINS II paris
Area Percent Report	
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	
Signal 1: DAD1 A, Sig=305,180 Ref=off Signal has been modified after loading from rawdata file!	
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 3.320 PB 0.0555 1266.83887 758.65112 100.0000	: }, 11
Totals: 1266.83887 758.65112	121
Signal 2: DAD1 B, Sig=254,10 Ref=off Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area	
# [min] [min] [mAU*s] [mAU] % 	
Totals : 2168.07495 1280.53235	
Signal 3: MSD1 TIC, MS File	
Peak RetTime Type Width Area Height Area # [min] [min] %	
1 3.322 BB 0.0662 3.88909e6 8.75169e5 100.0000	
Totals: 3.88909e6 8.75169e5	
*** End of Report ***	

Instrument 1 2015-07-17 08:27:54 Effie_rf

Page 2 of 2

Data File C:\HPCHEM\1\DATA\1507RF\0505.D

Sample Name: OLA3-f1-blank

	7	Area Percent	Report	
	Sorted By :	Signal		
	Multiplier :	1.0000		
	Dilution :	1.0000		
	Use Multiplier & Dilution	Factor with	ISTDs	
	Signal 1: DAD1 A, Sig=305.	.180 Ref=off		
	Signal has been modified	after loadi	ng from rawdat	a file!
	Signal 2. DADI B Sig=254	10 Pef-off		
	Signal has been modified	after loadi	ng from rawdat	a file!
			2	
e- 1	Signal 3: MSDI TIC, MS Fil	Le		
	Peak RetTime Type Width	Area	Height A	Area
	# [min] [min]			8
	1 0.321 BB 0.0427	1.92084e5	7.00760e4 100	.0000
	Totals :	1.92084e5	7.00760e4	
	2 And sector and sector and sector and the sector and t		99999999999999999999999999999999999999	
		*** End of	======================================	
		Dire of		

Iskal

Instrument 1 2015-07-17 08:21:17 Effie_rf

Page 2 of 2

Data File C:\HPCHEM\1\DATA\1507RF\0508.D Sample Name: OLA3-f1-purity Area Percent Report Sorted By:SignalMultiplier:1.0000Dilution:1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=305,180 Ref=off Signal has been modified after loading from rawdata file!
 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ---- ----- ----- ----- ----- 1 3.197 PBA 0.0293 1275.48010 858.55267 100.0000 1275.48010 858.55267 Totals : Signal 2: DAD1 B, Sig=254,10 Ref=off Signal has been modified after loading from rawdata file! 1 3.197 BBA 0.0295 2182.70093 1455.14075 100.0000 2182.70093 1455.14075 Totals : Signal 3: MSD1 TIC, MS File Peak RetTime Type Width Area Height Area # [min] [min] 8 1 3.197 BB 0.0573 1.52962e6 3.82860e5 100.0000 1.52962e6 3.82860e5 Totals :

*** End of Report ***

	Area Percent Report	
Sorted By	: Signal	
Dilution	1.0000	
Use Multiplier &	Dilution Factor with ISTDs	
No peaks found		
no peans round		
	*** End of Report ***	

Supplementary Note 2

Results Summary

YChemH SCREEN TMP-PEG5 - OCT140805 / HBX129659 vs Human Islets Langerhans_RP1

Mon, Nov 21, 2016 - 04:31 PM

Screen Parameters

Nature	cDNA
Reference Bait	TMP-PEG5 - OCT140805 / HBX129659 ; hgx4366v1
Prey Library	Human Islets Langerhans_RP1
Vector(s)	pB409 (N-LexA-eDHFR-C)
Processed Clones	76 (pB409_A)
Analyzed Interactions	135 millions (pB409_A)
3AT Concentration	0.0 mM (pB409_A)

Global PBS®

	Global PBS (for Interactions represented in the Screen)	Nb	%
Α	Very high confidence in the interaction	1	3.8%
В	High confidence in the interaction	5	19.2%
С	Good confidence in the interaction	1	3.8%
D	Moderate confidence in the interaction This category is the most difficult to interpret because it mixes two classes of interactions : - False-positive interactions - Interactions hardly detectable by the Y2H technique (low representation of the mRNA in the library, prey folding, prey toxicity in yeast)	15	57.7%
E	Interactions involving highly connected prey domains, warning of non-specific interaction. The threshold for high connectivity is 6. They can be classified in different categories: - Prey proteins that are known to be highly connected due to their biological function - Proteins with a prey interacting domain that contains a known protein interaction motif or a biochemically promiscuous motif	4	15.4%
F	Experimentally proven technical artifacts	0	0.0%
	Non Appliable		
N/A	The PBS is a score that is automatically computed through algorithms and cannot be attri - All the fragments of the same reference CDS are antisense - The 5p sequence is missing - All the fragments of the same reference CDS are either all OOF1 or all OOF2 - All the fragments of the same reference CDS lie in the 5' or 3' UTR	buted for the follow	ing reasons :

Prey Fragment Analysis

Symbols	Means
*	The fragment contains the full length CDS
5	Fragment is fully in 5' UTR
2	Fragment is fully in 3' UTR
×	Fragment contains at least one In Frame STOP codon
[NR]	Fragment was found to be non relevant (poor quality, high N density)
IF OOF1 OOF2	With regard to the theoretical frame of each corresponding CDS (GeneBank), fragments are cloned in frame (IF) if they are in the same frame as Gal4AD.In general, polypeptides synthesized from OOF fragments are not considered of biological interest, unless found together with another frame. However, some of the proteins expressed from an OOF fragment can be translated in the correct frame, due to the existence of natural frame-shift events during translation in yeast
??	Unidentified frame when : - The clone sequence is antisense - The 5p sequence is missing
Ν	Antisense
StartStop	Position of the 5p and 3p prey fragment ends, relative to the position of the ATG start codon (A=0) $(A=0)$

Clone Name	Type Seq	Gene Name (Best Match)	StartStop (nt)	Frame	Sense	%ld 5p	%ld 3p	PBS
pB409_A- 163	5р/Зр	Homo sapiens - ALDH3A2	-1611362	OOF2		94.6	98.1	В
pB409_A-3	5p/3p	Homo sapiens - ALDH3A2	-1601362	IF		97.3	98.9	в
pB409_A-41	5р/Зр	Homo sapiens - ALDH3A2	-1601362	IF		99.1	98.4	в
pB409_A- 187	5p/3p	Homo sapiens - ALDH3A2	-1601362	IF		97.6	94.5	В
pB409_A-6	5р/Зр	Homo sapiens - ALDH3A2	-1601362	IF		100.0	95.2	В
pB409_A- 200	5р/Зр	Homo sapiens - ALDH3A2	-1601362	IF		92.9	94.7	В
pB409_A-80	5р/Зр	Homo sapiens - ALDH3A2	-1601362	IF		89.4	97.4	в
pB409_A- 182	5p/3p	Homo sapiens - ALDH3A2	-1601362	IF		97.1	88.5	В
pB409_A-2	5р/Зр	Homo sapiens - ALDH3A2	-1601362	IF		72.8	93.5	В
pB409_A- 201	5р/Зр	Homo sapiens - ALDH3A2	-291384	IF		99.9	97.9	В
pB409_A-90	5р/Зр	Homo sapiens - CBARA1	1141404	IF		97.5	97.6	D
pB409_A-35	5р/Зр	Homo sapiens - CBARA1	1141404	IF		99.2	97.8	D
pB409_A- 106	5р/Зр	Homo sapiens - DNM1L var1	-70280	IF		100.0	100.0	D
pB409_A-98	5р	Homo sapiens - DNMT3A	1887	IF		97.4		D
pB409_A-49	5р/Зр	Homo sapiens - DOT1L	33422915	??	Ν	98.3	98.3	N/A
pB409_A- 149	5р/Зр	Homo sapiens - DZIP1	18592471	OOF2		99.5	99.5	N/A
pB409_A- 190	5р/Зр	Homo sapiens - EPS8L2	1351404	IF		99.7	98.9	D
pB409_A-19	5p/3p	Homo sapiens - FIZ1	2131654 🗙	IF		93.9	95.3	D
pB409_A- 136	5p/3p	Homo sapiens - FN1	57126196	IF		100.0	100.0	D
pB409_A- 162	5p/3p	Homo sapiens - FN1	57126196	IF		99.8	100.0	D
pB409_A-24	5p/3p	Homo sapiens - FN1	57126196	IF		100.0	100.0	D

Clone Name	Type Seq	Gene Name (Best Match)	StartStop (nt)		Frame	Sense	%ld 5p	%ld 3p	PBS
pB409_A- 160	5р/Зр	Homo sapiens - FN1	57126196		IF		99.8	100.0	D
pB409_A-38	5р	Homo sapiens - HEY-L	99477		IF		100.0		
pB409_A- 184	5р	Homo sapiens - HLA-A	481382		??	N	100.0		N/A
pB409_A- 129	5p/3p	Homo sapiens - HMG20A	21594		IF		99.7	100.0	D
pB409_A-66	5р/Зр	Homo sapiens - HNRNPUL1	-971582		IF		99.2	94.8	В
pB409_A- 154	5р/Зр	Homo sapiens - HNRNPUL1	15182105		IF		94.2	99.8	В
pB409_A- 199	5р/Зр	Homo sapiens - HNRNPUL1	15302228		IF		93.0	97.7	в
pB409_A- 144	5р/Зр	Homo sapiens - HNRPU	73252		OOF1		99.4	100.0	N/A
pB409_A- 110	5p/3p	Homo sapiens - ICMT	39694376	~ ×	IF		99.5	100.0	N/A
pB409_A-88	5р/Зр	Homo sapiens - ISOC2	-85772	* X	IF		96.5	98.2	С
pB409_A-73	5р/Зр	Homo sapiens - ISOC2	-82679	* X	IF		96.9	98.1	С
pB409_A-26	5р/Зр	Homo sapiens - KDM2A	42569		IF		100.0	99.8	D
pB409_A- 101	5р	Homo sapiens - MKNK2	72		IF		92.9		Α
pB409_A- 170	5р/Зр	Homo sapiens - MKNK2	1051303	×	IF		97.0	100.0	Α
pB409_A-76	5р/Зр	Homo sapiens - MKNK2	1171299	×	IF		96.3	97.4	Α
pB409_A- 171	5р/Зр	Homo sapiens - MKNK2	1171299	×	IF		96.5	96.2	Α
pB409_A-70	5р/Зр	Homo sapiens - MKNK2	2041301	×	IF		98.3	97.4	Α
pB409_A-11	5р/Зр	Homo sapiens - MKNK2	2041301	×	IF		98.9	97.6	Α
pB409_A- 147	5р/Зр	Homo sapiens - MTRNR2L2	-832396	×	IF		95.5	96.1	N/A
pB409_A-13	5р/Зр	Homo sapiens - PDE4D	11522116		IF		96.6	98.2	D
pB409_A-94	5р/Зр	Homo sapiens - PDE4D	11522116		IF		97.4	98.7	D
pB409_A-68	5р/Зр	Homo sapiens - PDE4D	11522116		IF		96.2	98.0	D
pB409_A-16	5р/Зр	Homo sapiens - PECI	-73922		IF		96.6	92.6	D
pB409_A-14	5р/Зр	Homo sapiens - PECI	-73922		IF		97.2	96.5	D
pB409_A-95	5р/Зр	Human - PECR	-55926	* X	IF		99.7	98.1	D
pB409_A- 137	5p/3p	Human - PECR	-55926	* X	IF		98.0	96.4	D
pB409_A- 208	5р/Зр	Homo sapiens - PRDM15	31354083		IF		98.9	98.1	Е
pB409_A- 104	5р	Homo sapiens - RBBP5	260		OOF2		96.6		N/A
pB409_A- 153	Зр	Homo sapiens - SEC31A	35843945	<u>~</u> ×	OOF2			99.4	N/A
pB409_A- 206	5р/Зр	Homo sapiens - SIRT6	6821		IF		98.0	98.2	в
pB409_A- 194	5p/3p	Homo sapiens - SIRT6	91034		IF		95.8	97.6	в
pB409_A- 169	5p/3p	Homo sapiens - SIRT6	42920		IF		94.7	96.9	В
pB409_A- 183	5p/3p	Homo sapiens - SIRT6	42920		IF		97.7	98.1	в
pB409_A-46	Зр	Homo sapiens - SMURF1	1361		??			80.3	N/A
pB409_A-22	5р/Зр	Homo sapiens - SMURF1	-3101439		IF		98.2	93.7	
pB409_A- 134	5p/3p	Homo sapiens - SMURF1	-3101439		IF		85.3	98.0	
pB409_A- 138	5р/Зр	Homo sapiens - SMURF1	-3101439		IF		99.9	88.9	

Clone Name	Type Seg	Gene Name (Best Match)	Start Ston	(nt)	Frame	Sense	%ld 5n	%ld 3n	PRS
pB409_A-28	5p	Homo sapiens - SMURF1	-26	(110)	00F2	Cense	92.7		E
pB409_A- 127	5р/Зр	Homo sapiens - SNRNP200	51335259		IF		71.8	97.4	D
pB409_A-10	5р/Зр	Homo sapiens - TMED4	298689	×	OOF1		97.4	99.5	N/A
pB409_A- 108	5р/Зр	Homo sapiens - ZFX	12751868		IF		99.5	99.8	D
pB409_A-93	Зр	Homo sapiens - ZNF219	1632		??			94.6	
pB409_A-65	5р/Зр	Homo sapiens - ZNF219	6751626		IF		99.6	95.9	
pB409_A-12	3р	Homo sapiens - ZNF236	3387		??			97.8	в
pB409_A- 161	5р/Зр	Homo sapiens - ZNF236	18903387		IF		97.5	98.3	в
pB409_A- 135	5р/Зр	Homo sapiens - ZNF236	18903387		IF		97.7	96.1	В
pB409_A-29	5p/3p	Homo sapiens - ZNF236	26943810		IF		97.2	97.4	в
pB409_A- 139	5р/Зр	Homo sapiens - ZNF236	26943810		IF		95.8	98.0	В
pB409_A-84	5p/3p	Homo sapiens - ZNF236	26943810		IF		99.1	99.2	в
pB409_A- 213	5р/Зр	Homo sapiens - ZNF267	8881336		IF		100.0	99.6	D
pB409_A-99	5р	Homo sapiens - ZNF584	147		IF		95.6		В
pB409_A-79	5р/Зр	Homo sapiens - ZNF584	1471686	×	IF		85.0	98.3	в
pB409_A- 198	5р/Зр	Homo sapiens - ZNF584	5131233		IF		95.8	97.1	в
pB409_A- 195	5р/Зр	Homo sapiens - ZNF584	5131233		IF		95.7	98.1	В
pB409_A-85	5р/Зр	Homo sapiens - GenMatch	-187	×	IF		100.0	100.0	D

Results Summary

YChemH SCREEN TMP-PEG5 - OCT140805 / HBX129659 vs Zebrafish Embryo_RP1 (18-20 hpf)

Mon, Nov 21, 2016 - 10:47 AM

Screen Parameters

Nature	cDNA
Reference Bait	TMP-PEG5 - OCT140805 / HBX129659 ; hgx4366v1
Prey Library	Zebrafish Embryo_RP1 (18-20 hpf)
Vector(s)	pB409 (N-LexA-eDHFR-C)
Processed Clones	54 (pB409_A)
Analyzed Interactions	122 millions (pB409_A)
3AT Concentration	0.0 mM (pB409_A)

Global PBS®

	Global PBS (for Interactions represented in the Screen)	Nb	%				
Α	Very high confidence in the interaction	2	9.5%				
В	High confidence in the interaction	1	4.8%				
С	Good confidence in the interaction	1	4.8%				
D	Moderate confidence in the interaction This category is the most difficult to interpret because it mixes two classes of interactions : - False-positive interactions - Interactions hardly detectable by the Y2H technique (low representation of the mRNA in the library, prey folding, prey toxicity in yeast)	17	81.0%				
E	Interactions involving highly connected prey domains, warning of non-specific interaction. The threshold for high connectivity is 6. They can be classified in different categories: - Prey proteins that are known to be highly connected due to their biological function - Proteins with a prey interacting domain that contains a known protein interaction motif or a biochemically promiscuous motif	0	0.0%				
F	Experimentally proven technical artifacts	0	0.0%				
Non Appliable							
N/A	The PBS is a score that is automatically computed through algorithms and cannot be attri - All the fragments of the same reference CDS are antisense - The 5p sequence is missing - All the fragments of the same reference CDS are either all OOF1 or all OOF2 - All the fragments of the same reference CDS lie in the 5' or 3' UTR	buted for the follow	ing reasons :				

Prey Fragment Analysis

Symbols	Means
*	The fragment contains the full length CDS
5	Fragment is fully in 5' UTR
7	Fragment is fully in 3' UTR
×	Fragment contains at least one In Frame STOP codon
[NR]	Fragment was found to be non relevant (poor quality, high N density)
IF OOF1 OOF2	With regard to the theoretical frame of each corresponding CDS (GeneBank), fragments are cloned in frame (IF) if they are in the same frame as Gal4AD.In general, polypeptides synthesized from OOF fragments are not considered of biological interest, unless found together with another frame. However, some of the proteins expressed from an OOF fragment can be translated in the correct frame, due to the existence of natural frame-shift events during translation in yeast
??	Unidentified frame when : - The clone sequence is antisense - The 5p sequence is missing
N	Antisense
StartStop	Position of the 5p and 3p prey fragment ends, relative to the position of the ATG start codon (A=0)

Clone Name	Type Seq	Gene Name (Best Match)	StartStop (nt)	Frame	Sense	%ld 5p	%ld 3p	PBS
pB409_A-39	5р/Зр	Danio rerio - LOC100333857	30865 🗙	IF		96.3	95.9	D
pB409_A- 130	5р/Зр	Danio rerio - LOC100333857	30865 🗙	IF		97.5	96.9	D
pB409_A-52	5р/Зр	Danio rerio - LOC103909511	492985	IF		100.0	99.2	D
pB409_A- 103	Зр	Danio rerio - LOC108183936	1049	??			98.3	D
pB409_A- 232	5р/Зр	Danio rerio - LOC108183936	5911049	IF		98.9	98.9	D
pB409_A- 335	5р/Зр	Danio rerio - LOC559111	331260	IF		95.9	96.7	D
pB409_A- 238	5р/Зр	Danio rerio - LOC560099	31264216	IF		94.9	85.7	D
pB409_A- 360	5р/Зр	Danio rerio - LOC567317	-1874	IF		95.0	91.6	D
pB409_A- 209	5р/Зр	Danio rerio - acin1b	25683337	IF		96.2	97.0	Α
pB409_A- 233	5р/Зр	Danio rerio - acin1b	25923316	IF		98.5	97.4	Α
pB409_A- 284	5р/Зр	Danio rerio - acin1b	25923316	IF		99.0	97.5	Α
pB409_A- 243	5р/Зр	Danio rerio - acin1b	26553232	IF		99.7	98.3	Α
pB409_A- 208	5р/Зр	Danio rerio - acin1b	26763288	IF		99.5	98.5	Α
pB409_A- 236	5р/Зр	Danio rerio - acin1b	26763288	IF		99.5	99.0	Α
pB409_A- 169	5р/Зр	Danio rerio - acin1b	26763288	IF		99.5	98.2	Α
pB409_A- 222	5р/Зр	Danio rerio - acin1b	26823488	IF		96.6	97.6	Α
pB409_A- 289	5p/3p	Danio rerio - acin1b	26823488	IF		96.0	96.9	Α
pB409_A- 213	5р/Зр	Danio rerio - acin1b	27303553	IF		93.7	98.4	Α

Clone Name	Type Seq	Gene Name (Best Match)	StartStop	(nt)	Frame	Sense	%ld 5p	%ld 3p	PBS
pB409_A- 318	5р/Зр	Danio rerio - acin1b	27303553		IF		97.7	92.3	Α
pB409_A- 171	5р/Зр	Danio rerio - ctslb	52526		??	Ν	99.8	99.8	N/A
pB409_A- 278	5р/Зр	Danio rerio - drl	4261316	×	IF		95.8	96.2	Α
pB409_A-80	5p/3p	Danio rerio - drl	5881154		IF		99.6	98.1	Α
pB409_A-74	5р/Зр	Danio rerio - drl	5881154		IF		99.8	99.6	Α
pB409_A- 353	5p/3p	Danio rerio - drl	6151085		IF		98.5	98.3	Α
pB409_A- 345	5р	Danio rerio - drl	615		IF		95.0		Α
pB409_A- 287	5р/Зр	Danio rerio - drl	6151085		IF		98.5	98.5	Α
pB409_A- 152	5р	Danio rerio - drl	639		IF		88.2		Α
pB409_A- 122	5р/Зр	Danio rerio - drl	6391338	×	IF		96.6	95.3	Α
pB409_A- 253	5р/Зр	Danio rerio - drl	6391338	×	IF		97.9	95.3	Α
pB409_A- 151	Зр	Danio rerio - exoc6b	2288		??			100.0	D
pB409_A-20	5p/3p	Danio rerio - exoc6b	4592288		IF		98.9	98.1	D
pB409_A-64	5р/Зр	Danio rerio - exoc6b	4592288		IF		99.2	97.1	D
pB409_A-7	5р/Зр	Danio rerio - exoc6b	4592288		IF		90.0	97.8	D
pB409_A- 167	5p/3p	Danio rerio - exoc6b	4592288		IF		99.0	98.4	D
pB409_A- 239	5р/Зр	Danio rerio - exoc6b	4592288		IF		99.0	99.8	D
pB409_A- 172	5р	Danio rerio - kdm2ab	1164		IF		99.7		D
pB409_A- 177	5р/Зр	Danio rerio - kmt2ba	40865053		IF		96.5	100.0	D
pB409_A-49	5p/3p	Danio rerio - osbpl3b	12153110	×	IF		99.7	99.7	D
pB409_A-13	5р/Зр	Danio rerio - pax6b	312903		IF		100.0	100.0	D
pB409_A-92	5р/Зр	Danio rerio - pif1	15434		IF		98.8	98.8	D
pB409_A- 113	5p/3p	Danio rerio - pls3	1381358		IF		93.4	98.1	С
pB409_A-42	5р/Зр	Danio rerio - pls3	2971538		IF		97.7	97.5	С
pB409_A- 294	5р/Зр	Danio rerio - ppp2r5cb	1691337		??	N	98.2	97.2	N/A
pB409_A-73	5р/Зр	Danio rerio - prdm15	16022573		IF		97.2	96.4	D
pB409_A- 293	5р/Зр	Danio rerio - safb	11132102		IF		99.1	97.5	D
pB409_A- 336	5р/Зр	Danio rerio - si:ch211-212k18.5	19322691		IF		99.7	99.2	D
pB409_A-51	5р/Зр	Danio rerio - stil	751132		IF		97.1	97.8	D
pB409_A- 124	5р/Зр	Danio rerio - stil	751132		IF		94.1	97.6	D
pB409_A- 140	5р/Зр	Danio rerio - vars	27003268		IF		99.5	99.3	В
pB409_A- 137	5р/Зр	Danio rerio - vars	27003268		IF		99.5	99.3	в
pB409_A- 295	5р/Зр	Danio rerio - vars	27003268		IF		99.5	99.5	В
pB409_A- 240	5р/Зр	Danio rerio - vars	27993328		IF		99.4	99.4	в
pB409_A- 248	5р/Зр	Danio rerio - zgc:64002	12835	×	IF		97.7	94.3	D

Clone Name	Type Seq	Gene Name (Best Match)	StartStop	(nt)	Frame	Sense	%ld 5p	%ld 3p	PBS
pB409_A- 286	5р/Зр	Danio rerio - zgc:64002	12835	×	IF		99.4	98.9	D