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Reviewers' comments:

Reviewer #1 (Remarks to the Author): 

This manuscript derives a set of brain imaging measures associated with schizophrenia polygenic risk 
(PRS) and attempts to validate these brain measures as potential biomarkers of schizophrenia. The 
paper has several strengths, including the use of large, multi-site datasets for cross-validation and 

replication. The replicated results in fig 5 are particularly impressive. However, several important 
controls are missing and the underlying conceptual rationale driving this work is somewhat unclear. 

Rationale 

Several points in the manuscript mention the goal of validating a biomarker, but a biomarker of what? 
Much of the validation is based on classifying patients and controls, which a clinician can do easily. 
Some evidence is provided that the brain measures are sensitive to genetic risk for schizophrenia, but 

this can also be established by taking a family history. A clinically useful biomarker will provide some 
predictive information about outcome (e.g., who will get ill, who will respond to treatment, etc), and 

this is acknowledged in the introduction, but these questions are not addressed here. Greater clarity 
about precisely what the end goal of this work is would help to frame the paper. 

Controls 
It seems like site effects were removed from the data via simple linear regression, but it has been 

shown that this is often inadequate. The authors should perhaps consider a more sophisticated 
approach, such as ComBat. In the least, the authors should present analyses to show that there are 
no residual site effects (e.g., results of attempts to classify scan site). 

The fMRI data were processed with a fairly minimal processing pipeline, which has been shown to 

perform poorly in removing motion-related artifact (e.g., Ciric et al. Neuroimage, 2017; Parkes et al, 
Neuroimage, 2018). The exclusion criteria are also fairly liberal and do not account for the impact of 

small head movements on the order of 0.2 mm, which can impact fMRI measures (e.g., Power et al; 
Satterthwaite et al). A more thorough investigation of the impact of motion on the differences between 
patients and controls is required. 

The imaging phenotypes are quite coarse, averaging over large patches of anatomically distributed 

brain tissue. This raises the question of whether the classifiers are simply detecting differences in 
global aspects of brain dysfunction rather than anything specific to the regions considered here. In 
this regard, the specificity analysis, which focuses just on seeing whether brain regions that correlated 

with a permuted PRS vector are similar to the observed pattern, do not go far enough. The MRI 
patterns associated with the permuted vectors should be passed forward to the classification and 

other analyses to establish a null benchmark for assessing the specificity of the findings to the 
observed spatial pattern. Demonstrating this would provide strong evidence for the specificity of the 
results. 

It is unclear why the additional 5 PCs are used in the SVM analysis. The mean is being proposed as 

the biomarker, not the PCs. It seems odd to construct a putative biomarker but then classify using 
additional features. And why 5 PCs? Furthermore, the mean and the PCs will not be independent (the 

1st PC is generally very similar to the mean). 

Other 

The original analysis defining the biomarker is associated with an extraordinarily low correlation of 
r=0.074. It is significant because of the large sample size, but few people would consider an effect 

explaining <1% of the variance as noteworthy. Figure 2b shows no association at all. It is therefore 
remarkable that the associated brain measures have predictive utility in the clinical cohorts. One 
explanation may be that the clinical analyses are just picking about global aspects of brain pathology, 

which could be addressed through the specificity analysis mentioned above. Should this not be the 
case, how do the authors explain the utility of something derived from such a weak association in the 

discovery cohort? 



Th results section should provide more detail about the methods as when reporting results. 

I could not find much information about the fusion approach at all. 

Its unclear which specific p-threshold for selecting SNPs from the original GWAS was used in the 
PRS computation. Was the same one used throughout for all analyses? 

There are grammatical errors throughout. Please check. E.g., Line 63 – should be studies; Line 66 – 
should be ‘represents’… and several others elsewhere. 

Reviewer #2 (Remarks to the Author): 

Summary: NCOMMS-21-43466 describes a large cross-sectional association study between 

polygenic risk score (PRS) for schizophrenia (SZ) and multi-modal MRI ( T1w & resting state fMRI). 
Authors establish robust associations between PRS and both modes of MRI data in a large, well-

powered sample (N > 22,000). The authors further use these MRI profiles as brain features to detect / 
predict SZ case-control differences in several independent cohorts. Their results suggest that a 
pattern of SZ-PRS related structure-function alterations are generalisable, performing well as a 

classifier in several naïve datasets as well associating with cognition and SZ symptom profiles. The 
authors further show relative disease specificity – predominately linking the feature profile to psychotic 

disorders, but not mood / neurodevelopment disorders. 

Patterns of associations between SZ PRS and MRI data in UK Biobank have been reported before for 

both T1w (PMID: 34462574) and ALFF modes (PMID: 32514083), making this part of the 
investigation largely confirmatory / repeated. The merit / novelty of the current investigation is in 

demonstrating how these PRS – MRI patterns are observable SZ cases in other datasets. While this 
is also not the first study to show that (discovery) SZ -related brain effects are present in independent 

(test) samples (e.g PMID: 32463560), it is (to my knowledge), the first to show that PRS-brain 
associations can distinguish SZ case/control differences – which may inform more about risk that SZ 
associated confounding. There are a number of points that need further exploration and additional 

clarification. 

Line 60 - Reference 1 does not relate to epidemiology observations of SZ prevalence, but to a prior 
UKBB PRS-SZ brain imaging study. 

Line 64 – Accounts of SZ PRS should be to explain overall liability (which I believe is currently a little 
over 7%, PMID: 25056061), rather than diagnostic variance). 

Line 79 – Polygenic risk for SZ has been associated with brain alterations the cite references [21-24], 
none of which support a relationship between MRI IPDs and SZ-PRS, especially Franke et al., 2016 

[23]. 

Lines 174-185 – I do not think the term ‘replicable’ is applicable here, as the authors are making the 
inference on an extended pool of participants, using different parameters. I would suggest the use of 

a split / independent sample would be more appropriate to make this inference. I would suggest this 
would be useful either way, to ensure the fusion model / pattern is not overfitting the data. 

Line 181 – well replicated (>80%) with different PRS thresholds is misleading – the only thresholds 
used are various pruning strategies, not P-thresholds (supplementary material). See also query for 

405-409. 

Line 224 (and throughout manuscript) – There are well-established negative associations between SZ 

- PRS and intelligence / cognition (e.g. PMID: 34347035). While The PRS-brain features maybe 
specific to SZ, how much of this variance can be explained by reduced IQ in UKBB participants with 

high SZ-PRS and lower IQ in the patient samples? 



Line 405 - 409 – It was not clear why the authors chose to restrict their SZ PRS to SNPs that 
surpassed GWAS threshold (P < 5 * 10 – 8) when more liberal P-threshold (e.g P<0.05) explain more 

variance in case-control status (PMID: 25056061). 

Lines 412-414 – I am slightly concerned about the FD threshold used for exclusion criteria of head 
motion. A mean FD of 2.5mm (nearly 1 voxel) is extremely liberal censoring protocol (typically > 
0.2mm mean FD for rsfMRI, PMID: 29440410) 

Lines 416 - mean FD ~ PRS correlation P <0.5, do authors mean P < 0.05, as association between 

Mean FD and PRS0.1 was p = 0.09 (supplementary, line 245)?
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Below, we shown the reviewers’ comments in black and the responses to the comments in blue. 

For convenience, we have also included the updated text added to the manuscript which is underlined. 

Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This manuscript derives a set of brain imaging measures associated with schizophrenia polygenic risk 

(PRS) and attempts to validate these brain measures as potential biomarkers of schizophrenia. The 

paper has several strengths, including the use of large, multi-site datasets for cross-validation and 

replication. The replicated results in fig. 5 are particularly impressive. However, several important 

controls are missing and the underlying conceptual rationale driving this work is somewhat unclear. 

Thank you for the careful reading, helpful comments, and constructive suggestions, which have 

significantly improved the presentation of the manuscript.  

1. Rationale 

Several points in the manuscript mention the goal of validating a biomarker, but a biomarker of what? 

Much of the validation is based on classifying patients and controls, which a clinician can do easily. 

Some evidence is provided that the brain measures are sensitive to genetic risk for schizophrenia, but 

this can also be established by taking a family history. A clinically useful biomarker will provide some 

predictive information about outcome (e.g., who will get ill, who will respond to treatment, etc), and 

this is acknowledged in the introduction, but these questions are not addressed here. Greater clarity 

about precisely what the end goal of this work is would help to frame the paper. 

Thank you for the comments. Our responses are below: 

1.1 “a biomarker of what?” 

We identified a schizophrenia polygenic risk (PRS)-associated multimodal frontotemporal brain 

network based on large UKB dataset (healthy Caucasian, N = 22,459), i.e., a MRI biomarker of 

schizophrenic genetic risk. All previous PRS and imaging associating analysis were ROI-based single 

modality correlation analysis without demonstrating the biomarker ability (neither classification nor 

prediction). In contrast, this study first investigated schizophrenic PRS-associated pattern using fALFF 

and GMV, and further verified its diagnostic ability in discriminating SZ from HC and its predictive 

ability in estimating the risk scale, symptom severity and cognitive scores for SZ in four independent 

SZ cohorts. Its specificity for SZ was also demonstrated by multi-disease comparison: most severe in 

schizophrenia and schizo-affective disorder, milder in bipolar disorder, and indistinguishable from 
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healthy controls in autism, depression and attention-deficit hyperactivity disorder.  

1.2 “Much of the validation is based on classifying patients and controls, which a clinician can 

do easily.” 

We acknowledge that a psychiatrist could diagnose who has schizophrenia. However, the problem 

is that there are no existing gold standards for the diagnoses of schizophrenia. The current diagnostic 

systems (DSM-V and ICD-10) for psychiatry mainly rely upon presented signs and self-reported 

symptoms. In other words, the diagnosis is based on a descriptive collection of behaviors without the 

availability of any objective test to diagnose patients. Thus DSM/ICD diagnoses are highly reliable 

without underlying biological validity. And, perhaps most important, the presenting signs and 

symptoms, do not capture fundamental underlying mechanisms of neuro-dysfunction for 

schizophrenia (identical symptoms with polar opposite mechanisms). Indeed, the Research Domain 

Criteria (RDoC) within the US NIMH were proposed to help move towards a diagnostic system that 

has both reliability and validity by identifying more objective biomarkers to diagnose mental 

disorders1. The test-retest and interrater reliability for SZ diagnosis is 0.8 [95% CI: 0.76–0.84], 

however for schizo-affective disorder this is only 0.57 [95% CI: 0.41-0.73]2. The multimodal MRI-

based machine learning pipeline proposed in this study provides a SZ diagnosis reliability at 0.86 [95% 

CI: 0.84–0.9]. Additional MRI biomarker identification might increase diagnostic reliability3 and 

inform treatment decisions. For these patients, a resting state fMRI and sMRI analysis might be an 

important diagnostic improvement informing treatment decisions (note that only MRI features were 

used in the classification and prediction analyses, while the PRS was not included). The fact that the 

reported classification and prediction were implemented with data obtained from rest-fMRI and sMRI 

scans of under 10 minutes’ duration, speaks to the feasibility and cost-effectiveness of our approach 

(clinician needs at least 15 minutes’ clinical interview to diagnose patients). Furthermore, the 

identified PRS-related pattern that might assist the clinician in differentiating whether a first episode 

psychotic patient has schizophrenia versus bipolar-I with psychosis, would be clinically useful. Also, 

assistance in differentiating prodromal SZ in patients with Autism Spectrum Disorder who are 

exhibiting odd beliefs or perceptions, could be important. 

Collectively, identifying neuroimaging features to classify patients and controls will contribute to 

identify an objective dimension that can achieve high diagnostic reliability and consistency across 

different raters and also provide potentially important biological information about the disorder to 

validate categories. 
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1.3 “Greater clarity about precisely what the end goal of this work is would help to frame the 

paper.” 

We appreciate this point. The end goal of this study is to 1) identify the genetic risk-associated 

MRI features in schizophrenia, and 2) whether these features can be used to distinguish individuals 

with and without the disorder, and 3) whether those same features are related to cognitive deficits and 

overall symptom severity, and further 4) whether such imaging features are specific to schizophrenia. 

Although brain abnormalities linked with PRS have been reported in schizophrenia, prior studies 

focused on a single imaging modality and used a region of interest (ROI) based simple correlation 

analysis. Through a novel multimodal fusion with reference approach, we are able to identify PRS-

associated brain signatures, which may serve as potential objective biomarkers for disease 

identification, risk prediction, and symptom estimation after rigorous cross validation.  

To clarify, the existing literature in the field of PRS and neuroimaging association studies in SZ 

has mainly focused on pathophysiology explanations of SZ, while our current study goes beyond PRS 

and neuroimaging associations by testing its ability in classification and prediction, and demonstrating 

its specificity within psychosis (frontotemporal alterations were most severe in schizophrenia and 

schizo-affective, milder in bipolar), and indistinguishable from HC in autism, depression and ADHD. 

In conclusion, this work moves the field forward from unimodal, ROI-based associations with 

PRS to multimodal, whole-brain data-driven analysis with stringent cross-cohort validation in 

prediction and classification. These findings indicate the potential of the identified PRS-associated 

multimodal frontotemporal network to serve as a trans-diagnostic gene intermediate brain 

signature specific to SZ, which underlies the genetic pathophysiology of schizophrenia and also 

provides the first evidence for its potential to be used as a biomarker. 

We have revised the introduction and discussion according to the reviewer’s comments, see page 

4 and 20-23. “Biomarker” was removed from the title, and was replaced by “potential biomarker” 

throughout the manuscript. 

2. Controls 

It seems like site effects were removed from the data via simple linear regression, but it has been shown 

that this is often inadequate. The authors should perhaps consider a more sophisticated approach, such 

as ComBat. In the least, the authors should present analyses to show that there are no residual site 

effects (e.g., results of attempts to classify scan site). 

    Thank you for the valuable comments. As mention in 4, ComBat substantially increase the 

statistical significance of neuroimaging findings compared to random-effects meta-analyses. However, 

it was proposed to reduce the heterogeneity between sites related factors in meta-analysis generating 
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from different sites (such as ENIGMA project). For ENIGMA, researchers using the same pipeline to 

perform the neuroimaging preprocessing, then share the statistical results to do the meta/mega analysis. 

This means that the researchers do not actually share the data, but only share the results to derive a 

pooled estimation of statistical significance. However, in current study, we did have imaging data from 

each cohort. Here, in response to the reviewer, we added several additional experiments with regard to 

discuss the site effect. 

2.1 Site effect on PRS-MRI fusion within UKB  

For the MRI imaging data, there are three sites available in UKB, including Cheadle, Reading 

and Newcastle. We performed the PRS-guided fusion within each site separately to test the similarity 

of the identified PRS-associated frontotemporal pattern. Dice index, equation (1) was used to calculate 

the overlap percentage of the spatial maps between sites. Dice index is a statistical validation for 

comparing the spatial similarity of binary images, for example in image segmentation accuracy 

assessment. We calculated the Dice index of the identified PRS-associated component between two 

cohorts using only voxels masked at |Z|>2, resulting in two masks from UKB (mask_UKB) and 

Cheadle/Reading/Newcastle (mask_Cheadle/Reading/Newcastle) respectively. Only voxels that fell 

into the union of the masks (mask_UKB ∪mask_Cheadle) were used to calculate the cross-cohort 

similarity as shown in equation (1).   

Dice index = 2
�(�∩�)

�(�)��(�)
                                (1) 

Supplementary Table 4. Spatial similarity between UKB and Cheadle/Reading/Newcastle sites.

Dice Cheadle Reading Newcastle 

UKB fALFF 0.92 0.75 0.77 

UKB GMV 0.91 0.70 0.81 
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Supplementary Figure 9. PRS pattern for UKB (a), Cheadle (b), Reading (c), and Newcastle (d). The 

spatial similarities were > 0.70 across UKB, Cheadle, Reading, and Newcastle for both fALFF and 

GMV components (Supplementary Table 4).

The above results (Supplementary Table 4 and Supplementary Fig. 9) showed that there were 

high spatial similarities among Cheadle, Reading, Newcastle and UKB. The Dice index for GMV and 

fALFF components were all >0.70, suggesting that there was high overlap percentage of the spatial 

maps cross different sites within UKB. Thus we do not believe that site would be a major confounding 

factor with respect to the identified PRS frontotemporal multimodal pattern.

2.2 Site effect in classification

There are 4 independent SZ cohorts (BSNIP, COBRE, fBIRN, MPRC) included in our current 

study. However, different SZ cohorts consist different number of sites. There are 5 sites for BSNIP, 1 

site for COBRE, 7 sites for fBIRN and 3 sites for MPRC. Since COBRE is a single site, so the 
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classification on scanning sites are performed for BSNIP (class=3), fBIRN (class=7) and MPRC 

(class=3). The mean fALFF/GMV plus the first 5PCs within positive and negative PRS-associated 

brain networks were used as feature input and sites were treated as labels in the SVM classifications. 

Results (Supplementary Fig. 14) showed that all the classification accuracies were approximated as 

around 50% as a random distributed accuracy (the more number of site the lower classification 

accuracy). This means that site is not a major confounding factor for the current SZ-HC 

classification results.

Supplementary Figure 14. The classification results on scan sites for BSNIP, fBIRN and MPRC 

cohorts. Upper row represents ROC; lower row represents confusion matrix. 

2.3 Site effect on PRS, PANSS and cognition

ANOVA test (site was used as covariate) showed that there was no site difference of PRS (p = 

0.96) within UKB. The site differences of PANSS and cognition for independent SZ cohorts were 

shown in the following Table. Since clinical scores are not available for MPRC cohort, and COBRE is 

a single site cohort, so these two cohorts were not included in the following Table.
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Site differences on cognition and PANSS scores for fBRIN and BSNIP cohorts. 

Anova (p value) Cognition  PANSS positive PANSS negative 

BSNIP 0.13 0.093 0.165 

fBIRN 0.08 0.93 0.86 

Collectively, all above results indicate that site is not a major confounding factor for the 

identified PRS pattern and SZ-HC classification. We have added these contents to Supplementary 

“Site effect” section.  

3. The fMRI data were processed with a fairly minimal processing pipeline, which has been shown to 

perform poorly in removing motion-related artifact (e.g., Ciric et al. Neuroimage, 2017; Parkes et al, 

Neuroimage, 2018). The exclusion criteria are also fairly liberal and do not account for the impact of 

small head movements on the order of 0.2 mm, which can impact fMRI measures (e.g., Power et al; 

Satterthwaite et al). A more thorough investigation of the impact of motion on the differences between 

patients and controls is required. 

Thank you for the comments. We have added the following experiments with regard to the effect 

of head motion.  

3.1 Motion on preprocessing 

Please note that in the preprocessing procedure for fMRI, we despiked the fMRI data: nuisance 

covariates (6 head motions + cerebrospinal fluid [CSF] + white matter [WM]) + global signal were 

regressed out via a general linear model from the voxel time series. We did remove outlier subjects 

who have framewise displacements (FD) exceeding 1.0 mm, as well as head motion exceeding 2.5 mm 

of maximal translation (in any direction of x, y or z) or 1.0o of maximal rotation throughout the course 

of scanning. Results indicate all FDs (mean framewise displacements, mean of root of mean square 

frame-to-frame head motions assuming 50 mm head radius5) for all subjects were <1 mm at every time 

point. In addition to denoising the BOLD fMRI signal in preprocessing, ICA approach used in current 

study can further isolate artifact components (motion and noise) from fMRI6. 

3.2 PRS pattern within UKB subset with head motion <0.2mm  

As requested from the reviewer, we also excluded subjects with >0.2mm FD to get a subset of 

UKB (N = 13490, 60% subjects’ head motion <0.2mm) to perform the same PRS-guided fusion to test 
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whether the identified multimodal frontotemporal pattern can be validated. Result (Supplementary 

Fig. 10) showed that the identified PRS-associated pattern (frontotemporal cortex and thalamus in 

fALFF, accompanied with thalamus, hippocampus, para-hippocampus and temporal cortex in GMV) 

can be replicated on UKB subset with FD < 0.2mm. This tells us that the head motion is not a major 

confounding factor for the current fusion results. 

Supplementary Figure 10. (a) The original PRS-associated fALFF+GMV covarying pattern for UKB. 

(b) The PRS pattern on UKB subset with head motion < 0.2mm.

3.3 Group differences of mean FD between SZ and HC

We have calculated the group differences of mean FD between HC and SZ across the 4 SZ cohorts 

included in this study. Note that there were no significant differences between patients and controls on 

mean FD for all the 4 SZ cohorts, namely,

BSNIP, HC: mean=0.22±0.11mm, SZ: 0.26±0.24mm, two sample t-test: p = 0.25

FBIRN, HC: mean=0.25±0.18mm, SZ: 0.27±0.21mm, two sample t-test: p = 0.65

COBRE, HC: mean=0.22±0.12mm, SZ: 0.21±0.11 mm, two sample t-test: p = 0.77

MPRC, HC: mean=0.12±0.22mm, SZ: 0.18±0.10mm, two sample t-test: p = 0.15

3.4 Partial correlation after regressing out mean FD

Partial correlation has been proposed as an alternative approach for removing spurious shared 

variance in correlation analysis7. Here, we also performed partial correlation analysis between the 

identified component and PRS by regressing out mean FD. Result showed that the significance level 

was not changed by mean FD (p = 5.2e-30* for fALFF, p = 2.3e-28* for GMV as in Fig. 2b).
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3.5 fALFF not functional connectivity 

[1] Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE. 
Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for 
studies of neurodevelopment in youth. Neuroimage. 2012;60:623-632. 

[2] Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, 
Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved framework for confound regression and 
filtering for control of motion artifact in the preprocessing of resting-state functional connectivity 
data. Neuroimage. 2013;64:240-256. 

[3] Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff 
SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD. Benchmarking of participant-
level confound regression strategies for the control of motion artifact in studies of functional 
connectivity. Neuroimage. 2017;154:174-187. 

[4] Ciric R, Rosen AFG, Erus G, Cieslak M, Adebimpe A, Cook PA, Bassett DS, Davatzikos C, Wolf 
DH, Satterthwaite TD. Mitigating head motion artifact in functional connectivity MRI. Nature 
protocols. 2018;13:2801-2826. 

[5] Power JD, Plitt M, Gotts SJ, Kundu P, Voon V, Bandettini PA, Martin A. Ridding fMRI data of 
motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho 
data. Proceedings of the National Academy of Sciences of the United States of America. 
2018;115:E2105-E2114. 

The above recommended papers found that head motion was sensitive to functional connectivity 

analysis. However, the current fusion analysis was conducted on the spatial maps of fALFF not 

functional connectivity. While it is the functional connectivity derived from rs-fMRI that is more 

sensitive to head motion8-12.  

Collectively, considering there was no group difference in head motion between SZ and HC, and 

no significant correlation between mean FD and PRS, and the partial correlation between the identified 

component and PRS remained significant after regressing out mean FD, the PRS-pattern can be 

replicated within UKB subset with head motion < 0.2mm, and the current fusion analysis was based 

on fALFF not functional connectivity, we believe that micro-motion is not a major factor affecting the 

current results. 

The motion related papers referred by the reviewer were cited in the revised manuscript, and the 

above contents were added in Supplementary “Motion effect” section and the main text “Site and 

motion effects on the identified PRS-pattern” section (page 12-13), respectively.  

4. The imaging phenotypes are quite coarse, averaging over large patches of anatomically distributed 

brain tissue. This raises the question of whether the classifiers are simply detecting differences in 

global aspects of brain dysfunction rather than anything specific to the regions considered here. In this 

regard, the specificity analysis, which focuses just on seeing whether brain regions that correlated with 

a permuted PRS vector are similar to the observed pattern, do not go far enough. The MRI patterns 
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associated with the permuted vectors should be passed forward to the classification and other analyses 

to establish a null benchmark for assessing the specificity of the findings to the observed spatial pattern. 

Demonstrating this would provide strong evidence for the specificity of the results. 

Thank you for the instructive comments. Here, in response to the reviewer, we emphasized the 

following points: 

4.1 Imaging phenotypes 

“The imaging phenotypes are quite coarse, averaging over large patches of anatomically distributed 

brain tissue.”

The multimodal imaging phenotypes (fALFF and GMV) used in the current study are voxel-wise 

measures, not averaging over large parches. To calculate fractional amplitude of low frequency 

fluctuations (fALFF)13, the sum of the amplitude values in the 0.01 to 0.08 Hz low-frequency power 

range was divided by the sum of the amplitudes over the entire detectable power spectrum (range: 0–

0.25 Hz)14. GMV was generated from the segmented sMRI. Both fALFF and GMV were calculated 

voxel-wise. 

4.2 Specificity in classification and group difference test 

“This raises the question of whether the classifiers are simply detecting differences in global aspects 

of brain dysfunction rather than anything specific to the regions considered here.”

Note that both the classification and group difference analysis between SZ and HC were based 

on the features extracted from the identified PRS-associated frontotemporal pattern (targeted ROIs). 

So it is not the classifiers detecting differences in global brain dysfunction.  

“The MRI patterns associated with the permuted vectors should be passed forward to the classification 

and other analyses to establish a null benchmark for assessing the specificity of the findings to the 

observed spatial pattern. Demonstrating this would provide strong evidence for the specificity of the 

results.”

In response to the reviewer, we performed both the classification and group difference test 

based on features from the null pattern (Supplementary Fig. 4b) identified from the permuted PRS. 

The same feature extraction procedure was used to generate features from the null pattern (the mean 

plus the first 5PCs from the identified ROIs). As displayed in Supplementary Fig. 13, there are no 

group differences between SZ and HC of the null pattern, and the classification accuracy is around 50% 

across the 4 independent SZ cohorts. When comparing with Fig. 4 (the main text), it is clear that the 
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identified PRS-associated frontotemporal pattern is specific in discriminating between SZ and HC.

Supplementary Figure 4. (a) The fALFF+GMV covarying pattern associated with PRS. (b) The most 
frequently occurring (voxels with more than 60% occurrences) covarying pattern associated with 500 
times permuted PRS.
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Supplementary Figure 13. (a) Group differences between SZ and HC of the null pattern 

(Supplementary Fig. 4b) for independent BSNIP-1, COBRE, fBIRN and MPRC cohorts, respectively. 

(b) ROC curves of the classification results between SZ and HC for BSNIP-1, COBRE, fBIRN and 

MPRC cohorts, respectively.
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Figure 4. (a) Group differences between SZ and HC of PRS-associated the positive and negative 

networks for independent BSNIP-1, COBRE, fBIRN and MPRC cohorts, respectively. (b) ROC curves 

of the classification results between SZ and HC for BSNIP-1, COBRE, fBIRN and MPRC cohorts, 

respectively.
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The above contents on the specificity demonstration of the identified PRS-associated pattern in 

classification and group difference analysis were added to the main text (page 13-14) and 

Supplementary file.  

5. It is unclear why the additional 5 PCs are used in the SVM analysis. The mean is being proposed as 

the biomarker, not the PCs. It seems odd to construct a putative biomarker but then classify using 

additional features. And why 5 PCs? Furthermore, the mean and the PCs will not be independent (the 

1st PC is generally very similar to the mean). 

Sorry for the lack of clarification, we response to each of these points below.  

5.1 “Why additional 5 PCs?” 

PCA is a dimensionality-reduction method that is often used to reduce the dimensionality by 

transforming a large set of variables into a smaller one (linearly uncorrelated, i.e., orthogonal) that still 

contains most of the information in the data set. Here, we use the COBRE cohort (the single site data) 

as an example to show the variance explained and the contribution weight in classification for all the 

features (the mean and the 5 PCs). Note that the first 5 PCs captured 99% variance from the 

identified PRS-associated ROIs, while the mean only represented <50% variance 

(Supplementary Fig. 11). In addition, we also plotted the beta weights for the mean and the 5 PCs in 

differentiating between SZ and HC. It is clear that different features contribute differently to the 

classification, and the 1st PC contributes the most, followed by the mean (Supplementary Fig. 12). 

Comparing with group difference tests, classification is a more complex task, which means that only 

the mean feature is not enough (Supplementary Fig. 11-12). This is why we choose 5 additional PCs 

in classification. Moreover, the 5 PCs were all extracted from the same identified PRS-associated 

frontotemporal brain ROIs, not from the whole brain. This tells us that it is the PRS related brain 

region we identified that is informative for the classification analysis. 



15 

Supplementary Figure 11. Percentage of the explained variance comparing PCA components and the 

mean extracted from the identified PRS-associated frontotemporal ROIs. 

Supplementary Figure 12. Beta weights in classification comparing PCA components and the mean 

extracted from the identified PRS-associated frontotemporal ROIs.

5.2 “the 1st PC is generally very similar to the mean”.

Before PCA, all the variables need to be normalized to the same scale, i.e., standardization. 

Mathematically, normalization can be done by subtracting the mean and dividing by the standard 

deviation for each value of each variable (Eq. 1).

� =
����������

�������� ���������
                               (1)
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Then the eigenvalues and eigenvectors were computed from the covariance matrix to extract the 

principle components. So, under certain conditions the mean can be called "a very crude relative of 

PCA", in a sense that PCA will result in the first principal component being proportional to the average 

of all variables (or close to it). Sphericity is perfect or near-perfect. All variables are highly 

orthogonal to all other variables and can be uniquely estimated. Moreover, this often remains 

approximately true if the off-diagonal elements of the covariance matrix are not exactly equal, but are 

of similar magnitude. Under these ideally conditions, the first PC will often be close to the average. 

However, in the current data, not all the variables are perfectly orthogonal to each other, which means 

that the mean is not similar to the 1st PC. We have also calculated the correlation between the mean 

and the 5 PCs. The correlation between the mean and 1st PC is not 1 nor close to 1 (Supplementary 

Table 6).  

Supplementary Table 6. Correlation between the mean the 5 PCs. 

Correlation 1st 2nd 3rd 4th 5th

r 0.53 0.02 0.08 0.27 -0.04 
p 1.2e-20 0.80 0.25 1.7e-04 0.58 

Furthermore, the variance explained by the mean and the 1st PC is not equal (Supplementary Fig. 

11), neither the contribution weight in classification analysis (Supplementary Fig. 12). All the above 

evidence demonstrate that the mean is not similar to the 1st PC as in the current dataset.  

Other 

6. The original analysis defining the biomarker is associated with an extraordinarily low correlation of 

r=0.074. It is significant because of the large sample size, but few people would consider an effect 

explaining <1% of the variance as noteworthy. Figure 2b shows no association at all. It is therefore 

remarkable that the associated brain measures have predictive utility in the clinical cohorts. One 

explanation may be that the clinical analyses are just picking about global aspects of brain pathology, 

which could be addressed through the specificity analysis mentioned above. Should this not be the 

case, how do the authors explain the utility of something derived from such a weak association in the 

discovery cohort? 

We agree the correlation between the identified IC and PRS is not very high due to the large 

sample size. However, compared to the existing studies based on UKB, we found that it is normal that 

the varaince explained was <1% by correlating SZ-PRS with imaging phenotypes15,16 under differnet 

����  thresholds and for all the cortical and subcortical areas. This is consistent with a recently 

published study in Nature 2022 that smaller (sample size) brain wide association studies have reported 
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larger correlations than the largest effects measured in larger samples17.

Figure. As reported in 17, the correlation between cortical thickness and clinical measures decrease as 

sample size increase (left). And the associations were inflated with small sample size (right). 

17Marek, S., et al. Reproducible brain-wide association studies require thousands of individuals. Nature

603, 654-660 (2022).

6.1 Existing PRS-imaging association studies based on UKB

Figure. As reported in 16, associations between schizophrenia PRS and global cortical and regional 



18 

subcortical metrics of human brain structure. A. Barcharts of variance explained by schizophrenia PRS 

(��, y-axis) constructed at each of eight probability thresholds (0.0001 ≤ ����≤ 1, x-axis) for each of 

nine global mean cortical metrics: CT cortical thickness, Vol grey matter volume, SA surface area, IC 

intrinsic curvature, LGI local gyrification index, FA fractional anisotropy, MD mean diffusivity, NDI 

neurite density index, ODI orientation dispersion index. B. Barcharts of variance explained by PRS 

(��, y-axis) constructed at each of eight probability thresholds (0.0001 ≤ ����≤ 1, x-axis) for NDI 

measured at each of seven subcortical regions. 

16Stauffer, E.M., et al. Grey and white matter microstructure is associated with polygenic risk for 
schizophrenia. Molecular psychiatry (2021). 

15Neilson, E., et al. Impact of Polygenic Risk for Schizophrenia on Cortical Structure in UK Biobank. 

Biological psychiatry 86, 536-544 (2019). 

The above published UKB studies showed that the varaince explained was <1% by correlating 

SZ-PRS with imaging phenotypes15,16 under differnet ����  thresholds and for all the cortical and 

subcortical areas. 

6.2 For the current study 

We have calculated the direct correlation between SZ-PRS and voxel wise MRI features 

throughout the brain (60758 and 90638 voxels for fALFF and GMV). The maximum absolute 

correlation r is only 0.03 and 0.028, and the mean r is 0.008 and 0.0006 for fALFF and GMV 

respectively. 

Apart from the voxel wise correlation between SZ-PRS and MRI features, we also tested the 

correlation between the mean values extracted from ALL atlas and SZ-PRS for both fALFF and GMV 

under different ����  thresholds. Results (Supplementary Fig. 3 and Supplementary Table 1) 

showed that the variance explained was <1% for all the brain areas under 3 different ���� thresholds. 



19 

Supplementary Figure 3. Correlations between PRS and the mean values extracted from AAL atlas 

(90 ROIs) for both fALFF and GMV under different ���� thresholds (5.0e-08, 1.0e-04, 0.05).

Supplementary Table 1. Direct correlations between SZ PRS and the mean values extracted from 

AAL atlas (90 areas) for both fALFF and GMV under different ���� thresholds (5.0e-08, 1.0e-04, 

0.05).

Correlation r

���� =5.0e-08 ���� =1.0e-04 ���� =0.05

fALFF GMV fALFF GMV fALFF GMV

AAL 1 -0.017 -0.017 -0.022 -0.0092 0.010 0.0042
AAL 2 0.011 0.016 -0.018 -0.0090 0.0048 0.0038
AAL 3 0.027 -0.021 0.022 -0.010 0.0027 0.0044
AAL 4 -0.024 0.019 0.026 -0.006 0.0005 0.0048
AAL 5 0.014 0.020 0.013 -0.022 0.0073 -0.0049
AAL 6 -0.012 -0.017 -0.0010 -0.013 0.0031 0.0019
AAL 7 0.028 -0.023 -0.025 -0.012 0.0070 0.00081
AAL 8 -0.021 0.026 0.016 -0.014 0.0037 -0.00068
AAL 9 -0.012 -0.022 0.0073 -0.017 0.0011 -0.0022
AAL 10 -0.0058 -0.018 -0.0013 -0.021 0.00046 -0.0018
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AAL 11 -0.020 -0.026 0.017 -0.019 0.0057 -0.0040
AAL 12 -0.014 -0.024 -0.0072 -0.019 0.0071 -0.0022
AAL 13 -0.022 -0.021 0.020 -0.018 0.0027 -0.0039
AAL 14 -0.015 -0.022 -0.0092 -0.022 0.0051 -0.0040
AAL 15 -0.020 -0.021 -0.012 -0.020 0.0049 -0.0065
AAL 16 -0.016 -0.021 -0.006 -0.024 0.0037 -0.00556
AAL 17 -0.0073 -0.017 -0.015 -0.015 -0.0071 -0.00031
AAL 18 -0.0058 -0.021 -0.014 -0.018 -0.0038 -0.0045
AAL 19 -0.012 -0.0081 -0.023 -0.0039 -0.0043 0.0053
AAL 20 -0.015 -0.011 -0.025 -0.0041 -0.0041 0.0079
AAL 21 -0.015 -0.021 -0.0066 -0.019 -0.0059 -0.013
AAL 22 -0.014 -0.027 -0.0097 -0.024 -0.0072 -0.0083
AAL 23 -0.024 -0.024 -0.015 -0.013 0.0011 0.00014
AAL 24 -0.023 -0.024 -0.017 -0.012 0.0027 -0.00033
AAL 25 -0.030 -0.023 -0.023 -0.020 -0.005 -0.0015
AAL 26 -0.024 -0.022 -0.018 -0.016 -0.00068 -0.0017
AAL 27 -0.019 -0.024 -0.0049 -0.021 -0.0073 -0.0045
AAL 28 -0.0070 -0.022 -0.00091 -0.018 -0.0014 -0.0029
AAL 29 -0.013 0.018 -0.015 0.014 -0.0051 0.00096
AAL 30 -0.011 0.017 -0.012 0.016 -0.0022 0.0014
AAL 31 -0.035 -0.018 -0.027 -0.018 -0.012 -0.0024
AAL 32 -0.029 -0.025 -0.026 -0.022 -0.008 -0.0013
AAL 33 -0.017 -0.010 -0.023 -0.013 -0.017 0.00072
AAL 34 -0.021 -0.017 -0.023 -0.016 -0.016 0.0038
AAL 35 -0.020 -0.019 -0.024 -0.016 -0.011 0.0015
AAL 36 -0.024 -0.023 -0.020 -0.016 -0.0072 -0.0035
AAL 37 -0.020 0.014 -0.027 0.014 -0.013 0.0086
AAL 38 -0.014 0.020 0.022 -0.019 -0.011 0.0068
AAL 39 -0.019 0.022 0.022 -0.018 -0.014 0.0026
AAL 40 -0.016 0.022 -0.020 0.017 -0.011 0.0036
AAL 41 -0.019 -0.011 -0.022 -0.016 -0.011 -0.010
AAL 42 -0.0058 -0.017 -0.012 -0.020 -0.011 -0.0058
AAL 43 -0.024 -0.018 -0.023 -0.014 -0.012 0.0039
AAL 44 -0.021 -0.020 -0.022 -0.015 -0.011 -0.001
AAL 45 -0.023 -0.0083 -0.023 -0.0024 -0.012 0.0076
AAL 46 -0.023 -0.017 -0.023 -0.014 -0.015 0.003
AAL 47 -0.018 -0.019 -0.023 -0.013 -0.012 -0.00098
AAL 48 -0.014 -0.020 -0.023 -0.012 -0.014 -0.00068
AAL 49 -0.018 -0.013 -0.021 -0.009 -0.014 0.0013
AAL 50 -0.020 -0.0087 -0.017 -0.010 -0.011 0.0035
AAL 51 -0.024 -0.020 -0.021 -0.015 -0.012 0.00075
AAL 52 -0.027 -0.012 -0.018 -0.010 -0.0099 0.0048
AAL 53 -0.018 -0.015 -0.017 -0.0094 -0.011 -0.0034
AAL 54 -0.017 -0.014 -0.016 -0.011 -0.012 -0.00096
AAL 55 -0.016 -0.018 -0.018 -0.021 -0.012 -0.0021
AAL 56 -0.012 -0.019 -0.017 -0.017 -0.010 -0.0011
AAL 57 -0.0078 -0.016 -0.018 -0.012 -0.015 -0.00015
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AAL 58 -0.0075 -0.011 -0.016 -0.015 -0.012 -0.0015
AAL 59 -0.01 -0.013 -0.019 -0.007 -0.0063 0.0021
AAL 60 -0.010 -0.011 -0.016 -0.0011 -0.0020 0.0058
AAL 61 -0.014 -0.016 -0.018 -0.009 -0.0031 0.0019
AAL 62 -0.010 -0.010 -0.0097 -0.00065 -0.0017 0.0002
AAL 63 -0.018 -0.017 -0.015 -0.0099 -0.0044 0.0034
AAL 64 -0.019 -0.020 -0.020 -0.011 -0.0058 -0.0044
AAL 65 -0.019 -0.019 -0.020 -0.013 -0.00051 0.0015
AAL 66 -0.014 -0.018 -0.0078 -0.0073 0.0075 0.0013
AAL 67 -0.020 -0.016 -0.023 -0.0096 -0.0070 0.0033
AAL 68 -0.021 -0.016 -0.020 -0.015 -0.0089 0.0037
AAL 69 -0.0095 -9.6e-05 -0.020 -0.0083 -0.0067 0.0032
AAL 70 -0.013 -0.0041 -0.020 -0.010 -0.011 0.0018
AAL 71 -0.014 -0.013 -0.018 -0.00096 -0.0084 0.0015
AAL 72 -0.012 -0.014 -0.013 -0.00024 -0.0097 0.00665
AAL 73 -0.014 -0.013 -0.017 -0.015 -0.016 -0.0053
AAL 74 -0.0098 -0.016 -0.015 -0.016 -0.010 -0.0027
AAL 74 -0.012 0.00021 -0.015 -0.0033 -0.015 0.0047
AAL 76 -0.0080 -0.0017 -0.010 -0.015 -0.0099 -0.00031
AAL 77 -0.013 -0.014 -0.022 -0.0023 -0.022 -0.0037
AAL 78 -0.011 -0.015 -0.021 -0.0069 -0.019 -0.0046
AAL 79 -0.0059 -0.025 -0.013 -0.022 -0.012 -0.0055
AAL 80 -0.0074 -0.018 -0.010 -0.018 -0.014 -0.00032
AAL 81 0.012 -0.024 0.0088 -0.016 0.011 0.00015
AAL 82 0.010 -0.024 -0.013 -0.016 0.0041 4.9e-05
AAL 83 -0.013 -0.025 -0.0082 -0.019 0.0062 -0.0025
AAL 84 -0.0071 -0.020 0.0060 -0.015 0.00042 -0.0021
AAL 85 -0.011 -0.021 0.012 -0.016 0.00081 0.00042
AAL 86 -0.012 -0.021 -0.010 -0.015 0.0050 0.0023
AAL 87 0.0063 -0.015 0.0022 -0.0096 0.0052 0.0024
AAL 88 -0.00068 -0.014 0.0053 -0.014 0.011 0.0025
AAL 89 0.014 -0.023 -0.011 -0.022 0.0010 -0.003
AAL 90 -0.0096 -0.023 -0.0070 -0.020 0.0041 -0.0019

6.3 Power analysis 

In response to the reviewer, we also calculated the statistical power of SZ-PRS and the two MRI 

features for fusion input (fALFF and GMV) using G*Power software18

(http://www.softpedia.com/get/Science-CAD/G-Power.shtml). As in this study, the sample size is 

N=22,773 HCs. The effect size of PRS correlates with fALFF loadings is r = 0.074. Given the 

significance level � = 0.05, sample size (N=22,773), and the effect size = 0.074, the statistical power 

of the correlation is 1 (Supplementary Fig. 4). The same method was used to calculate the MRI 
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features, achieving the statistical power of 1 for fALFF and 1 for GMV respectively, which are all high 

enough to assure accurate and robust conclusions about the correlations between PRS and MRI 

loadings detected. We have added the above contents in Supplementary “Power analysis” and 

“Weakly association between PRS and the identified components” sections.

Supplementary Figure 4. Statistical power generated from the G*Power software.

6.4 “One explanation may be that the clinical analyses are just picking about global aspects of 

brain pathology, which could be addressed through the specificity analysis mentioned above.”

The specificity of the identified PRS pattern comparing with the null pattern was also validated. 

The classification and group difference test based on features from the null pattern (Supplementary 

Fig. 4b) identified from the permuted PRS were validated. As displayed in Supplementary Fig. 13a, 

there are no group differences between SZ and HC of the null pattern, and the classification accuracy 

is around 50% across the 4 independent SZ cohorts (Supplementary Fig. 13b). When comparing with 

Fig. 4 (the main text), it is clear that the identified PRS-associated pattern is specific in discriminating 

between SZ and HC. Please also note that the identified PRS pattern can predict cognition and 

symptoms for SZ across 3 independent cohorts. The prediction was rigorous, which means that for 

each clinical measure, the same multiple linear regression model and the same ROIs were used for all 

the 3 SZ cohorts. Therefore, the identified PRS-associated frontotemporal pattern is robust in 

predicting cognition (attention, working memory and composite scores) and PANSS negative scores.
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Supplementary Figure 4. (a) The fALFF+GMV covarying pattern associated with PRS. (b) The most 
frequently occurring (voxels with more than 60% occurrences) covarying pattern associated with 500 
times permuted PRS.
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Supplementary Figure 13. (a) Group differences between SZ and HC of the permuted pattern for 

independent BSNIP-1, COBRE, fBIRN and MPRC cohorts, respectively. (b) ROC curves of the 

classification results between SZ and HC for BSNIP-1, COBRE, fBIRN and MPRC cohorts, 

respectively.
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We also added the following statements in discussion. 

……“Despite reliable PRS pattern validation, the PRS was only weakly associated with the 

components’ loadings, but with high enough statistical power (1 − β = 1). This is in line with most 

previous published large sample sized UKB SZ PRS-MRI association studies15-17”…… 

7. The results section should provide more detail about the methods as when reporting results. 

    We have added more methods details when reporting related results as follows: 

“Schizophrenia PRS were calculated based on Psychiatric Genomics Consortium Schizophrenia 

(PGC SZ 2) 108 risk loci19, thresholded at ����<5.0e-08 and pruned at �� < 0.1, which followed a 

normal distribution (Supplementary Fig. 1). Head motion, site, gender and age were regressed out 

from fALFF/GMV feature matrices prior to fusion analysis. Within the healthy Caucasian UKB data 

(N=22,459, demographic information can be found in Table 1), fusion with PRS was performed to 

identify PRS-associated fALFF+GMV multimodal pattern (details on fusion with reference method 

can be found in Methods section).”…… 

“The robustness of the identified PRS pattern was also validated. The same PRS-guided fusion 

was performed on different split of UKB sample (healthy Caucasian, healthy subjects and all available 

subjects that passed MRI quality control) under different ���� (5.0e-08, 1.0e-04, 0.05) and pruning 

(�� < 0.1 and 0.2) thresholds.”…… 

“The identified PRS-associated fALFF+GMV components were separated into positive (Z>0) 

and negative (Z<0) brain networks based on the Z-scored brain maps. Thus 4 PRS-associated brain 

features (fALFF_positive, fALFF_negative, GMV_positive, GMV_negative) were obtained by 

averaging fALFF/GMV in these networks. Two sample t-tests were used to estimate the group 

differences of these 4 PRS features between SZ and HC.”…… 

“The classification ability of the identified PRS-associated brain network was validated by using 

a linear support vector machine (SVM) approach to classify SZ patients and HCs. In addition to the 

averaged fALFF/GMV values, the first 5 principal components (PC, obtained from principal 

component analysis) resulted from decomposing the fALFF/GMV positive/negative feature matrices 

within the 4 PRS networks were also included as feature input, resulting in 6 features for each (the 

mean + 5 PC) PRS-associated network, i.e., 24 features in each HC-SZ cohorts (details on feature 

selection and SVM classification can be found in Methods and Supplementary “Feature selection 

and classification” sections). Note that the first 5 PCs captured 99% variance from the identified PRS-

associated ROIs, while the mean only represented <50% variance (Supplementary Fig. 11).”…… 

“The four mean PRS-associated brain features were further used to construct multiple linear 

regression models (Eq.2) for each domain from COBRE cohort to predict cognitive and symptom 
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measures for fBIRN and BSNIP SZ patients (the same models and the same ROIs were used in the 

generalized prediction). Correlations between the estimated symptom/cognitive scores and its true 

values were calculated to estimate the prediction performance.”…… 

“To test whether the identified PRS-derived pattern was evident in other psychotic disorders, 

ANOVA and two sample t-tests were used to calculate group differences of the 4 PRS features……” 

“The ability of the identified PRS-associated brain features in differentiating between other 

neuropsychaitric and mood disorders and HC was also tested by two sample t-tests.”…… 

8. I could not find much information about the fusion approach at all. 

    The fusion details were added in the updated manuscript, see page 27. 

“The study design of developing, testing and validating of the PRS-associated multimodal 

biomarkers was displayed in Fig. 1. Firstly, schizophrenia PRS-guided fusion was performed in 

healthy Caucasian in UKB. Specifically, subject-wise PRS values were used as a reference to jointly 

decompose the preprocessed fALFF (��) and GMV (��) by “MCCAR+jICA”20-22 to investigate PRS-

associated multimodal brain network. The correlations of imaging components with PRS was 

maximized in the supervised fusion method, as in equation (1). 

max∑ ��corr���, ����
�

�
+ 2λ ∙ ‖corr(��, PRS)‖�

���
�,���                       (1) 

where ��  is the loading matrix for each modality, corr���, ���  is the column-wise correlation 

between �� and ��, and corr(��, PRS) is the column-wise correlation between �� and PRS. This 

supervised fusion method can extract a joint multimodal component(s) that significantly associated 

with PRS.”  

9. It’s unclear which specific p-threshold for selecting SNPs from the original GWAS was used in the 

PRS computation. Was the same one used throughout for all analyses? 

Thank you for pointing this out. The same GWAS threshold (p < 5.0e-08, the strictest threshold) 

was used to calculated the SZ PRS for UKB, and the 4 independent SZ cohorts. Please also refer to 

the response for Reviewer #2 point 8, we have added different ���� thresholds (5.0e-08, 1.0e-04, 

0.05) to calculated the SZ PRS to show whether the current results are affected by different ����

thresholds.  

10. There are grammatical errors throughout. Please check. E.g., Line 63 – should be studies; Line 66 

– should be ‘represents’… and several others elsewhere. 

Thank you for pointing this out. We have gone through the whole manuscript and corrected the 
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grammatical errors.
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Reviewer #2 (Remarks to the Author): 

Summary: NCOMMS-21-43466 describes a large cross-sectional association study between polygenic 

risk score (PRS) for schizophrenia (SZ) and multi-modal MRI (T1w & resting state fMRI). Authors 

establish robust associations between PRS and both modes of MRI data in a large, well-powered 

sample (N > 22,000). The authors further use these MRI profiles as brain features to detect / predict 

SZ case-control differences in several independent cohorts. Their results suggest that a pattern of SZ-

PRS related structure-function alterations are generalizable, performing well as a classifier in several 

naïve datasets as well associating with cognition and SZ symptom profiles. The authors further show 

relative disease specificity – predominately linking the feature profile to psychotic disorders, but not 

mood / neurodevelopment disorders. 

    Thank you for the careful reading, helpful comments, and constructive suggestions, which have 

significantly improved the presentation of the manuscript. 

1. Patterns of associations between SZ PRS and MRI data in UK Biobank have been reported before 

for both T1w (PMID: 34462574) and ALFF modes (PMID: 32514083), making this part of the 

investigation largely confirmatory / repeated. The merit / novelty of the current investigation is in 

demonstrating how these PRS – MRI patterns are observable SZ cases in other datasets. While this is 

also not the first study to show that (discovery) SZ -related brain effects are present in independent 

(test) samples (e.g PMID: 32463560), it is (to my knowledge), the first to show that PRS-brain 

associations can distinguish SZ case/control differences – which may inform more about risk that SZ 

associated confounding. There are a number of points that need further exploration and additional 

clarification. 

    Thank you for the constructive comments. The recommended references were added to the 

introduction. We have also updated the introduction and discussion according to the above comments. 

……“Although brain abnormalities linked with PRS have been reported in schizophrenia, prior 

studies focus on a single imaging modality and used a region of interest (ROI) based simple correlation 

analysis. There have, to the best of our knowledge, been no fusing of whole brain MRI studies to 

identify PRS-associated multimodal brain abnormalities, including the use of machine learning 

methods to assess its biomarker properties23,24. More specifically, there have been neither joint PRS-

multimodal brain imaging studies focused on the classification of SZ and healthy controls (HC), nor 

use of these variables to predict cognition or symptoms.”…… 

……“To the best of our knowledge, this is the first study to establish and evaluate PRS-associated 

multimodal neuroimaging biomarkers with rigorous cross-site classification and prediction, which 

may inform more about genetic risk that SZ associated confounding.” 
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……“Furthermore, the extant literature in the field of PRS and neuroimaging association studies 

in SZ has mainly focused on pathophysiology explanations of SZ, while our current study goes beyond 

PRS and neuroimaging associations by testing its ability in classification and prediction, as well as 

demonstrate its diagnostic heterogeneity within psychosis (frontotemporal alterations were most 

severe in schizophrenia and schizo-affective, milder in bipolar), and indistinguishable from HC in 

autism, depression and attention-deficit hyperactivity disorder. This study helps moving forward from 

single modality, ROI based associations with PRS to multimodal and the whole brain data-driven 

analysis by both cross cohorts’ prediction and classification validation. All above findings indicate the 

potential of the identified PRS-associated multimodal frontotemporal network to serve as a 

transdiagnostic gene intermediated brain signature specific to SZ, which underlies the genetic 

pathophysiology of schizophrenia and also provide the first evidence for its potential to be used as a 

biomarker.” 

2. Line 60 - Reference 1 does not relate to epidemiology observations of SZ prevalence, but to a prior 

UKBB PRS-SZ brain imaging study. 

Thank you for pointing this out. Reference 1 was removed from the first sentence in introduction. 

3. Line 64 – Accounts of SZ PRS should be to explain overall liability (which I believe is currently a 

little over 7%, PMID: 25056061), rather than diagnostic variance). 

Thank you for the valuable comments. We have updated line 64 accordingly and cite the 

recommend reference PMID: 25056061: 

16. Ripke, S., et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 

421-+ (2014). 

……“Genome wide association studies discovered many SZ-related risk loci that account for ~25% 

of the diagnostic variance have now been identified25,26, although the effect size of any single locus is 

small (~7%)19.”…… 

4. Line 79 – Polygenic risk for SZ has been associated with brain alterations the cite references [21-

24], none of which support a relationship between MRI IPDs and SZ-PRS, especially Franke et al., 

2016 [23]. 

We have corrected for the right reference: T1w (PMID: 34462574) and ALFF modes (PMID: 

32514083), PMID: 32463560 as the reviewer recommended before. 
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5. Lines 174-185 – I do not think the term ‘replicable’ is applicable here, as the authors are making the 

inference on an extended pool of participants, using different parameters. I would suggest the use of a 

split / independent sample would be more appropriate to make this inference. I would suggest this 

would be useful either way, to ensure the fusion model / pattern is not overfitting the data. 

We have changed the term “replicable” to “the use of a split sample”. 

6. Line 181 – well replicated (>80%) with different PRS thresholds is misleading – the only thresholds 

used are various pruning strategies, not P-thresholds (supplementary material). See also query for 405-

409. 

    Thank you for the valuable comments. We have added different GWAS ����  thresholds to 

calculated the PRS and to check whether the identified PRS-associated pattern can be replicated. Please 

refer the details in the response for Reviewer #2 point 8. 

7. Line 224 (and throughout manuscript) – There are well-established negative associations between 

SZ - PRS and intelligence / cognition (e.g. PMID: 34347035). While The PRS-brain features maybe 

specific to SZ, how much of this variance can be explained by reduced IQ in UKBB participants with 

high SZ-PRS and lower IQ in the patient samples? 

Thank you for the comments. 

PMID: 34347035. Legge, S.E., et al. Associations Between Schizophrenia Polygenic Liability, 

Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA psychiatry 78, 1143-1151 

(2021). 

The paper recommended above found that schizophrenia PRS and intelligence PRS were 

correlated with cognitive ability. The intelligence PRS was strongly associated with IQ, whereas the

schizophrenia PRS was not correlated with IQ27. So, the well-established associations identified in 

PMID: 34347035, were between SZ-PRS and cognition, not SZ-PRS and IQ (intelligence). 

Here, in response to the reviewer, we calculated the correlation between SZ-PRS and IQ in UKB 

cohort (for SZ patient cohorts, IQ scores were not available). Results (Supplementary Fig. 4) showed 

that there were moderate association between SZ-PRS and IQ within UKB. So the variance explained 

by reduced IQ in UKB participants (��) was 0.09%~0.12%. 
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Supplementary Figure 4. 2D density plot of the correlation between SZ PRS and IQ for both PGC 

SZ 2 (108 loci) and PGC SZ 3 (270 loci). 

8. Line 405 - 409 – It was not clear why the authors chose to restrict their SZ PRS to SNPs that 

surpassed GWAS threshold (P < 5 * 10 – 8) when more liberal P-threshold (e.g P<0.05) explain more 

variance in case-control status (PMID: 25056061).

    Sorry for the lack of clarity. Yes, we did use ����<5.0e-08 as the threshold to select SNPs to 

calculated SZ PRS in our current study, which was the strictest threshold usually applied in SZ GWAS 

analysis28. Here, in response to the reviewer, we also include the fusion with PRS results based on 

different thresholds: ���� <5.0e-08, ���� <1.0e-04 and ���� <0.05. Briefly, three different ����

(5.0e-08, 1.0e-04, 0.05) were used to generated SZ PRS, which were used as references to supervise 

fALFF and GMV fusion. There was high spatial overlap (>50%) among these PRS-associated patterns 

between ����<5.0e-08 and ����<1.0e-04, ����<0.05 (details can be found in the Supplementary 

“Spatial similarity” section). 
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Supplementary Figure 5. Fusion with PRS under different ���� thresholds. (a) ����<5.0e-08; (b) 
���� <1.0e-04; (c) ���� <0.05. The spatial similarity among these PRS-associated patterns are 
displayed in the following table.

Spatial similarity between Fig. S5a and Fig. S5b-c.

Correlation (r value) Fig. S5b Fig. S5c

Fig. S5a fALFF 0.53 0.64
Fig. S5a GMV 0.72 0.58

The positive fALFF in MIFC, SMTC, negative fALFF in PCC and MOC, accompanied with 

positive GMV in anterior insula and hippocampus, and negative GMV in MITC, and para-

hippocampus were all well replicated (>50%) under different ���� thresholds.

The above contents were added into Supplementary file. The study design figure (Fig. 1) was also 

updated accordingly (page 5). 

9. Lines 412-414 – I am slightly concerned about the FD threshold used for exclusion criteria of head 

motion. A mean FD of 2.5mm (nearly 1 voxel) is extremely liberal censoring protocol (typically > 

0.2mm mean FD for rsfMRI, PMID: 29440410)

    Thank you for the comments. We have added the following experiments with regard to the effect 

of head motion.
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9.1 Motion on preprocessing

Please note that in the preprocessing procedure for fMRI, we despiked the fMRI data: nuisance 

covariates (6 head motions + cerebrospinal fluid [CSF] + white matter [WM]) + global signal were 

regressed out via a general linear model from the voxel time series. We did remove outlier subjects 

who have framewise displacements (FD) exceeding 1.0 mm, as well as head motion exceeding 2.5 mm 

of maximal translation (in any direction of x, y or z) or 1.0o of maximal rotation throughout the course 

of scanning. Results indicate all FDs (mean framewise displacements, mean of root of mean square 

frame-to-frame head motions assuming 50 mm head radius 5) for all subjects were 1 mm at every time 

point. In addition to denoising the BOLD fMRI signal in preprocessing, ICA approach used in current 

study can further isolate artifact components (motion and noise) from fMRI6.

2.5 mm is the maximal translation in any direction of x, y or z, not the mean FD. The mean FD 

for all subjects are <1mm.

9.2 PRS pattern on UKB subset with head motion <0.2mm 

As requested from the reviewer, we also exclude subjects with >0.2mm FD to get a subset of 

UKB (N = 13490, 60% subjects’ head motion <0.2mm) to perform the fusion with PRS to test whether 

the identified multimodal frontotemporal pattern can be replicated. Result (Supplementary Fig. 10) 

showed that the identified PRS-associated pattern (frontotemporal cortex and thalamus in fALFF, 

accompanied with thalamus, hippocampus, para-hippocampus and temporal cortex in GMV) can be 

validated on UKB subset with mean FD<0.2mm. This means that head motion is not a major 

confounding factor for the current fusion results. 

Supplementary Figure 10. (a) The original PRS-associated fALFF+GMV covarying pattern for UKB. 

(b) The PRS pattern on UKB subset with head motion <0.2mm.
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9.3 Group differences of mean FD between SZ and HC 

We have calculated the group differences of mean FD between HC and SZ across the 4 SZ cohorts 

included in this study. Note that there were no significant differences between patients and controls on 

mean FD for all the 4 SZ cohorts, namely, 

BSNIP, HC: mean=0.22±0.11mm, SZ: 0.26±0.24mm, two sample t-test: p = 0.25 

FBIRN, HC: mean=0.25±0.18mm, SZ: 0.27±0.21mm, two sample t-test: p = 0.65 

COBRE, HC: mean=0.22±0.12mm, SZ: 0.21±0.11 mm, two sample t-test: p = 0.77 

MPRC, HC: mean=0.12±0.22mm, SZ: 0.18±0.10mm, two sample t-test: p = 0.15 

9.4 Partial correlation 

Partial correlation has been proposed as an alternative approach for removing spurious shared 

variance in correlation analysis7. Here, we also performed partial correlation analysis between the 

identified component and PRS by regressing out mean FD. Result showed that the significant level 

was not changed by the mean FD (p = 5.2e-30* for fALFF, p = 2.3e-28* for GMV as in Fig. 2b). 

9.5 fALFF not functional connectivity 

PMID: 29440410. Power, J.D., et al. Ridding fMRI data of motion-related influences: Removal of 

signals with distinct spatial and physical bases in multiecho data. Proceedings of the National Academy 

of Sciences of the United States of America 115, E2105-E2114 (2018). 

    The above recommended paper found that head motion was sensitive to functional connectivity 

analysis. However, the current fusion analysis was conducted on the spatial maps of fALFF not 

functional connectivity. While it is the functional connectivity derived from rs-fMRI that is more 

sensitive to head motion8-12.  

Collectively, considering there was no group difference in head motion between SZ and HC, and 

no significant correlation between mean FD and PRS, and the partial correlation between the identified 

component and PRS remained significant after regressing out mean FD, and the PRS-pattern can be 

replicated on UKB subset with head motion <0.2mm, the current fusion analysis was based on fALFF 

not functional connectivity, we believe that micro-motion is not a major factor affecting the current 

results. 

The motion related paper referred by the reviewer were cited in the revised manuscript, and the 

above contents were added in Supplementary “Motion effect” section and the main text “Site and 

motion effects on the identified PRS-pattern” section (page 12-13), respectively. 
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10. Lines 416 - mean FD ~ PRS correlation P >0.5, do authors mean P > 0.05, as association between 

Mean FD and PRS0.1 was p = 0.09 (supplementary, line 245)? 

Thank you for the carefully comments. Line 416 was updated as following: 

“The correlation between mean FD and SZ PRS is not significant (p>0.05, Supplementary Table 5).” 
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Reviewers' comments:

Reviewer #1 (Remarks to the Author): 

The authors have addressed all comments thoroughly. 

Reviewer #2 (Remarks to the Author): 

The authors have provided a substantially improved manuscript, addressing many methodological 

concerns addressed by myself and reviewer 1 (including confounding from site, motion and PRS-
thresholding effects) to demonstrate consistent associations for the inferences initially reported. 

I have two remaining issues that require clarification. 

R2.5 - I recommended that if the authors wanted to describe their observations as 'replicable' they 
would need to use a split-sample (i.e. split their sample and test associations independently), rather 
than re-label their analysis as a 'split-sample'. However, the new site-specific analysis provided 

(supplementary figure 9), does provide this evidence. I suggest re-wording to "PRS-pattern 
consistency across PRS parameters within UKB sample" 

R2.7 - I suggested the author control for SZ-PRS ~ IQ associations in the MRI data analysis. The 

authors reproduce robust SZ-PRS ~ IQ associations in UKBB, but do not control / consider this in 
their MRI-analysis. It would be useful to measure how much variance in the SZ-PRS MRI profiles is 
explained by IQ and how the accuracy of the classifier is changed after this consideration. 
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REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have addressed all comments thoroughly. 

Thank you for the comments. 

Reviewer #2 (Remarks to the Author): 

The authors have provided a substantially improved manuscript, addressing many methodological 

concerns addressed by myself and reviewer 1 (including confounding from site, motion and PRS-

thresholding effects) to demonstrate consistent associations for the inferences initially reported. 

Thank you for the supportive comments. 

I have two remaining issues that require clarification. 

R2.5 - I recommended that if the authors wanted to describe their observations as 'replicable' they 

would need to use a split-sample (i.e. split their sample and test associations independently), rather 

than re-label their analysis as a 'split-sample'. However, the new site-specific analysis provided 

(supplementary figure 9), does provide this evidence. I suggest re-wording to "PRS-pattern consistency 

across PRS parameters within UKB sample". 

Thank you for the suggestions. The subtitle of “PRS-pattern validation with different split of UKB 

sample” was revised as “PRS-pattern consistency across PRS parameters within UKB sample” as 

suggested by the reviewer.  

R2.7 - I suggested the author control for SZ-PRS ~ IQ associations in the MRI data analysis. The 

authors reproduce robust SZ-PRS ~ IQ associations in UKBB, but do not control / consider this in their 

MRI-analysis. It would be useful to measure how much variance in the SZ-PRS MRI profiles is 

explained by IQ and how the accuracy of the classifier is changed after this consideration.  

Thank you for the comments. Note that the significance level of the correlation between PRS-SZ 

and IQ (p~e-05, not FDR corrected, Supplementary Fig. 4) is relatively low when comparing with 

the PRS-MRI associations (p~e-28*, Fig. 2b) as in our results. It is the intelligence PRS was strongly 

associated with IQ, whereas the schizophrenia PRS was not correlated with IQ1. This is consistent 

with our current big data analysis. The well-established associations identified in PMID: 34347035, 

were between SZ-PRS and cognition, not SZ-PRS and IQ (intelligence).  

Furthermore, we also calculated the partial correlations between loadings and PRS after 
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regressing out IQ. Results showed the significance level of the correlations between loadings and PRS 

did not affected by IQ (p=4.2e-30* and p=1.7e-28* for fMRI and sMRI respectively). 

Note that age, gender, mean FD and site were regressed out from fALFF+GMV matrices prior to 

PRS-guided fusion. Here, as requested from the reviewer, we also performed the PRS-guided fusion 

analysis after regressing out age, gender, mean FD, site, as well as IQ. Results showed that the original 

PRS pattern (Supplementary Fig. 10a) and the IQ regressed out pattern (Supplementary Fig. 10b) 

are highly similar (the spatial overlapping between them is >0.9 for both fALFF and GMV 

components). Thus the accuracy of classifier would not be affected after regressing out IQ, since the 

patterns are almost the same. 

Considering that SZ-PRS is marginally correlated with IQ (p~e-05, not FDR corrected), the 

significance level of the correlations between loadings of the identified component and PRS did not 

affected by IQ (p=4.2e-30* and p=1.7e-28* for fMRI and sMRI respectively), the PRS pattern can be 

replicated after regressing out IQ (Supplementary Fig. 10), we believe that IQ is not a major factor 

affecting the current results. 

Supplementary Figure 10. (a) The original PRS-associated fALFF+GMV covarying pattern for UKB. 

(b) The PRS pattern on UKB subset with head motion < 0.2mm.
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Supplementary Figure 4. 2D density plot of the correlation between SZ PRS and IQ for both PGC 

SZ 2 (108 loci) and PGC SZ 3 (270 loci). 
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Figure 2. The identified PRS-associated multimodal joint components in UKB healthy whites 

(N=22,459). (a) Spatial brain maps visualized at |Z| > 2. (b) 2D density plot of PRS and loadings of 

components in UKB (p=4.1e-30* and p=1.6e-28* for fMRI and sMRI respectively). (c) Correlations 

(p=1.2e-04* and p=1.4e-04* for fMRI and sMRI respectively) between projected (projecting spatial 

maps from UKB to SZ patients to obtain an estimation of their mixing matrices) loadings and PRS 

within SZ patients (N=290, where PRS was available). Pearson correlation analysis was used to 

calculated the correlation between PRS and loadings in a-b. Source data are provided as a Source Data 

file. 

1. Legge, S.E., et al. Associations Between Schizophrenia Polygenic Liability, Symptom 

Dimensions, and Cognitive Ability in Schizophrenia. JAMA psychiatry 78, 1143-1151 (2021). 


