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Supplementary Materials and Methods 

Patient cohorts 

The samples comprising the primary cohort used for this study were collected at 

several institutions belonging to the HCC Genomic Consortium and the Mongolia 

National Cancer Center upon approval of the Review Board at each institution.  

Additional study cohorts were used to validate our findings. Level 3 preprocessed 

mutational data, methylation, RNA-seq and copy number data with Log R ratios 

(LRR) values for the TCGA-LIHC cohort were downloaded from Broad’s TCGA 

team (http://gdac.broadinstitute.org). The Heptromic cohort included a total of 

228 surgically resected fresh-frozen samples previously collected by our group 

(GSE63898)[1]. Microarray profiling and methylation data were available for all 

228 HCC samples[2]. For CNV analysis in the Heptromic cohort, we used 

processed SNP array data, as previously described[3]. The samples comprising 

the third validation cohort where the liquid-biopsy analysis was performed 

comprised 71 patients with matched tumor tissue, non-tumor tissue and baseline 

blood samples in 68 of these patients. Finally, Nanostring data from the cohort of 

advanced HCC patients treated with ICIs was downloaded from the 

supplementary materials of the published paper[4]. 

 

Histopathological Examination 

The diagnosis of HCC was initially confirmed by three independently working 

expert hepatopathologists blinded to the demographic and genomic findings of 

the patient cohort.  

The histopathological examination of the samples was done by assessing the 

immune infiltrate, tertiary lymphoid structures (TLS) count and tumor infiltrating 

lymphocytes (TILs) on hematoxylin and eosin stained slides. In case of 

disagreement between individual evaluations, the sample was discussed by the 

pathologists till consensus was reached. 

Hematoxylin eosin (H&E) stained sections of 216 patients were available for 

histological evaluation, 206 of which were assessed for the presence of immune 

infiltrates as previously described[1]. Briefly, the entire tumor tissue was 
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evaluated for presence of lymphocytic immune cells, and presence of the immune 

infiltrates was scored from 0 to 4 as follows: 0 (absence of immune cell 

infiltration), 1 (minimal infiltration), 2 (mild infiltration), 3 (moderate infiltration), 

and 4 (severe infiltration). Samples with scores between 0 and 1 were 

categorized as “low immune infiltration” and scores 2 and 4 were categorized as 

“high immune infiltration”. 

The evaluation of TLS was performed as previously described[1]. Briefly, the 

entire tumor tissue on the slide was evaluated for tight aggregates of lymphocytic 

immune cells clearly discernible at a magnification of 100X or with a 10X 

objective. These aggregates were in close proximity to hepatocytic tumor cells. 

Aggregates within stromal spaces were not included in the count.  The total 

number of TLS was recorded and ultimately categorized as follows: low (fewer 

than 5 TLS in the entire tumor tissue), or high (equal to or greater than 5 TLS in 

the entire tumor tissue). 

TILs were evaluated according to the proposed guidelines set out by the 

International Immunooncology Biomarkers Working Group[5]. In accordance with 

the guidelines, TILs were evaluated at the center of the tumor (iTILs) and in the 

stroma (sTILs). The percentage of iTILs is the number of TILs over the tumor 

area and the percentage of sTILs is over the stomal area. Since there are no pre-

defined values for what constitutes a high TILs count, we defined cut off value of 

more than 10% and 30% to categorize samples for iTILs and sTILs, respectively. 

 

Immunohistochemistry 

Immunohistochemical staining was carried out on 5μm-thick FFPE tissue 

sections after heat-induced antigen retrieval. The following targets of interest 

were selected: CTLA4, LAG3, TIM3 and TIGIT. Only 163 patients had available 

FFPE tissue for further analysis. Therefore, immunohistochemistry was 

performed on these 163 patients (61 HCV, 37 HBV, 65 non-infected) for LAG3 

and in 162 (61 HCV, 37 HBV, 64 non-infected) for CTLA4, TIM3 and TIGIT.  

The primary antibodies used were anti-CTLA4 monoclonal antibody (Origene, 

clone UMAB249), anti-LAG3 antibody (LS-Bio, clone 17B4), anti-TIM3 (Cell 
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Signaling, D5D5R) and anti-TIGIT (Dianova TG1 clone).  Signal was captured 

using diaminobenzidine (DAB) colorimetric reaction. Immunostaining localization, 

distribution and intensity were assessed by 3 independent expert pathologists 

blinded to the clinical and genomic features of the cohort. 

Scoring of LAG-3, TIM3 and TIGIT expression on intra-tumoral lymphocytes was 

performed by assessing the entire tumor area on the FFPE slide.  

The percentage of LAG-3, TIM3 or TIGIT positive lymphocytes over intra-tumoral 

lymphocytes was estimated over the entire tumor area of the FFPE slide. 

Samples with percentages of stained lymphocytes equal to or greater than 1% 

were considered positive. For CTLA4, we used a previously describe 

quantification method[6]. In brief, intensity and percentage of stained 

lymphocytes was scored from 0 to 3, and a final H-score was built by multiplying 

these two components. The H-score of 20 was used as a threshold to define 

CTLA4 positive tumors. 

For FAK IHC analysis, we performed immunohistochemical staining of 30 

representative cases belonging to the Immune (n=10), Intermediate (n=10) and 

Excluded Class (n=10). Immunohistochemical observations were performed 

using the primary antibody FAK protein (rabbit polyclonal antibody reference 

#3285 Cell Signaling Technology). Three-μm-thick histological sections of 10% 

formalin-fixed, paraffin-embedded materials were cut, mounted on glass slides 

coated with 3,3-aminopropyltriethoxyslane, and air dried overnight at room 

temperature. The sections were removed from paraffin with xylene and 

rehydrated in descending dilutions of ethanol. The endogenous peroxidase 

activity was blocked by methanol containing 0.3% hydrogen peroxidase for 30 

min. To retrieve the antigen, pretreatment with Hier antigen retrieval reagent 

(10X) for 20 minutes at 99°C in a pressure cooker was performed for FAK and 

sections were subsequently incubated overnight at 4°C with primary antibodies 

diluted 1:100. Next, the sections were incubated with the secondary antibody 

(Dako EnVision anti-rabbit secondary reference #K4003). After rinsing in PBS, 

the reaction products were visualized by immersing the section in 

diaminobenzidine tetrahydrochloride as chromogen for 5:30 minutes. No 

significant staining was observed in the negative controls. Finally, the sections 

were counterstained with hematoxylin, dehydrated, and coverslipped. 
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Bile duct and endothelial cells were used as the internal positive controls for FAK 

in the same sample. Identical reaction times allowed an accurate comparison of 

all samples. We classified the cases as FAK-positive tumors using two different 

cut-offs that reflected the percentage of positively stained carcinoma cells, i.e. 

≥20% (following the definition used in a previous study)[7] and ≥30% (as it 

seemed to better reflect protein overexpression in our cohort. 

 

Multiplex immunofluorescence 

We performed multispectral immune fluorescence staining for CD8, PD1 and PD-

L1 in a subset of the cohort (n=75). FFPE tissue sections (3 μm-thick) underwent 

automated staining on the Discovery Ultra platform (Roche) for CD8 (rabbit 

ab405) (Abcam ab4055), PD1 (rabbit clone NAT 105) (Abcam ab52587) or PDL1 

(mouse Clone 28-8) (Abcam 205921). Slides were incubated with the primary 

antibody for 1 hour at 37°C, followed by 30 minutes incubation at 37°C with the 

secondary antibodies conjugated with Zenon Alexa Fluor Z488, Z594, Z555 and 

Z647 (Invitrogen Molecular Probe) respectively. Imaging was performed using 

the Imaging System Nuance 3.0.2 (Perkin Elmer). To ensure representative 

sampling of the entire tumor, 5 regions of interest (ROI) were obtained. If the 

invasive margin (IM) was present, 2 out of the 5 ROI were from that region while 

3 ROI were from the central part of the tumor (IT). If there was adjacent non-

tumor tissue, an additional ROI (#6) was obtained from an area far away from the 

tumor (NT). Each ROI was captured at a magnification of 200X and contained an 

average of 2000 cells. Colour intensity thresholds were applied, and artefacts and 

areas of auto-fluorescence were excluded. 

Pixel-based percentage fluorescence intensity of CD8, PD1, and PDL1 was 

measured for each ROI. For subsequent analyses and correlation with 

clinicopathological data, we classified patients as positive if the intensity value 

was greater than or equal to 1% and as negative if lower than 1%. 
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DNA extraction, whole exome sequencing and data processing 

DNA was extracted from tumor and non-tumor tissue using the QIAamp Fast DNA 

Tissue Kit (Qiagen, Hilden, Germany). Whole exome sequencing (WES) was 

performed on an Illumina HiSeq 2500 sequencer on 165 samples (64 HBV-

infected, 68 HCV-infected and 33 non-infected). A median coverage of 111X was 

achieved per tumor sample and 65X for non-tumor specimen. Mutations were 

called comparing the tumor with its paired non-tumoral counterpart. Molecular 

variant calling was performed by using the Tigris pipeline[8]. The Tigris pipeline 

(v2.0.1) performs a modified GATK4 best practices 

(https://software.broadinstitute.org/gatk/)[9] for alignment, BQSR for base quality 

score recalibration, Picard MarkDuplicates for read deduplication, 

HaplotypeCaller for germline molecular variant (SNV and small indel) calling and 

Mutect2 for somatic molecular variant calling. Tigris pipeline uses GATK3 

DepthOfCoverage, CallableLoci and Picard to compute depth-based and other 

NGS library QC.  Somatic copy number variants (sCNV) are called using 

tumor/normal SAAS-CNV workflow that models allele balance to determine 

balanced versus unbalanced somatic gains and losses, as well as determine 

somatic copy-neutral loss of heterozygosity[10]. Data is available under 

accession number (will be provided when publicly available). 

 

Tumor mutational burden (TMB), Tumor Indel burden (TIB) and Neoantigen 

prediction 

TMB and TIB were calculated in specimens by dividing the total number of non-

synonymous mutations (TMB) or indels (TIB) in every sample by the total size of 

the WES library (30MB).  

To predict neoantigens, HLA-I typing was conducted by applying the OptiType 

Tool[11] to the available RNAseq data. Next, non-synonymous or indel mutations 

called from the WES data were screened to see whether they were transcribed 

into RNA by applying isovar[12]. Having obtained both HLA-typing and the 

sequence of the putative mutant protein, the NetMHC-4.0[13] computational 

method was applied to predict and rank the binding of a putative epitope to HLA-

I. All peptides with a rank <2% were considered potentially neoantigenic. 
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Assuming that a high affinity is required to induce the presentation of a specific 

neoantigen in the HLA-I system and thus induce a T cell activation, we defined 

“high-affinity neoantigens” as those where the amino acid sequence of HLA-I and 

the putative protein were within the top 0.5% of complimentary combinations. 

Neoantigens were reported separately for non-synonymous and indel variants.  

For the analysis of neoantigens in the TCGA-LIHC cohort, the list of neoantigens 

per sample provided by Thorsson et al.[14] was used. 

 

CNV data processing and determination of the CNA level 

SAAS-CNV output were further processed using CNApp for somatic CNV 

analysis, as previously described[3]. Briefly, we first used CNApp[15] with default 

parameters to refine the copy number segments by adjusting sample-specific 

CNA thresholds using sample purity values and applying a re-segmentation 

procedure. Then, we categorized the chromosomal segments as either broad or 

focal. Broad CNAs were defined as those segments spanning ≥50% of a 

chromosome arm while the rest of CNAs were considered focal events. Finally, 

we used CNApp to quantify the individual CNA burdens of each sample[15]. 

CNApp provides two scores per sample based on the number, amplitude and 

length of the CNAs. The broad score (BS) reflects the genomic burden of all broad 

CNAs and the focal score (FS) reflects all focal CNAs. In the event of broad and 

focal CNAs affecting the same genomic region, they are contemplated separately 

within BS and FS, respectively.  

In order to identify candidate genes involved in determining the immune 

phenotypes observed, genes present in each copy number gain and loss were 

extracted. Significant differences were captured using a Fisher exact test. Default 

CNApp parameters were used to establish the threshold for amplification and 

depletion (log2 ratio <-0.2 for deletions (1.7 copies) and >0.2 for amplifications 

(2.3 copies)) unless otherwise stated[15]. To validate the functional role of 

deletions according to this threshold, we correlated the copy-number aberrations 

of candidate genes with the expression levels of the corresponding gene. Finally, 

to further support this analysis, we also analysed WES data by using the GISTIC 

2.0 algorithm[16] and observed similar results.  
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TCR sequencing 

In order to investigate the T cell repertoire in HCC samples at baseline, we 

performed T cell receptor (TCR)-sequencing in a subset of the cohort (n=40). 

Briefly, DNA was extracted and submitted to Adaptive Biotechnologies for TCR 

β-chain sequencing. Targeted amplicon libraries were prepared by multiplex PCR 

targeting all TCR β-chain gene segments and sequenced using the Illumina 

HiSeq system. Data for individual TCR sequences were obtained from Adaptive 

Biotechnologies and analysed using the ImmunoSEQ analyser provided by the 

same manufacturer. 

Upon completion of TCR-sequencing, seven samples with less than 1000 

productive templates were filtered out and not included in subsequent analyses 

according to the manufacturer’s recommendation. Using the ImmunoSEQ 

analyzer provided by Adaptive Biotechnologies, we analyzed the following 

parameters across different immune classes: 1) number of productive 

rearrangements, which represent the count of unique rearrangements in the 

sample that are in frame and can produce a functional protein receptor; 2) fraction 

of T cells/nucleated cells; 3) productive clonality where clonality values range 

from 0 (polyclonal sample) to 1 (one or few predominant rearrangements); and 

4) productive entropy, that was reported as Shannon’s entropy of the distribution 

of read counts for each TCR sequenced. This is a measure of the shape of the 

distribution and includes information about the number of TCR sequences 

recovered (more sequences lead to a higher entropy) and clonality (highly clonal 

samples have low entropy; very diverse samples have high entropy). Samples 

with higher entropy have a greater diversity of rearrangements. Finally, the 

diversity and richness of the T cell repertoire was analyzed using several diversity 

metrics (i.e. Daley-Smith, Efron-Thisted, iChao1). 

 

RNA Extraction, Sequencing and Analysis 

RNA was extracted using the RNeasy Plus Mini Kit (Qiagen), following the 

manufacturer´s protocol. The RNA data was processed by the RAPiD pipeline at 

the Mount Sinai Genomic Core Facility. Briefly, fastq files were aligned using 

STAR[17] (version 2.5.1b) to hg19 with gencode annotation v19 and were 

quantified with featureCounts[18] (v1.5.2). Normalization for subsequent analysis 
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was performed using the edgeR[19] package with the trimmed mean of M-values 

(TMM) used for computing the scale factors[20]. The resulting effective library 

size was used in all downstream analysis unless otherwise indicated. Data is 

available under accession number (will be provided when publicly available). 

In the analysis of the transcriptomic data, positivity for previously reported gene 

signatures was evaluated using the Nearest Template Prediction[21] module 

from GenePattern[22]. Significant prediction was defined using an adjusted FDR 

q-value < 0.05. Differential gene expression analysis was performed by using the 

DESeq2 package[23] with default parameters. For this purpose, the original 

counts for each gene (organized as a matrix of integer values) was used as input. 

Differentially expressed genes were selected based on an adjusted FDR q-value 

(Benjamini-Hochberg method) of <0.05 and shrunken log2 fold change of >1.5 

(according to adaptive shrinkage estimator from the ashr package[24]). Gene set 

enrichment analysis of the resulting genes was conducted using the Enrichr web 

tool[25]. The Gene set enrichment analysis (GSEA) GenePattern module was 

used to assess enrichment of activated pathways/signatures in each class[26] 

and the single-sample gene set enrichment analysis (ssGSEA) GenePattern 

module was used to assess enrichment of activated pathways/signatures in each 

sample[27]. A list of the gene signatures used for this study can be found in 

Supplementary Table 19. Cytolytic activity was calculated as the geometric 

mean of the genes granzyme A (GZMA) and perforin-1 (PRF1), as previously 

described[28]. Richness of the immune and stroma infiltrate in tumor tissue was 

inferred from expression data through the Immune Score obtained from the 

ESTIMATE software and by applying the 141 gene signature using the ssGSEA 

methodology[29]. 

The CIBERSORTx deconvolution tool was used to impute gene expression 

profiles and provide an estimation of the relative and absolute abundances of 

immune cell types in the tumor samples[30]. The xCell method was used as a 

validation[31].  

In the liquid-biopsy cohort comprising 71 patients, RNA extraction was performed 

as previously reported[2], and RNA profiling was conducted using the Human 

Genome U219 Array Plate (Affymetrix). The processing of transcriptome data 

(normalization, background correction and filtering) was carried out as previously 
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described[2]. Blood samples were centrifugated and the plasma retrieved and 

submitted for the Immuno-oncology and Inflammation Olink Assay panel (Olink, 

Sweden), which are a high-throughput, multiplex immunoassay enabling analysis 

of 92 protein biomarkers. 

 

Generation of the inflamed signature and liquid biopsy-based signature 

To identify the immune-like class, we used the Expanded immune gene signature 

described by Ayers et al[32] and applied it using ssGSEA. Subsequently, the 

immune-like class clustered all those cases that had a score higher than one 

standard deviation above the mean of the non-immune samples 

(Supplementary Figure 2A). To generate the inflamed signature, we used our 

previously published immune factor, which was obtained by performing a virtual 

microdissection through non-negative matrix factorization (NMF) of the 

expression data[1]. Briefly, an immune-related expression pattern was identified 

by integrating NMF-identified factors with the immune enrichment score[29]. The 

top-ranked genes were listed based on their loadings and unsupervised 

clustering performed to identify the Immune class. Subsequently, differential 

gene expression analysis between the Immune and non-Immune cases revealed 

389 genes with an FDR adjusted q-value <0.05. To generate the inflamed 

signature, the 17 top-ranked genes based on the value of the t-test statistic that 

were overexpressed in the Immune class compared to the non-Immune cases 

were selected. Three genes were additionally incorporated into the signature 

based on their significant role in cancer-associated inflammation, CXCL9, GZMB 

and CXCR4[33–35].  

This 20-gene signature was validated in two additional cohorts by applying 

ssGSEA. The upper tertile was used as a cut-off to differentiate inflamed from 

non-inflamed tumors. The sensitivity, specificity, positive predictive value, 

negative predictive value and accuracy were calculated by comparing the 

inflamed cases as originally defined with the defined cases by the Inflamed 

signature. 

For the analysis of liquid biopsy-based biomarkers, we first performed a 

univariate binomial logistic regression and all proteins with a p<0.05 were entered 
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into a multivariate binomial logistic regression model. This allowed us to devise a 

13-protein signature with a good performance in capturing the Inflamed class 

(AUC 0.91, accuracy 85%, sensitivity 92%). Most of these proteins were 

overexpressed in peripheral blood of Inflamed tumors, and included proteins 

involved in immune activation (IL18, PDL1), cytolysis (GZMA, GZMH), TNF 

superfamily (TNFRSF21, TWEAK) or angiogenesis (TIE2, PGF, VEGFR2). This 

data serves as a proof-of-concept that the Inflamed class can be identified by 

using blood-based biomarkers, although further validation in additional 

prospective cohorts will be required in the future. 

 

Statistical analysis 

All analyses were conducted using R (version 4.0.2) and SPSS software version 

23 (IBM Corporation, Chicago, IL). Intergroup comparisons were performed using 

Pearson χ2 test or Fisher’s exact test depending on the number of categories for 

qualitative data. Kruskal-Wallis test with post-hoc Dunn’s test or Wilcoxon’s rank-

sum test was used for intergroup comparisons of continuous data with a non-

parametric distribution depending on the number of group categories. ANOVA or 

T-Student’s test was used for intergroup comparisons of variables with a 

parametric distribution. Correlations between two continuous variables were 

performed using Spearman correlation r. Kaplan-Meier estimates and log-rank 

test were used to analyze the association of molecular and clinical variables with 

overall survival and tumor recurrence. Median follow-up was estimated by 

applying the reverse Kaplan-Meier method. For the multivariate analysis of the 

impact on survival of the immune classes, all clinical variables were first 

evaluated in a univariate Cox regression analysis, and those with a p-values of 

<0.1 were entered in a stepwise backward multivariate Cox regression analysis. 

A two-sided p < 0.05 was considered statistically significant for all analysis. 
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Supplementary Tables 

Supplementary Table 1: Clinicopathologic characteristics of the cohort stratified 

according to aetiology 

Abbreviations: Alpha-feto protein (AFP), Barcelona Clinic Liver Cancer (BCLC), Overall survival 
(OS). *Missing data: 7% Age, 7% Gender, 11% BCLC, 19% differentiation, 11% size, 7% vascular 
invasion, 32% satellites, 11% num. nodules, 9% bilirubin, 9% albumin, 8% platelets, 15% AFP, 
33% Recurrence, and 15% Survival.  ** Pearson χ2 for categorical variables, Kruskal Wallis for 
quantitative variables. 
  

  
All Patients 

(n=240)* 
HBV HCV Non-Infected 

p** 
 (n=75)  (n=90)  (n=75) 

Age, years; median 
(range) 65 (29-91) 61 (29-87) 67 (43-83) 67 (47-91) <0.01 

Age ≥ 65 years, n (%) 121 (54) 20 (29.4) 54 (63.5) 47 (66.2) <0.01 

Gender, male 172 (77) 53 (78) 59 (69) 60 (85) 0.08 

Bilirubin, mg/dL; median 
(range) 0.8 (0.3-3.8) 0.7 (0.4-3.2) 0.8 (0.4-2.7) 1 (0.3-3.8) <0.01 
Albumin, g/dL; median 
(range)  4.1 (2.2-5.4) 4.1 (2.5-4.9) 4 (2.5-5.2) 4.1 (2.2-5.4) 0.65 

Platelets, 109/L; median 
(range)  160 (27-574) 170 (83-574) 154 (42-379) 147 (27-460) 0.08 

AFP, ng/mL; median 
(range)  

13 (0-
311190) 15 (0-26628) 29 (1-31692) 8 (1-311190) 0.07 

AFP >400ng/mL, n (%) 34 (16.5) 9 (14.5) 16 (20) 9 (14.1) 0.56 

AFP >200ng/mL, n (%) 45 (21.7) 14 (22.6) 21 (25.9) 10 (15.6) 0.32 

BCLC 0/A, n (%) 179 (83.6) 59 (86.8) 69 (82.1) 51 (82.2) 0.70 

Vascular invasion; n (%) 101 (45) 38 (56) 30 (35) 33 (46) 0.04 

Macrovascular invasion; 
n (%) 26 9 (13) 11 (13) 6 (9) 0.60 

Poor Differentiation, n 
(%) 47 (24) 18 (27) 17 (25) 12 (20) 0.61 

Size, cm; median 
(range) 4.5 (1-21) 6 (1.5-21) 4 (1-19) 4.4 (1-19) 0.01 

Satellites; n (%) 50 (31) 11 (30) 22 (34) 17 (27) 0.73 

Multiple nodules, n (%) 51 (24) 14 (21) 21 (25) 16 (26) 0.78 

Recurrence, n (%) 96 (60) 20 (54) 47 (75) 29 (48)  

Time to recurrence, 
months; median (range) 27 (21-33) 25 (0-69) 26 (17-35) 27 (2-53)  

Death, n (%) 93 (46) 22 (36) 45 (58) 26 (40)  

OS, months; median 
(95% CI) 70 (59-80) 73 (67-79) 50 (33-67) 95 (86-104)  
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Supplementary Table 2: Univariate and Multivariate Cox regression analysis of 

Overall survival and Recurrence-free survival. 
 Overall survival Recurrence-free survival 

 
Univariate 
[HR (95% CI), p-
value] 

Multivariate 
[HR (95% CI), p-
value] 

Univariate 
[HR (95% CI), p-
value] 

Multivariate 
[HR (95% CI), 
p-value] 

Age 1.00 (0.98-1.02), 
p=0.90 

 0.97 (0.95-0.99), 
p=0.009 

0.97 (0.95-
1.00), p=0.062 

Gender     
Male Ref.  Ref.  

Female 1.26 (0.80-1.99), 
p=0.33 

 1.14 (0.67-1.95), 
p=0.631 

 

Etiology     
VHC Ref.  Ref. Ref.  

VHB 0.71 (0.42-1.19), 
p=0.19 

0.61 (0.28-1.31), 
p=0.204 

0.67 (0.39-1.14), 
p=0.138 

 

Non-viral 0.51 (0.31-0.83), 
p=0.007 

0.56 (2.89-1.09), 
p=0.088 

0.7 (0.41-1.19), 
p=0.188 

 

Bilirubin 0.89 (0.63-1.26), 
p=0.50 

 0.94 (0.58-1.50), 
p=0.78 

 

Albumin 0.83 (0.57-1.22), 
p=0.34 

 1.06 (0.69-1.64), 
p=0.79 

 

Platelets 1.00 (0.998-
1.004), p=0.43 

 1.00 (0.998-1.004), 
p=0.53 

 

AFP     
<400ng/mL Ref. Ref. Ref.  

≥400ng/mL 1.67 (0.97-2.89), 
p=0.064 

2.44 (1.16-5.13), 
p=0.019 

1.51 (0.82-2.80), 
p=0.19 

 

BCLC staging     
BCLC 0/A Ref.  Ref. Ref. 

BCLC B/C 1.46 (0.85-2.51), 
p=0.17 

 2.36 (1.21-4.62), 
p=0.012 

3.16 (1.07-
9.28), p=0.037) 

Vascular 
invasion 

1.48 (0.97-2.25), 
p=0.066 

1.44 (0.82-2.54), 
p=0.21 

1.37 (0.89-2.12), 
p=0.157 

 

Size     
<5cm Ref. Ref. Ref.  

≥5cm 1.62 (1.07-2.47), 
p=0.023 

0.92 (0.46-1.85), 
p=0.81 

1.25 (0.81-1.94), 
p=0.315 

 

Satellitosis 1.77 (1.10-2.83), 
p=0.019 

1.16 (0.62-2.15), 
p=0.65 

1.52 (0.95-2.42), 
p=0.08 

1.27 (0.70-
2.29), p=0.43 

Multiple 
nodules 

1.52 (0.96-2.41), 
p=0.071 

3.25 (1.66-6.36), 
p=0.001 

2.47 (1.53-3.99), 
p<0.001 

2.69 (1.45-
4.98), p=0.002 

Degree of 
differentiation 

    

Good/moderate Ref.  Ref.  

Poor 1.02 (0.60-1.73), 
p=0.95 

 0.71 (0.40-1.26), 
p=0.24 

 

Immune Active  0.34 (0.13-0.84), 
p=0.019 

0.33 (0.13-0.84), 
p=0.02 

0.49 (0.24-1.04), 
p=0.062 

0.72 (0.33-
1.56), p=0.401 

Immune 
Exhausted 

1.72 (0.78-3.81), 
p=0.178 

 2.8 (1.26-6.22), 
p=0.011 

2.84 (1.22-
6.64), p=0.016 

Immune-like 1.21 (0.67-2.19), 
p=0.533 

 0.91 (0.47-1.75), 
p=0.766 

 

Intermediate 1.11 (0.68-1.83), 
p=0.676 

 1.07 (0.65-1.77), 
p=0.784 

 

Excluded 1.17 (0.64-2.15), 
p=0.614 

 1.22 (0.66-2.25), 
p=0.521 
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Supplementary Table 3: Gene list comprising the Wnt-βcatenin activation 

signature 

Provided as an Excel file. 

 

Supplementary Table 4: Clinicopathologic characteristics of the cohort stratified 

according to the Immune classification 

Abbreviations: Alpha-feto protein (AFP), Barcelona Clinic Liver Cancer (BCLC). Missing data: 9% 
Age, 9% Gender, 10% BCLC, 22% differentiation, 12% size, 9% vascular invasion, 39% satellites, 
10% num. nodules, 11% bilirubin, 10% albumin, 9% platelets, 16% AFP.  * Pearson χ2 for 
categorical variables, Kruskal Wallis for quantitative variables. 
 

  

Immune 
Active  
(n=26) 

Immune 
Exhausted 

(n=12) 
Immune-like 

 (n=26) 
Non-

inflamed 
 (n=107) 

p* 

Age, years; median 
(range) 67 (53-82) 57 (41-79) 64 (40-79) 63 (29-82) 0.06 

Age ≥ 65 years, n (%) 14 (60.9) 3 (25) 12 (46.2) 42 (44.7) 0.24 

Gender, male 19 (82.6) 9 (75) 19 (73.1) 72 (76.6) 0.88 

Etiology, n (%) 
 HBV 
 HCV 
 Non-infected 

 
7 (26.9) 
9 (34.6) 
10 (38.5) 

 
6 (50) 

4 (33.3) 
2 (16.6) 

 
9 (34.6) 
13 (50) 
4 (15.4) 

 
43 (40.2) 
45 (42.1) 
19 (17.8) 

0.29 

Bilirubin, mg/dL; median 
(range) 0.8 (0.4-2.7) 0.8 (0.4-3.2) 0.8 (0.4-2.2) 0.8 (0.4-2.1) 0.96 

Albumin, g/dL; median 
(range)  4 (3.2-4.7) 4 (3.1-4.7) 4.1 (3.2-4.8) 4 (2.5-5.1) 0.74 

Platelets, 109/L; median 
(range)  139 (61-388) 177 (99-574) 164 (82-379) 170 (42-388) 0.48 

AFP, ng/mL; median 
(range)  47 (3-26947) 65 (2-71270) 13 (1-7055) 12 (0-71770) 0.12 

AFP >400ng/mL, n (%) 5 (21.7) 4 (33.3) 5 (20) 10 (11.9) 0.22 

AFP >200ng/mL, n (%) 5 (21.7) 4 (33.3) 6 (24) 16 (18.8) 0.69 

BCLC 0/A, n (%) 22 (95.7) 9 (75) 22 (88) 85 (90.4) 0.29 

Vascular invasion; n (%) 7 (30.4) 6 (50) 7 (26.9) 48 (51.1) 0.08 

Macrovascular invasion; 
n (%) 3 (13) 2 (16.7) 3 (11.5) 10 (10.6) 0.93 

Poor Differentiation, n 
(%) 8 (36.4) 2 (22.2) 9 (39.1) 14 (17.7) 0.10 

Size, cm; median (range) 4.2 (1.5-18) 5.5 (2-21) 4.8 (1-18) 4.5 (2-20) 0.81 

Satellites; n (%) 3 (16.7) 4 (57.1) 4 (23.5) 18 (29) 0.23 

Multiple nodules, n (%) 3 (13) 1 (8.3) 6 (23.1) 19 (20.4) 0.61 
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Supplementary Table 5: Integration of Hoshida molecular classes of HCC[36] 

with the Immune classification 

 
 Immune 

(n=38) 
Immune-

like 
(n=26) 

Non-
inflamed 
(n=107) 

P-value 
Immune vs 
Immune-like 

Immune-like vs 
Non-Inflamed 

Immune vs 
Non-Inflamed 

Hoshida 
Molecular 

Subclasses 

S1 26 2 6 1.6x10-6 0.65 3.66x10-14 

S2 1 5 27 0.04 0.62 1.5x10-3 

S3 8 12 50 0.05 1 6.7x10-3 

Values in blue indicate a two-tailed p-value <0.05 

 

Supplementary Table 6: Integration of Chiang molecular classes of HCC[37] 

with the Immune classification 

 
 Immune 

(n=38) 
Immune-

like 
(n=26) 

Non-
inflamed 
(n=107) 

P-value 
Immune vs 
Immune-

like 

Immune-
like vs Non-

Inflamed 

Immune vs 
Non-

Inflamed 

Chiang 
Molecular 

Subclasses 

CTNNB1 1 12 28 2.87x10-5 0.06 8.64x10-4 

Proliferation 10 7 22 1 0.6 0.5 

IFN-related 12 0 9 9.17x10-4 0.21 1.12x10-3 

Polisomy of 
Chr 7 3 3 27 0.68 0.29 0.06 

Unnanotated 7 3 10 0.51 0.72 0.15 

Values in blue indicate a two-tailed p-value <0.05 

 

Supplementary Table 7: Histological assessment of immune infiltration in the 

Inflamed class 

 Immune 
(n=29) 

Immune-
like 

(n=22) 

Non-
inflamed 

(n=95) 

P-value 
Inflamed vs 

Non-
Inflamed 

Immune-
like vs Non-

Inflamed 

Immune vs 
Non-

Inflamed 
Low Immune Infiltrate 

(score 0-1) 14 10 65 
0.01 0.05 0.08 High Immune Infiltrate 

(score 2-4) 15 12 30 

Values in blue indicate a two-tailed p-value <0.05 
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Supplementary Table 8: Histological assessment of TILs and TLS in the 

Inflamed class 

 Immune 
(n=19) 

Immune-
like 

(n=14) 

Non-
inflamed 

(n=68) 

P-value 
Inflamed vs 

Non-
Inflamed 

Immune-like 
vs Non-
Inflamed 

Immune 
vs Non-
Inflamed 

High iTILs (≥10%) 5 6 11 0.07 0.06 0.33 

High sTILs (≥30%) 7 7 12 0.01 0.02 0.11 

High TLS (≥5) 5 4 8 0.09 0.21 0.15 

Values in blue indicate a two-tailed p-value <0.05 

 

Supplementary Table 9: Genes comprising the Inflamed signature 

Gene Description 
CCL5 C-C Motif Chemokine Ligand 5 

CD2 CD2 Molecule 

CD3D CD3d Molecule 

CD48 CD48 Molecule 

CD52 CD52 Molecule 

CD53 CD53 Molecule 

CXCL9 C-X-C Motif Chemokine Ligand 9 

CXCR4 C-X-C Motif Chemokine Receptor 4 

FYB FYN Binding Protein 1 

GZMA Granzyme A 

GZMB Granzyme B 

GZMK Granzyme K 

IGHG1 Immunoglobulin Heavy Constant Gamma 1 

IGHG3 Immunoglobulin Heavy Constant Gamma 3 

LAPTM5 Lysosomal Protein Transmembrane 5 

LCP2 Lymphocyte Cytosolic Protein 2 

PTPRC Protein Tyrosine Phosphatase Receptor Type C 

SLA Src Like Adaptor 

TRAC T Cell Receptor Alpha Constant 

TRBC2 T Cell Receptor Beta Constant 2 
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Supplementary Table 10: Performance of the Inflamed signature across 

different datasets 

 Discovery Cohort Heptromic Cohort TCGA-LIHC Cohort 

Accuracy 89% 94% 89% 

Sensitivity 80% 86% 80% 

Specificity 95% 99% 95% 

PPV 91% 97% 91% 

NPV 89% 92% 89% 

 

Supplementary Table 11: Distribution of copy number deletions in relevant 

immune-related genes in the Discovery cohort 

 Immune 
(n=30) 

Immune-
like 

(n=22) 
Intermediate 

(n=63) 
Excluded 

(n=28) 
P-value 

Intermediate 
vs Inflamed 

Intermediate 
vs Excluded 

Intermediate 
vs Rest 

16p13.13 
(CIITA) 5 3 27 5 2.04x10-3 0.03 6.45x10-4 

4q21.1 
(CXCL9, 
CXCL10, 
CXCL11) 

6 3 34 6 4.99x10-5 0.01 1.53x10-5 

4q35.1 
(IRF2) 6 3 35 5 3.97x10-5 1.15x10-3 2.74x10-6 

Values in blue indicate a two-tailed p-value <0.05 

 

Supplementary Table 12: Distribution of copy number deletions in relevant 

immune-related genes in Heptromic cohort 

 Immune 
(n=23) 

Immune-
like 

(n=9) 
Intermediate 

(n=49) 
Excluded 

(n=21) 
P-value 

Intermediate 
vs Inflamed 

Intermediate 
vs Excluded 

Intermediate 
vs Rest 

16p13.13 
(CIITA) 3 1 16 1 0.06 0.01 6.16x10-3 

4q21.1 
(CXCL9, 
CXCL10, 
CXCL11) 

6 2 24 5 0.04 0.07 0.01 

4q35.1 
(IRF2) 4 2 24 4 9.09x10-3 0.03 1.61x10-3 

Values in blue indicate a two-tailed p-value <0.05 
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Supplementary Table 13: Distribution of copy number deletions in relevant 

immune-related genes in TCGA-LIHC cohort 

 Immune 
(n=74) 

Immune-
like 

(n=37) 
Intermediate 

(n=150) 
Excluded 

(n=81) 
P-value 

Intermediate 
vs Inflamed 

Intermediate 
vs Excluded 

Intermediate 
vs Rest 

16p13.13 
(CIITA) 14 7 40 9 0.18 6.61x10-3 0.02 

4q21.1 
(CXCL9, 
CXCL10, 
CXCL11) 

24 12 62 20 0.16 0.01 0.02 

4q35.1 
(IRF2) 28 11 68 26 0.10 0.07 0.03 

Values in blue indicate a two-tailed p-value <0.05 

 

Supplementary Table 14: Differential gene expression analysis between Wnt-

βcatenin Inflamed and non-inflamed profiles 

Provided as an Excel file 

 

Supplementary Table 15: GO biological process enrichment analysis of 

differentially expressed genes between Wnt-βcatenin Inflamed and non-inflamed 

profiles 

Provided as an Excel file 

 

Supplementary Table 16: Gene set enrichment analysis results of Hallmark 

gene sets in the Wnt-βcatenin Inflamed and non-Inflamed profiles 

Provided as an Excel file 

 

Supplementary Table 17: Gene set enrichment analysis results of WNT-related 

gene sets in the Wnt-βcatenin Inflamed and non-Inflamed profiles 

Provided as an Excel file 
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Supplementary Table 18: Differentially expressed Wnt-related genes between 

Inflamed and non-inflamed Wnt-βcatenin activated tumors 

Provided as an Excel file 

 

Supplementary Table 19: Publicly available gene signatures and gene sets 

used in the study 

Name Study Reference 

Immune enrichment score Yoshihara K, et al. Nat 

Commun 2013;4:2612 
[29] 

Stroma enrichment score 

HCC molecular classes 

(Hoshida) 

S1 
Hoshida Y, et al. Cancer Res 

2009;69:7385-92 
[36] S2 

S3 

HCC molecular classes 

(Chiang) 

CTNNB1 

Chiang DY, et al. Cancer Res 

2008;68:6779-88 
[37] 

Interferon 

Proliferation 

Poly7 

Unannotated 

WNT/TGFβ signature 

Lachenmayer A, et al. Clin 

Cancer Res 2012;18:4997-
5007 

[38] 

Wnt-βcatenin activation signature 

Lachenmayer A, et al. Clin 

Cancer Res 2012;18:4997-

5007 

[38] 

Late TGFβ signature 

Coulouarn C, et al. 

Hepatology. 2008 

Jun;47(6):2059-67 

[39] 

Activated stroma 
Moffitt RA, et al. Nat Genet 

2015;47:1168-78 
[40] 

KEGG Wnt signalling pathway 

MSigDB - GSEA [41] 

Biocarta Wnt pathway 

Boyault liver cancer subclass G6_UP 

Boyault liver cancer subclass G5-6_UP 

GO Canonical Wnt signalling pathway 
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GO Regulation of Wnt signalling pathway 

GO Wnt activated receptor activity 

Hallmark Wnt beta catenin signalling 

PID Wnt canonical pathway 

PID Wnt signalling pathway 

Reactome signalling by Wnt 

Reactome signalling by Wnt in cancer 

WP Wnt signalling 

GO Regulation of non-canonical Wnt pathway 

PID Wnt non-canonical pathway 

GO non-canonical Wnt signalling pathway 

HCC Immune class 

Sia D, et al. 

Gastroenterology. 

2017;153:812–826 

[1] 

IFN signature (18-gene) 
Ayers M, et al. J Clin Invest 

2017;127:2930–2940 
[32] 

Inflammatory signature 
Sangro B, et al. J Hepatol 

2020;73:1460–1469 
[42] 

Cytolitic activity 
Rooney MS, et al. Cell 

2015;160:48-61 
[28] 

INFAP signature Haber PK, et al. EASL 2021 [43] 

Tertiary lymphoid structure (TLS) 
Cabrita R, et al. Nature 2020; 

577:561–565 
[44] 

Activated CD8 T cells 

Charoentong P, et al. Cell 

Rep 2017;18:248–262. 
[45] 

Activated CD4 T cells 

Activated dendritic cells 

Activated B cells 

M1 macrophages 
Davoli T, et al. Science 

2017;355:eaaf8399. 
[46] 

M2 macrophages 
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Supplementary Figures 

Supplementary Figure 1: Kaplan-Meyer estimates of overall survival and 
recurrence-free survival for the whole study cohort. Kaplan Meier survival 

curves for (A) Overall survival and (B) recurrence-free survival plots of the whole 

cohort. (C) Overall survival and (D) recurrence-free survival of the immune Active 

class compared with the rest of the cohort. (E) Overall survival and (F) 

recurrence-free survival of the distinct immune classes. P-value is calculated by 

Log rank (Mantel-Cox) test. 
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Supplementary Figure 2: Identification of the Immune classes of HCC. (A) 

Scatter plot showing the normalized levels of IFN signaling[32] (y-axis) across all 

samples included in the cohort (x-axis). Colored rectangles delineate the Immune 

(purple) and Immune-like (red) classes. (B) Heatmap representation of the 

genomic events captured by the Wnt-βcatenin activation signature.  
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Supplementary Figure 3: Analysis of the immune infiltration in the whole 
cohort. Related to Figure 3. Representative images of (A) tertiary lymphoid 

structures (TLS), intratumoral tumor infiltrating lymphocytes (iTILs) and stromal 

tumor infiltrating lymphocytes (sTILs). The images were taken at 100 and 200X 

magnification. Representative images of HCC cases positive for (B) CTLA4, (C) 

LAG3, (D) TIGIT, (E) TIM-3, respectively. All images were taken with a 

magnification of 200X. 
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Supplementary Figure 4: Representative images of immune infiltration and 
multiplex immunofluorescence immunostaining. Related to Figure 3. (A) 

Heatmap representation of global IHC and multiplex immunofluorescence 

findings. (B) H&E image of an HCC case with high immune infiltration compared 

to an HCC case with (C) low immune infiltration. Images were taken at 200X 

magnification. (D) Representative image of multiplex immunofluorescence 

immunostaining. The image is focused on an area with high CD8 immune infiltrate 

(200X magnification). (E) The image represents a zoomed-in tumoral area 

(1600X magnification). CD8 is seen in red, PD-1 in yellow and PD-L1 is seen in 

magenta. DAPI counterstains the nuclei of all cells. 
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Supplementary Figure 5: Validation of the composition of the immune 
infiltration by xCell. Related to Figure 3. (A-C) xCell deconvolution method 

analyzing (A) CD8+ cells, (B) M1 macrophages and (C) M2 macrophages. P-

value is calculated by Wilcoxon rank-sum’s test. 
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Supplementary Figure 6: TCR-seq analysis confirms a higher immune 
infiltration in the Immune and Inflamed class and suggests the presence of 
a more diverse T cell repertoire. Related to Figure 3. Boxplots represent the 

(A) productive entropy, (B) Efron-Thisted Estimator, (C) Daley Smith Estimator 

and (D) Chao1 Estimator. P-value is calculated by Wilcoxon rank-sum’s test. 
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Supplementary Figure 7: Generation and validation of the Inflamed 
signature across additional datasets. Related to Figure 3. (A) Circle plot 

depicting the 20 genes included in the Inflamed signature and their immune-

related function. (B) Gene Ontology Biological Processes enrichment analysis of 

the 20 genes. (C) Performance of the Inflamed signature in capturing the Inflamed 

class in all three cohorts. (D) Receiver operating characteristic (ROC) curves 

showing the ability to capture the inflamed class using different gene thresholds.  
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Supplementary Figure 8: Heatmap representation of the main molecular 
and immune features of the distinct immune-related profiles. Related to 

Figure 3. Heatmap corresponding to (A) Heptromic cohort and (B) TCGA-LIHC 

cohort. 
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Supplementary Figure 9: Predictive potential of the Inflamed signature in 
Hsu et al. cohort. Boxplot depicting the inflamed score according to response 

status (A) Response was categorized in partial, stable disease or progressive 

disease according to RECIST 1.1 (B) Stable and progressive disease were 

considered Non-Response. P-value calculated by (A) Kruskal-Wallis test with 

post-hoc Dunn’s test and (B) Wilcoxon rank-sum test. *, p<0.05; **p<0.01. 
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Supplementary Figure 10: Identification of the Inflamed Class by using 
liquid biopsy-based biomarkers. Heatmap representation of the main 

molecular and immune features of the distinct immune-related profiles. *p-values 

shown are calculated by Student’s T test for continuous variables or Fisher’s 

exact test for categorical variables and represent differences between the 

inflamed and non-inflamed classes.  
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Supplementary Figure 11: Mutational landscape of the distinct immune 
classes of HCC. Related to Figure 4. Heatmap representation of the distribution 

of mutations in known driver genes of HCC.  
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Supplementary Figure 12: Copy number aberrations burden in the whole 
cohort as determined by the GISTIC2.0 algorithm. Related to Figure 4.  Box 

plot representation of the distribution of the chromosomal aberrations: (A) focal 

deletions, (B) focal amplifications, (C) broad deletions and (D) broad 

amplifications among the distinct Immune classes. P-value is calculated by 

Kruskal-Wallis test with post-hoc Dunn’s test. *, P < 0.05; **, P < 0.01; ***, P < 

0.001; ****, P < 0.0001. 
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Supplementary Figure 13: Copy number deletions in specific subcytobands 
harbouring genes related to antigen presentation and interferon signalling. 
Related to Figure 4. Heatmap representation of deletions (blue) and 

amplifications (red) of subcytobands harbouring specific genes in the (A) 

discovery cohort, (B) Heptromic cohort and (C) TCGA-LIHC cohort. Threshold 

was established according to CNApp default parameters.  
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Supplementary Figure 14: Correlation between the mRNA expression and 
the presence of copy number deletions. Related to Figure 4. Boxplot 

representation of the correlation between the normalized RNA expression and 

presence of copy number deletions in subcytobands harbouring genes related to 

antigen presentation and interferon signalling. P-value is calculated by Wilcoxon 

rank-sum test. 
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Supplementary Figure 15: Neoantigen burden distribution across the 
immune classes. Related to Figure 4. (A-C) Boxplot depicting the differences in 

(A) TMB and (B) high-affinity neoantigens from non-synonymous mutations in the 

discovery cohort and (C) neoantigen burden from non-synonimous mutations in 

the TCGA cohort. (D-E) Boxplot depicting the differences in (D) TIB and (E) high-

affinity neoantigens from insertions and deletions in the discovery cohort and (F) 

neoantigen from insertions and deletions in the TCGA cohort. P-value is 

calculated by Kruskal-Wallis test with post-hoc Dunn’s test. *, P < 0.05; **, P < 

0.01; ***, P < 0.001; ****, P < 0.0001. 
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Supplementary Figure 16: Characterization of two distinct profiles of Wnt-
βcatenin activated tumors based on immune features. Related to Figure 5 

and 6. (A) Barplot representing the frequency of CTNNB1 point mutations across 

the discovery cohort. (B) Barplot representing the frequency of CTNNB1 

mutations distributed according to level of activation of the Wnt-βcatenin 

pathway. (C) Barplot showing the Gene Ontology Biological Processes 

enrichment analysis of the differentially expressed genes in Inflamed and non-

Inflamed profiles. (D) Stacked barplots showing the frequency of sTILs and iTILs 

between both profiles. (E) Barplot showing the GSEA analysis of Hallmark gene 

sets between both profiles. (F) Stacked barplot depicting the fraction of 22 

immune cell types inferred by CIBERSORTx. (G-H) xCell deconvolution method 

analyzing (G) CD8+ T cells and (H) NK cells in the distinct profiles. P-values are 

calculated by (D) Fisher’s exact test and (G-H) Wilcoxon’s rank-sum test.  
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Supplementary Figure 17: Validation of FAK overexpression and 
mechanisms leading to overexpression of PTK2. Related to Figure 6 (A-D) 
Immunohistochemical staining for focal adhesion kinase (FAK) in a (A) positive 

and (B) negative case. (C-D) Stacked barplot depicting positive and negative 

cases in the Excluded class versus the rest of the cohort using a (C) 20% or (D) 

30% cutoff. (C-D) P-value calculated by Fisher’s exact test. (E-F) Heatmap 

representation showing the correlation with amplification of the 8q24.3 locus and 

promoter methylation in (E) our cohort and (F) TCGA-LIHC cohort. The rows 

indicating moderate and high-level amplifications correspond to more than 3 or 4 

copies of the 8q24.3 subcytoband, respectively.  
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Supplementary Figure 18: Correlation between the level of RNA expression 
and methylation of antigen type I related genes in the TCGA-LIHC cohort. 
Related to Figure 6. R and p-values are calculated by Spearman’s correlation 

test.  
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Supplementary Figure 19: Algorithm for the classification or HCC patients 
into the Inflamed and non-Inflamed classes. Related to Figure 7. The 

diagnostic workout includes a 2-step approach in which the Inflamed signature 

(or a liquid-based biomarker) will first be applied and followed by the Immune 

signature in Inflamed tumors and CTNNB1 sequening in Non-inflamed tumors. 

Inflamed tumors can be further classified in immune and immune-like subclasses.  
aThe proposed treatment algorithm is based on the immune and molecular 

findings of this study and currently approved therapies in HCC and other tumors. 

Prospective validation will be required before it can be implemented in routine 

clinical practice. Figure created using BioRender.com.  
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