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Abstract

Classical genetic studies have identiőed many cases of pleiotropy where mutations in individual genes alter many different
phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential
to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by
plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits.
High-density genetic marker data ś 18Mmarkers ś from two partially overlappingmaize association panels comprising 1,014
unique genotypes grown in őeld trials across at least seven US states and scored for 162 distinct trait datasets enabled the
identiőcation of of 2,154 suggestive marker-trait associations and 697 conődent associations in the maize genome using a
resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be
three genes based a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with
variation in diverse traits (e.g. above-ground and below-ground traits), as well as individual loci associated with the same or
similar traits across diverse environments. Many signiőcant signals are located near genes whose functions were previously
entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining
community association panel data using new higher density genetic marker sets combined with resampling-based genome-wide
association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic
variants, and study genotype by environment interaction.

Key words: Quantitative Genetics; Community Association Populations; Pleiotropy; Maize

Introduction

Association mapping, initially on a gene-by-gene level and later
at a genome-wide scale, has been widely adopted as a tool to iden-
tify natural genetic variants controlling variation in both quan-

titative and qualitative traits. In the plant genetics community,
logistical and scientiőc constraints have driven the development
and widespread adoption of community association panels com-
prising sets of distinct plant genotypes which can be propagated
and shared, whether through the use of homozygous inbred lines
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or clonal propagation. In the earlier era where association mapping
was conducted on a gene-by-gene level, the use of community asso-
ciation panels allowed the work of estimating population structure
within the population to be conducted once rather than for each
independent study. In the later era of genome-wide association
studies, the use of community association panels again provided
substantial practical beneőts: the time-consuming and expensive
process of genotyping hundreds of thousands ormillions of genetic
markers across hundreds of individuals had to be undertaken only
once to enable an effectively inőnite number of studies on the genes
controlling different traits by different research groups.
The use of community association panels bymany independent

research groups to investigate diverse research questions results
in data on a wide range of individual traits for genetically identical
individuals across one or more environments. This provides sig-
niőcant opportunities to investigate both pleiotropy, the effect of a
single genetic locus onmultiple phenotypes, and genotype by envi-
ronment interactions, where the same allele inŕuences the same
phenotype in different ways in different environments. In addition,
associations between a given genetic locus and a particular trait
which are onlymarginally signiőcant in several individual studies
can often be assigned a higher degree of conődence when the same
association is identiőed across multiple studies. Finally, marginal
statistical signals from genome-wide association studies can assist
in the interpretation of later mutant mapping, gene expression,
or selection scans, but only if the initial studies results are made
available in a method which is easy to capture and cross reference.
In maize, an early widely adopted community association panel

was the Maize Association Panel (MAP), also referred to variously
as themaize 282 panel and the Buckler-GoodmanAssociation panel
(Table S1). MAP initially consisted of 302 diverse inbreds estimated
to represent 80% of the genetic diversity within maize, although
several of these were dropped in later years based on poor seed in-
creasability or other factors [1, 2]. Slow decreases in population
size over time are a common feature of many community associa-
tion panels. Two challenges were observed with the initial maize
association panel. Firstly, while the MAP panel captured a large
proportion of total maize genetic diversity, it consisted primarily
of older public sector lines with limited representation of current
temperate elite germplasm. Secondly, many of the MAP lines were
difőcult to grow and increase in the northern US Corn belt. As a
result, two additional panels were generated: 1) The Shoot Apical
Meristem association panel (SAM panel) which includedmany of
the MAP genotypes augmented with expired Plant Variety Patent
lines generated by the major seed companies in the USA [3], and 2)
TheWisconsin Diversity Panel (WiDiv) developed by selecting non-
redundant and diverse genotypes whichwere able to complete their
life cycle and produce signiőcant amounts of seed when grown in
Madison, Wisconsin [4].
As sequencing technologies have improved, new sets of genetic

markers have been deployed for existing community association
panels with increasing degrees of genetic resolution. The MAP was
initially genotypedwith amodest number of (<100) SSRmarkers to
estimate population structure as a potential confounder for single
gene association tests [2]. The WiDiv panel was initially genotyped
with 1,536 microarray-based markers [4]. The SAM panel was ini-
tially genotyped using sequencing of mRNA samples from each
line, enabling the identiőcation and scoring of 1.2M segregating
SNP markers [3]. A new high-density marker set for the WiDiv
panel was also generated by sequencing mRNA samples, provid-
ing a set of 900k segregating genetic markers in this population
[5, 6]. The original MAP population which shares many genotypes
with both the SAM and WiDiv panels was resequenced as part of
the Maize HapMap3 project increasing the number of segregating
genetic markers to 83M [7]. A subset of lines from the WiDiv panel
were resequenced, resulting in a set of 3.1M SNPs scored across 511
genotypes [8].
Here we employ a combination of published resequencing data

to generate a common set of 18M geneticmarkers scored across the
union of 1014 genotypes present in the SAM and/or WiDiv associa-
tion panels. We assemble a set of 162 trait datasets which have been
scored across different subsets of these 1014 genotypes, including
both previously published studies conducted across seven US states
and new trait data collected from őeld trials conducted in Lincoln,
Nebraska USA. Using resampling-based genome-wide association
studies (GWAS) we deőne evidence based best practices for map-
ping intervals around GWAS hits in these maize populations based
on either physical distance or gene rank order. We identify sugges-
tive signatures of pleiotropic effects for a number of genetic loci,
resulting in a data release of genomic intervals associatedwith 2,154
conődent or suggestive GWAS hits across these 162 trait datasets
to aid in the reuse of these trait data in future genomic and genetic
studies.

Results

Properties of widely studied maize association panels

Three maize association panels were identiőed in the literature:
the Maize Association Panel (MAP) [2], the Shoot Apical Meristem
(SAM) panel (369 lines) [3] and the Wisconsin Diversity (WiDiv)
panel consisting of either 627 or 942 lines [4, 6]. The latter two
populations are largely supersets of MAP, with SAM excluding 10
MAP lines present in the WiDiv panel and WiDiv excluding 67 lines
retained in both the SAM and MAP populations (Figure 1A). The
SAM andWiDiv populations also share 95 lines not present in the
MAP population that served as a partial progenitor for both. These
are predominantly more recently released lines developed in the
private plant breeding sector and releasedwhen the associated plant
variety parents expired (expired Plant Variety Patents or exPVPs).
The total overlap between the SAM andWiDiv populations was 297,
sufőcient to enable joint analyses of trait datasets collected in these
two populations. The union of the SAM and WiDiv populations
included 1,014 unique maize genotypes with both genetic marker
information at least one phenotypic record. An additional 35 unique
maize genotypes where included in one or both populations, had at
least one source of genetic marker data but no phenotypic records
and so were excluded from downstream analyses.

The set of approximately 200 papers citing either the SAMpanel
[3] or either iteration of the WiDiv panel [4, 6] were screened to
identify studieswhich conductedGWASandpublished trait datasets
collected from one or both of these populations. A total of 21 pa-
pers were identiőed which included GWAS results generated from
these populations. After excluding studies where we were unable to
locate trait data for individual maize lines, excluding traits which
failed initial QC, and condensing studies which utilized previously
published data, 132 unique trait datasets drawn from 15 separate
published studies remained. This included 55 trait datasets col-
lected from the SAM panel, 66 trait datasets collected from the
WiDiv panel, and 11 trait datasets collected from an even larger
population of 2,815 maize lines with substantial overlap with these
two populations [9]. An additional 30 phenotypes scored in Lin-
coln, Nebraska in 2020 were included for a őnal set of 162 trait
datasets employed for downstream analyses (Table S3). Individual
trait datasets included data values for between 222 and 817 maize
lines (Figure 1B) and were collected from őeld or controlled envi-
ronment studies conducted in seven states (Figure 1C). Measure-
ments related to inŕorescence architecturewere themost abundant
category among these 162 trait datasets (Figure 1D). SNP-based
estimates of narrow-sense heritability for individual trait datasets
were variable, with a median value of 0.527 andmean value of 0.523
across all traits. Traits related to ŕowering time (e.g. timing of
anthesis, timing of silking, or anthesis-silking-interval) was the
category which exhibited the highest median heritability of 0.762
(Figure 1E, andTable S3). Flowering time traits collected indifferent
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Table 1. Studies fromwhichmaize trait datasets were drawn

Reference Study Type Phenotypes

Scoreda
Accessions

Evaluatedb
Panel

Peiffer et al. 2014[16] Reproductive & Vegetative 11 737 Ames Panel

Hirsch et al. 2014[5] Reproductive & Vegetative 3 427 WiDiv-503

Leiboff et al. 2015[3] Agronomic, Cellular/Biochemical, & Vegetative 9 378 SAM

Lin et al. 2017[17] Cellular/Biochemical, Root, & Vegetative 16 363 SAM

Gustafson et al. 2018 [18] Disease 7 447 WiDiv-503

Gage et al. 2018[19] Reproductive 16 817 WiDiv-942

Mazaheri et al. 2019[6] Cellular/Biochemical & Vegetative 5 788 WiDiv-942

Qiao et al. 2019[20] Cellular/Biochemical 4 429 WiDiv-503

Sekhon et al. 2019[21] Agronomic 3 364 WiDiv-503

Zheng et al. 2019[22] Agronomic, Root 13 359 SAM

Azodi et al. 2020[23] Reproductive & Vegetative 3 388 WiDiv-503

Lin et al. 2020[24] Cellular/Biochemical & Reproductive 8 439 WiDiv-503

Renk et al. 2021[25] Seed Composition 16 499 WiDiv-503

Schneider et al. 2021[26] Root 1 599 WiDiv-503

Zhou et al. 2021[27] Reproductive 17 339 SAM

Sun et al. 2021[11] Disease 1 687 WiDiv-942

Previously Unpublished Agronomic, Disease, Reproductive, & Vegetative 29 752 WiDiv-942

*Note: łWiDivž: Wisconsin Diversity Panel, "SAM": Shoot Apical Meristem Panel, "UNL": University of Nebrasks-Lincoln, "a": Phenotypes used in this study from
the phenotypes scored in respective studies (after removing exact same phenotype values if used in another study).
*Note: The highest number of accessions with phenotype data used in this study from the respective publication.

environments were correlated with each other and also exhibited
notable correlations with a subset of both above-ground vegetative
and below-ground root related traits (Figure 1F).

The total number of unique maize line names observed across
these 162 trait datasets was 1,118 which was modestlymore than
the set of 1,014 unique genotypes present across the WiDiv and
SAMmapping populations. We speculate that this difference may
result from the inclusion of local checks or lines-of-interest or
changes in naming convention or transcription errors which we
were unable to resolve. For the 1,014 unique genotypes named as
part of the SAM population [3] or WiDiv population [6], rawwhole-
genomesequencingorRNA-seq sequencedatawas aggregated from
a number of sources (Table S2) [7, 10, 6] as described in Sun et al.
2021[11]. Alignment of published sequence data from these sources
to the maize reference genome (B73_RefGen_V4) [12, 13], scoring
of a priori segregating SNPs from HapMap3 [7], imputation, and
őltering resulted in a set of 17,717,568 with minor allele frequency
>0.01 and heterozygosity rate of <0.1, leading to an average of one
SNP per 120 bp (see Methods).

The 17,717,568 polymorphic markers chosen for downstream
analysis were distributed roughly evenly across the ten chromo-
somes of maize, with local reductions in SNP density around cen-
tromeres/pericentromeric regions of each chromosome (Figure
S3A). Rare SNPs with minor allele frequencies <0.1 were modestly
more abundant than common SNPs (Figure 2A). Linkage disequi-
librium decayed rapidly, with the average r2 between two SNPs sep-
arated by 10 kilobases being approximately 0.18 (Figure 2B) similar
to previous reports [14, 15]. The őrst three principal components
of variation explained approximately 10% of total variance among
genotypes (Figure S3B). Principal coordinate (PCo) analysis using
this SNP set separated lines with known assignments to major het-
erotic groups (Figure 2C and D). The same set of PCo analyses did
not identify obvious biases in the distribution of lines present in
different association panels (Figure S3C).

Uniőedmarker-trait analyses

Genome-wide association studies conducted using FarmCPUwith
the 162 traits and about 18Mmarkers described in the previous sec-
tion and employing a RMIP cutoff of 5 for a suggestive association
identiőed 2,154 signals across 151 traits (Figure 3A). Among traits
with one or more suggestively signiőcant hits, the median number
of hits was 12 (mean 12.57), themaximumwas 33 and theminimum

was 1.

Consolidation of 2,154 SNPs with at least suggestive statistical
signiőcant associations with phenotypes (≥5 RMIP) into distinct
peaks based on physical distance and LD (See Methods) reduced
the number of associations to 1,466 peaks distributed across pheno-
types assigned to eight categories (Table 2). Of these 1,466 peaks,
161 peaks were associated with 11 agronomic traits, 92 peaks were
associated with 17 of the 21 total cellular/biochemical traits, 72
peaks are associated with eight disease traits, 176 peaks are associ-
ated with 15 ŕowering time traits, 459 peaks were associated with
41 of 47 total inŕorescence traits, 113 peaks were associated with 15
root traits, 128 with 16 seed composition traits and 295 with 28 of
29 total vegetative traits (Figure 3B, and Table 2).

A wide range of approaches are employed in the literature to
deőne the set of annotated gene models adjacent to a signiőcant
GWAS peak which should be labeled as "candidate genes". These
can include both őxed windows around the peak, examining an
arbitrary number of the closest annotated gene models to the peak,
or adaptive windows deőned based on local levels of linkage dise-
quilibrium or haplotype blocks. To assess the precision provided
by the peaks identiőed in this study, we utilized a set of 604 gene
models recorded in the MaizeGDB database[28] as associated with
one or more phenotypes. These gene models constituted 1.5% of
the total set of 39,498 annotated genemodels present on the B73_v4
reference genome [13]. The őrst three genes closest to GWAS peaks
identiőed above were more likely to be associated with reports of
phenotypes in MaizeGDB than the expected background rate, and
this pattern became stronger at more stringent RMIP cutoffs (Fig-
ure 4A). When employing physical distance rather than rank order,
the greatest enrichment of genes with reported phenotypes in the
MaizeGDB database was observed in the categories "within gene"
"closer than 10 kilobases" and "10-40 kilobases", although notice-
able enrichment remained observable at greater distances from the
GWAS peak (Figure 4B).

Flowering time trait datasets tended to identify a dispropor-
tionately high number of independent GWAS peaks (Figure 3C),
potentially as a result of the greater proportion of variance among
these traits explainedbygenetic factors (Figure 1E). Overall, in 1,252
cases (85.4%) a peak was identiőed only in the analysis of a single
trait dataset (Table 2). The remaining 214 peaks were identiőed
in analyses of two or more separate trait datasets. In 188 cases the
same peakwas identiőed in the analysis of two ormore phenotypes
belonging to the same general category. For example, a peak con-
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Figure 1. Characteristics of Maize Association Panel trait datasets. A) Number of accessions which are represented in any of the three diversity panels. B) Representation of

eight broad phenotypic categories among the 162 traits collected here. Category assignments for individual traits are provided in Table S3. C) Geographic distribution of

trials where trait datasets were collected. Size of circles indicates number of traits collected at a speciőc geographic location. Colors of circles indicate types of trait datasets

collected at that location. Labels for which colors correspond to which types of traits are given in Panel B. D) Distribution of the number of genotypes scored for a given trait. E)

Distributions of narrow-sense heritability values, across the same eight broad phenotypic categories shown in panel B. Colors corresponding to the color key for phenotype

classes are provided in Panel B. F) Correlations among the 162 trait datasets analyzed in this study. Trait datasets are clustered based upon absolute spearman correlation value.

Phenotype classes are indicated with color bar on top x-axis with colors corresponding to the color key for phenotype classes provided in Panel B.

Table 2. Summary of unique associations with RMIP≥ 5 within each of the eight phenotypic groups analyzed.

Phenotype Group # of Phe-

notypes

analyzed

# of Pheno-

types with

hits

# of

peaks

# of single

trait peaks

# of Multi

Trait Peaks

# of Multi Trait

Peaks within each

Category a

#ofPeaksAssociated

Across Category

Agronomic 11 11 161 155 6 4 2
Cellular/Biochemical 21 17 92 69 23 20 3
Disease 8 8 72 44 28 28 0
Flowering Time 15 15 176 128 48 32 16
Inŕorescence 47 41 459 420 39 32 7
Root 15 15 113 81 32 25 7
Seed Composition 16 16 128 108 20 19 1
Vegetative 29 28 295 247 48 28 20

Total Unique 162 151 1466* 1252 214* 188 26*

a Excluding 26 peaks that overlap between two or more phenotype groups/categories. Of these 26 peaks 22 peaks are associated with traits belonging to two phenotype
categories and 4 peaks are associated with phenotype traits belonging to three phenotype categories.
* The value is less than the total of all the values in respective columns because of peaks associated with phenotypes inmultiple categories are depicted in each category
they show signiőcance.

sisting of four SNPs in high LD with each other on chromosome 6
spanning from 108,211,603 to 108,213,234 bp with the single high-
est RMIP SNP located at 108,212,338 bp was identiőed in analysis of
both kernel starch abundance (Starch_K) (RMIP=52) and kernel fat
abundance (Fat_K) (RMIP=23) within the overall category of "seed
composition" traits [25]. The peak spans the 5’ end of the gene
model Zm00001d036982 (108,212,462 to 108,219,350 on chromo-
some 6) which encodes DGAT1-2 (Diacylglycerol O-acyltransferase
1-2)/ ln1 (linoleic acid1). DGAT1-2 substantially increases the seed
oil and oleic-acid contents [29]. Largely, oils are stored in the form
of triacylglycerol (TAG) and DGAT catalyzes the őnal step of TAG
biosynthesis by transferring an acyl group from acyl-CoA to the
sn-3 position of 1,2-diacylglycerol (DAG) thus, acting as the rate-
limiting enzymes for TAG biosynthesis [30, 31] (Figure 5A&B). The
rarer allele ("T") is associated with an increase in seed fat and de-
creases in seed starch (Figure 5C). The starch-promoting allele

was more abundant in iodent subpopulations and less abundant
in sweet corn subpopulations (Figure S4). The original analysis of
these two datasets employed the FarmCPU algorithm, but without
resampling [25] and did not identify these two associations, consis-
tent with observed RMIP values which suggest only a one in two
chance of detecting the DGAT/starch association and only a one in
four chance of detecting the DGAT/fat association in a single round
of GWAS.

In the remaining 26 cases where the same genomic interval was
identiőed in the analysis of multiple trait datasets (Figure 6A-D,
and S5-S26), the trait datasets involved spanned two or more cate-
gories, with 22 peaks associated with trait datasets spanning two
categories and four peaks associated with trait datasets spanning
three categories (Figure 3B). Genomic intervals associated with
ŕowering time were disproportionatelymore likely to be associated
with phenotypes from at least one other category. Sixteen of 176
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Figure 2. Characteristics of Maize Association Panel Marker datasets. A) Genotype frequency andminor allele frequency of the marker dataset. B) The genome-wide LD

decay with maximum distance of 600 kilobases between two SNPs. C) Genetic relationship among the accessions used in this study and visualized using multidimensional

scaling/principal coordinate analysis of the distance matrix. The X- and Y-axis represent őrst and the second principal component coordinates. Each point is color coded by

the heterotic group each accession belongs to. D) Genetic relationship among the accessions used in this study and visualized using multidimensional scaling/principal

coordinate analysis of the distance matrix. The X- and Y-axis represent őrst and the third principal component coordinates. Each point is color coded by the heterotic group

each accession belongs to.
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Figure 3. GWAS Summary: Multi-trait peaks detected across phenotypic categories. A) Combined Manhattan plot for GWAS using all 1014 individuals screened using

18Mmarkers. Dashed grey and red lines indicates the cutoff of 5% and 10% for statistical signiőcance calculated based on RMIP value. Each chromosome is shown in the

X-axis. The Y-axis is the resampling model inclusion probability (RMIP) values ranging from 0 to 1. B) An upset plot showing number of shared GWAS hits between various

phenotypic categories. C) Percent representation of GWAS hits for the number of trait datasets analyzed. Number on top of each pair of bars in each phenotypic category

corresponds to the ratio of GWAS hits:number of trait datasets analyzed in each category. *Note: The ratio was higher for the disease traits but the traits in this category are

essentially the same trait analyzed at different timepoints in a time series manner, thus most of the hits overlap among the traits leading to an inŕated ratio.

Figure 4. Probability of genes at different distances from peak SNP from GWAS are linked to phenotypes. A) Gene positions of unique trait associations. First seven genes

closest to the GWAS peaks were selected and shown on X-axis. B) Gene order of unique trait associations. The distance of the genes from the trait associated markers are

shown on X-axis.
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Figure 5. Combined GWAS identiőes peak associated with seed starch and fat. A) View of resamplingmarker inclusion probability values for markers in a window from

108,211,603-108,213,234 on chromosome 6 spanning 200 kilobases upstream and downstream of the pleiotropic peak identiőed for seed starch and oil content. Onlymarkers

with resampling marker inclusion probability values≥ 0.01 are shown. B) The LD relationships between the signiőcant SNPs within the peak. C) Distributions of observed oil

and starch content values reported in [25] for lines carrying either allele of the peak SNP located at position 108,212,338 bp.
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unique peaks identiőed for ŕowering timewere also associatedwith
one or more phenotypes from other categories (9%), while only
10 of 1,290 unique peaks (0.8%) identiőed for non-ŕowering time
traitswere associatedwith traits from two ormore of the remaining
seven categories (Figure 3B).
An illustrative example of the potential for genes inŕuencing

ŕowering time to be identiőed in genome-wide association stud-
ies for other traits is the case of ZmMADS69. ZmMADS69 (syn
Zmm22) (Zm00001d042315) is a MADS-box transcription factor
located between 160,564,021 bp and 160,591,933 bp onmaize chro-
mosome 3, whichhas been shown to function as ŕowering activator,
with a derived allele conferring earlier ŕowering in many maize
lines relative to its wild progenitor teosinte [32, 6]. A peak con-
sisting of 26 SNPs in high LD with each other was consistently
identiőed for multiple ŕowering time related traits including seven
measurements of anthesis (male ŕowering) in different environ-
ments (Anthesis_A, Anthesis_G Anthesis1_L, Anthesis4_H, Anthe-
sis6_H, Anthesis7_H, Anthesis_J) and three measures of silking
in different environments (Silking_A, Silking_L, Silking_J). The
same peak was also identiőed in the analysis of multiple vegeta-
tive traits including measurements of plant height in two envi-
ronments (PlantHeight_D, PlantHeight_G), extant leaf number,
stalk diameter, and biomass yield (Figure 6A). ZmMADS69 has been
shown to downregulate the expression of ZmRap2.7, which relieves
repression of the ŕorigen gene ZCN8, causing/resulting in early
ŕowering [32]. Both ZmRap2.7 and ZCN8 are located on chromo-
some 8 [33, 34, 35] and both of these genes are also associated with
GWAS peaks. A peak on chromosome 8 consisting of four SNPs be-
tween 126,884,534 bp to 126,891,234 bp was separated by only two
kilobases from the gene model encoding ZCN8 (Zm00001d010752,
located between 126,880,531 and 126,882,389 bp) and was asso-
ciated with anthesis in three environments (Anthesis_G, Anthe-
sis7_H, Anthesis_J). ZmRap2.7 (Zm00001d010987) is located ap-
proximately 10 megabases away from ZCN8 on chromosome 8 (be-
tween 136,009,216 and 136,012,084 bp) and is associatedwith a peak
consisting of 13 SNPs that was detected for sevenmeasurements of
anthesis (Anthesis_A, Anthesis_G, Anthesis1_L, Anthesis5_H, An-
thesis6_H, Anthesis7_H, Anthesis_J), two approaches tomeasuring
silking in the same environment (Silking_L, and SilkingGDD_L),
and a number of vegetative traits including extant leaf number (Ex-
tantLeafNumber1_J), leaf width (LeafWidth_J), and plant height
(PlantHeight_D).
In addition to the three peaks discussed above, thirteen other

peakswere also associatedwith bothŕowering time traits and traits
from other categories (Figure 3.A, Figure 3.B, and Table S4). In two
cases a signiőcant signal for ŕowering time was co-located with
signiőcant signals for inŕorescence architecture traits. The őrst,
located on chromosome 1 between 102,077,749 and 102,120,437
bp, consists of two SNPs in high LD with each other and is signiő-
cantly associatedwith both date of silking (Silking_J) and ear length
(EarLength_O) in separate environments (Table S4, and Figure
S5). The second, located on chromosome 4 between 78,020,118 and
78,451,569 bp, consists of two SNPs and showed signiőcant associ-
ations with bothmale ŕowering in one environment (Anthesis5_H)
and the length of the central spike of the tassel in another envi-
ronment (SpikeLength1_C) (Table S4, and Figure S14). In eleven
cases a signiőcant association for ŕowering time was co-located
in the genome with a signal for an above-ground vegetative trait
dataset. These were typically vegetative traits with known links to
ŕowering time including leaf/node number, and plant or ear height
(Table S4, and Figure 6D, S6, S12, S16 - S20, S22, S24, and S26).
The potential pleiotropy of genes linked to ŕowering time was

not conőned to above-ground traits. In three cases a signiőcant
signal for ŕowering time was also associated with one or more
datasets describing variation in root phenotypes. A signal on chro-
mosome 5 between 94,710,702 and 94,712,951 bp was associated
with ŕowering time across a wide range of environments (Anthe-
sis_A, Anthesis1_L, Anthesis7_H, Anthesis_J, Silking_J, Silking_L,

SilkingGDD_L), with other above-ground vegetative traits (Lea-
fAreaIndex_J, LeafLength_J) and withmany root architecture traits
(RootArea1_O, RootArea2_O, RootArea4_O, RootWidth4_O) (Table
S4 and Figure S19). The speciőc SNPs which deőne the peak are all
located within Zm00001d015513 which encodes a cinnamoyl-CoA
reductase expressed primarily in leaves and leaf meristems [36].
A signal on chromosome 8 between 28,727,658 and 28,769,198 bp,
was associated with both male and female ŕowering time in Ne-
braska (Anthesis_J, Silking_J) and variation in root depth in Iowa
(RootDepth1_O, RootDepth2_O) (Table S4 and Figure S22). The
last of the three signals, associated with ŕowering time (Anthe-
sis_A, Anthesis_G, Anthesis4_H, Anthesis7_H, Anthesis_J, Silk-
ing_A, Silking_J), leafnumber, and root (RootArea1_O,RootArea2_O,
RootArea4_O, RootWidth3_O) traits is also located on chromosome
8, between 134,706,389 to 134,759,977 bp. This 54 kilobase interval
is entirely free of annotated genes, but ends 600 bp upstream of
classical mutant liguleless4 (Zm00001d010948) (Figure 6D). Ligule-
less4 (synonym knox11) encodes a knox transcription factor which
is highly expressed in the SAM, seed radicle, internode tissues,
crown roots, pericarp of seed and the endosperm of maize [36].
A dominant allele of liguleless4 abolishes the ligule and alters the
sheath-blade boundary in maize leaves [37] likely via ectopic ex-
pression [38], however phenotype of loss of function alleles, if any,
remains uncharacterized.

Discussion

The widespread adoption of diverse association panels in plant bi-
ology has enabled a wide range of research and discovery by re-
searchers working on diverse phenotypes, species, and research
questions [39]. Beyond lists of speciőc candidate genes identiőed
in themain text or supplemental őgures, the reuse of GWAS results
can sometimes be challenging. Changes in genome versions, gene
model annotations, or genetic marker datasets, as well as changes
in best practices and algorithms for conducting genome-wide as-
sociation tests can all hinder comparisons with and/or reuse of
previously published GWAS results. In the őeld of human genetics
where the release of individual-level trait and genetic data could
raise privacy and ethics concerns, the őeld has converged on a stan-
dard of releasing summary statistics but not individual-level trait
and genetic data [40]. Workingwith plant data, privacy concerns do
not typically preclude the release of individual-level data, and the
reuse of the same genotypes across independent studies increases
the potential value of individual-level data.

We identiőed 21 published papers describing phenotypes or
GWAS conducted using one or more of two widely adopted associa-
tionpanels inmaize [4, 3]. In 18 cases (85%) itwas possible to locate
raw trait values for individual lines used in the published analy-
ses, including the 16 studies summarized in Table 1 and the two
additional papers not included in our analyses. The high frequency
with which trait data is being released for published GWAS studies
is encouraging as it indicates the maize quantitative genetics com-
munity is adopting similar norms and practices to the genomics
community which has long been a leader in promoting strong best
practices for raw data deposition and dissemination [41]. Unlike
the genomics community, the plant quantitative genetics commu-
nity does not have access to widely used and standardized data
repositories. Challenges in integration of these data included in-
consistent naming, extra lines that were not part of panel, repeated
traits across papers, and data distributed across supplemental őles
or Figshare. Metadata for how and when individual traits were
collected typically was present but often needed to be manually ex-
tracted from reading the manuscript text. Information that would
further increase the value of released trait data such as the GPS co-
ordinates and planting dates of individual őeld trials was provided
in some cases but not others. The identiőcation of a single common
repository, standards for metadata on individual őeld trials, and
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Figure 6. GWAS peaks associated with multiple traits. A) Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 3 from 160,559,294 to 160,989,691

bp. This peak is associated with MADS69 (Zm00001d042315). The phenotypes associated with this peak belongs to Flowering Time and Vegetative categories. The

phenotypes associated with this peak are Anthesis1_L, Anthesis4_H, Anthesis6_H, Anthesis7_H, Anthesis_A, Anthesis_G, Anthesis_J, BiomassYield_G, ExtantLeafNumber1_J,

ExtantLeafNumber2_J, PlantHeight_D, PlantHeight_G, Silking_A, Silking_J, Silking_L, and StalkDiameter_D. The vertical dashed lines shows the peak boundary. B) Local

Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 8 from 135,928,821 to 136,325,345 bp. This peak is associated with Rap2.7 (Zm00001d010987).

The phenotypes associated with this peak belongs to Flowering Time and Vegetative categories. The phenotypes associated with this peak are Anthesis1_L, Anthesis5_H,

Anthesis6_H, Anthesis7_H, Anthesis_A, Anthesis_G, Anthesis_J, ExtantLeafNumber1_J, LeafWidth_J, PlantHeight_D, SilkingGDD_L, Silking_L. The vertical dashed lines

shows the peak boundary. C) Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 8 from 126,884,534 to 126,891,234 bp. This peak is associated

with ZCN8 (Zm00001d010752). The phenotypes associated with this peak belongs to Flowering Time and Vegetative categories. The phenotypes associated with this peak are

Anthesis7_H, Anthesis_G, Anthesis_J, ExtantLeafNumber1_J, ExtantLeafNumber2_J. The vertical dashed lines shows the peak boundary. D) Local Manhattan plot with +/-200

kilobases of pleiotropic peak on chromosome 8 from 134,706,389 to 134,759,977 bp. This peak is associated with lg4 (Zm00001d010948). The phenotypes associated with

this peak belongs to Flowering Time, Root and Vegetative categories. The phenotypes associated with this peak are Anthesis4_H, Anthesis7_H, Anthesis_A, Anthesis_G,

Anthesis_J, ExtantLeafNumber1_J, ExtantLeafNumber2_J, RootArea1_O, RootArea2_O, RootArea4_O, RootWidth3_O, Silking_A, Silking_J. The vertical dashed lines shows the

peak boundary.
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for the preservation of a single unique identiőer for each genotype
included in a community association populationwould all lower bar-
riers to the reuse of trait datasets. However, despite these current
challenges both the overall consistency and quality of data release
and documentation was exceptional, enabling the investigation of
multi-environment andmulti-trait genetic associations.
One desirable outcome of having access to raw trait data is that

it enables reanalysis of existing trait datasets, each of which repre-
sents a substantial investment of bothőnance resources andhuman
effort/suffering, as new higher resolution genetic marker datasets
and new analysis algorithms become available. Here we employed a
RMIP-basedőlter to the FarmCPUGWASalgorithm[42, 43, 44] and
were able to identify 2,154 suggestive associations (RMIP≥5) and
697 conődent associations (RMIP≥10) across 162 traits collected
in 33 environments spanning at least seven states. These signals
included new associations identiőed as a result of either new ge-
netic marker data and/or the FarmCPU/RMIP approach (Figure 5).
Overall 1,466 and 468 unique sites in the genome taggedwith a sug-
gestive or conődent association, respectively. These associations
were enriched near genes with previously reported phenotypic ef-
fects (Figure 4). However, many of these signals are located near
genes whose functions were previously entirely unknown or esti-
mated purely via functional data on homologs which is typically
useful for inferring molecular function of a protein encoded by a
given gene but can produce misleading information on the spe-
ciőc biological processes a given gene is involved in [45]. These
new layers of functional data will be most useful if they can be in-
tegrated into community genomics repositories. In this case the
functional data generated as part of this project have been inte-
grated as browser tracks and downloads at the maize community
repositoryMaizeGDB [28] to enable maize researchers to quickly
access these data, cross reference themwith other data types, and
compare with mutant or QTLmapping results.
The signiőcant signals identiőed for ŕowering time and both

above-ground and below-ground plant architectural traits adja-
cent to liguleless4/knox11 are an example of an intermediate case
between conőrmation of known functions and assigning poten-
tial functions to previously uncharacterized genes or regions of
the genome. Liguleless4 belongs to the knox class-I gene family
[38] a family of genes involved in regulating plant development
via expression in apical meristems [46]. The liguleless4 gene itself
was identiőed via a dominant allele Lg4-O which alters develop-
ment at the leaf blade/sheath boundary [37] and associated with
ectopic expression [38]. Loss of function alleles of the liguleless3
gene, a paralog of liguleless4, do not exhibit any obvious pheno-
type [38]. A role for liguleless4 in determining ŕowering time and
above/below-ground plant architecture is consistent with the re-
ported expression pattern of thewild type allele in tissues including
the shoot apex, root tips, and developing inŕorescence [38].
One striking observation from the colocalization of associa-

tion signals across multiple trait datasets was how common the
re-identiőcation of shared signals was. 14.5% (214/1466) of all
suggestive associations and 16.2% (76/468) of all conődent asso-
ciations were identiőed in at least two trait datasets. One utility of
reanalyzing published trait datasets is that variants with consis-
tent but moderate effects across many studies can be distinguished
from, and assigned higher conődence, than signals of equivalent
statistical signiőcance which are identiőed in only a single study
in a single environment. Another lesson to take away from the
same colocalization data is how common it was for the same lo-
cus to be identiőed for traits belonging to separate categories of
phenotypes. The interpretation of a genetic locus with a signiő-
cant association with root area will be quite different depending on
whether than same locus is also associatedwith ŕowering time [47]
(Figure 6D, S19 and S22). In both cases the key take away is that
researchers do not have to analyze or interpret GWAS in a vacuum
but instead are able to interpret their results in the context of the
rich datasets of previously scored phenotypes and previous GWAS

analyses. Our understandings of genetics, genotype by environ-
ment interactions, and pleiotropy will all beneőt from the broad
use of these rich datasets.

Potential implications

Logistical and őnancial limitations often constrain quantitative
genetic analyses of plant populations to collecting data on a single
phenotype or a small suite of related phenotypes, limiting our ca-
pacity to identify and study theways individual genetic variants can
control multiple phenotypic outcomes. The dataset described in
thismanuscript, including 162 traits scored across different subsets
of 1,014 immortalized maize inbred genotypes and associated with
a high densitymarker set of 18M segregatingmarkers dramatically
lowers the barriers for further quantitative genetic studies of both
pleiotropy and genotype by environment interactions in maize. In
addition, by identifyingmore than 2,000 conődent or suggestion
genetic associations in the maize genome, this dataset means re-
searchers do not have to analyze or interpret GWAS in a vacuum but
instead can interpret their results in the context of the rich datasets
of previously scored phenotypes and previous GWAS analyses.

Materials &Methods

Collection of Published Trait Data:

Papers publishing maize analyses were identiőed by searching pa-
pers citing the initial description of the őrst iteration of the WiDiv
panel[4], the initial description of the SAM diversity panel[3], or
the expanded WiDiv panel[6]. Screening of studies citing one or
more of these papers concluded on 25th June 2021. Published stud-
ies were excluded if we were unable to locate de-anonymized trait
values for individual accessions or if less than 200 total accessions
were phenotyped. If two studies indicated that the same trait was
collected from the same lines in the same location in the same
year, only one version of the data was retained. If a study published
both data from individual environments and aggregated estimates
across environments (e.g. averages, Best Linear Unbiased Predic-
tions (BLUPs), or Best Linear Unbiased Estimates (BLUEs)) only
individual environment trait data was retained. If only aggregate
estimates across environments were published, aggregated traits
were employed. After preliminary analysis withMLM-based GWAS
several other trait datasets were discarded when it proved impossi-
ble to effectively control false discoveries across the genome. The
őnal data őle of all accession-level trait values employed in this
study is provided as Table S2.

Trait Data Not Previously Published

Aset of 752maize genotypes, whichwere a strict subset of theWiDiv
panel, and included 254 of 369 genotypes from the SAM diversity
panel were evaluated in a őeld experiment conducted in Lincoln,
Nebraska in the summer of 2020. The experimental design of this
őeld experiment has been previously described [11]. Brieŕy, the
őeld was laid out in a randomized complete block design with two
blocks of 840 plots including a repeated check genotype (B97). Each
plot was two rows, 7.5 feet (approximately 2.3 meters) long with
30 inch row spacing (approximately 0.76 meters), 4.5 inch spacing
between sequential plants (approximately 11.5 centimeters) and
30 inch alleyways between sequential plots (approximately 0.76
meters). The őeld was planted onMay 6th, 2020 and was located
at the University of Nebraska-Lincoln’s Havelock Farm (40.852 N,
96.616 W).
Tassel architecture phenotypes were collected once tassels had

fully emerged for three randomly selected plants per plot, avoiding
edge plants. Tassel lengths were measured from the basal primary
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tassel branch to the tip of the tassel spike. Branch zone length
was deőned as the length from the basal primary tassel branch
to the top primary tassel branch. Tassel spike length was deőned
as the length from the top primary tassel branch to the tip of the
tassel spike. The total number of primary tassel branches were also
counted aswell as the number of these primary tassel branches that
were initiated, but later aborted (Figure S1).

Male and female ŕowering times for each plot were scored on
the őrst day that 50% of plants has visible pollen shed or visible
silks, respectively. Root and stalk lodging were scored at the end of
the growing season as a percent of extant plants in the plot, follow-
ing the published Genomes to Fields phenotyping protocol for both
traits [48]. Leaf phenotypes ś leaf length, leaf width, and leaf angle
śweremeasured for two plants per plot and collected fromeach plot
after anthesis and silking. One plant was randomly selected from
each of the two rows for measurement, avoiding edge plants when
possible. Leaf length was measured from the leaf ligule to the leaf
tip on the adaxial surface of the őrst leaf above the top ear of the
plant. Leaf width wasmeasured on the same leaf at the midpoint
between the ligule and the leaf tip. Extant leaf number was deter-
mined by counting the number of visible leaf collars on the same
two plants. Plant heightwasmeasured between the soil surface and
the ŕag leaf collar using amarked pole. Leaf Area Index values were
estimated using a LAI-2200C Plant Canopy analyzer (LI-COR, Inc).
For each plot one above canopy and three below canopymeasure-
ments were collected using the LAI-2200C’s 270-degree view cap.
The three below canopymeasurements collected diagonally in the
space between the two rows of the plot. The őrst measure adjacent
to one row, the second equidistant between the rows and the third
adjacent to the second row. Leaf Area Index measurements were
collected between July 28th - August 12th, 2020.

All ears were harvested from eight semi-randomly selected
plants per plot with edge plants being excluded when possible. Ear
length, ear width, length of őll, kernel row number and number of
kernels per rowwere handmeasured or hand counted for six ears
per plot or all ears when less than six ears were present (Figure
S2). The average of individual ears were used to calculate plot level
values. All harvested ears were weighed, shelled, and the result-
ing pooled grain was also weighed. Cob weight was calculated as
the difference between ear weight and grain weight. Initial hun-
dred kernel weight was calculated by counting and weighing 100
kernels per plot after shelling and pooling of grain. Grain mois-
ture was measured using a Dickey-John GAC® 2500-AGRI Grain
Analysis Computer (Dickey-John® Corporation, Auburn, IL). To-
tal grain weight and hundred kernel weight was recalculated to a
standardized 15.5%moisture content. When insufőcient grain was
harvested to collect accurate grain moisture data using the GAC®
2500-AGRI, a default value of 8.25%moisture, corresponding to
the approximate median of all grain moisture values was employed
to calculate moisture standardized grain weight and hundred ker-
nel weight. Further, the BLUPs for each phenotype was calculated
by őtting a linear mixed model using R package lme4[49] with
genotypes őt as random variable for the traits with data from 2020.

Uniőed Genetic Marker Data

A single set of markers scored across 1,049 accessions were em-
ployed for downstreamanalyses. These genotypeswere determined
based onmarker data aggregated from three published sources: re-
sequencing data for the WiDiv-503 panel (454 individuals) [10],
resequencing data generated as part of the HapMap3 project (141
individuals) [7], RNA-seq data for the WiDiv-942 panel (399 indi-
viduals) [5, 6]. The speciőc NCBI SRA ID numbers of the őles used
to call SNPs for each of the accessions are provided in Table S2.

Both genome resequencing data and RNA-seq data were qual-
ity trimmed using Trimmomatic (v0.33) [50]. BWA-MEM (v0.7)
with default parameter settings [51] was employed to align the

resulting trimmed resequencing data to v4 of the B73 maize ref-
erence genome [12, 13]. STAR (v2.7) [52] was used to align the
trimmed RNA-seq reads to v4 of the B73 maize reference genome
in two rounds as described in Sun et al [53]. Apparent PCR du-
plicates were marked within the resulting BAM alignments using
picard (v2.22) [54]. A priori segregating genetic markers identiőed
in maize HapMap3 [7, 11] scored for each individual using GATK
toolkit (v5.1) [55]. Missing values were imputed using beagle/5.01
with the HapMap3 population treated as a reference panel and pa-
rameters settings: ’window=1 overlap=0.1 ne=1200’ [56]. The im-
puted geneticmarker datasetwas őltered to removemarkers with a
minor allele frequency less than 0.01 or proportion of site heterozy-
gous calls greater than 0.1 to produce the őnal set of 17,717,568 SNP
markers.

Quantitative Genetic Analysis of Trait Data

Akinshipmatrix for the complete set of 1,049 genotyped accessions,
including all maize lines included in the SAM orWiDiv panels and
35 additional maize lines for which sequence data was generated
and released as part of Mazaheri et al. 2019 [6] were calculated
using the őrstmethod described by VanRaden (2008) [57] as imple-
mented in rMVP (v1.0.5) [58]. Narrow-sense heritability for each
trait was calculated using this kinship matrix and the R package
sommer (v4.1.1) [59]. Multidimensional scaling or the Principal
Coordinate (PCo) Analysis was performed with śmds-plot 2 and
ścluster options within plink v1.90 [60]. Genome-wide patterns of
linkage disequilibrium decaywere estimated by calculating (LD/r2)
for all pairs of genetic markers where both genetic markers exhib-
itedminor allele frequency greater than 0.05 and were separated up
to a physical distance of less than 600 kilobases using PopLDdecay
(v3.41) [61].

Marker-trait associations were identiőed using 100 iterations
of the FarmCPU algorithm as implemented in the R package rMVP
v1.0.5 with parameter settings maxLoop = 10; method.bin = "FaST-
LMM" [44, 58]. For each iteration, the őrst three principal compo-
nents calculated from the geneticmarker datasetwere used as őxed
effect and the kinship matrix calculated internally by the FarmCPU
algorithmwas őtted as random effects. The overall marker őle was
őltered on a per-GWASbasis to retain only thosemarkerswith ami-
nor allele frequency >0.05 among the lines phenotyped a given trait
prior to association testing for that trait. For each trait, 100 analyses
were run, each incorporating data from a different randomly se-
lected subset of phenotyped lines [43]. In each resampling analysis,
the overall threshold for statistical signiőcance was the bonferroni
corrected p-value at 5%. Resamplingmodel inclusion probability
(RMIP) values for each marker were calculated as the proportion of
the 100 analyses in which that marker was signiőcantly associated
with the target trait [43, 42, 62, 63, 64].

Linkage disequilibrium was calculated among all genetic mark-
ers with RMIP values ≥ 5 for at least one trait. Genetic markers
with linkage disequilibrium >0.5 were merged into single peaks for
downstream analyses, unless themarkers were separated by >1Mb.
When two or more markers were merged into a single peak, the
marker with the greatest RMIP value was selected as representative
of the entire peak.

Availability of supporting data andmaterials

Phenotypic values for all trait datasets employed in this study
for all maize accessions evaluated are provided in Table S2 and
S3. The sources of sequence data used to call genetic marker
genotypes for each maize accession were NCBI BioProjects
PRJNA661271, PRJNA189400 & PRJNA437324 [8, 6, 5]. The speciőc
SRA IDs for individual maize accessions are indicated in Table
S2. The locations of GWAS peaks, the traits associated with
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each peak and the genes adjacent to each peak are provided
in Table S4 and S5. The VCF őle used for genetic analyses has
been deposited at https://doi.org/10.6084/m9.őgshare.19175888.
Scripts and code used to implement various analyses de-
scribed in the methods section above have been deposited in
https://github.com/ravimural/Maize_resampling-based_GWAS.
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Figure S1. Phenotyping of Tassel Architecture. A) Tassel lengths were measured from the bottom-most primary tassel branch to the tip of the tassel spike (red bars). B) The

branch zone length was deőned as the length from the bottom-most primary tassel branch to the upper-most primary tassel branch (red left-facing bracket). C) The tassel

spike length was deőned as the length from the upper-most primary tassel branch to the tip of the tassel spike (red right-facing bracket). D) The total number of primary

tassel branches were also counted (example arrowed) as well as the number of these primary tassel branches that were initiated, but later aborted (not pictured).
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Figure S2. Phenotyping of Cob Traits. A) Ear lengths were measured as distance from base to the tip of each cob in centimeters, highlighted in green. B) ear őll was measured

as distance on the cob from base to the tip where the seeds were set, highlighted in red. C) Ear width was measured as distance of diagonal of the cob, highlighted by blue

color D) Kernels per row corresponds to the number of kernels on each line when cobs were set vertically, highlighted in pink color. E) Kernel row number correspond to the

number of rows, highlighted in Brown color.
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Figure S3. Multi Dimension Scaling or Principal Coordinate Analysis. A) Distribution of SNP density across the sorghum genome in 1 megabase sliding windows. B) Scree

plot of eigen values for the principal components estimated from themarker data used in this study. C) Genetic relationship among the accessions used in this study and

visualized using multidimensional scaling/principal coordinate analysis of the distance matrix. The X- and Y-axis represent őrst and the second principal component

coordinates. Each point is color coded by the community association panels each accession belongs to.

Figure S4. Allele frequencies of the top SNP associated with the DGAT-2 gene. A) The allele frequency for the starch content in each subpopulation of top SNP associated

with DGAT gene. B) The allele frequency for the fat content in each subpopulation of top SNP associated with DGAT gene. C) Percentage of alleles in each subpopulation: The

starch promoting allele was more abundant in iodent subpopulations and less abundant in sweet corn subpopulations.
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Figure S5. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 1 from 102,077,749 bp and 102,120,437. This peak is associated with the

phenotypes belonging to Inŕorescence and Flowering Time categories. The phenotypes associated with this group are EarLength_O and Silking_J.

Figure S6. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 1 from 276,657,865 to 277,120,054. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis1_L, Anthesis_J, ExtantLeafNumber1_J, ExtantLeafNumber2_J,

Nodes_M, and Silking_J.
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Figure S7. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 1 from 280,994,269 to 281,039,919. This peak is associated with the phenotypes

belonging to Root and Vegetative categories. The phenotypes associated with this group are EarHeight_M and RootAngle2_O.

Figure S8. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 2 from 82,811,901 to 82,811,901. This peak is associated with the phenotypes

belonging to Agronomic and Inŕorescence categories. The phenotypes associated with this group are BushelAcreEquivalent_J and KernelsPerRow_J.
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Figure S9. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 2 from 88,191,911 to 88,201,317. This peak is associated with the phenotypes

belonging to Agronomic and Inŕorescence categories. The phenotypes associated with this group are BushelAcreEquivalent_J, EarFilledLength_J, KernelsPerRow_J and

TotalGrainMassGrams_J.

Figure S10. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 3 from 157,317,263 to 157,318,194. This peak is associated with the phenotypes

belonging to Root and Vegetative categories. The phenotypes associated with this group are EarHeight_M, RootAngle2_O and RootWidth1_O.
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Figure S11. LocalManhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 3 from 168,948,681 to 168,998,142. This peak is associated with the phenotypes

belonging to Cellular/Biochemical, Inŕorescence and Vegetative categories. The phenotypes associated with this group are BranchZoneLength_C, LeafCuticularConduc-

tance6_H, SpikeProportion_C, StalkDiamThin_N and peri_N.

Figure S12. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 3 from 218,796,811 to 218,832,925. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are ExtantLeafNumber1_J and Silking_J.
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Figure S13. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 4 from 28,148,396 to 28,163,192. This peak is associated with the phenotypes

belonging to Inŕorescence and Vegetative categories. The phenotypes associated with this group are Nodes_M and SkeletonLength_C.

Figure S14. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 4 from 78,020,118 to 78,451,569. This peak is associated with the phenotypes

belonging to Flowering Time and Inŕorescence categories. The phenotypes associated with this group are Anthesis5_H and SpikeLength1_C.
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Figure S15. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 4 from 190,332,784 to 190,410,017. This peak is associated with the

phenotypes belonging to Seed Composition and Vegetative categories. The phenotypes associated with this group are CrudeAsh_K, EarHeight_L, Ncombustion_K, Nkjeltec_K,

PlantHeight_L, and Protein_K.

Figure S16. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 5 from 4,615,668 to 4,617,726. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis1_L, EarHeight_L and PlantHeight_L.
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Figure S17. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 5 from 32,944,052 to 32,957,580. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis4_H, Anthesis7_H and ExtantLeafNumber2_J.

Figure S18. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 5 from 39,053,843 to 39,077,552. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis_J and PlantHeight_G.
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Figure S19. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 5 from 94,710,702 to 94,712,951. This peak is associated with the phenotypes

belonging to Flowering Time, Root and Vegetative categories. The phenotypes associated with this group are Anthesis1_L, Anthesis7_H, Anthesis_A, Anthesis_J, LeafAreaIn-

dex_J, LeafLength_J, RootArea1_O, RootArea2_O, RootArea4_O, RootWidth4_O, SilkingGDD_L, Silking_J and Silking_L.

Figure S20. LocalManhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 7 from 164,238,577 to 164,238,577. This peak is associated with the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis5_H and PlantHeight_J.
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Figure S21. LocalManhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 7 from 167,280,764 to 167,280,878. This peak is associated with the phenotypes

belonging to Cellular/Biochemical and Root categories. The phenotypes associated with this group are LeafCuticularConductance6_H and RootAngle2_O.

Figure S22. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 8 from 28,727,658 to 28,769,198. This peak is associated with the phenotypes

belonging to Flowering Time and Root categories. The phenotypes associated with this group are Anthesis_J, RootDepth1_O, RootDepth2_O and Silking_J.
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Figure S23. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 8 from 86,775,550 to 87,443,426. This peak is associated with the phenotypes

belonging to Cellular/Biochemical and Vegetative categories. The phenotypes associated with this group are BiomassYield_G, ExtantLeafNumber1_J, PH-EH_L, PlantHeight_G

and VascularBundleDensity_D.

Figure S24. LocalManhattan plotwith +/-200 kilobases of pleiotropic peak on chromosome 8 from 126,593,834 to 126,796,503. This peak is associatedwith the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are Anthesis4_H, Anthesis_A, Anthesis_J, LeafAngle_J, Silking_A and

Silking_J.
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Figure S25. Local Manhattan plot with +/-200 kilobases of pleiotropic peak on chromosome 8 from 135,045,240 to 135,071,381. This peak is associated with the phenotypes

belonging to Inŕorescence, Root and Vegetative categories. The phenotypes associated with this group are LowestBranchAngleAuto_P, PlantHeight_J, RootAngle1_O and

RootWidth4_O.

Figure S26. LocalManhattan plotwith +/-200 kilobases of pleiotropic peak on chromosome 8 from 139,924,627 to 139,925,379. This peak is associatedwith the phenotypes

belonging to Flowering Time and Vegetative categories. The phenotypes associated with this group are ExtantLeafNumber1_J, ExtantLeafNumber2_J, PlantHeight_J and

Silking_A.
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Table S1. Widely UsedMaize Community Association Panels.

Panel Name Panel Abbreviation Country # of Accessions a Publication

Maize Association Panel MAP USA 282-312 Flint-Garcia et al. 2005[2]
Maize Nested Association Mapping
Population

US-NAM USA 5000 Jianming et al. 2008[65]

Ames Inbred Lines NCRPIS USA 2815 Romay et al. 2013[9]
Maize Shoot Apical Meristem SAM USA 369 Leiboff et al. 2015[3]
Wisconsin Diversity Panel WiDiv USA 503-942 Hanesy et al. 2011[4], and Maza-

heri et al. 2019[6]
ChinaNestedAssociationMappingPop-
ulation

CN-NAM China 1971 Li et al. 2013[66]

Global Diverse Lines 527 Yang et al. 2011[67]
Dent and Flint Panel Europe 306 + 292 Revilla et al. 2014[68]
European Flint Collection Europe 1191 Gouesnard et al. 2017[69]
European Flint Nested Association
Mapping

EUNAM-Flint Europe 811 Lehermeier et al. 2014[70]

European Dent Nested Association
Mapping

EUNAM-Dent Europe 841 Lehermeier et al. 2014[70]

a The number of lines have changed over time due to the loss of some genotypes and/or the addition of others.

Table S2. Trait values for all phenotypes per accession and associated
information per accession. Provided as included excel őle.

Table S3. Phenotypes and associated information. Provided as included
excel őle.

Table S4. The locations of GWAS peaks, the traits associated with each
peak and the genes adjacent to each peak. Provided as included excel
őle.

Table S5. Individual GWAS hits. Provided as included excel őle.
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