

Figure S1. Monitoring of DLD-1 and F. nucleatum co-culture. Cells were grown to ~50% confluency, and then inoculated with F. nucleatum (FN) at a MOI of 10:1. Real-time observation of the co-culture was performed with a 3D Cell Explorer (Nanolive, Switzerland). Photos were taken at 5 min interval. Projected images were rendered with Image J. The F. nucleatum were indicated with magenta arrows, while the dividing cells were indicated with yellow arrows. Related to Fig 1.

Figure S2. F. nucleatum promotes glycolysis via inducing ANGPTL4 expression in CRC cells. (A) Gene set enrichment analysis (GSEA) of RNA sequencing data compared the transcriptome of DLD-1 co-cultured with or without F. nucleatum (FN). ES, enrichment score; NES, net enrichment score; OXPHOS, oxidative phosphorylation. n=3 samples. (B-D) qPCR analysis of the selected genes in SW480 (B), HCT-116 (C) or NCM460 (D) co-cultured with or without F. nucleatum. n=3 samples. (E) qPCR and WB confirmation of the ANGPTL4 shRNA knockdown efficiency in DLD-1. shCtrl, non-target shRNA control; shANGPTL4, ANGPTL4-target shRNA. n=3 samples. (F) Relative ECAR of DLD-1 transfected with shCtrl or shANGPTL4. n=8 samples. (G) qPCR and WB confirmation of the ANGPTL4 overexpression efficiency of in DLD-1. n=3 samples. (H) Relative ECAR of DLD-1 transfected with empty vector or ANGPTL4-expressing plasmid. n=8 samples. The data were presented as mean ± SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments in (B-H). For WB in (E and G), 2 independent experiments were performed with similar results. n.s. p>0.05, *p<0.05, **p<0.01, ****p<0.001, ****p<0.001 by Wilcoxon rank-sum test or Welch ANOVA test for single or grouped analyses, respectively. Related to Fig 2.

Figure S3. Effect of rhANGPTL4 on F. nucleatum colonization. Representative images and quantification of F. nucleatum (FN) stained with fluorescence in situ hybridization (FISH) in co-culture with DLD-1, treated with vehicle or recombinant human ANGPTL4 (rhANGPTL4; 5 μ g/ml). Human cell nuclei were stained with DAPI. n=8 samples. The data were presented as mean \pm SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments. **p<0.01 by Wilcoxon rank-sum test. Related to Fig 3.

Figure S4. F. nucleatum colonization does not rely on SERPINE1 expression of CRC cells. (A and C) qPCR and WB confirmation of the SERPINE1 shRNA knockdown efficiency in DLD-1 (A) or SW480 (C). shCtrl, non-target shRNA control; shSERPINE1, SERPINE1-target shRNA. n=3 samples. (B and D) Representative images and quantification of F. nucleatum (FN) stained with fluorescence in situ hybridization (FISH) in co-culture with DLD-1 (B) or SW480 (D), transfected with non-target or SERPINE1-target shRNA. Human cell nuclei were stained with DAPI. n=8 samples. The data were presented as mean ± SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments. For WB in (A and C), 2 independent experiments were performed with similar results. n.s. p>0.05, **p<0.01, ***p<0.001 by Wilcoxon rank-sum test. Related to Fig 3.

Figure S5. ANGPTL4 facilitates F. nucleatum colonization by promoting GLUT1 expression and glucose uptake. (A) WB analysis of ANGPTL4 and GLUT1 in SW480 or NCM460 co-cultured with or without F. nucleatum. (B) WB analysis of ANGPTL4 and GLUT1 in SW480 with ANGPTL4 overexpression or shRNA knockdown. The bands of ANGPTL4 in the upper panel of (A and B) were observed at 35 and 50 kDa according to the manufacturer's instruction. (C) Planktonic growth of F. nucleatum measure by optical density at 600 nm (OD600nm) under the treatment of vehicle or BAY-876. n=8 samples. (D) Representative images and quantification of FISH-stained F. nucleatum in co-culture with SW480, under the treatment of DMSO vehicle, BAY-876 (2 μ M) or BAY-876 (2 μ M) + rhANGPTL4 (5 μ g/ml). Human cell nuclei were stained with DAPI. n=8 samples. (E) qPCR measurement of ANGPTL4 mRNA level in SW480 co-cultured with or without F. nucleatum, treated with or without BAY-876 (2 μ M). n=3 samples. The data were presented as mean \pm SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments in (C-E). For WB in (A and B), 2 independent experiments were performed with similar results. n.s. p>0.05, *rev0.05, *rev0.01, ****p<0.001 by Wilcoxon rank-sum test or Welch ANOVA test for single or grouped analyses, respectively. Related to Fig 4.

Figure S6. The effect of A-485 on F. nucleatum-induced ATF3 expression in CRC cells. ATF3 mRNA quantification in DLD-1 or SW480 cultured with or without F. nucleatum (FN), treated with DMSO vehicle or A-485 (1 μ M). n=3 samples. The data were presented as mean \pm SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments. n.s. p>0.05, *p<0.05, *p<0.01, ***p<0.001, ****p<0.001 by Welch ANOVA. Related to Fig 6.

Figure S7. HIF-1 α is required for F. nucleatum-induced ANGPTL4 expression and F. nucleatum colonization in DLD-1. (A) qPCR and WB confirmation of the HIF1A shRNA knockdown efficiency in DLD-1. shCtrl, non-target shRNA control; shHIF1A, HIF1A-target shRNA. n=3 samples. (B) ChIP-qPCR analysis of the H3K27ac level within the promoter region of ANGPTL4, in DLD-1 transfected with non-target or HIF1A-target shRNA. Non-specific DNA immunoprecipitation in isotype IgG control was not detectable (qPCR CT value > 40) in all samples. n=3 samples. (C) ANGPTL4 mRNA quantification in DLD-1 cultured with or without F. nucleatum (FN). Cells were transfected with non-target or HIF1A-target shRNA. n=6 samples. (D) Representative images and quantification of FN stained with fluorescence in situ hybridization (FISH) in co-culture with DLD-1, transfected with non-target or HIF1A-target shRNA. Human cell nuclei were stained with DAPI. n=8 samples. The data were presented as mean \pm SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments. For WB in (A), 2 independent experiments were performed with similar results. n.s. p>0.05, *p<0.05, ***p<0.001 by Wilcoxon rank-sum test or Welch ANOVA test for single or grouped analyses, respectively. Related to Fig 6.

Figure S8. HDACs quantification in SW480 or NCM460 co-cultured with or without F. nucleatum. (A-D) HDAC1-3 mRNA (A and C; n=6 samples) and protein (B and D) levels quantified in SW480 (A and B) or NCM460 (C and D) co-cultured with or without F. nucleatum (FN). The data were presented as mean ± SEM. Each circle represented an individual sample. Samples were collected from 3 independent experiments. For WB in (B and D), 2 independent experiments were performed with similar results. n.s. p>0.05, **p<0.01 by Wilcoxon rank-sum test. Related to Fig 7.

REAGENT or RESOURCE	SOURCE IDENTIFIER		USAGE		
Antibodies					
Rabbit monoclonal anti-	Abcam	Cat# ab206420	1:1000 for WB		
ANGPTL4					
Rabbit polyclonal anti-β-	Signalway	Cat# 21338	1:1000 for WB		
actin	Antibody				
Rabbit monoclonal anti-	Abcam	Cat# ab115730	1:100000 for WB		
GLUT1		RRID: AB_10903230			
Rabbit monoclonal anti-	Abcam	Cat# ab222754	1:1000 for WB		
SERPINE1 (PAI-1)					
Rabbit monoclonal anti-	Abcam	Cat# ab45173	1:1000 for WB		
H3K27ac		RRID: AB_880445	4 µg per ChIP		
Rabbit monoclonal anti-	Cell	Cat# 36169	4 μg per ChIP		
HIF-1α	Signaling	RRID: AB_2799095	1:1000 for WB		
	Technology				
Rabbit polyclonal IgG	Merck	Cat# PP648	4 µg per ChIP		
	Millipore				
Rabbit polyclonal anti-	Proteintch	Cat# 17168-1-AP	1:1000 for WB		
histone-H3		RRID: AB_2716755			
Rabbit monoclonal anti-	Abcam	Cat# ab109411	1:1000 for WB		
HDAC1		RRID: AB_10861012			
Rabbit monoclonal anti-	Abcam	Cat# ab32117	1:2000 for WB		
HDAC2		RRID: AB_732777			
Rabbit monoclonal anti-	Abcam	Cat# ab32369	1:5000 for WB		
HDAC3		RRID: AB_732780			
Goat anti-rabbit HRP	Abacm	Cat# ab6721	1:10000 for WB		
conjugated IgG H&L		RRID: AB_955447			
Chemicals, Peptides, and F	Recombinant Pr	oteins			
2-DG	APExBIO	Cat# B1027	20 mM in vitro		
			1g/kg in vivo		
rhANGPTL4	R&D	Cat# 3485-AN-050	5 µg/ml		
	Systems				

Table S1. Resources table. Related to Fig 1-7.

A-485	MedChemEx	Cat# HY-107455	1 µM
	press		
BAY-876	MedChemEx	Cat# HY-100017	2 µM
	press		
Gentamicin	APExBIO	Cat# A2514	300 µg/ml
Metronidazole	APExBIO	Cat# B1976	200 µg/ml
2-NBDG	APExBIO	Cat# B6035	200 µM for
			glucose uptake
			assay
Recombinant human	Proteintech	Cat# Ag0256	2 µg per assay
HDAC1			well in HDAC
			activity
			measurement
Recombinant human	Proteintech	Cat# Ag3607	2 µg per assay
HDAC2			well in HDAC
			activity
			measurement
Critical Commercial Assays	6		
Glycolysis Assay kit	Abcam	Cat# ab197244	ECAR evaluation
QIAamp DNA Mini kit	QIAGEN	Cat# 51304	gDNA extraction
MiniBest Universal RNA	Takara	Cat# 15596026	RNA extraction
Extraction kit			
TruSeq™ RNA sample	Illumina	Cat# RS-122-2001	cDNA library
preparation kit			construction
pcDNA™3.1/Zeo ⁽⁺⁾	Thermo	Cat# V86020	Eukaryotic
	Fisher		expression
	Scientific		plasmid
			construction
Lipofectamine 2000	Thermo	Cat# 11668019	Transfection
	Fisher		
	Scientific		
RT reagent Kit with gDNA	Takara	Cat# RR047A	RT-PCR
Eraser			
TB Green® Premix Ex	Takara	Cat# RR420L	qPCR
Taq™			

Cell lysis buffer	Beyotime	Cat# P0013	Protein extraction
NE-PER™ Nuclear and	Thermo	Cat# 78833	Protein extraction
Cytoplasmic Extraction	Fisher		
Reagents	Scientific		
Enhanced BCA Protein	Beyotime	Cat# P0010	Protein
Assay kit			quantification
Immobilon ECL Ultra	Merck	Cat# WBULS0500	For WB
Western HRP Substrate	Millipore		
EZ-Zyme™ Enzymatic	Merck	Cat# 17-375	For ChIP
Chromatin Prep kit	Millipore		
Magna ChIP™ HiSens Kit	Merck	Cat# 17-10460	For ChIP
	Millipore		
MicroElute® DNA Clean-Up	Omega	Cat# D6296	DNA purification
kit			
Diphenylene diamine (DAB)	Absin	Cat# abs957	For IHC
system			
FLUOR DE LYS® HDAC	Enzo Life	Cat# BML-AK503	HDAC activity
Fluorometric Cellular	Sciences		measurement
Activity Assay kit			
Oligonucleotides			
FUS714 probe conjugated	Valm AM. et	5'GGCTTCCCCATCG	200 nM for FISH
with Alexa Fluor 555	al., 2011	GCATT3'	
F. nucleatum 16S rDNA	Castellarin	Forward:	For qPCR
qPCR primers	M. et al.,	5'CAACCATTACTTTA	
	2012	ACTCTACCATGTTCA	
		3'	
		Reverse:	
		5'GTTGACTTTACAG	
		AAGGAGATTATGTAA	
		AAATC3'	

PGT qPCR primers	Castellarin	Forward:	For qPCR
	M. et al.,	5'ATCCCCAAAGCAC	
	2012	CTGGTTT3'	
		Reverse:	
		5'AGAGGCCAAGATA	
		GTCCTGGTAA3'	
ANGPTL4 qPCR primers	This study	Forward:	For qPCR
		5'GAGTTGCTGCAGT	
		TCTCCGT3'	
		Reverse:	
		5'AAACCACCAGCCT	
		CCAGAGA3'	
SERPINE1 qPCR primers	This study	Forward:	For qPCR
		5'TGGTTCTGCCCAA	
		GTTCTCC3'	
		Reverse:	
		5'CACCGTGCCACTC	
		TCGTTC3'	
JUN qPCR primers	This study	Forward:	For qPCR
		5'GGAGACAAGTGGC	
		AGAGTCC3'	
		Reverse:	
		5'CTCGCCCAAGTTC	
		AACAACC3'	
ATF3 qPCR primers	This study	Forward:	For qPCR
		5'ACAGCTCTCTTCT	
		CTCGCCG3'	
		Reverse:	
		5'TGAAGCATCATTTT	
		GCTCCAGG3'	

ZFP36 qPCR primers	This study	Forward:	For qPCR
		5'GACTGCCATCTAC	
		GAGAGCC3'	
		Reverse:	
		5'CACTAGGCTGGTG	
		GAGCG3'	
DUSP1 qPCR primers	This study	Forward:	For qPCR
		5'GGCCATTGACTTC	
		ATAGACTCC3'	
		Reverse:	
		5'ATGATGCTTCGCC	
		TCTGCTT3'	
CDKN1A qPCR primers	This study	Forward:	For qPCR
		5'GCAGACCAGCATG	
		ACAGATTT3'	
		Reverse:	
		5'GGCCAGGGTATGT	
		ACATGAGG3'	
NDRG1 qPCR primers	This study	Forward:	For qPCR
		5'CCCTCGCGTTAGG	
		CAGGT3'	
		Reverse:	
		5'CCGATGTCATGGT	
		AGGTGAGG3'	
GLUT1 qPCR primers	This study	Forward:	For qPCR
		5'TCTGGCATCAACG	
		СТӨТСТТЗ'	
		Reverse:	
		5'AACAGCGACACGA	
		CAGTGAA3'	

HDAC1 qPCR primers	This study	Forward:	For qPCR
		5'CATCGCTGTGAAT	
		TGGGCTG3'	
		Reverse:	
		5'ACCCTCTGGTGAT	
		ACTTTAGCAG3'	
HDAC2 qPCR primers	This study	Forward:	For qPCR
		5'GTTTCCCTCAGCC	
		CTTTTCT3'	
		Reverse:	
		5'ATAATTTCCAATAT	
		CACCGTCGTAG3'	
HDAC3 qPCR primers	This study	Forward:	For qPCR
		5'GGCCTATTTCTAC	
		GACCCCG3'	
		Reverse:	
		5'TGGTATGGCTTGA	
		AGACGATCA3'	
GAPDH qPCR primers	This study	Forward:	For qPCR
		5'GGAGCGAGATCCC	
		TCCAAAAT3'	
		Reverse:	
		5'GGCTGTTGTCATA	
		CTTCTCATGG3'	
H3K27ac ChIP:	This study	Forward:	For ChIP-qPCR
ANGPTL4_P1 primers		5'ATGTGGTCCAGCC	
		CTTTAGC3'	
		Reverse:	
		5'TCTAAGCCCAGCC	
		CCTGTAT3'	

H3K27ac ChIP:	This study	Forward:	For ChIP-qPCR
ANGPTL4_P2 primers		5'TGCGATGACGAAC	
		CCTTTCA3'	
		Reverse:	
		5'CTTCGTGTGACCT	
		CCATCCC3'	
H3K27ac ChIP:	This study	Forward:	For ChIP-qPCR
ANGPTL4_P3 primers		5'GGGGCTTGCAATT	
		TCACACT3'	
		Reverse:	
		5'CAGGCCTTCCTCT	
		ACGAACC3'	
HIF-1α ChIP:	This study	Forward:	For ChIP-qPCR
ANGPTL4_P1 primers		5'CCTTGGGTGTGCA	
		GTTTCAG3'	
		Reverse:	
		5'GCCTCTTCCCTAC	
		CCATTCC3'	
HIF-1α ChIP:	This study	Forward:	For ChIP-qPCR
ANGPTL4_P2 primers		5'GCAATTTCACACTA	
		GAGGCGG3'	
		Reverse:	
		5'CAGGCCTTCCTCT	
		ACGAACC3'	
shANGPTL4	Padua D. et	5'GAGGCAGAGTGG	For ANGPTL4
	al., 2008	ACTATTT3'	knockdown
shSERPINE1	Sigma,	5'TCTCTGCCCTCAC	For SERPINE1
	TRCN00003	CAACATTC3'	knockdown
	31004		
shHIF1A	Sigma,	5'GTGATGAAAGAAT	For HIF1A
	TRCN00000	TACCGAAT3'	knockdown
	3810		
shCtrl	This study	5'AAACGTGACACGT	Non-target control
		TCGGAGAA3'	shRNA
Deposited Data			

RNA-seq raw data	This study	Gene Expression Compare the	
		Omnibus, accession	transcriptome
		no. GSE175593	between DLD-1
			co-culture with or
			without F.
			nucleatum
Software and Algorithms			
R version 4.0.2	N/A	https://www.r-	RNA-seq analysis
		project.org/	
GDCRNATools (R	N/A	https://www.r-	RNA-seq analysis
package)		project.org/	
I-Sanger	Majorbio co.	http://www.i-	RNA-seq analysis
		sanger.com/	
Image J	NIH	https://imagej.nih.gov/ij	Image process
		RRID:SCR_003070	and analysis
COMSTAT2 (Image J	Heydorn A.	http://www.comstat.dk	Biomass
plugin)	et al., 2000		quantification
IHC profiler (Image J	Varghese F.	https://github.com/dbra	IHC score
plugin)	et al., 2014	nt/ihc-profiler	quantification
GraphPad Prism version	Insightful	N/A	Data presentation
8.0.1	Science	RRID:SCR_002798	and statistical
			analysis

Patient ID	Gender	Age	AJCC	H3K27ac IHC	Fn FISH positive
			stage	score	area%
0019000316	Female	52	IIB	0.040875	0.561395
0032319839	Female	65	IIIB	6.53748	6.160114
0032353020	Male	72	IIA	1.709006	0.456252
0032369867	Male	53	IIIC	15.50472	1.074149
0032148208	Female	49	IIA	3.593425	0.308743
0019738587	Female	57	IIIB	56.1506	18.1636
0000449348	Female	87	IIIB	15.56516	2.515795
0032490219	Male	56	IIB	33.1516	0.964906
0021090254	Female	40	1	3.62716	0.712857
0032490770	Male	85	IIIC	47.1219	3.096782
0008498282	Male	74	IIIC	25.7169	2.574479
0007638115	Male	75	IIB	6.51762	0.398631
0012244820	Female	47	IIIC	5.272276	2.048468
0032381367	Male	60	IIIC	8.709603	1.862457
0032580425	Female	53	IIIC	47.1219	9.407131
0033045065	Male	64	IIIC	19.20076	4.144113
0033090272	Female	60	IIIC	24.41642	2.43151
0033106136	Male	64	IIIB	15.4771	4.96245
0033110883	Female	50	IIB	8.71928	1.835791
0002255365	Male	40	IIA	8.22492	1.053122
0018247017	Female	46	1	2.296282	0.129506
0019000316	Female	52	IIB	29.5688	0.936108
0032319839	Female	65	IIIB	8.097713	4.613394
0032277625	Male	30	IIC	10.0008	2.663626
0017018303	Male	63	I	4.295234	0.286549
2353020	Male	72	IIA	5.66402	0.273557
0032369867	Male	53	IIIC	43.02794	11.63048

 Table S2. Information for colon adenocarcinoma tissues analysis.
 Related to Fig 5.