THE LANCET Digital Health

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Kuan PX, Chan WK, Fern Ying DK, et al. Efficacy of telemedicine for the management of cardiovascular disease: a systematic review and meta-analysis. *Lancet Digit Health* 2022; **4:** e676–691.

SUPPLEMENTARY MATERIAL

Efficacy of telemedicine for the management of cardiovascular disease: a systematic review and meta-analysis

Pei Xuan Kuan, MScCT^{1,2}, Weng Ken Chan, DrAnaesCritCare³, Denisa Khoo Fern Ying, BDS⁴, Mohd Aizuddin Abdul Rahman, MBBS¹, Kalaiarasu M Peariasamy, FDSRCS^{1,5}, Nai Ming Lai, MRCPCH⁵, Nicholas L Mills, PhD^{6,7}, Atul Anand, PhD⁶

- ¹ Digital Health Research and Innovation, Institute for Clinical Research, National Institutes of Health Malaysia
- ²College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- ³ Anaesthesiology and Intensive Care, Sarawak General Hospital, Ministry of Health Malaysia
- ⁴ Paediatric Dental Department, Sungai Buloh Hospital, Ministry of Health Malaysia
- ⁵ School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Malaysia
- ⁶BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- ⁷ Usher Institute, University of Edinburgh, Edinburgh, UK

Short Title: Telemedicine and cardiovascular disease

Corresponding author:

Dr Atul Anand BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh EH16 4SA United Kingdom Telephone: +44 131 242 6515 Fax: +44 131 242 6379 Email: <u>atul.anand@ed.ac.uk</u>

Contents

Appendix 1: Search strategy (PubMed example).	Page 3
Appendix 2: Summary of secondary prevention cardiovascular disease studies.	Page 5
Appendix 3: Summary of primary prevention cardiovascular disease studies.	Page 10
Appendix 4: Risk of cardiovascular mortality in heart failure studies of remote consultation suitable for meta-analysis.	Page 13
Appendix 5: Risk of cardiovascular hospitalisation in heart failure studies of remote consultation suitable for meta-analysis.	Page 14
Appendix 6: Risk of all-cause hospitalisation in heart failure studies suitable for meta-analysis.	Page 15
Appendix 7: Changes in blood pressure and body mass index in studies suitable for meta-analysis.	Page 16
Appendix 8: Cochrane risk of bias summary per study.	Page 17
Appendix 9: Cochrane risk of bias graphical summary.	Page 18
Appendix 10: Newcastle-Ottawa Scale quality assessment.	Page 19
Appendix 11: Publication bias assessment.	Page 20
References	Page 21

Appendix 1: Search Strategy (PubMed example shown).

1. ((((((Cardiovascular disease[Title/Abstract])) OR (CVD[Title/Abstract])) OR (myocardialinfarction[Title/Abstract]))OR (MI[Title/Abstract])) OR (cardiacrehabilitation[Title/Abstract]))OR (coronary[Title/Abstract])) OR (heart[Title/Abstract])

3. ((conventional management[Title/Abstract]) OR (standard treatment[Title/Abstract])) OR (non-digital health intervention[Title/Abstract])

4. (((((((((((((CVD events[Title/Abstract]) OR (hospitalization[Title/Abstract])) OR (morbidity[Title/Abstract])) OR (mortality[Title/Abstract])) OR (Framingham score[Title/Abstract])) OR (risk factor modification[Title/Abstract])) OR (blood pressure[Title/Abstract])) OR (glucose[Title/Abstract])) OR (lipid[Title/Abstract])) OR OR (BMI[Title/Abstract])) OR (weight[Title/Abstract])) (medication adherence[Title/Abstract])) OR (quality of life[Title/Abstract])) OR (cost[Title/Abstract])) OR (smoking[Title/Abstract])) OR (physical activity[Title/Abstract])

5. (((((((cardiovascular disease[MeSH Terms]) OR (CVD[MeSH Terms])) OR ("myocardial infarction"[MeSH Terms])) OR (MI[MeSH Terms])) OR ("cardiac rehabilitation"[MeSH Terms]) AND (coronary[MeSH Terms])) AND (heart[MeSH Terms])

6. ((((((((((((((((((((((((((((((((())) OR (MeSH Terms])) OR (mobile health[MeSH Terms])) OR (mHealth[MeSH Terms])) OR (ehealth[MeSH Terms])) OR (web[MeSH Terms])) OR (internet[MeSH Terms])) OR (telemedicine[MeSH Terms])) OR (biosensor[MeSH Terms])) OR (remote monitoring[MeSH Terms])) OR (wearable[MeSH Terms])) OR (artificial intelligence[MeSH Terms])) OR (AI[MeSH Terms])) OR (virtual care[MeSH Terms])) OR (online[MeSH Terms])) OR (information technology[MeSH Terms]))

7. ((conventional management[MeSH Terms]) OR (standard treatment[MeSH Terms])) OR (non-digital health intervention[MeSH Terms])

8. ((((((((((((((((((CVD events[MeSH Terms]) OR (hospitalization[MeSH Terms])) OR (morbidity[MeSH Terms])) OR ("mortality"[MeSH Terms])) OR (Framingham score[MeSH Terms])) OR (risk factor modification[MeSH Terms])) OR (blood pressure[MeSH Terms]))

OR ("glucose"[MeSH Terms])) OR (lipid[MeSH Terms])) OR (weight[MeSH Terms])) OR (BMI[MeSH Terms])) OR ("medication adherence"[MeSH Terms])) OR (quality of life[MeSH Terms])) OR (cost[MeSH Terms])) OR ("smoking"[MeSH Terms])) OR (physical activity[MeSH Terms])

- 9. (#1) OR (#5)
- 10. (#2) OR (#6)
- 11. (#3) OR (#7)
- 12. (#4) OR (#8)
- 13. (((#9) AND (#10)) AND (#11)) AND (#12)

Author (Year)	Country	Study Design	Total (N)	Subject Characteristics (Age in years, Gender)	Duration (months)	Telemedicine (n)	Telemedicine Intervention	WHO Classification	Key Findings
Avila (2018) ¹	Belgium	Randomized controlled trial	90	Mean age (SD) = 61·2 (7·6) Male (n=80)	3	30	Email, telephone consultations, data monitoring (HR)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	A telemedicine guided physical fitness programme for patients with coronary artery disease was associated with increased peak oxygen uptake, but no significant changes in body mass index, lipids and other risk factors.
Bhavnani (2018) ²	India	Randomized controlled trial	254	Mean age (SD) = 39.0 (14.0) Male (n=146)	12	139	Smartphone- connected mHealth device (pocket ECG, BP, SPO2, activity monitoring, portable brain natriuretic peptide laboratory testing)	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	For these patients with structural heart disease, there was a shorter time to referral for valvuloplasty, lower risk of a composite of hospitalisation or mortality in the telemedicine group assessed with a pocket echocardiography device compared to controls.
Blasco (2012) ³	Spain	Randomized controlled trial	203	Mean age (SD) = 60.8 (11.8) Male (n=163)	12	102	SMS consultation, web-based application, data monitoring (BP, HR, weight, glucose and lipids)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	The telemonitoring intervention group had improvements in achieved BP and HbA ₁ C treatment goals, with reductions in body mass compared to control groups. No differences were achieved in smoking cessation or lipids.
Devi (2014) ⁴	UK	Randomized controlled trial	94	Mean age (SD) = 66·2 (9·2) Male (n=70)	6	48	Interactive web- based intervention	Consultations between remote patient and healthcare provider	Intervention improvements noted in energy expenditure, duration of sedentary and moderate activity, reductions of weight, and angina frequency at 6 weeks follow-up compared to controls, but more limited improvements persisted to 6 months.

Appendix 2: Summary of secondary prevention cardiovascular disease studies.

Frederix (2015) ⁵	Belgium	Randomized controlled trial	80	Mean age (SD) = 60.5 (9.8) Male (n=66)	4.5	40	Email, SMS, data monitoring from motion sensor (blood lipid profile, glycaemic control, waist circumference	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	A telemonitoring intervention group within a cardiac rehabilitation setting achieved improvements in oxygen uptake capacity compared to controls, but no significant change was noted in hospitalisation risk.
Reid (2012) ⁶	Canada	Randomized controlled trial	223	Mean age (SD) = 56·4 (9·0) Male (n=188)	12	115	Email consultation, website, data monitoring via pedometer (steps/ day)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	An internet-based tailored physical activity telemedicine system with guided advice increased objectively measured and self-reported physical activity compared to controls.
Rosario (2018) ⁷	Australia	Randomized controlled trial	66	Age range= 42·0- 86·0 Male (n=42)	3.5	33	Data monitoring via mHealth smartphone (BP, weight)	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	A telemedicine addition to cardiac rehabilitation was associated with greater physical participation and completion of the rehabilitation programme, but no changes in risk factors compared to controls.
Sankaran (2019) ⁸	Belgium	Randomized controlled trial	32	Mean age (SD) = 60.9 (8.2) Male (n=24)	4	16	Data monitoring via app for cardiac rehabilitation (physical activity)	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	A telemedicine rehabilitation programme was associated with improvements in glycated haemoglobin, lipids and maximal oxygen capacity compared to controls in this small randomised study.
Southard (2003) ⁹	USA	Randomized controlled trial	104	Mean age (SD) = 62·3 (10·6) Male (n=78)	6	53	Internet-based case management system	Consultations between remote patient and healthcare provider	A telemedicine enhanced cardiac rehabilitation programme was associated with greater weight loss compared to controls, but other measures were not significantly different.
Thorup (2016) ¹⁰ *	Denmark	Randomized controlled trial	64	$\begin{array}{l} \text{Mean age (SD)} \\ = 62 \cdot 8 \ (11 \cdot 5) \end{array}$	12	64	Tablet, data monitoring (BP, pulse rate, weight,	Remote monitoring of patient health or remote monitoring	Increased mean (SD) walking steps per day from 5191 (3198) to 7890 (2629) among

				Male (n=51)			daily steps)	of diagnostic data by provider	cardiacpatients with remote monitoring; notably more among younger patients with better adherence to the pedometer.
Varma (2014) ¹¹	USA	Randomized controlled trial	1450	Mean age (SD) = $63 \cdot 5 (12 \cdot 6)$ Male (n=969)	15	908	Data monitoring for implantable cardioverter defibrillator	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Remote monitoring of implantable cardiac devices associated with no change in all- cause mortality compared to conventionally managed patients, but did achieve reduced in- hospital device adjustments.
Vernooij (2012) ¹²	The Netherlands	Randomized controlled trial	330	Mean age (SD) = 59.9 (8.4) Male (n=246)	12	155	Internet consultation, data monitoring (BP, weight, smoking status, cholesterol)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Reduction (-14%) in the Framingham heart risk score, LDL-C and smoking in the telemedicine intervention group compared with the usual care group.
Wister (2007) ¹³ **	Canada	Randomized controlled trial	296	Mean age (SD) = 56.9 (5.1) Male (n=204)	12	153	Telehealth counselling	Consultations between remote patient and healthcare provider	No changes in outcome variables including blood pressure and Framingham risk scores were found for secondary prevention patients receiving a telemedicine intervention compared to controls.
Wolf (2016) ¹⁴	Sweden	Randomized controlled trial	199	Mean age (SD) = $60.0 (10.0)$ Male (n=144)	6	94	Website, data monitoring via ehealth diary and symptom tracking tool	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Improvement in a composite primary endpoint including hospitalisation and death among the person-centred telemedicine group admitted to hospital with acute coronary syndrome, compared to controls.
Zutz (2007) ¹⁵	Canada	Randomized controlled trial	15	Mean age (SD) = 58.5 (8.4) Male (n=12)	3	8	Internet-based consultation for cardiac rehabilitation	Consultations between remote patient and healthcare provider	Very small study assessing virtual cardiac rehabilitation programme, with those participating achieving similar improvements in lipids and exercise capacity to historical controls from a conventional rehabilitation programme.

Ades (2000) ¹⁶	USA	Non-randomized controlled trial	133	Mean age (SD) = 56·8 (10·2) Male (n=108)	3	83	Conference call, data monitoring via trans telephonic	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Telemedicine cardiac rehabilitation programme associated with similar changes in oxygen capacity, but an increase in body weight compared to usual rehabilitation.
Macedo (2016) ¹⁷	Brazil	Cohort study	376	Mean age (SD) = 59·0 (11·6) Male (n=276)	24	376	Internet for teleconsultation, discussion of clinical cases via teleconferencing	Consultations between remote patient and healthcare provider Consultations for case management between healthcare providers	The use of chest pain protocols with access to telemedicine was associated with a greater use of a pharmacoinvasive strategy and a trend toward lower in- hospital mortality compared to patients from before the introduction of the new protocols.
Parahuleva (2017) ¹⁸	Germany	Cohort study	364	Mean age (SD) = 65.5 (N/A) Male (n=278)	72	217	Data monitoring of cardiac implantable electronic devices	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Home monitoring of implantable cardiac devices was associated with fewer treatment-related adverse events compared to standard managed patients.
Wong (2016) ¹⁹	Singapore	Cohort study	492	Mean age (SD) = 59·0 (10·3) Male (n=393)	12	395	Telephone consultation	Consultations between remote patient and healthcare provider	A nurse-led telephone-based care coordination and management intervention in patients post- coronary intervention achieved greater target lipid concentrations compared to controls, but there was no difference in rates of cardiovascular hospitalisation.
Ammenwerth (2015) ²⁰	Austria	Cohort study	25	Mean age= $63 \cdot 0$; range= $47 \cdot 0 - 89 \cdot 0$ Male (n=24)	12	25	Data monitoring via app in smart phone (BP, weight, glucose)	Remote monitoring of patient health or remote monitoring of diagnostic data by provider	High medication adherence after 4 and 18 weeks of telemonitoring, but without significant changes to blood pressure or heart rate.

Hart (2019) ²¹	Canada	Cohort study	90	Mean age (SD)	6	90	Telephone	Consultations	A nurse-led telemedicine
				= 68.9 (9.8)			consultation	between remote	intervention for atrial fibrillation
								patient and	patients was associated with
				Male (n=48)				healthcare provider	reduced atrial fibrillation related
								-	hospital visits compared to those
									not receiving the intervention.
									-

*This study also included heart failure patients **This study also included primary prevention patients

Author (Year)	Country	Study Design	Total (N)	Subject Characteristics (Age in years, Gender)	Duration (months)	Telemedicine (n)	Telemedicine Intervention	WHO Classification	Key Findings
Appel (2011) ²²	USA	Randomized controlled trial	415	Mean age (SD) = 54.0 (10.2) Male (n=151)	24	277	Telephone consultation, website, email, data monitoring (weight)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	Body weight was reduced from baseline for both telemedicine intervention and control groups, without significant difference.
Bennett (2010) ²³	USA	Randomized controlled trial	101	Mean age (SD) = 54.4 (8.1) Male (n=53)	3	51	Web-based intervention with consultation using messaging feature	Consultations between remote patient and healthcare provider	Obese patients randomised to a telemedicine intervention including counselling achieved greater weight loss than controls.
Bennett (2012) ²⁴	UK	Randomized controlled trial	365	Mean age (SD) = 54.6 (10.9) Male (n=115)	24	180	Tele counselling	Consultations between remote patient and healthcare provider	A telemedicine backed intervention for obese patients from socioeconomically disadvantaged backgrounds achieved reductions in body weight greater than controls, but no change in blood pressure was seen.
Broekhuizen (2012) ²⁵	The Netherlands	Randomized controlled trial	340	Mean age (SD) = 45·3 (12·9) Male (n=147)	12	181	Personalised health counselling via web- based and telephone	Consultations between remote patient and healthcare provider	No differences seen in risk markers including lipids between telemedicine-backed lifestyle intervention for patients with familial hypercholesterolaemia and controls.
Claes (2013) ²⁶	Belgium	Randomized controlled trial	314	Mean age (SD) = 40.7 (10.5) Male (n=219)	36	195	Personalised website, consultation via regular mail, email, telephone	Consultations between remote patient and healthcare provider	A remote lifestyle modification programme in addition to medical care did not result in significant differences in lipids, body weight or blood pressure.
Green (2014) ²⁷	USA	Randomized	101	Mean age (SD)	18	51	Web-based dietitian,	Consultations	A remote dietician intervention

Appendix 3: Summary of primary prevention cardiovascular disease studies.

		controlled trial		= 56.9 (7.0) Male (n=59)			communication via electronic health record linked secure messaging	between remote patient and healthcare provider	improved weight loss and blood pressure control compared to usual care, for patients with a high pre-intervention cardiac risk.
Jacobs (2011) ²⁸	Belgium	Randomized controlled trial	287	Mean age (SD) = 40·0 (11·0) Male (n=192)	6	194	Tailored website, one-to-one coaching (email, telephone)	Consultations between remote patient and healthcare provider	The cardiovascular events prevention programme did not alter outcomes compared to control patients.
Kiselev (2012) ²⁹	Russia	Randomized controlled trial	199	Mean age (SD) = 50·0 (11·0) Male (n=110)	12	97	SMS and mobile phone technology	Consultations between remote patient and healthcare provider	Using mobile technology and messaging prompts resulted in improved blood pressure control compared to traditional ambulatory care management.
Mendelson (2014) ³⁰	France	Randomized controlled trial	107	Mean age (SD) = 63·0 (9·0) Male (n=89)	4	54	Telephone consultation, health- related messages via pictogram, smartphone, data monitoring (BP, CPAP adherence, sleepiness and quality of life)	Consultations between remote patient and healthcare provider Remote monitoring of patient health or remote monitoring of diagnostic data by provider	The telemedicine group achieved no improvement in self-measured blood pressure compared to controls for patients with obstructive sleep apnoea managed using continuous positive airways pressure.
Verheijden (2004) ³¹	Canada	Randomized controlled trial	146	Mean age (SD) = 63.0 (10.5) Male (n=111)	8	73	Web-based targeted nutrition counselling and social support	Consultations between remote patient and healthcare provider	Cardiac risk measures including blood pressure and lipids were not different in the telemedicine intervention group receiving web based monitoring and counselling when compared to controls.
Wister (2007) ¹³ *	Canada	Randomized controlled trial	315	Mean age (SD) = 55·4 (5·4) Male (n=131)	12	157	Telehealth counselling	Consultations between remote patient and healthcare provider	Significant changes for the telemedicine treatment group relative to controls in Framingham score, lipids, blood pressure, nutrition level and health confidence.
Park (2012) ³²	Republic of Korea	Quasi-experimental	67	Mean age (SD) = $56 \cdot 7 (5 \cdot 6)$ All females	3	34	Telephone or internet consultation, data monitoring (mobile phone and web- based diary internet)	Consultations between remote patient and healthcare provider	The telemedicine group had reductions in lipids, blood pressure and waist circumference in obese post-menopausal women, when compared to non-

								Remote monitoring of patient health or remote monitoring of diagnostic data by provider	randomised controls.
Randolph (1999) ³³	USA	Cross-sectional	133	Median age 2 days (range 1 to 29 days) Gender (N/A)	N/A	133	Telemedical echocardiograms, case management discussion on the teleechocardiography	Remote monitoring of patient health or remote monitoring of diagnostic data by provider Consultations for case management between healthcare providers	Paediatric study transmitting neonatal echocardiogram images for remote review. Data transfer was felt adequate for diagnosis and medical management was altered in the majority of cases.

*This study also included secondary prevention patients

Appendix 4: Risk of cardiovascular mortality in heart failure studies of remote consultation suitable for meta-analysis.

Remote Consultation for Heart Failure Management

	Interve	ntion	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Dunagan 2005	13	76	11	75	32.7%	1.17 [0.56, 2.44]	
Riegel 2002	16	130	32	228	56.7%	0.88 [0.50, 1.54]	
Rodriguez-Gazquez 2012	4	33	4	30	10.6%	0.91 [0.25, 3.32]	
Total (95% CI)		239		333	100.0%	0.97 [0.63, 1.47]	•
Total events	33		47				
Heterogeneity: $Tau^2 = 0.00$;	; Chi ² = 0	.37, df	= 2 (P =	0.83); I	$^{2} = 0\%$	H	
Test for overall effect: $Z = C$	0.16 (P =	0.87)				L	Favours Intervention Favours Control

Appendix 5: Risk of cardiovascular hospitalisation in heart failure studies of remote consultation suitable for meta-analysis.

Remote Consultation for Heart Failure Management

	Interve	ntion	Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Dunagan 2005	27	76	37	75	32.7%	0.72 [0.49, 1.05]	
Riegel 2002	23	130	86	228	32.2%	0.47 [0.31, 0.70]	_ _
Rodriguez-Gazquez 2012	30	33	24	30	35.1%	1.14 [0.92, 1.40]	† ■-
Total (95% CI)		239		333	100.0%	0.74 [0.37, 1.47]	
Total events	80		147				
Heterogeneity: Tau ² = 0.34 Test for overall effect: Z = 0	; Chi ² = 2).87 (P = 0	6.68, di 0.38)	f = 2 (P <	: 0.000	93%	0.1 0.2 0.5 1 2 5 10 Favours Intervention Favours Control	

Appendix 6: Risk of all-cause hospitalisation in heart failure studies suitable for metaanalysis.

Remote Monitoring for Heart Failure Management

	Interver	ntion	Contr	ol		Risk Ratio		Risk Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI			M-H, Ra	andom,	95% CI		
Chaudhry 2010	407	826	392	827	68.4%	1.04 [0.94, 1.15]							
Dendale 2012	64	80	66	80	30.7%	0.97 [0.84, 1.13]				+			
López-Liria 2019	7	25	8	25	0.9%	0.88 [0.37, 2.05]				•			
Total (95% CI)		931		932	100.0%	1.02 [0.94, 1.10]				•			
Total events	478		466										
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.76$, $df = 2$ (P = 0.68); $I^2 = 0\%$						0%		0,2				<u> </u>	10
Test for overall effect: $Z = 0.38 (P = 0.71)$							0.1	Favours	0.5 Intervent	ion Fav	ے ours Cc	ontrol	10

Appendix 7: Changes in blood pressure and body mass index in studies suitable for metaanalysis.

A. Remote Consultation for Primary CVD Prevention (Systolic Blood Pressure)

Short-term Follow-up

	Intervention Control					Mean Difference	Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean SD Total		Weight	IV, Random, 95% CI	ľ	V, Random, 95%	6 CI		
Bennett 2012	-1.38	1.68	180	3.35	1.56	185	25.2%	-4.73 [-5.06, -4.40]				
Broekhuizen 2012	0	1.55	169	-1.1	1.78	143	25.2%	1.10 [0.73, 1.47]		•		
Kiselev 2012	13.5	1.56	62	33.3	1.2	102	25.2%	-19.80 [-20.25, -19.35]		•		
Wister 2007	-7.49	15.85	157	-3.58	16.03	158	24.4%	-3.91 [-7.43, -0.39]		-		
Total (95% CI)	Total (95% CI) 568 588 100.0% -6.86							-6.86 [-16.44, 2.72]		•		
Heterogeneity: Tau ² = 94.81; Chi ² = 5007.27, df = 3 (P < 0.00001); l ² = 100% Tast for everyll affect: $7 = 1.40$ (P = 0.16)									-100 -50	0	50	100
r = 0.10									Favours Int	ervention Favou	irs Control	

B. Remote Consultation for Primary CVD Prevention (Systolic Blood Pressure)

Long-term Follow-up

	Intervention Control					Mean Difference	Mean				
Study or Subgroup	Mean	Mean SD Total Mean SD Tota		Total	Weight	IV, Random, 95% CI	IV, Ran				
Bennett 2012	1.56	1.54	180	5.3	1.47	185	33.6%	-3.74 [-4.05, -3.43]			
Claes 2013	-2.54	1.79	173	-6.32	2.98	82	33.4%	3.78 [3.08, 4.48]		-	
Green 2014	-13.7	2.73	44	-11.5	2.72	46	33.1%	-2.20 [-3.33, -1.07]			
Total (95% CI)			397			313	100.0%	-0.72 [-5.86, 4.42]			
Heterogeneity: Tau ² = 20.50; Chi ² = 373.11, df = 2 (P < 0.00001); l ² = 99%											10
Test for overall effect: $Z = 0.27$ (P = 0.78)									Favours Interventi	on Favours Control	10

C. Remote Consultation for Primary CVD Prevention (Diastolic Blood Pressure)

Long-term Follow-up

	Intervention			Control			Mean Difference			Mean Difference			
Study or Subgroup	Mean SD Total Mean SD Total			Weight	Weight IV, Random, 95% CI IV, Random, 9			m, 95% Cl					
Bennett 2012	0.56	0.99	180	2	0.94	185	33.7%	-1.44 [-1.64, -1.24]					
Claes 2013	-3.88	1.22	173	-6.22	1.59	82	33.5%	2.34 [1.95, 2.73]			+		
Green 2014	-8.6	2.03	44	-6.1	1.98	46	32.8%	-2.50 [-3.33, -1.67]					
Total (95% CI)			397			313	100.0%	-0.52 [-3.35, 2.31]					
Heterogeneity: Tau ² = 6.17; Chi ² = 305.82, df = 2 (P < 0.00001); l ² = 99% Test for overall effect: Z = 0.36 (P = 0.72)									-10	–5 Favours Intervention) Favours C	5 Sontrol	10

D. Remote Monitoring and Consultation for Secondary CVD Prevention (BMI)

	Intervention Cor			Control Mean Difference				Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random	, 95% CI	
Avila 2018	-0.2	0.67	28	-0.4	0.82	26	29.9%	0.20 [-0.20, 0.60]		+		
Blasco 2012	-0.4	0.61	87	0.3	0.56	83	34.6%	-0.70 [-0.88, -0.52]		•		
Vernooji 2012	0.4	0.47	155	0.4	0.45	159	35.5%	0.00 [-0.10, 0.10]		•		
Total (95% CI)			270			268	100.0%	-0.18 [-0.72, 0.36]		•		
Heterogeneity: Tau ² = 0.21; Chi ² = 48.78, df = 2 (P < 0.00001); I ² = 96% Test for overall effect: $7 = 0.66$ (P = 0.51)									-10	-5 0	5	10
								Favours Intervention Favours Control				

Appendix 8: Cochrane risk of bias summary per study.

Appendix 9: Cochrane risk of bias graphical summary.

Appendix 10: Newcastle-Ottawa Scale quality assessment.

Study (Year)	Representati	Selection	Ascertainment	Demonstration that	Comparability of	Assessment	Was follow-	Adequacy	Quality
	ves of the	of the	of the exposure	outcome of interest	conorts on the	of outcome	up long enough for	of follow-	
	cohort (star)	d cohort	(Star)	the start of the	or analysis	(star)	outcomes to	cohorts	
	conort (star)	(star)		study (star)	controlled for		occur (star)	(star)	
		(5002)		, (State)	confounders (star)			(5002)	
Ades (2000)	1	1	1	0	1	1	1	1	High
Ammenwerth	1	0	0	0	0	0	1	1	Low
(2015)									
Chen (2010)	1	1	0	1	1	0	1	1	Medium
Dadosky (2018)	1	1	1	1	1	1	0	1	High
Hart (2019)	1	0	0	0	0	0	1	0	Low
Kurek (2017)	1	1	1	0	2	1	1	1	High
Macedo (2016)	1	0	1	1	1	1	1	1	High
Martín-Lesende	1	0	1	0	0	1	1	0	Medium
(2017)									
Masella (2008)	1	0	1	0	0	1	1	0	Medium
Mittal (2016)	1	1	1	0	0	1	1	1	Medium
Moore (2016)	1	0	1	0	0	0	1	0	Low
Nishii (2015)	1	0	1	1	0	0	1	1	Medium
Odeh (2015)	1	0	1	0	0	1	1	0	Medium
Parahuleva 2017	1	1	1	1	1	1	1	0	High
Park (2012)	1	1	1	0	2	1	1	1	High
Quinn (2006)	1	1	0	1	0	0	1	1	Medium
Randolph (1999)	1	0	1	0	0	1	0	0	Low
Rosen (2017)	1	0	1	0	0	1	1	1	Medium
Scalvini (2006)	1	0	0	0	0	1	1	1	Medium
Wong (2016)	1	1	1	0	1	1	1	1	High

Appendix 11: Publication bias assessment.

Funnel plot to assess for publication bias in studies used for meta-analysis of cardiovascular mortality risk. Egger's tests for plot asymmetry does not support publication bias (p=0.93).

References

- 1. Avila A, Claes J, Goetschalckx K, et al. Home-based rehabilitation with telemonitoring guidance for patients with coronary artery disease (short-term results of the TRiCH study): Randomized controlled trial. J Med Internet Res. 2018;20(6):e225.
- 2. Bhavnani SP, Sola S, Adams D, et al. A randomized trial of pocket-echocardiography integrated mobile health device assessments in modern structural heart disease clinics. JACC Cardiovasc Imaging. 2018;11(4):546–57.
- 3. Blasco A, Carmona M, Fernández-Lozano I, et al. Evaluation of a telemedicine service for the secondary prevention of coronary artery disease. J Cardiopulm Rehabil Prev. 2012;32(1):25–31.
- 4. Devi R, Powell J, Singh S. A web-based program improves physical activity outcomes in a primary care angina population: Randomized controlled trial. J Med Internet Res. 2014;16(9).
- 5. Frederix I, Driessche N Van, Hansen D, et al. Increasing the medium-term clinical benefits of hospital-based cardiac rehabilitation by physical activity telemonitoring in coronary artery disease patients. Eur J Prev Cardiol. 2015;22(2):150–8.
- 6. Reid RD, Morrin LI, Beaton LJ, et al. Randomized trial of an internet-based computertailored expert system for physical activity in patients with heart disease. Eur J Prev Cardiol. 2012;19(6):1357–64.
- 7. Rosario MBD, Lovell NH, Fildes J, et al. Evaluation of an mHealth-based adjunct to outpatient cardiac rehabilitation. IEEE J Biomed Health Inform. 2018;22(6):1938–48.
- 8. Sankaran S, Dendale P, Coninx K. Evaluating the impact of the hearthab app on motivation, physical activity, quality of life, and risk factors of coronary artery disease patients: Multidisciplinary crossover study. JMIR mHealth uHealth. 2019;7(4):e10874.
- 9. Southard BH, Southard DR, Nuckolls J. Clinical trial of an internet-based case management system for secondary prevention of heart disease. J Cardiopulm Rehabil. 2003;23(5):341–8.
- 10. Thorup C, Hansen J, Gronkjaer M, et al. Cardiac patients' walking activity determined by a step counter in cardiac telerehabilitation: data from the intervention arm of a randomized controlled trial. J Med Internet Res. 2016;18(4):e69.
- 11. Varma N, Epstein AE, Irimpen A, Schweikert R, Love C; TRUST Investigators. Efficacy and safety of automatic remote monitoring for implantable cardioverterdefibrillator follow-up: The Lumos-T safely reduces routine office device follow-up (TRUST) trial. Circulation. 2010;122(4):325–32.
- 12. Vernooij JWP, Kaasjager HAH, Van Der Graaf Y, et al. Internet based vascular risk factor management for patients with clinically manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1–13.
- 13. Wister A, Loewen N, Kennedy-Symonds H, McGowan B, McCoy B, Singer J. Oneyear follow-up of a therapeutic lifestyle intervention targeting cardiovascular disease risk. CMAJ. 2007;177(8):859–65.
- 14. Wolf A, Fors A, Ulin K, Thorn J, Swedberg K, Ekman I. An eHealth diary and symptom-tracking tool combined with person-centered care for improving self-efficacy after a diagnosis of acute coronary syndrome: A substudy of a randomized controlled trial. J Med Internet Res. 2016;18(2):e40.
- 15. Zutz A, Ignaszewski A, Bates J, Lear SA. Utilization of the internet to deliver cardiac rehabilitation at a distance: A pilot study. Telemed J E Health. 2007;13(3):323–30.
- 16. Ades PA, Pashkow FJ, Fletcher G, Pina IL, Zohman LR, Nestor JR. A controlled trial of cardiac rehabilitation in the home setting using electrocardiographic and voice transtelephonic monitoring. Am Heart J. 2000;139(3):543–8.

- 17. Macedo TA, De Barros E Silva PGM, Simões SA, et al. Impact of chest pain protocol with access to telemedicine on implementation of pharmacoinvasive strategy in a private hospital network. Telemed e-Health. 2016;22(7):549–52.
- 18. Parahuleva MS, Soydan N, Divchev D, Lüsebrink U, Schieffer B, Erdogan A. Home monitoring after ambulatory implanted primary cardiac implantable electronic devices: The home ambulance pilot study. Clin Cardiol. 2017;40(11):1068–75.
- 19. Wong N, Chua SJT, Gao F, et al. The effect of a nurse-led telephone-based care coordination program on the follow-up and control of cardiovascular risk factors in patients with coronary artery disease. Int J Qual Heal Care. 2016;28(6):758–63.
- 20. Ammenwerth E, Woess S, Baumgartner C, et al. Evaluation of an integrated telemonitoring surveillance system in patients with oronary heart disease. Methods Inf Med. 2015;54(5):388–97.
- 21. Hart D, Hopman WM, Hammond S, Redfearn DP. Augmenting atrial fibrillation care after an emergency department visit: Implementing telephone practice. J Nurs Care Qual. 2019;34(4):337–9.
- 22. Appel LJ, Clark JM, Yeh HC, et al. Comparative effectiveness of weight-loss interventions in clinical practice. N Eng J Med. 2011;365(21):1959–68.
- 23. Bennett GG, Herring SJ, Puleo E, Stein EK, Emmons KM, Gillman MW. Web-based weight loss in primary care: a randomized controlled trial. Obes (Silver Spring). 2010;18(2):303–13.
- 24. Bennett GG, Warner ET, Glasgow RE, et al. Obesity treatment for socioeconomically disadvantaged patients in primary care practice. Arch Intern Med. 2012;172(7):565–74.
- 25. Broekhuizen K, van Poppel MN, Koppes LL, Kindt I, Brug J, van Mechelen W. No significant improvement of cardiovascular disease risk indicators by a lifestyle intervention in people with familial hypercholesterolemia compared to usual care: Results of a randomised controlled trial. BMC Res Notes. 2012;5:181.
- 26. Claes N, Jacobs N, Clays E, Schrooten W, De Bourdeaudhuij I. Comparing the effectiveness of two cardiovascular prevention programmes for highly educated professionals in general practice: A randomised clinical trial. BMC Cardiovasc Disord. 2013;13(38).
- 27. Green BB, Anderson ML, Cook AnJ, al. E-care for heart wellness: A feasibility trial to decrease blood pressure and cardiovascular risk. Am J Prev Med. 2014;46(4):368–77.
- 28. Jacobs N, De Bourdeaudhuij I, Thijs H, Dendale P, Claes N. Effect of a cardiovascular prevention program on health behavior and BMI in highly educated adults: A randomized controlled trial. Patient Educ Couns. 2011;85(1):122–6.
- 29. Kiselev AR, Gridnev VI, Shvartz VA, Posnenkova OM, Dovgalevsky PY. Active ambulatory care management supported by short message services and mobile phone technology in patients with arterial hypertension. J Am Soc Hypertens. 2012;6(5):346–55.
- 30. Mendelson M, Vivodtzev I, Tamisier R, et al. CPAP treatment supported by telemedicine does not improve blood pressure in high cardiovascular risk OSA patients: A randomized, controlled trial. Sleep. 2014;37(11):1863-70.
- 31. Verheijden M, Bakx JC, Akkermans R, et al. Web-based targeted nutrition counselling and social support for patients at increased cardiovascular risk in general practice: Randomized controlled trial. J Med Internet Res. 2004;6(4):e44.
- 32. Park MJ, Kim HS. Evaluation of mobile phone and Internet intervention on waist circumference and blood pressure in post-menopausal women with abdominal obesity. Int J Med Inform. 2012;81(6):388–94.
- 33. Randolph GR, Hagler DJ, Khandheria BK, et al. Remote telemedical interpretation of

neonatal echocardiograms: Impact on clinical management in a primary care setting. J Am Coll Cardiol. 1999;34(1):241–5.