Supplementary Figures

Supplementary Figure S1: IgM levels in M-CLL and U-CLL cells. A. A representative Western blot analysis of primary CD19+ purified cells from M-CLL and U-CLL cases showing IgM levels. Actin was used to verify equal loading. B. Quantification of IgM levels in M-CLL and U-CLL cells in (A) by normalization to actin using myImageAnalysisTM Software (n=23). *p<0.05.

Supplementary Figure S2: BTK , p65 and Lyn phosphorylation in CLL subgroups. Peripheral blood CLL cells were isolated from IgG M-CLL, IgM M-CLL and IgM U-CLL patients. Protein was extracted and analyzed by Western blot.A. A representative Western blot analysis showing BTK(Y223) and p65(S536) phosphorylation. B. A representative Western blot analysis showing Lyn(Y507)

phosphorylation. Actin was used to verify equal loading. C. Quantification of pBTK, p-p65 and pLyn levels in (A) and (B) by normalization to actin using

Supplementary Figure S3: Phosphorylation levels of BcR signaling elements in different time points. Peripheral blood CLL cells were isolated from M-CLL and U–CLL patients.Protein was extracted immediately after thawing and following 24 hours of incubation, and analyzed by Western blot. A. A representative Western blot analysis showing CD79a(Y182), Akt (S473), ERK(T202/Y204), SHP1 (Y564) and Lyn (Y396) phosphorylation, as well as total amount of these proteins. Actin was used to verify equal loading. B. Quantification of pCD79a, pAkt, pERK, pSHP1 and pLyn levels in (A) by normalization to actin using myImageAnalysis™ Software (n=14).

Supplementary Figure S4 : A time-dependent BcR activation pattern in CLL cells. CLL cells were incubated with goat $F(ab')^2$ anti-human IgM (10 µg/mL), for the indicated time points or left untreated. Protein was extracted and analyzed by Western blot.A. A representative Western blot analysis showing CD79a(Y182) phosphorylation after 5, 15 and 40 minutes. Actin was used to verify equal loading (n=3). B. A

representative Western blot analysis showing Akt (S473) and ERK (T202/Y204) phosphorylation after 15 and 45 minutes. Actin was used to verify equal loading (n=8).

Supplementary Figure S5: BcRs and F-actin dynamic in M-CLL and U-CLL cells before and after activation. A.CLL cells were unstimulated ("0") or activated with F(ab')2 Fragment Goat Anti-Human IgM or IgG at 10µg/mL for 5, 15 and 40 minutes. The cells were stained with human anti-IgM or anti-IgG antibody conjugated to FITC, followed by staining with DyLight 594 Phalloidin. Quantification of Phalloidin intensity,Co-Localization of IgM/IgG over Phalloidin and cell area was done using Imaris software (n=25). B. Analysis of the percentage of cells in the basal state showing capping/ internalization of the BcR's in the three groups of CLL (n=15, mean of two fields per patient) **p<0.01.

Supplementary Figure S6: Visualization of cluster analysis of d-STORM data. Depth representation of a d-STORM image of IgM U-CLL cell (right panel) and its corresponding clusters (left panel). This cell contains both large and small clusters, each individual cluster is marked in a different color.

Supplementary Figure S7:The differences in basal BcR signalosomes and BcR spatial dynamics between immunogenetic CLL subtypes. A. Basal signalosomes compositions of IgG M-CLL, IgM M-CLL and IgM U-CLL are illustrated according to the molecules depicted in the insert. Small red circles indicate phosphorylation. B. The dynamics of IgG M-CLL (left), IgM M-CLL (middle) and U-CLL (right) is depicted in the resting (top) versus the activation (bottom) states of the BcR. Strength of the ERK (red) and Akt (blue) responses are indicated by the arrows width.

Patient	Gender/Age (y)	ALC(x10 ⁹ /L)	WBC	IGHV gene SHM status	
CLL 01	M/75	163.6	169.4	M-CLL	
CLL_02	M/51	63.7	67.7	IgG M-CLL	
CLL_03	F/73	81.8	94.3	M-CLL	
CLL_04	F/86	42.1	48.8	IgG M-CLL	
CLL_05	F/67	104.8	113	IgG M-CLL	
CLL_06	M/86	81.8	88.3	U-CLL	
CLL_07	M/60	215.7	219.5	U-CLL	
CLL_08	F/72	233.7	253.9	U-CLL	
CLL_09	M/71	41.7	47	M-CLL	
CLL_10	F/68	124.6	135	M-CLL	
CLL_11	M/63	103.3	124.9	M-CLL	
CLL_12	F/70	130	138.1	IgG M-CLL	
CLL_13	M/64	146.7	157.4	U-CLL	
CLL_14	M/71	47.9	56.3	U-CLL	
CLL_15	F/69	83.1	103.3	U-CLL	
CLL_16	F/59	176.5	188.7	U-CLL	
CLL_17	F/72	45.9	52.5	M-CLL	
CLL_18	F/72	126.1	134.1	M-CLL	
CLL_19	F/82	30.4	38.2	IgG M-CLL	
CLL_20	F/72	97.9	106.7	IgG M-CLL	
CLL_21	F/62	153.6	178	U-CLL	
CLL_22	M/64	235.3	249	U-CLL	
CLL_23	M/54	47.1	56.2	U-CLL	
CLL_24	F/70	67.1	75.2	M-CLL	
CLL_25	F/75	117.8	150.3	M-CLL	
CLL_26	F/69	28.6	40.9	U-CLL	
CLL_27	M/68	133	143.8	U-CLL	
CLL_28	F/41	41.8	48.4	U-CLL	
CLL_29	M/58	215.8	229	U-CLL	
CLL_30	F/49	165.7	176.8	IgG M-CLL	
CLL_31	M/82	21.6	25.9	M-CLL	
CLL_32	M/71	94.1	97.9	U-CLL	
CLL_33	M/52	137.1	147.1	U-CLL	
CLL_34	M/52	126.8	134.8	M-CLL	
CLL_35	M/81	84	89.4	U-CLL	
CLL_36	F/52	130	141.1	U-CLL	
CLL_37	M/72	30.9	38.5	M-CLL	
CLL_38	M/51	31.9	37.5	M-CLL	
CLL_39	F/86	99.3	124	U-CLL	
CLL_40	F/74	42.6	48.6	M-CLL	
CLL_41	M/50	80.3	91.9	U-CLL	
CLL_42	M/73	103.5	110.1	U-CLL	
CLL_43	M/70	100.6	106.1	U-CLL	
CLL_44	F/66	171.9	186.2	M-CLL	

Supplementary Table 1: Patient characteristics.

CLL_45	M/84	98.7	135.7	M-CLL
CLL_46	M/52	50.9	54.6	M-CLL
CLL_47	M/76	81	89	M-CLL
CLL_48	M/75	81.3	86.4	M-CLL
CLL_49	M/80	68	84	U-CLL
CLL_50	M/57	71.4	76.6	U-CLL
CLL_51	M/70	12.7	18.5	U-CLL
CLL_52	F/55	99.5	109	IgG M-CLL
CLL_53	F/81	229.5	259	IgG M-CLL
CLL_54	M/68	43	46	IgG M-CLL
CLL_55	M/73	32.1	42	IgG M-CLL
CLL_56	M/66	12	26	IgG M-CLL
CLL_57	F/54	27.3	34.6	IgG M-CLL
CLL_58	F/76	200.9	210.2	U-CLL
CLL_59	M/67	75.6	81.9	U-CLL
Normal _01	F/27			
Normal _02	M/64			

M-male, F-female, y- years, ALC- absolute lymphocyte count, M-CLL: CLL with mutated IGHV genes; U-CLL: CLL with unmutated IGHV genes.

Supplementary Tables 2-4: Gene Set Enrichment Analysis for immunoglobulin subtypes in CLL .Gene Set Enrichment Analysis (GSEA) was used to identify overrepresentation of gene sets from the online database available at the GSEA Web site (http://www.broadinstitute.org/gsea/). In addition, select gene sets from the gene expression database of the Staudt laboratory (http://lymphochip.nih.gov/signaturedb/index.html) were uploaded to GSEA for inclusion in the analysis. Enriched or overrepresented gene sets between IgM U-CLL, IgM M-CLL and IgG M-CLL were identified using 1000 permutations of the phenotype labels.

Table 2. IgM U-CLL vs. IgM M-CLL				
	NES	FDR q-val		
NF-κB signaling pathway	2.83	<0.0001		
B-cell receptor signaling		<0.0001		
TGF-β signaling pathways	2.18	<0.0001		
Inflammatory response	2.17	<0.0001		
Apoptosis regulation	2.1	<0.0001		
TLR signaling pathway	1.91	0.003		
IFN-γ response	1.81	0.002		
RAS signaling pathway	1.77	0.003		
IFN-α response	1.76	0.002		
P53 signaling Pathway	1.75	0.002		

Table 3. IgM U-CLL vs. IgG M-CLL				
	NES	FDR q-val		
NF-κB signaling pathway	2.8	<0.0001		
B-cell receptor signaling	2.17	<0.0001		
TGF-β signaling pathways	2.11	<0.0001		
Apoptosis regulation	1.92	<0.0001		
Inflammatory response	1.8	0.006		
IL4 response	1.73	0.008		
P53 signaling Pathway	1.62	0.016		
JAK/STAT3 signaling pathway	1.64	0.017		
Ras signaling pathway	1.6	0.015		
MYD88 signaling pathway	1.59	0.015		

Table 4. IgG M-CLL vs. IgM M-CLL			
	NES	FDR q-val	
P53 signaling Pathway	1.79	0.02	
IFN-γ response	1.73	0.014	