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This Appendix provides methodological details and supplemental figures and tables. Briefly, it 

summarises details presented principally in the Methods Appendix to “Global Burden of 369 diseases, 

injuries, and impairments, 1990–2019: a systematic analysis for the Global Burden of Disease Study 

2019” (Named hereafter Capstone Appendix),1 but also in the methods appendices of additional GBD 

2019 publications.2,3 Our aim is to give a comprehensive description of the analytical steps taken, with 

tables, figures, and specific details to make transparent our estimation processes.  

Section 1. Overview of GBD methodology 
The GBD 2019 applies a standard methodological approach to generate estimates for mortality and 

causes of death for diseases for 204 countries and territories. We grouped countries and territories into 

21 regions and these into seven super‐regions: 1) central Europe, eastern Europe, and central Asia; 2) 

high income; 3) Latin America and the Caribbean; 4) north Africa and the Middle East; 5) south Asia; 6) 

southeast Asia, east Asia and Oceania; and 7) sub‐Saharan Africa. GBD organises causes of death based 

on the GBD cause list, which is hierarchical, comprising four levels: 

At Level 1, there are three cause groups: communicable, maternal, neonatal, and nutritional diseases; 

non‐communicable diseases, including diabetes and chronic kidney disease; and injuries.   

At Level 2, these Level 1 groups are subdivided into 22 cause groups, with diabetes and chronic kidney 

disease (CKD) grouped together.  

At Level 3, diabetes mellitus and chronic kidney diseases are disaggregated. 

At Level 4, type 1 diabetes, type 2 diabetes, chronic kidney disease due to type 1 diabetes, and chronic 

kidney disease due to type 2 diabetes are disaggregated to contains the finest detail for these causes 

captured in GBD 2019. 

GBD publications comply with the Guidelines for Accurate and Transparent Health Estimates Reporting 

(GATHER) recommendations.5 The steps in our analytical procedures and detailed data sources can be 

found in the appendices of the GBD 2019 publications cited above (with Table 1 for the GATHER 

checklist). To check the GATHER Statement, visit the GATHER website under GATHER Statement. 

GBD 2019 synthesises a large and growing number of data input sources, including surveys, censuses, 

vital statistics, and other health‐related data sources which are used to estimate mortality. The input 

sources are accessible through an interactive citation tool available in the Global Health Data Exchange 

(GHDx; http://ghdx.healthdata.org/). This tool allows users to view and access GHDx records for input 

sources and export a comma‐separated value (CSV) file that includes metadata, citations, and 

information on where data were used in GBD. Citations for specific GBD components, causes and risks, 

and locations can also be found with this tool. As required by GATHER, additional metadata for input 

sources are available through the citation tool as well. 

The GBD permits visualisation of its results online. All GBD 2019 online data visualisations are available 

at https://vizhub.healthdata.org/gbd-compare/, which provides results for all GBD health metrics. Core 

summary GBD 2019 results, including for deaths, can be downloaded in tabular form with the GBD’s 

data download tool, available at http://ghdx.healthdata.org/gbd‐results-tool. Data above a certain size 

cannot be viewed online but can be downloaded. Depending on the size of the download, users may 

http://ghdx.healthdata.org/
https://vizhub.healthdata.org/gbd-compare/
http://ghdx.healthdata.org/gbd‐results-tool


8 
 

need to enter an e-mail address; a download location will be sent to them when the files are prepared. 

Input data used in the cause specific models by location can be found at the links below:  

http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=587&locations=103 

http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=589&locations=103 

http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=587&locations=103 

https://vizhub.healthdata.org/epi/ 

https://vizhub.healthdata.org/cod/ 

 

Section 2. Multiple approaches to the burden of diabetes and high 

fasting plasma glucose 
As shown in Appendix Figure 1, the GBD framework 8ecognizes type 1 and type 2 diabetes as diseases 

with their own complications and as distinct causes of chronic kidney disease (CKD). Within its list of risk 

factors, GBD includes hyperglycaemia, encompassing diabetes range and lesser levels, as an all-inclusive 

measure, capturing the total burden of elevated glucose metabolism – that directly caused by diabetes, 

that due to CKD caused by diabetes, and that resulting from other diseases (eg, ischaemic heart disease 

and stroke) for which diabetes increases risk of occurrence. It also encompasses the much smaller 

effects of levels of hyperglycaemia conferring risk but not reaching the threshold for diabetes.6 The risk 

factor measuring this conjoint disease burden is called high fasting plasma glucose (HFPG). 

Supplementary Figure 1 summarises this multiple approach to burden. 

  

 

http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=587&locations=103
http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=4&causes=589&locations=103
http://ghdx.healthdata.org/gbd-2019/data-input-sources?components=5&causes=587&locations=103
https://vizhub.healthdata.org/epi/
https://vizhub.healthdata.org/cod/
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Appendix Figure 1. Characterisation of burden due to diabetes and lesser states of hyperglycaemia. The 

burden of diabetes and lesser-range hyperglycaemia through the additional diseases which are linked 

with solid lines emanating from high fasting plasma glucose is captured only through high fasting plasma 

glucose.  

*Non-optimal temperature is considered a risk factor for type 1 diabetes. 

** Chronic kidney disease due to diabetes is modelled within the chronic kidney disease framework. 

Section 3. All-cause mortality 
The calculation of all-cause mortality estimates for all GBD age groups, by sex, for all locations and years 

is described in detail in the Methods Appendix to the 2019 GBD publication “Global, regional, and 

national age-sex-specific fertility, mortality, and population estimates, 1950–2019: a comprehensive 

demographic analysis for the Global Burden of Disease Study 2019”.2 

We calculated all-cause mortality based on the integration of data from a diverse set of sources. To 

estimate child mortality, we used data from vital registration (VR) systems, sample registration systems, 

and disease surveillance point systems, household surveys (complete and summary birth histories), 

censuses (summary, and on rare occasions, complete birth histories), and demographic surveillance 

sites. To estimate adult mortality, we used, among others, VR systems and surveys and censuses from 

which we extracted household death recall data.2 

Calculations were complicated by the fact that not all countries and territories have complete vital 

registration (VR) systems recording the event of death or periodic censuses. Thus, our processes 

adjusted for the completeness (quality) of available VR data.2 
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We estimated incompleteness in VR sources for deaths under age 5 in mixed effects non-linear models, 

as described in section 2.2.6 of the Methods Appendix to “Global, regional, and national under-5 

mortality, adult mortality, age-specific mortality, and life expectancy, 1950–2017: a systematic analysis 

for the Global Burden of Disease Study 2017”.7 In this process, for each country, we initially relied on 

expert opinion to choose a source, or combination of sources, which were believed to be the least 

biased. If a country had a VR system which we deemed to be complete, this was the reference source. If 

a country did not have a complete VR system, but had estimates from complete birth histories, these 

were used as the reference source. If a country had neither of these types of data, or complete birth 

histories estimates were deemed unreliable, we assigned the surveys conducted after 1950 (in 

combination) as the reference. Incomplete VR data were not included. Additionally, in many countries, 

we chose alternate surveys as the reference. For accurate estimation, it was important to have local 

knowledge on specific data sources’ accuracy. All-cause mortality experts drew from their familiarity 

with data quality to help us to choose the reference category.2 

To determine incompleteness of sources at other ages, we next combined our findings of under-5 VR 

data completeness with death distribution methods to estimate completeness for adults aged 15 to 59. 

Here, we used the three death distribution methods most common in demography: generalised growth 

balance, synthetic extinct generation, and a combined approach, which estimates completeness by 

comparing the age distribution of the population between two censuses with the age distribution of 

deaths between those same censuses. We also applied two additional death distribution methods that 

utilise the GBD Bayesian population model.2 

As shown in Appendix Figure 2, aside from estimating completeness, five major methodological tasks 

were executed in estimating all-cause mortality: estimating the probability of death between birth and 

age 5 years (5q0); estimating the probability of death between age 15 years and 60 years (45q15); 

estimating a complete set of age-specific mortality rates; estimating HIV mortality; and producing final 

estimates of age-specific mortality, including HIV mortality and fatal discontinuities. Estimates of overall 

mortality by age, sex, location, and year were the outputs of this process. These estimates were used for 

ages 15 and above, and a combination of these under-5 and adult estimates produced completeness 

estimates to be used for ages 5 to 9 and 10 to 14.2  

 

 

Appendix Figure 2. Analytical flowchart for the estimation of all-cause mortality by age and sex, and 

HIV/AIDS incidence, prevalence, and mortality for GBD 2019 
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Section 4. GBD 2019 Causes of Death database 
Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and 

other surveillance systems for 1990–2019.8  

All available data on causes of death (CoD) data are standardised, based on International Classification of 

Diseases (ICD) 9 and 10 code mapping for diabetes and other GBD causes, and pooled into a single 

database used to generate cause‐specific mortality estimates by age, sex, year, and geography. This 

process passes through several steps which are outlined below. Appendix Figures 1 and 2 of the 

Capstone Appendix show the high‐level view of data inputs, analytical steps, and outputs of the causes 

of death (CoD) analysis frame.1  

The CoD database contains seven types of data sources (Capstone Appendix Table 3), including vital 

registration (VR), verbal autopsy (VA), sibling history, and survey/census. In countries with complete VR 

systems, there is no need to use any other data source. Less than half the world’s population has deaths captured 

in a VR system, therefore, for countries with incomplete VR systems, vital statistics for causes of death may 

be supplemented with other data types (Capstone Appendix Figure 3).1  

A majority of the CoD data is VR data obtained from the World Health Organization (WHO) Mortality 

Database, a compilation of data submitted to WHO by individual countries. VR is also obtained from 

country‐specific mortality databases operated by official offices. Each cause is coded directly to the most 

detailed CoD when possible, whereas cause codes in data tabulated by International Classification of 

Disease (ICD) are coded to aggregated cause groups. 

Many countries use ICD Tabulation lists. The ICD tabulation lists include the ICD‐9 Basic Tabulation List 

(BTL), the ICD‐10 Mortality Tabulation, the Russia Tabulation, and the India Medical Certification of 

Cause of Death. Two of the drawbacks in using tabulation lists are discrepancies in the accuracy of death 

counts and lack of detail due to aggregated cause groups. There are instances where the sum of deaths 

in chapter subtotals are not equal to the sum of cause groups within the chapter. To account for any 

missing or duplicate deaths reported within the cause groupings, death counts are systematically 

adjusted by calculating the differences between subtotals and sub‐causes within the cause groups. Any 

differences are assigned to a remainder cause group. To account for the lack of cause code detail, select 

cause groups are disaggregated to create a complete cause list.1  

Sample registration systems are expanding in several countries and are key sources of data in Indonesia 

and India, as further detailed in the Capstone Appendix. In countries without VR systems, verbal autopsy 

(VA) studies are a viable data source to inform CoD. Data are obtained by trained interviewers who use a 

standardised questionnaire to ask relatives about the signs, symptoms, and demographic characteristics 

of recently deceased family members. CoD is assigned based on the answers to the questionnaires. VA 

data are highly heterogeneous: studies use different instruments, different cause lists (from single 

causes to full ICD‐cause lists), different methods for assigning CoD, different recall periods, and different 

age groups. Cultural differences may also affect the interpretation of specific questions. CoD validity 

must be considered when mapping to a GBD cause. VAs are likely accurate in assigning CoD to road injury 

or homicide but less accurate for causes requiring medical certification, such as diabetes or chronic 

kidney disease.1 
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Section 4.1. Steps in data input 
Processing of input data involves several steps, as follows:  

Section 4.1. Step 1: Standardise input data  
The input data to the CoD database are received in various formats and must be standardised to run 

through central CoD machinery to then upload to the database. Raw data inputs come from data 

sources such as mortality databases, literature reviews, or reports. Usable data sources must have a 

clear sample size of the number of deaths in the population and exhaustive cause lists. The complexity of 

the data cleaning process varies drastically across data sources. For VR microdata with the location, age, 

sex, year, and ICD‐coded cause of every death, very little effort is necessary to standardise it into a 

consistent structure. Other sources may require weeks of careful review to accurately extract scans of 

hardcover CoD reports into spreadsheets that can be transformed and standardised.1 

At this point, data are assigned source identifiers so that they can be linked to the GHDx and cited 

appropriately. Any aggregate age and sex categories are flagged for age‐sex splitting. The methods of 

cause‐of‐death assignment and data collection are reviewed to determine which source type to assign; for 

example, we distinguish sibling history data from surveys with a VA module. Only data at the most 

detailed level of the GBD location hierarchy are used. Documentation from the source is reviewed to 

determine if the population is representative of the location or only a subset of the population in that 

location. Data sources representing a subset of the population are flagged as non‐representative; this 

flag is used by Cause of Death Ensemble modelling (CODEm) to increase the variance associated with 

such datapoints.1 

Finally, diagnostics are reviewed at this stage to avoid sending cleaning errors downstream. We review 

cause‐specific deaths for each demographic group to ensure the data are reasonable. For example, it is 

unlikely that deaths from neonatal causes occur in age groups over 1 year. All death totals are compared 

with the sum of cause‐ specific deaths to ensure the observed deaths are accounted for and sample size is 

complete.  

CoD in tabulated VR data are condensed into aggregated groups, some of which can be mapped directly 

to GBD causes, while other aggregated cause groups are not informative and cannot be mapped to 

them. To correct for this, aggregated causes were mapped and split onto multiple ICD‐8, ICD‐9, and ICD‐

10 detail causes, or targets, based on the ICD groupings within the aggregated causes. ICD‐8, ICD‐9, and 

ICD‐10 detail codes serve as targets because they are the highest‐quality VR data and enable the 

calculation of proportions used to split the aggregated cause data into detailed causes. The proportions of 

deaths from nearby countries within the super‐region were used to fill in data gaps as they were likely to 

have similar CoD trends.1 

We determined the targets based on detailed causes missing from the tabulated cause list. For any cause 

and demographic group for which we lacked ICD detail, global proportions were used. State splitting and 

calculation of non-maternal deaths complete this step.1 

 

Section 4.1. Step 2: Map to GBD cause list  
In GBD 2019, we used 439 maps to translate causes found in the input data to the GBD 2019 cause list. 

This included 31 maps for VR data, 314 for VA data sources, and 98 for other data types. The largest, and 



13 
 

most universal, maps used were those for ICD‐9 and ICD‐10 VR data. Our mapping process enabled us to 

compare these various data sources across demographic groups.1 

In GBD 2019, we developed additional maps to translate ICD codes found in the input data that are non-

underlying causes to appropriate target codes based on the levels of the GBD cause list.8 These garbage 

codes were mapped to Levels 1‐4 of the GBD cause list according to the following criteria: 

 Level 1 garbage codes include all codes for which a Level 1 GBD cause cannot be directly 
assigned. For example, the underlying causes of “sepsis” or “peritonitis”, if not specified in the 
data, could be an injury, a non‐communicable disease, or a type of communicable disease. In 
these cases, deaths will be redistributed across all three of the Level 1 causes. In addition, 
deaths coded to impossible or ill‐defined causes of death (including “senility” and “unspecified 
causes”) fall into this category, as they will be redistributed onto all causes. 

 Level 2 garbage codes include all codes that can be assigned within the same Level 1 GBD cause, 
being redistributed onto Level 2 causes. 

 Level 3 garbage codes include all codes that can be assigned within the same Level 2 GBD cause, 
being redistributed onto Level 3 causes.  

 Level 4 garbage codes include all codes (eg, “unspecified diabetes mellitus”) that can be 
assigned within the same Level 3 GBD cause, being redistributed onto Level 4 causes. 

 

Section 4.1. Step 3: Split age‐sex groups  
Different sources, particularly VA studies, report deaths for a wide range of age groups with varying 

intervals. For the analysis of CoD, we mapped these different age intervals to the GBD standard set of age 

groups. The Capstone Appendix displays formulas used for this purpose. In some cases, deaths are 

reported for an aggregate age group for both sexes combined. The task in this case is more complicated, 

but the same principle can be applied. In this case, we assumed that the relative risks of death by age 

and sex are constant.1 

We next adjusted separately for estimated adult and child VR completeness. Location‐year‐age‐sex‐

cause-specific deaths and population were then aggregated across all location‐years, to produce cause‐

specific mortality rates by age and sex. These were used to determine the risk of death at any age 

relative to any reference age group1. 

Occasionally, data sources include deaths by a cause for which medical consensus exists that death is 

impossible for the sex and age. For example, some number of deaths may be attributed to cervical 

cancer in males, or to maternal causes in children younger than 10 years. We have constructed a 

conservative list of age‐sex restrictions. When deaths violate these restrictions, we redistribute them 

proportionally onto all causes. All restrictions are included, in the Capstone Appendix, in Appendix Table 

5, Restrictions on age and sex by cause for GBD 2019.1 

 

Section 4.1. Step 4: Correct for miscoding of Alzheimer’s and other dementias, Parkinson’s 

disease, and atrial fibrillation and flutter 
This step, less relevant for diabetes and CKD calculations, is described in the Capstone Appendix.1 
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Section 4.1. Step 5: Redistribute  
A crucial aspect of enhancing the comparability of data for CoD is to deal with uninformative, so‐called 

garbage codes. Garbage codes to which deaths were assigned should not be considered as the 

underlying CoD – for example: “heart failure”, “ill‐defined cancer site”, “senility”, “ill‐defined external 

causes of injuries”, and “septicaemia”. The methods for redistributing these garbage‐coded deaths were 

outlined in detail in Johnson SC.8 Because of the disparate nature of HIV/AIDS mortality across space and 

time, dynamic redistribution of HIV/AIDS‐related garbage codes was applied.8 

For each redistribution package, we defined the “universe” of data as all deaths coded to either the 

package’s garbage codes or the package’s redistribution targets for each country, year, age, and sex. We 

then ran a regression, the formula for which is given in the Capstone Appendix, separately for each 

target group and sex. In GBD 2019, we updated the regressions for stroke and diabetes. We dropped the 

proportion of garbage from the regression formula and ran regression on high‐quality, low proportion 

garbage data (4/5 stars, <50% GC). We also included all covariates included in the CODEm models for 

both stroke and diabetes.8 

 

Section 4.1. Step 6: Correct HIV/AIDS misclassification  
This step, little relevant to diabetes and CKD calculations, is described in detail in the Capstone 

Appendix.1 

 

Section 4.1. Step 7: Scale strata to province  
This step, related specifically to calculations related to China, is described in detail in the Capstone 

Appendix.1 

 

Section 4.1. Step 8: Correct post‐redistribution problems  
This step ensures that the detail of the cause list at this point in the data prep process is reasonable 

given the detail of the original data source and the methods by which the CoD was assigned. Two 

primary corrections are applied. First, any cause that is purely an artifact of the redistribution machinery 

targeting too detailed a cause is aggregated up to the parent cause. Second, a “bridge map” is applied 

over a certain set of sources to ensure that they do not contain causes that could not reliably be 

determined by the methods used.1 

 

Section 4.1. Step 9: Drop VR country-years or mark as non‐representative  
Lozano and colleagues9 describe the negative impact that low‐completeness VR data could have on CoD 

modelling for GBD 2010. In settings where a data source does not capture all deaths in a population, the 

cause composition of deaths captured might be different from those that are not. For GBD 2019, VR 

location‐years with completeness less than 50% were dropped, while location‐years with completeness 

between 50% and 69% were marked as non‐representative. In addition, any country‐year with a number 

of deaths registered to major garbage codes greater than 50% of the deaths registered was dropped.1 
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Section 4.1. Step 10: Aggregate causes  
The cause list is organised in a top‐down hierarchical format containing four levels. Deaths are divided 

into three broad groupings (Level 1 causes): “communicable, maternal, neonatal, and nutritional 

diseases”; “non‐communicable diseases”; and “injuries”. Within the Level 1 grouping of non-

communicable diseases is the Level 2 cause “Diabetes and kidney diseases” which aggregates the Level 3 

causes “Diabetes mellitus” and “Chronic kidney disease”. “Diabetes mellitus” aggregates the Level 4 

causes “Diabetes mellitus type 1” and “Diabetes mellitus type 2”. “Chronic kidney disease” aggregates 

five Level 4 causes: “CKD due to diabetes type 1”, “CKD due to diabetes type 2”, “Hypertensive CKD”, 

“Glomerulonephritis CKD” and “Other CKD”. The mortality estimate for a parent cause in the hierarchy 

represents the sum of the mortality due to causes under that rubric. Included in the parent Level 3 cause 

estimate are deaths mapped directly to the parent and any Level 4 sub‐causes.1  

 

Section 4.1. Step 11: Remove shocks and HIV/AIDS maternal adjustments 
For GBD 2019, CODEm models use an HIV/AIDS‐ and shock‐free envelope. To be comparable, cause 

fractions must also be HIV/AIDS‐ and shock‐free. Cause fractions were uploaded to the CoD database as 

the number of deaths due to the cause over an adjusted sample in which the number of deaths due to 

“HIV/AIDS”, “conflict and terrorism”, “executions and police conflict”, and “exposure to forces of nature” 

were removed.1 

 

Section 4.1. Step 12: Apply noise-reduction algorithms 
To deal with problems of zero counts in VR, VA, or sibling histories for a given age group in a given year, 

we use a Bayesian noise‐reduction algorithm. For this algorithm, we assume a normal prior and a normal 

data likelihood. We estimate the normal prior for a given country‐series of data by running a Poisson 

regression to estimate the number of deaths due to each respective cause and sex with dummy variables 

for age and year. With two exceptions, these regressions are sex‐, cause‐, and country‐specific, so 

borrowing strength over age and year is only within a given data type, country, cause, and sex. Formula 

and greater detail are offered in the Capstone Appendix. The first exception is that country-years with 

populations under 1 million are pooled with the regional data to prevent over-dispersion and provide a 

stronger signal. The second is that handling of VA data diverges from the above description in two ways. 

First, all data for a given super-region are pooled together and a study dummy variable is added, 

allowing for different studies and surveillance sites to borrow strength from one another within a super-

region. Second, unless the data are part of a time series (eg, the Matlab Health and Demographic 

Surveillance System), the regression has no year component.1 

 

Section 4.1. Step 13: Identify outliers in the Cause of Death database   
Death rates for different CoD generally have a stable age pattern. In large populations, these patterns will 

not change very rapidly over time. We can assume a relatively stable pattern in death rates for all causes 

except for some epidemic diseases and specific types of injuries. Rare causes in large populations and 

prevalent causes in small populations usually have stochastic patterns. To correct for  these stochastic 

patterns, we implemented a noise‐reduction process, explained in Step 12.1 
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In VR data, we infrequently find one or more datapoints for specific geography/age/sex/year 

combinations that lie very far from the stable pattern of death rates. In these situations, the model 

usually ignores the datapoint(s). If the model fails to ignore these data, dramatic jumps or drops can 

occur in the death rates. When no logical explanation exists for variation in the death rates to this 

degree, we regard the datapoint(s) as outlier(s). The selection of datapoints to regard as outliers occurs 

after data have been prepped for modelling, as well as during preliminary reviews of the models.1 

In non‐VR sources, data‐collection methods and data quality can vary widely from source to source. 

Where datapoints in each age‐sex‐geography‐year are very sparse, extreme datapoints can have a bad 

effect on regional estimation. In these situations, we investigate the study’s methods and consider 

lower‐quality datapoints as outliers.1 

Identifying outliers in the CoD data occurs prior to finalisation of models for each cause. We do not 

automate the selection of outliers but investigate the source of the offending data as well as reviewing 

other data sources for the same cause, geography, and year. Ultimately, outliers are identified based on 

the judgement of the modeller and senior faculty. Outlier decisions are reversible and may be revisited.1 

Section 4.2. Data star rating for the quality of VR   
GBD estimates are most accurate when computed with a full time series of complete VR with a low 

percentage of garbage codes. Even countries with the highest-quality mortality registration systems 

continue to have major problems related to ill-defined causes of death. To deal with the inadequacies of 

vital registration, GBD developed a 5-star rating system to characterise quality of death reporting in 

terms of the fraction of deaths accurately certified. Countries improve in the star rating as they increase 

availability, completeness, and detail of their mortality data and reduce the percentage of deaths coded 

to ill‐defined garbage codes or highly aggregated causes. Location- and year-specific information on 

completeness and data quality are listed in Capstone Appendix Figures 2 (Vital Registration and Verbal 

Autopsy data availability by country, 1980−2018) and Figure 4 (Percentage of vital registration deaths 

assigned to major garbage codes for all ages and sexes by country, 1980–2018).1  

We assign “star” ratings to rate the quality of data for any given location-year. The inputs that determine 

this star rating are the percentage of total deaths determined to be major garbage codes (such as All, Ill‐

defined), and the level of completeness in the dataset. Causes such as “injuries” or “cancer” will also be 

included in the major garbage percentage because this percentage includes use of highly aggregated 

causes. These three values were used to create a “percent well‐certified” value between 0 and 1, 

determined as: 

Percent well certified = Completeness x (1 – Percent major garbage) 

The mapping of percent well certified to star rating is as followed: 

 5 stars if percent of data well certified equaled or exceeded 85%  

 4 stars for 65% to less than 85%  

 3 stars for 35% to less than 65%  

 2 stars for 10% to less than 35%  

 1 star for greater than 0% to less than 10%  
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 0 stars for 0% (no verbal autopsy or vital registration data were available over the period from 
1980 to 2019)  

 

Once percent well-certified is calculated for each location-year of VR and each VA study-year, we then 

combine these into one measurement for each five-year time interval and the full time series 1980–

2019. For each five-year time interval, we assign the star level corresponding to that of the year with 

highest rating within the interval. Then for 1980–2019, we take the average of the maximum 

percentages well-certified for the seven five-year time intervals. Any five-year time interval in which no 

data were available were given a percent well-certified value of zero. 

The number of countries at each star level over the over the full time series for all countries and the 

Americas’ countries: 

Number of countries at each star level 

Star level All countries The Americas’ countries 

5 stars 30 7 

4 stars 43 19 

3 stars 30 10 

2 stars 29 1 

1 star 43 2 

0 stars 29 0 

 

Appendix Figure 3 presents the average star rating for locations for the period 2010–2018.  

 

 

Appendix Figure 3. Classification of national vital registration and verbal autopsy data 2010−2018 

 

The GBD 2019 Diseases and Injuries Capstone Appendix Figures 3 and 4 provide details of vital 

registration type and completeness, and percentage of recorded deaths whose cause was identified as a 

major (level 1 or 2) garbage code for each of the countries analysed.1  
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The Table S1 shows the fatal source counts for diabetes in the Americas, by location. 

 

 Table S1. Fatal source counts for diabetes by country in the Americas 

Country Source count 

Argentina 37 

Chile 36 

Uruguay 35 

Canada 36 

United States of America 109 

Antigua and Barbuda 31 

Bahamas 27 

Barbados 30 

Belize 34 

Cuba 37 

Dominica 36 

Dominican Republic 32 

Grenada 28 

Guyana 28 

Jamaica 25 

Saint Lucia 31 

Saint Vincent and the Grenadines 29 

Suriname 32 

Trinidad and Tobago 33 

Ecuador 38 

Peru 30 

Colombia 36 

Costa Rica 37 

El Salvador 28 

Guatemala 35 

Honduras 5 

Mexico 38 

Nicaragua 29 

Panama 31 

Venezuela 31 

Brazil 38 

Paraguay 35 

Bermuda 35 

Greenland 21 
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Saint Kitts and Nevis 35 

Virgin Islands 22 

 

Section 5. Cause of death modelling methods 
 

Section 5.1. CODEm 
Cause of Death Ensemble modelling (CODEm) is the framework used to model most cause-specific death 

rates in the GBD.10 It relies on four key components: 

First, all available data are identified and gathered to be used in the modelling process. Although the 

data may vary in quality, they all contain some signal of the true epidemiological process. Second, a 

diverse set of plausible models are developed to capture well-documented associations in the estimates. 

Using a wide variety of individual models to create an ensemble predictive model has been shown to 

outperform techniques using only a single model both in CoD estimation11 and in more general 

prediction applications.12 Third, the out-of-sample predictive validity is assessed for all individual models, 

which are then ranked for use in the ensemble modelling stage. Finally, differently weighted 

combinations of individual models are evaluated to select the ensemble model with the highest out-of-

sample predictive validity. 

For some causes, evidence exists that the relationship between covariates and death rates might differ 

between children and adults. Separate models are therefore run for different age ranges, when 

applicable. Specifically, in the case of these analyses, deaths under age 15 are assumed to be due to 

type 1 diabetes, and above that age, due to type 2 diabetes. Additionally, separate models are 

developed for countries with extensive, complete, and representative VR for every cause to ensure that 

uncertainty can better reflect the more complete data in these locations. 

Because many factors may co-vary with any given CoD, a range of plausible statistical models are 

developed for each cause. In the CODEm framework, four families of statistical models are used: linear 

mixed effects regression (LMER) models of the natural log of the cause-specific death rate, LMER models 

of the logit of the cause fraction, spatiotemporal Gaussian process regression (ST-GPR) models of the 

natural logarithm of the cause-specific death rate, and ST-GPR models of the logit of the cause fraction. 

The component models are weighted based on their predictive validity rank to determine their 

contribution to the ensemble estimate. A set of ensemble models is then created by using the weights.  

The performance of all models (individual and ensemble) is evaluated by means of out-of-sample 

predictive validity tests. 30% of the data are randomly excluded from the initial model fits. Individual 

model fits are evaluated and ranked by using half of the excluded data (15% of the total), then used to 

construct the ensembles based on their performance. These ensembles are tested by using the 

predictive validity metrics on the remaining 15% of the data, and the ensemble with the best 

performance in out-of-sample trend and root mean square error is chosen as the final model. Greater 

details of this process, including development of the model pool, data variance estimation, the testing of 

the model pool on a 15% sample, and ensemble development and testing are given in the Capstone 

Appendix. 
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Once a weighting scheme has been chosen, 1000 draws are created for the final ensemble, with the 

number of draws contributed by each model proportional to its weight. The mean of the draws is then 

used as the final estimate for the CODEm process, and a 95% uncertainty interval (UI) is created from 

the 0·025 and 0·975 quantiles of the draws. The validity of the UI can be checked via its coverage of the 

out-of-sample data; ideally, the 95% UI would capture 95% of these data. Higher coverage suggests that 

the UIs are too large, and lower coverage suggests overfitting.  

 

Section 5.2 Causes modelled outside of CODEm 
CODEm is used to model both types of diabetes as well as CKD. However, the distribution of CKD deaths 

due to diabetes into the separate categories type 1 and type 2 diabetes is performed with DisMod-MR 

2.1, which permits adjustment based on the prevalence of each type. Until GBD 2010, non-fatal 

estimates such as prevalence were based on a single data source on prevalence, incidence, remission, or 

a mortality risk selected by the researcher as most relevant to a particular location and time. Beginning 

with GBD 2010, a more ambitious goal was set: to evaluate all available information on a disease that 

passes a minimum quality standard. That required a different analytical tool that would be able to pool 

disparate information presented in varying age groupings and from data sources by using different 

methods. The DisMod-MR tool evaluates and pools all available data, adjusting data for systematic bias 

associated with methods that varied from the reference, and produces estimates with UIs by world 

regions.  

Flow of data and settings is organised in an analytical cascade across different levels. The sequence of 

estimation occurred at five levels: global, super-region, region, country, and, where applicable, 

subnational locations. The super-region priors were generated at the global level with mixed-effects, 

non-linear regression by using all available data; the super-region fit, in turn, informed the region fit, 

and so on down the cascade. The DisMod-MR 2.1 “wrapper” gives analysts the choice to branch the 

cascade in terms of time and sex at different levels depending on data density. The default used in most 

models was to branch by sex after the global fit but to retain all years of data until the lowest level in the 

cascade. Greater detail on DisMod-MR 2.1 is available in the Capstone Appendix. 

 

Section 5.3. CoD Correct 
The CoD models are cause-specific. As such, there is no guarantee that the sum of these models will 

equal the results of the all-cause mortality estimates or that model results of child causes add up to the 

parent model results. The CoDCorrect process is used to make the CoD and all-cause mortality estimates 

internally consistent. The CoDCorrect process starts by rescaling the Level 1 causes to match the all-

cause mortality estimates. Level 2 causes are then rescaled to their corrected parent causes. This 

process continues until all levels of the hierarchy have been rescaled.  

 

Section 5.4. Years of life lost calculation 
Years of life lost (YLLs) owing to premature mortality were computed for 1082 locations and 39 years. 

First, we used the lowest observed age-specific mortality rates by location and sex across all estimation 

years from locations with total populations greater than 5 million in 2016 to establish a theoretical 

minimum risk reference life table.  
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The YLL is a metric that is computed by multiplying the number of estimated deaths by the standard life 

expectancy at age of death. The metric therefore highlights premature deaths by applying a larger 

weight to deaths that occur in younger age groups. We propagated uncertainty from CoDCorrected 

deaths for all demographics. The core equation can be written as follows: 

 

 
 

Section 5.5 GBD world population age standard 
Age-standardised populations in the GBD were calculated by using the GBD world population age 

standard. We used the non-weighted mean of 2019 age-specific proportional distributions from the GBD 

2019 population estimates for all national locations with a population greater than 5 million people in 

2019 to generate an updated standard population age structure.2 

 

Section 5.6 Statistical analyses 
GBD analyses were conducted with Python version 3.6.2, Stata version 13, and R version 3.5.0. 

 

Section 6. Specific CoD modelling descriptions 
The following text, flowcharts, and tables, as presented in the Capstone Appendix, describe details of 

modelling for diabetes, overall and by type, and CKD, overall and that due to type 1 and type 2 diabetes. 

Section 6.1 Diabetes mellitus 
Diabetes mortality was estimated for overall diabetes, diabetes type 1, and diabetes type 2 in GBD 2019. 

The following ICD codes were mapped to diabetes1: 

 

Disease ICD-9 ICD-10 

Diabetes mellitus 250.00-250.99, 775.1 

E10-E10.11, E10.3-E11.1, E11.3-E12.1, 

E12.3-E13.11, E13.3-E14.1, E14.3-

E14.9, P70.2 

Diabetes mellitus 

type 1 

250-250.0, 250.01, 250.03-

250.1, 250.11, 250.13-250.2, 

250.21, 250.23-250.3, 250.31, 

250.33-250.39, 250.5, 250.51, 

250.53-250.6, 250.61, 250.63-

250.7, 250.71, 250.73-250.8, 

250.81, 250.83-250.9, 250.91, 

250.93-250.99, 775.1 

E10-E10.11, E10.3-E10.9, P70.2 

Diabetes mellitus 250.00, 250.02, 250.10, 250.12, E11-E11.1, E11.3-E11.9 
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type 2 250.20, 250.22, 250.30, 250.32, 

250.50, 250.52, 250.60, 250.62, 

250.70, 250.72, 250.80, 250.82, 

250.90, 250.92 

 

The GBD map the ICD codes to the GBD cause list. In its analysis, the GBD does not use the details of 

coding in modelling (eg, .0x–.9x) of codes 250 and E10-14.  

 

Section 6.1.1. Overall diabetes mellitus 

 

Flowchart 

 

Section 6.1.1.1. Input data 

Overall diabetes mellitus mortality was estimated using deaths directly attributed to diabetes mellitus. 

We used verbal autopsy and vital registration data as inputs into the model. 

Verbal autopsy data: We outliered datapoints from sources where there were zero deaths estimated in 

an age group as this was not realistic for deaths due to diabetes and we determined that these data 

sources were unreliable. 

Vital registration data: We outliered all data from the India Medical Certification of Cause of Death 

report since the source of the data was unreliable according to expert opinion. We also outliered 

ICD9BTL datapoints that were inconsistent with the rest of the data series and created unlikely time 

trends. 

Section 6.1.1.2. Modelling strategy 

The Cause of Death Ensemble model (CODEm) was used for deaths due to diabetes mellitus estimation. 

In the overall diabetes mellitus model, we used two models to estimate overall diabetes deaths with 

different age restrictions. This is because deaths in younger age groups are almost exclusively due to 
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type 1 diabetes, while deaths in older ages are primarily due to type 2 diabetes. This allowed us to select 

predictive covariates that are specific to the pathophysiology of diabetes type 1 and type 2. We set the 

younger age model from 0‐14 years and the older age model from 15‐95+ years. We determined the age 

threshold based on evidence of the onset age of diabetes type 2 occurring at younger ages. 

Section 6.1.1.3. Covariate selection 

The following table lists the covariates included in the model. This requires that the covariate selected 

for the model must have the directional relationship with diabetes mellitus deaths. In GBD 2019, we 

made two updates. First, we changed four covariates to reflect the most current covariate available, 

proportion underweight to age‐standardised underweight (weight‐for‐age) summary exposure variable, 

proportion stunting to age‐standardised stunting (height‐for‐age) summary exposure variable, energy‐

adjusted grams of fruits to age‐ and sex‐specific summary exposure variable for low fruit, and energy‐

adjusted grams of vegetables to age‐ and sex‐specific summary exposure variable for low vegetables. 

Second, we selected a direction on covariates for which we did not set a direction in previous GBD. We 

determined the direction based on the strength of the evidence. 

 

Model Level Covariate Direction 

0‐14 years 1 Healthcare Access and Quality Index ‐ 

3 Education years per capita ‐ 

2 Age‐standardised fertility rate + 

2 Latitude + 

2 Age‐standardised underweight (weight‐for‐ 

age) summary exposure variable 

‐ 

2 Percentage of births occurring in women 

>35 years old 

+ 

2 Percentage of births occurring in women 

>40 years old 

+ 

3 Socio‐demographic Index ‐ 

2 Age‐standardised stunting (height‐for‐age) 

summary exposure variable 

‐ 

2 Mean birthweight ‐ 

15 + model 1 Age‐standardised mean fasting plasma 

glucose (mmol/L) 

+ 

1 Age‐standardised prevalence of diabetes + 

3 Education years per capita ‐ 

3 Lag‐distributed income per capita + 

1 Mean BMI + 

2 Mean cholesterol + 

2 Mean systolic blood pressure + 

1 Prevalence of obesity + 

2 Age‐ and sex‐specific summary exposure 

variable for low fruit 

‐ 
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2 Energy‐adjusted grams of sugar + 

 2 Age‐ and sex‐specific summary exposure 

variable for low vegetables 

‐ 

3 Healthcare Access and Quality Index ‐ 

2 Age‐ and sex‐specific summary exposure 

variable for alcohol use 

+ 

 

Section 6.1.1.4. Covariate influences 

The following plots show the influence of each covariate on the four CODEm models (male global, male 

data-rich, female global, and female data-rich). A positive standardised beta (to the right) means that the 

covariate was associated with increased death. A negative standardised beta (to the left) means the 

covariate was associated with decreased death. 

Female 

0‐14 

Global Data rich 
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Data rich Global 

Male       

0 ‐14 

model 

Female   15+ 

model 
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Data rich Global 

Male  15+ 

model 
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Section 6.1.2. Diabetes mellitus type 1 and type 2 

 

Flowchart 
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Section 6.1.2.1. Input data 

Type‐specific diabetes mellitus mortality was estimated using deaths from vital registration sources in 

ICD‐10 codes only. Diabetes type‐specific information was not available in ICD‐9 codes or deaths 

determined by verbal autopsy. 

 

Section 6.1.2.2. Modelling strategy 

The Cause of Death Ensemble model (CODEm) was used for deaths due to diabetes mellitus estimation. 

Deaths in younger age groups are almost exclusively due to type 1 diabetes, while deaths in older ages 

are primarily due to type 2 diabetes. To account for this age pattern, we set the age range of the 

diabetes type 1 model to 0–95+ years and the age range of the diabetes type 2 model to 15–95+ years. 

We used the same covariates in the diabetes type 1 model and diabetes type 2 model as the 0–14 year 

and 15–95+ year in the overall diabetes models, respectively. 

There were two unique data manipulation steps that occurred to prepare the data as part of the 

modelling process. 

1. We assumed that all deaths <15 years were due to type 1 regardless of the ICD‐10 code assigned 
to the death. We imposed 100% attribution of diabetes mellitus deaths in <15 years to type 1 
diabetes mellitus. 

2. ICD‐10 diabetes data were reported as type 1, type 2, or unspecified. We developed a regression 
to estimate the fraction of unspecified diabetes mellitus that was type 1 and type 2. We only 
used data from 703 country‐years to inform the regression. This is because these country‐years 
had more than 50% of the deaths typed to type 1 or type 2 AND at least 70% of type‐specific 
deaths in people >25 years were coded to type 2. Since there was a separate regression to 
estimate the proportion of type 1 diabetes mellitus and type 2 diabetes mellitus, we scaled the 
predicted proportions to one. These scaled proportions were then applied to number of deaths 
coded to unspecified diabetes in each location, year, sex where ICD‐10 data were reported. 

Regression equations 

 
Section 6.1.2.3. Covariate selection 

The following are the covariates included in the model. We selected the same covariates for the type 1 

diabetes model as the 0–14 year diabetes model and the type 2 diabetes model as the 15–95+ year 

diabetes model.  
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Model Level Covariate Direction 

Type 1 1 Healthcare Access and Quality Index ‐ 

3 Education years per capita ‐ 

2 Age‐standardised fertility rate + 

2 Latitude + 

2 Age‐standardised underweight (weight‐
for‐ 

age) summary exposure variable 

‐ 

2 Percentage of births occurring in women 

>35 years old 

+ 

2 Percentage of births occurring in women 

>40 years old 

+ 

3 Socio‐demographic Index ‐ 

2 Age‐standardised stunting (height‐for‐
age) 

summary exposure variable 

‐ 

2 Mean birthweight ‐ 

Type 2 1 Age‐standardised mean fasting plasma 

glucose (mmol/L) 

+ 

1 Age‐standardised prevalence of diabetes + 

3 Education years per capita ‐ 

3 Lag‐distributed income per capita + 

1 Mean BMI + 

2 Mean cholesterol + 

2 Mean systolic blood pressure + 

1 Prevalence of obesity + 

2 Age‐ and sex‐specific summary exposure 
variable for low fruit 

‐ 

2 Energy‐adjusted grams of sugar + 

2 Age‐ and sex‐specific summary exposure 

variable for low vegetables 

‐ 

3 Healthcare Access and Quality Index ‐ 

2 Age‐ and sex‐specific summary exposure 

variable for alcohol use 

+ 

 

Section 6.1.2.4. Covariate influences: 

The following plots show the influence of each covariate on the four CODEm models (male global, male 

data-rich, female global, and female data-rich). A positive standardised beta (to the right) means that the 
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covariate was associated with increased death. A negative standardised beta (to the left) means the 

covariate was associated with decreased death. 
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Type 2 diabetes 

Data rich Global 

Male 

Female 
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Section 6.2. Chronic kidney disease 
Flowchart 

 

Section 6.2.1. Input data 
Vital registration and verbal autopsy data were used to model mortality due to chronic kidney disease. 

Data were standardised and mapped according to the GBD causes of death ICD mapping method. These 

data were then age‐sex split, and appropriate redistribution of garbage code data was performed. 

Datapoints that violated well‐established age or time trends or that resulted in extremely high or low 

cause fractions were marked as outliers and excluded. 

 

Section 6.2.2. Modelling strategy 
The estimation strategy used for fatal chronic kidney disease is largely similar to methods used in GBD 

2017. A standard CODEm model with location‐level covariates was used to model deaths due to chronic 

kidney disease. 

The full list of covariates used in the GBD 2019 model is displayed below. 

 

Level Covariate Direction 

 

 

1 

Diabetes fasting plasma glucose (mmol/L) + 

Diabetes age‐standardised prevalence 
(proportion) 

+ 

Mean systolic blood pressure (mmHg) + 

Mean BMI + 

Healthcare access and quality index − 

 

2 

Mean cholesterol + 

Total Calories available per capita per day + 

Red meat unadjusted (kcal per capita) + 

 

3 

Socio‐demographic Index − 

Education (years per capita) − 

LDI (I$ per capita) − 
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Section 6.2.3. Covariate influences 
The following plots show the influence of each covariate on the four CODEm models (male global, male 

data-rich, female global, and female data-rich). A positive standardised beta (to the right) means that the 

covariate was associated with increased death. A negative standardised beta (to the left) means the 

covariate was associated with decreased death.

Male Global Male Data Rich 

Female Global Female Data Rich 
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Section 6.2.4. Chronic kidney disease subtypes, including those due to type 1 and type 2 

diabetes 
Flowchart 

 
 

Section 6.2.4.1. Input data 

We estimated deaths due to five subtypes of chronic kidney disease: diabetes mellitus type 1, 

diabetes mellitus type 2, hypertension, glomerulonephritis, and other causes.  

The following codes were used to identify CKD due to diabetes: 

 

Aetiology ICD-9 Codes ICD-10 Codes 

Type 1 diabetes 250.41, 250.43   E10.2, E10.21, E10.22, E10.29 

Type 2 diabetes 250.40, 250.42 E11.2, E11.21, E11.22, E11.29 

 

Deaths due to congenital kidney anomalies (cystic kidney disease and reflux hydronephrosis) were 

included in the latter category. Data from end‐stage renal disease registries were used to estimate 

proportion of CKD mortality attributable to each CKD subtype. Age‐specific data on the proportion of 

ESRD by subtype was available from the USA, Australia, New Zealand, Nigeria, and Russia. 

Vital registration (VR) data were excluded from subtype‐specific estimates, as aetiology coding in VR 

sources was considered to be of highly variable quality between countries. 

 

Section 6.2.4.2. Modelling strategy 

We utilised data primarily from end‐stage kidney registries that included CKD aetiologies to model 

CKD‐ death aetiology proportions. 

Data for CKD due to overall diabetes were more widely available than data by type of diabetes. In 

order to make use of all available data, we modelled the proportion of CKD due to overall diabetes, 

diabetes type 1, and diabetes type 2. We ran DisMod‐MR 2.1 models including diabetes prevalence 

and mean systolic blood pressure as country‐level covariates to obtain estimates of proportions for 
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each subtype by location, year, age, and sex. Proportion of CKD due to diabetes type 1 and diabetes 

type 2 were then scaled to sum to the proportion of overall diabetes at the gender-, age-, and 

country‐matched level. The results from all subtype‐specific models were adjusted so that estimates 

across the subtypes equaled 1 at each of 1000 draws. These adjusted proportions were applied to 

the parent CKD CODEm model to obtain type‐specific estimates of CKD mortality. 

Section 7. Non-fatal outcome estimation 
The GBD 2019 non-fatal estimation process describes the steps necessary to estimate incidence, 

prevalence, and years lived with disability (YLDs) for disease and injury sequelae in GBD 2019. 

Conceptually, the estimation effort is divided into eight major components: (1) compiling data 

sources through data identification and extraction; (2) data adjustment; (3) estimation of prevalence 

and incidence by cause and sequelae by using DisMod-MR 2.1 or alternative modelling strategies for 

selected cause groups; (4) estimation by impairment; (5) severity distributions; (6) incorporation of 

disability weights (DWs); (7) comorbidity adjustment; and (8) the estimation of YLDs by sequelae and 

causes. An overview of some of these steps is provided below. The methods appendix of the 

capstone Disease and Injuries1 contains additional detail as well as details specific to each non-fatal 

disease, impairment, and injury, and their sequelae. Non-fatal modelling strategies vary significantly 

between causes. 

Section 7.1. Estimation of prevalence and incidence by cause and sequelae by using 
DisMod-MR 2.1 
The most extensively used estimation method is the Bayesian meta-regression method DisMod-MR 

2.1. based on the underlying three-state model (susceptible, cases, dead). For diseases with a range 

of sequelae differentiated by severity, such as diabetes mellitus, DisMod-MR 2.1 was used to meta-

analyse the data on overall prevalence with separate DisMod-MR 2.1 models of the proportions of 

cases with different severity levels or sequelae. Estimation occurred at the five levels of the GBD 

location hierarchy—global, super-regional, regional, national, and subnational—with results of each 

higher level providing guidance for the analysis at the lower geographical level, as described in the 

figure below. 
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Appendix Figure 4. GBD 2019 DisMod-MR 2.1 analytical cascade 

Section 7.1.2. Severity distribution 
Sequelae were defined in terms of severity. In cases in which severity was related to a particular 

impairment, such as mild, moderate, and severe blindness due to diabetic retinopathy, the analysis 

was driven by impairment estimation methods. Severity levels for causes such as chronic kidney 

disease were modelled using DisMod-MR 2.1 or ST-GPR. 

Section 7.1.3 Disability weights 
To compute YLDs for a particular health outcome in a given population, the number of people living 

with that outcome is multiplied by a disability weight (DW) that represents the magnitude of health 

loss associated with the outcome. DWs are measured on a scale from 0 to 1; 0 implies a state 

equivalent to full health, and 1, a state equivalent to death.  

Section 7.1.4. Comorbidity adjustment  
The final stage in the estimation of YLDs is a micro-simulation, which adjusts for comorbidity, 

referred to as “COMO” (for comorbidity correction). For GBD 2019, we estimated the co-occurrence 

of different diseases by simulating 40,000 individuals in each location-age-sex-year combination as 

exposed to the independent probability of having any of the sequelae included in GBD 2019 based 

on disease prevalence. We tested the contribution of dependent and independent comorbidity in 

the USA MEPS data and found that independent comorbidity was the dominant factor even though 

well-known examples of dependent comorbidity exist, such as clustering of conditions like diabetes 
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and stroke. Age was the main predictor of comorbidity, such that age-specific micro-simulations 

accommodated most of the required comorbidity correction. 

Section 7.1.5. YLD computation and uncertainty  
We computed YLDs by sequela as prevalence multiplied by the DW for the health state associated 

with that sequela. The uncertainty ranges reported around YLDs incorporate uncertainty in 

prevalence and uncertainty in the DW. To do this, we take the 1000 samples of comorbidity-

corrected YLDs and 1000 samples of the DW to generate 1000 samples of the YLD distribution. We 

assume no correlation in the uncertainty in prevalence and DWs. The 95% uncertainty interval is 

reported as the 25th and 975th values of the distribution. 

Section 7.2. DALY computation and uncertainty 
To estimate DALYs for GBD 2019, we started by estimating cause‐specific mortality and non‐fatal 

health loss. For each year for which YLDs have been estimated, we computed DALYs by adding YLLs 

and YLDs for each age‐sex‐location. Uncertainty in YLLs was assumed to be independent of 

uncertainty in YLDs. We calculated 1000 draws for DALYs by summing the first draw of the 1000 

draws for YLLs and YLDs and then repeating for each subsequent draw. 95% UIs were computed by 

using the 25th and 975th ordered draw of the DALY uncertainty distribution. We calculated DALYs as 

the sum of YLLs and YLDs for each cause, location, age group, sex, and year. For more information, 

please refer to the following figure A. 

 

Section 7.3. Specific non-fatal modelling descriptions 

 

Section 7.3.1. Diabetes mellitus 

Section 7.3.1.1. Prevalence 

The flow diagrams displayed below show how the steps taken in calculating the prevalence of 

diabetes mellitus    

Prevalence is calculated for overall diabetes mellitus, then type 1 diabetes and finally type 2 

diabetes. The approach to calculating prevalence of overall diabetes mellitus is shown in the 

following flowchart: 
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CSMR=cause-specific mortality ratio. 

The approach to calculating the prevalence of type 1 diabetes mellitus is shown in the following 

flowchart: 

 

Finally, the prevalence of type 2 diabetes is determined subtracting that of type 1 from total 

diabetes. 
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Section 7.3.1.2. Sequelae of diabetes 

The following flow diagram shows the process, once prevalence has been determined, of calculating 

the frequency of sequelae of diabetes and their incorporation into YLDs and DALYs. 

 

 

 

 

Section 7.3.1.3. Case definition 

The case definitions and diagnostic criteria for diabetes, overall and by type, are presented below. 

Overall diabetes mellitus 
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Criterion Definition 

1. Diabetes mellitus parent Fasting plasma glucose (FPG) ≥126 mg/dL (7 mmol/L), or 
reporting to be on treatment with drugs or insulin for diabetes, or 
persons <15 years who are diagnosed by physicians and identified 
through a diabetic registry or hospital records 

 
Diabetes mellitus type 1 

Criterion Definition 

1. Diabetes mellitus type 1 Cases of type 1 DM diagnosed by physicians and identified 
through a diabetic registry or hospital records 

2. Uncomplicated diabetes mellitus 
type 1 

Cases of type 1 DM that do not have any of the following 
complications: neuropathy, foot ulcer, leg amputation, or vision 
loss 

3. Diabetic neuropathy among 
diabetes mellitus type 1 

Cases of type 1 DM that experience diagnosable neuropathy 

4. Diabetic foot due to neuropathy 
among diabetes mellitus type 1 

Cases of type 1 DM that currently have a foot ulcer 

5. Diabetic neuropathy and 
amputation with treatment among 

diabetes mellitus type 1 

Cases of type 1 DM that have had a leg amputation above or 
below the knee, with treatment consisting of a prosthetic limb 

6. Diabetic neuropathy and 
amputation without treatment 
among diabetes mellitus type 1 

Cases of type 1 DM that have had a leg amputation above or 
below the knee, with no prosthetic limb 

7. Moderate vision impairment due 
to diabetes mellitus type 1 

Cases of type 1 DM that have moderate vision loss due to diabetic 
retinopathy 

8. Severe vision impairment due to 
diabetes mellitus type 1 

Cases of type 1 DM that have severe vision loss due to diabetic 
retinopathy 

9. Blindness due to diabetes mellitus 
type 1 

Cases of type 1 DM that have blindness due to diabetic 
retinopathy 

 
Diabetes mellitus type 2 

Criterion Definition 

1. Diabetes mellitus type 2 parent Fasting plasma glucose (FPG) ≥126 mg/dL (7 mmol/L) or reporting 
to be on drug or insulin treatment for type 2 diabetes 

2. Uncomplicated diabetes mellitus 
type 2 

Cases of DM type 2 that do not have any of the following 
complications: neuropathy, foot ulcer, leg amputation, or vision 
loss 

3. Diabetic neuropathy among 
diabetes mellitus type 2 

Cases of DM type 2 that experience diagnosable neuropathy 

4. Diabetic foot due to neuropathy 
among diabetes mellitus type 2 

Cases of DM type 2 that currently have a foot ulcer 
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5. Diabetic neuropathy and 
amputation with treatment among 

diabetes mellitus type 2 

Cases of DM type 2 that have had a leg amputation above or 
below the knee, with treatment consisting of a prosthetic limb 

6. Diabetic neuropathy and 

amputation without treatment 
among diabetes mellitus type 2 

Cases of DM type 2 that have had a leg amputation above or 
below the knee, with no prosthetic limb 

7. Moderate vision impairment due 
to diabetes mellitus type 2 

Cases of DM type 2 that have moderate vision loss due to diabetic 
retinopathy 

8. Severe vision impairment due to 
diabetes mellitus type 2 

Cases of DM type 2 that have severe vision loss due to diabetic 
retinopathy 

9. Blindness due to diabetes mellitus 
type 2 

Cases of DM type 2 that have blindness due to diabetic 
retinopathy 

 

Section 7.3.1.4 Data seeking 

A systematic review of the literature for Diabetes mellitus, type 1 diabetes mellitus, and type 2 

diabetes mellitus was done for GBD 2019 with the following search terms: 

 
Diabetes mellitus search string: (diabetes[TI] AND (prevalence[TIAB] OR incidence[TIAB])) OR 

('Diabetes Mellitus'[MeSH Terms] AND 'epidemiology'[MeSH Terms]) OR (diabetes[TI] AND 

'epidemiology'[MeSH Terms]) NOT gestational[All Fields] NOT ('neoplasms'[MeSH Terms] OR 

'neoplasms'[All Fields] OR 'cancer'[All Fields]) NOT ('mice'[MeSH Terms] OR 'mice'[All Fields]) NOT 

('schizophrenia'[MeSH Terms] OR 'schizophrenia'[All Fields]) NOT ('emigrants and immigrants'[MeSH 

Terms] OR ('emigrants'[All Fields] AND 'immigrants'[All Fields]) OR 'emigrants and immigrants'[All 

Fields] OR 'immigrants'[All Fields]) NOT ('pregnancy'[MeSH Terms] OR 'pregnancy'[All Fields] OR 

'gestation'[All Fields]) NOT ('rats'[MeSH Terms] OR 'rats'[All Fields] OR 'rat'[All Fields]) NOT 

('kidney'[MeSH Terms] OR 'kidney'[All Fields]) NOT renal[All Fields] NOT ('vitamins'[Pharmacological 

Action] OR 'vitamins'[MeSH Terms] OR 'vitamins'[All Fields] OR 'vitamin'[All Fields]) 

and 

FPG search string: ((“glucose”[Mesh] OR “hyperglycemia”[Mesh] OR “prediabetic state”[Mesh]) AND 

"Geographic Locations"[Mesh] NOT "United States"[Mesh]) AND ("humans"[Mesh] AND 

"adult"[MeSH]) AND ("Data Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population 

Surveillance"[Mesh] OR "Vital statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] 

OR surve*[TiAb]) NOT Comment[ptyp] NOT Case Reports[ptyp]) NOT "hospital"[TiAb] 

New sources identified are added to information in the Global Health Data Exchange (GHDx) for 

multi-country survey programs, national surveys, and longitudinal studies that were tagged with 

either fasting plasma glucose (FPG) or diabetes mellitus. 

To capture any remaining sources not identified in the GHDx or in PubMed, we looked to other 

leaders in the field to ensure our datasets were as comprehensive as possible. These included data 

sources used by other research groups that report on the global burden of diabetes, microdata from 

not-yet-published national studies, and publications that were not captured in the PubMed search 

string. 

Section 7.3.1.4.1. Source counts (global and the Americas) 
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Global sources counts for non-fatal estimations for diabetes mellitus are shown overall and for type 

1 diabetes below: 

Diabetes mellitus  

Measure Total sources Countries with data 

All measures 1289 171 

Incidence 214 77 

Prevalence 1020 155 

Proportion 75 42 

Relative risk 1 1 

Standardised mortality ratio 5 4 

With-condition mortality rate 6 5 

 
Type 1 diabetes mellitus  

Measure Total sources Countries with data 

All measures 193 74 

Incidence 163 73 

Prevalence 32 14 

Standardised mortality ratio 4 4 

 
 
Non-fatal source counts in the Americas are shown in the Table S2: 

Table S2. Non-fatal source counts for diabetes in the Americas 

Country Source count 

Argentina 11 

Chile 10 

Uruguay 3 

Canada 7 

USA 39 

Barbados 6 

Belize 2 

Cuba 3 

Dominica 2 

Dominican Republic 2 

Jamaica 6 

Saint Lucia 1 

Suriname 2 

Trinidad and Tobago 2 

Bolivia 1 

Ecuador 6 

Peru 9 

Colombia 7 
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Costa Rica 4 

El Salvador 2 

Guatemala 4 

Honduras 2 

Mexico 16 

Panama 1 

Venezuela 5 

Brazil 23 

Paraguay 3 

Bermuda 1 

Greenland 2 

Puerto Rico 3 

Virgin Islands 2 

 

 

Section 7.3.1.5. Data inputs 

Section 7.3.1.5.1 Overall diabetes mellitus 

To incorporate all available data related to population-representative estimates of diabetes, we 

accepted other measures of blood sugar (glycated haemoglobin A1c, oral glucose tolerance test, 

post-prandial glucose test) to define diabetes and mean fasting plasma glucose (FPG) in a population 

when data on diabetes was not available as data inputs. 

Data inputs came from four types of sources: 

 Estimates of diabetes in a representative population 

 Estimates of mean FPG in a representative population 

 Individual-level data of fasting plasma glucose measured from surveys 

 Insurance data, claims, from the USA and Taiwan (province of China) 
 

When a study reported both mean fasting plasma glucose (FPG) and prevalence of diabetes, we used 

the prevalence of diabetes. Where possible, individual-level data from a cohort superseded any data 

described in a study. Individual-level data were collapsed and aggregated to produce estimates for 

each age group, sex, location, and year a survey is conducted. 

We used prevalence of obesity as a covariate. 

 

Section 7.3.1.5.2. Diabetes type 1 

To incorporate all available data related to population-representative estimates of diabetes type 1, 

we accepted data that reported diabetes type 1, juvenile-onset diabetes, and insulin-dependent 

diabetes. 

Data inputs comes from two types of sources: 

 Estimates of type 1 diabetes mellitus in a representative population 



45 

 

 Diabetic registries 

 

Section 7.3.1.5.3. Diabetes type 2 

Only 20% of diabetes mellitus estimates are available by type. Furthermore, while the sources report 

type 2 diabetes mellitus, the diagnostic criteria in the methodological sections are not sufficiently 

specific. Thus, we calculated estimates of diabetes mellitus type 2 by subtracting the estimates of 

diabetes mellitus type 1 from estimates overall diabetes mellitus for each age, sex, and location from 

1990 to 2019. 

 

Section 7.3.1.6. Data processing 

Section 7.3.1.6.1. Overall diabetes mellitus 

We performed several processing steps to the data in order to address sampling and measurement 

inconsistencies that will ensure the data are comparable across data sources and between high 

fasting plasma glucose modelling efforts. 

 

Small sample size: Estimates in a sex and age group with a sample size <30 persons were considered 

a small sample size. In order to avoid small sample size problems that may bias estimates, data were 

collapsed into the next age group in the same study until the sample size reached at least 30 

persons. The intent of collapsing the data is to preserve as much granularity between age groups as 

possible, which determined whether the collapse occurred with a younger or older age group. If the 

entire study sample consisted of <30 persons and did not include a population-weight, the study was 

excluded from the modelling process. The estimates were re-calculated if case count and sample size 

were available, or the population-weighted estimate was calculated when only sample size was 

available. 

Mean FPG processing: We used an ensemble distribution to estimate the prevalence of diabetes 

based on mean FPG in locations where data on prevalence of diabetes were not available. 

Essentially, we constructed a distribution based on unit-level data available in 31 different countries. 

Then we predicted out the prevalence of diabetes by age and sex. This provides the conversion of 

mean FPG to prevalence of diabetes defined as FPG >126 mg/dL (7 mmol/L). Because this definition 

is not consistent with our reference case definition (which also includes those on treatment), we 

then apply an adjustment to adjust these datapoints to the reference case definition. For 

information on how these adjustments are made, please see the section, Age splitting and bias 

adjustments. 

In GBD 2019, we improved the bias adjustment methods to allow a more direct comparison between 

different case definitions and/or study designs. In GBD 2017, we constructed ratios between 

alternative case definitions and the reference case definition using data from surveys that measured 

glucose level based on different glucose tests on a single person. For insurance data, we allowed 

DisMod to estimate the adjustment. In GBD 2019, we constructed ratios between alternative case 

definitions and the reference case definition using data from surveys that measured glucose level 

based on different glucose tests on a single person or between survey and the insurance claims data. 

However, we assume that claims data in persons 15 years. We used MR-BRT analysis to adjust for 

bias due to commercial insurance or use of alternative case definitions. We performed this analysis 

in logit-space due to the high prevalence of diabetes (from simulations we learned that for 

prevalence greater than 50% the log ratio method is biased). 
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The process of adjusting for non-reference data using MR-BRT with the logit-transformation method 

is described below: 

1. Identify datapoints with overlapping year, age, sex, and location between alternative case 
definition and reference case definition 

2. Logit transform overlapping datapoints of alternative and reference case definitions 

3. Convert overlapping datapoints into a difference in logit space using the following equation: 
logit(alternative)–logit(reference) 

4. Use the delta method to compute standard errors of overlapping datapoints in logit space, 
then calculate standard error of logit difference using the following equation: √((variance of 
alternative)+(variance of reference)) 

5. Using MR-BRT, conduct a random effects meta-regression to obtain the pooled logit 
difference of alternative to reference 

6. Apply the pooled logit difference to all datapoints of alternative case definitions using the 

7. following equation: New estimate = inverse.logit((logit(alternative))-(pooled logit 
difference)) 

8. Calculate new standard errors using the delta method, accounting for gamma (between-
study heterogeneity) 

 

Table S3. MR-BRT crosswalk adjustment factors for total diabetes 

Data input 
Reference or 
alternative case 
definition 

Adjustment factor 
(95% UI)** 

FPG >126 mg/dl (7 mmol/L) or Tx Reference --- 

HbA1c >6.5% Alternative 0.74 (0.33 – 1.66) 

HbA1c >6.4% or Tx Alternative 1.06 (0.57 – 1.96) 

HbA1c >6% Alternative 2.01 (0.65 – 6.20) 

HbA1c >6.5% or Tx Alternative 0.92 (0.52 – 1.63) 

FPG >100 mg/dl (5.6 mmol/L) or Tx Alternative 4.98 (2.89 – 8.58) 

FPG >100 mg/dl (5.6 mmol/L) Alternative 4.72 (2.76 – 8.08) 

FPG >110 mg/dl (6.1 mmol/L) or Tx Alternative 1.99 (1.55 – 2.54) 

FPG >110 mg/dl (6.1 mmol/L) Alternative 1.8 (1.31 – 2.47) 

FPG >115 mg/dl (6.4 mmol/L) or Tx Alternative 1.46 (1.25 – 1.70) 

FPG >120 mg/dl (6.7 mmol/L) Alternative 0.997 (0.77 – 1.29) 

FPG >121 mg/dl (6.7 mmol/L) Alternative 0.96 (0.77 – 1.20) 

FPG >126 mg/dl (7 mmol/L) Alternative 0.78 (0.60 – 1.02) 

FPG >140 mg/dl (7.8 mmol/L) or Tx Alternative 0.76 (0.62 – 0.93) 

FPG >144 mg/dl (8 mmol/L) or Tx Alternative 0.72 (0.57 – 0.91) 

OGTT >180 mg/dl (10 mmol/L) or Tx Alternative 2.28 (1.57 – 3.30) 

OGTT >200 mg/dl (11.1 mmol/L) Alternative 1.5 (1.04 – 2.15) 

OGTT >200 mg/dl (11.1 mmol/L) or Tx Alternative 1.5 (1.04 – 2.18) 

FPG >110 mg/dl (6.1 mmol/L) or OGTT Alternative 4.92 (2.94 – 8.24) 
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>200 mg/dl (11.1 mmol/L) 

FPG >126 mg/dl (7 mmol/L) or OGTT >200 
mg/dl (11.1 mmol/L) 

Alternative 1.85 (1.49 – 2.30) 

FPG >126 mg/dl (7 mmol/L) or OGTT >200 
mg/dl (11.1 mmol/L) or Tx 

Alternative 1.86 (1.49 – 2.33) 

FPG >126 mg/dl (7 mmol/L) or OGTT >220 
mg/dl (12.2 mmol/L) 

Alternative 1.44 (1.22 – 1.70) 

FPG >144 mg/dl (8 mmol/L) or OGTT >200 
mg/dl (11.1 mmol/L) or Tx 

Alternative 1.53 (1.06 – 2.22) 

FPG >140 mg/dl (7.8 mmol/L) or OGTT 
>200 mg/dl (11.1 mmol/L) or Tx 

Alternative  1.54 (1.06 – 2.24) 

FPG >140 mg/dl (7.8 mmol/L) or OGTT 
>200 mg/dl (11.1 mmol/L) 

Alternative 1.53 (1.06 – 2.22) 

FPG >126 mg/dl (7 mmol/L) or OGTT >200 
mg/dl (11.1 mmol/L) or HbA1c >6.1% 

Alternative 3.67 (1.35 – 10.00) 

 

 
Age splitting and bias adjustments: Reported estimates of prevalence were split by age and sex 

where possible. First, if studies reported prevalence for broad age groups by sex, and by specific age 

groups but for both sexes combined, age-specific estimates were split by sex using the sex ratio from 

within the study. Second, input data reporting prevalence for both sexes that could not be split using 

a within-study ratio were split using a sex ratio derived from a meta-analysis of existing sex-specific 

data using MR-BRT. The female to male ratio for diabetes was 0.85 (0.61–1.09). Finally, after the 

application of bias adjustments, where studies reported estimates across age groups spanning 25 

years or more, these were split into five-year age groups using the prevalence age pattern estimated 

by DisMod-MR 2.1 in a model that contained the subset of data with age range less than 25 years. 

 

Section 7.3.1.6.2. Diabetes type 1 

Based on assumption that claims data in persons <15 years are type 1 diabetes and that 100% of 

diabetics are captured in this age group, we make no adjustments to data in these ages. Claims data 

are reported as prevalence. 

 
There are a number of different sources and ascertainment methods that were used to identify type 

1 diabetics. The majority of data that are reported in the literature are from a diabetic registry, 

hospital discharge data review, physician interview, or insulin use. We assumed that there is no 

systematic bias between these sources and consider sources identified through these methods as 

reference. For the other sources that use alternative ascertainment techniques (eg, pharmacy 

reports, diabetic camps, school reports), there was not sufficient amount of data to perform an 

analysis on each individual type, and the model had relatively few datapoints in locations where 

these approaches were used. So we collapsed all alternative sources and treated the estimates from 

these sources as defined as an alternative case definition. 
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Section 7.3.1.7. Modelling strategy overall  

Section 7.3.1.7.1. Diabetes mellitus 

For GBD 2019, we estimated the overall prevalence of diabetes using DisMod MR-2.1, a Bayesian 

meta-regression. DisMod-MR produces estimates of the prevalence of diabetes for each age, sex, 

geographical location, and year. We used data that reported prevalence and incidence for diabetes 

mellitus. 

Section 7.3.1.7.2. Diabetes mellitus type 1 

For GBD 2019, we estimated the overall prevalence of diabetes also using DisMod MR-2.1. We used 

data that reported incidence, standardised mortality ratio, and prevalence data in claims data for 

persons <15 years for diabetes mellitus type 1. We decided to not include reported type 1 diabetes 

prevalence in non-claims sources because we found that their estimates of prevalence and incidence 

were inconsistent. We decided to trust the incidence data and thus had to exclude the prevalence 

data from the model. Similarly, we did not include prevalence of diabetes type 1 in people >15 years 

from claims sources, because of poor reporting on type of diabetes. 

Section 7.3.1.7.3. Diabetes type 2 

Only 20% of diabetes mellitus estimates are available by type. Furthermore, while the sources report 

type 2 diabetes mellitus, the diagnostic criteria in the methodological sections are not sufficiently 

specific. Thus, we calculated estimates of diabetes mellitus type 2 by subtracting the estimated 

prevalence of diabetes mellitus type 1 from estimated prevalence of overall diabetes mellitus for 

each age, sex, and location from 1990 to 2019. 

 

Section 7.3.1.8. Outcomes 

Section 7.3.1.8.1 Data seeking 

Amputation due to diabetes mellitus 

A systematic review of the literature was performed for GBD 2017 with the following search terms: 

 

(‘Diabetes Mellitus’[MeSH Terms] OR (‘diabetes’[All Fields] AND ‘mellitus’[All Fields]) OR ‘Diabetes 

Mellitus’[All Fields]) AND ‘amputation’[All Fields] AND (proportion OR prevalence OR incidence) NOT 

gestational NOT cancer NOT mice NOT schizophrenia NOT immigrants NOT gestation NOT rat NOT 

kidney NOT renal NOT vitamin 

 

Diabetic neuropathy 

A systematic review of the literature was performed for GBD 2017 with the following search terms: 

 

(“Diabetes Mellitus”[MeSH Terms] OR (“diabetes”[All Fields] AND “mellitus”[All Fields]) OR 

“Diabetes Mellitus”[All Fields]) AND neuropathy[All Fields] AND (proportion OR prevalence OR 

incidence) NOT gestational NOT cancer NOT mice NOT schizophrenia NOT immigrants NOT gestation 

NOT rat NOT kidney NOT renal NOT vitamin) 

 

Diabetic foot ulcer 
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A systematic review of the literature was performed for GBD 2017 with the following search terms: 

((("Diabetes Mellitus"[MeSH Terms] OR ("diabetes"[All Fields] AND "mellitus"[All Fields]) OR 

"Diabetes Mellitus"[All Fields] OR "diabetes"[All Fields]) AND ("foot"[MeSH Terms] OR "foot"[All 

Fields]) AND ("ulcer"[MeSH Terms] OR "ulcer"[All Fields])) NOT ("neoplasms"[MeSH Terms] OR 

"neoplasms"[All Fields] OR "cancer"[All Fields]) NOT ("mice"[MeSH Terms] OR "mice"[All Fields]) 

NOT ("emigrants and immigrants"[MeSH Terms] OR ("emigrants"[All Fields] AND "immigrants"[All 

Fields]) OR "emigrants and immigrants"[All Fields] OR "immigrants"[All Fields]) NOT 

("pregnancy"[MeSH Terms] OR "pregnancy"[All Fields] OR "gestation"[All Fields]) NOT 

("vitamins"[Pharmacological Action] OR "vitamins"[MeSH Terms] OR "vitamins"[All Fields] OR 

"vitamin"[All Fields]) NOT renal[All Fields] NOT ("kidney"[MeSH Terms] OR "kidney"[All Fields]) AND 

(proportion[All Fields] OR "incidence"[All Fields] OR "prevalence"[All Fields]) NOT 

("schizophrenia"[MeSH Terms] OR "schizophrenia"[All Fields]) NOT ("rats"[MeSH Terms] OR 

"rats"[All Fields] OR "rat"[All Fields])) 

 

Section 7.3.1.9. Modelling strategy 

For GBD 2019, we estimated amputation due to diabetes mellitus, diabetic neuropathy, and diabetic 

foot for diabetes mellitus type 1 and diabetes mellitus type 2 using DisMod MR-2.1. DisMod-MR 

produces estimates of the prevalence of diabetes for each age, sex, geographical location, and year. 

We then multiply all proportion draws from neuropathy/foot/amputation models by the parent 

diabetes model so that all estimates are in the same population-space. 

We ensure that the sum of the prevalence for neuropathy due to diabetes mellitus, moderate vision 

loss due to diabetes mellitus, severe vision loss due to diabetes mellitus, and blindness due to 

diabetes mellitus does not exceed 90% of the prevalence of all diabetes mellitus. If the sum exceeds 

90%, then we rescale the individual outcomes to 90%. We do not directly model vision loss. These 

estimates are derived as part of the vision loss impairment analyses based on data ascribing vision 

loss to underlying causes in population-based surveys. The diabetes process takes these estimates 

into account when estimating uncomplicated diabetes mellitus, amputation due to diabetes 

mellitus, diabetic neuropathy, and diabetic foot for diabetes mellitus type 1 and diabetes mellitus 

type 2. 

We perform the same check to ensure that the prevalence of amputation due to diabetes mellitus 

and prevalence of foot ulcer due to diabetes mellitus does not exceed 90% of the prevalence of 

neuropathy due to diabetes mellitus. This treats foot ulcer and amputation as mutually exclusive 

categories by assuming a patient will not have both simultaneously. 

From here, we calculate uncomplicated diabetes as the remainder of diabetes cases exclusive of 

neuropathy and vision loss. In addition, we estimate the prevalence of amputation due to diabetes is 

split into with and without treatment using scaled health systems access (HSA) values. For diabetic 

amputation, we calculated a distribution of treated versus untreated amputation, defined as 

receiving a prosthesis or not. We first rescaled the IHME estimates to be between 0 and 0.9, under 

the assumption that 10% of amputees will not receive a prosthetic, even in high-income countries. 

We based this assumption on the retrospective study by Moore et al, which found that about 80% of 

patients following major lower extremity amputation were fitted with prostheses in the authors’ 

institutions from 1978 to 1986 in the USA. We then performed a population-weighted average of 

this country-specific value to obtain a proxy for the proportion of amputees that receive a prosthetic 

by super-region. Because these are rough estimates based on large assumptions, we applied 

confidence intervals of +/- 50% of the value to reflect our uncertainty. 
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Section 7.3.1.10. Severity distributions 

We determined the disability weights for each sequela from the GBD disability weight survey. The 

table below illustrates the severity levels, lay descriptions, and associated disability weights 

applicable for outcomes related to diabetes mellitus type 1 and diabetes mellitus type 2: 

 

 

Severity level Lay description DW (95% CI) 

Uncomplicated diabetes 
mellitus 

Has a chronic disease that requires 
medication every day and causes some 
worry, but minimal interference with 
daily 

activities 

0.049 (0.031–0.072) 

Diabetic neuropathy Has pain, tingling, and numbness in the 
arms, legs, hands, and feet. The person 
sometimes gets cramps and 

muscle weakness. 

0.133 (0.089–0.187) 

Diabetic neuropathy with 
diabetic foot 

Has a sore on the foot that is swollen and 
causes some difficulty in walking. 

 a 

Diabetic neuropathy with 
treated amputation 

Has lost part of one leg, leaving pain and 
tingling in the stump. The person has an 
artificial leg 

that helps in moving around. 

 a 

Diabetic neuropathy with 
untreated amputation 

Has lost part of one leg, leaving pain and 
tingling in the stump. The person does 
not have an artificial leg, has frequent 
sores, and uses crutches. 

 a 

Moderate vision loss due to 
diabetes mellitus 

Has vision problems that make it 

difficult to recognise faces or objects 
across a room. 

0.031 (0.019–0.049) 

Severe vision loss due to 
diabetes mellitus 

Has severe vision loss, which causes 
difficulty in daily activities, some 
emotional impact (for example worry), 
and some difficulty going outside the 
home without assistance. 

0.184 (0.125–0.259) 

Blindness due to diabetes 
mellitus 

Is completely blind, which causes great 
difficulty in some daily activities, worry 
and anxiety, and great difficulty going 
outside the home without assistance. 

0.187 (0.124–0.26) 

a The disability weights are produced from a combination of two health states: 

neuropathy and diabetic foot/amputation 
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Section 7.3.2. Chronic kidney disease 

 

 

Section 7.3.2.1 Case definition 

Chronic kidney disease (CKD) is defined as a permanent loss of kidney function as indicated by 

estimated glomerular filtration rate (eGFR) and urinary albumin to creatinine ratio (ACR). The GBD 

study considers six stages of CKD as defined by degree of loss of kidney function or receipt of kidney 

replacement therapy: CKD stages 1&2 (eGFR >60ml/min/1.73m2 and ACR >30 mg/g), CKD Stage 3 

(eGFR 30– 60 ml/min/1.73m2), CKD Stage 4 (eGFR 15–30 ml/min/1.73m2), CKD Stage 5 (eGFR 

<15ml/min/1.73 m2, not on kidney replacement therapy), maintenance dialysis, and kidney 

transplantation.1 The ICD-10 codes associated with CKD include N18.1-N18.9. 

 

Section 7.3.2.2. Input data 

Model inputs This literature search used PubMed search terms ((((("chronic kidney 

disease"[Title/Abstract]) AND prevalen*[Title/Abstract]) AND ("1980/1/1"[Date - Publication] : 

"3000"[Date - Publication])) NOT ((animals[MeSH] NOT humans[MeSH])))). 

 The exclusion criteria were: 

 Studies clearly not representative of the national population 

 Studies that did not provide primary data on epidemiological parameters, eg, a commentary 
piece 

 Studies of a specific aetiology of CKD only 
 
This literature search was augmented by identification of population-based surveys that measured 

kidney function. For maintenance dialysis and kidney transplantation, data were largely obtained 

from kidney registry reports. 
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Data inputs for chronic kidney disease 

Measure Total sources Countries with data 

All measures 1646 122 

Prevalence 1204 120 

Incidence 1072 90 

Excess mortality rate 67 13 

With-condition mortality rate 4 4 

Proportion 367 55 

 

 

 

Section 7.3.2.3. Data processing 

Age-sex and sex Split  

In some cases, data are reported by only age or only sex, but not both. For example, a study may 

have included the proportion of males and females with stage 3 CKD and then separately reported 

the proportion of both sexes by smaller age bins (eg, 40–44, 45–49) that have stage 3 CKD. In these 

cases, we perform an age-sex split by utilising proportions within the study to disaggregate the data. 

When there is no information by sex in a study, we instead perform a sex-split on the data by 

applying separate sex proportions. In order to obtain an appropriate age-pattern with which to age-

split input data, we first ran a DisMod-MR 2.1 model containing only age-specific data. We then used 

age-pattern by super-region from this model to age-split dialysis input data, thereby allowing for 

variation in the age-pattern by location. After age-splitting, we ran a model on all processed data, 

including age-split data and age-specific data, to obtain final estimates of dialysis incidence and 

prevalence by location, year, age, and sex. For dialysis, remission data for dialysis were calculated as 

the ratio of the incidence of kidney transplantation to prevalence of dialysis at the gender-, age-, and 

country-matched level. 

 
Modelled excess mortality data  

For the Stage 3-5 CKD, we implemented a new method of modelling excess mortality rate (EMR). In 

previous rounds, priors on EMR were estimated in DisMod by matching prevalence datapoints with 

their corresponding CSMR values within the same age, sex, year, location (estimating EMR by 

dividing CSMR by prevalence). 

However, for many causes, DisMod estimated a rather unrealistic pattern of EMR compared to an 

expected pattern of decreasing EMR with greater access to quality health care. Such unexpected 

patterns often signal inconsistencies between CSMR estimates and the measures of prevalence 

and/or incidence. In an effort to provide greater guidance to DisMod on the expected pattern of 

EMR, EMR data generated in the previous round were modelled using the MR-BRT approach by age 

and sex with a prior on Healthcare Access and Quality (HAQ) Index having a negative coefficient. 

Results from MR-BRT were then predicted for each location year, sex and for ages 0, 10, 20 ….100. 

We also included HAQ Index as a country-level covariate to inform EMR with a mean and standard 

deviation produced from MR-BRT. 
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Bias adjustments  

In GBD 2019, we improved the bias adjustment methods by utilising a MR-BRT model outside of 

DisMod to allow a more direct comparison between different case definitions and/or study designs. 

In GBD 2017, these adjustments were performed within DisMod. 

Glomerular filtration rate (GFR) can be estimated using a variety of equations that lead to different 

prevalence estimates. Our CKD reference equation is the CKD-Epi Creatinine equation. We also 

included data estimated with the Modification of Diet in Renal Disease (MDRD) and the Cockcroft-

Gault (CG) equation. For children, the Schwartz equation was used as the reference. 

Section 7.3.2.4. Modelling strategy 

CKD Stage Models  

We run a separate DisMod-MR 2.1 model to produce estimates by age, sex, year, and country for 

each stage of CKD, along with an aggregate CKD Stage III-V model. Each separate CKD Stage model 

was then rescaled to the aggregate CKD model for every age, sex, year, and country. This was done 

in order to enforce more consistency in the prevalence and incidence between stage models. 

Section 7.3.2.5. CKD aetiology proportion models 

CKD aetiology proportion models  

To model aetiology proportions of CKD, we utilised two separate types of data. 

The first are data from end-stage kidney registries used to estimate the proportion of each aetiology 

for those on dialysis or with kidney transplants. 

The second set of data come from the Geisinger Health System in Pennsylvania. These data contain 

age-sex-stage-specific aetiology proportions that allowed differential aetiological composition of 

CKD across stages for disease progression. These data were used for Stages 1&2, Stage 3, Stage 4, 

and Stage 5 CKD. For each individual with CKD, we scanned their history of recorded ICD codes to 

identify ICD codes for primary kidney diseases. We used this information to map individuals to GBD 

aetiologies by stage of CKD; individuals with CKD but with no history of a primary kidney disease ICD 

code were classified as having CKD of unknown aetiology. We ran a multinomial logistic regression 

including sex and a non-linear term for age to predict the probability of each aetiology by age and 

sex for each stage of CKD (1&2, 3, and 4/5 combined). For each stage, aetiology, age, and sex, we 

converted this probability into the proportion of CKD due to the given aetiology and applied these 

proportions to the prevalence of CKD for the same stage, age, and sex category to estimate the 

prevalence of each stage of CKD by aetiology, age, and sex. The ICD to GBD aetiology map utilised in 

this analysis is as follows: 

 

CKD aetiology ICD-9 Codes ICD-10 Codes 

Type 1 diabetes 250.41, 250.43 E10.2, E10.21, E10.22, E10.29 

Type 2 diabetes 250.40, 250.42 E11.2, E11.21, E11.22, E11.29 
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Glomerulonephritis 

 

 

581, 581.0, 581.1, 581.2, 581.3, 

581.8, 581.81, 581.89, 581.9, 582, 

582.0, 582.1, 582.2, 582.4, 582.8, 

582.81, 582.89, 582.9, 583, 583.0, 

583.1, 583.2, 583.4, 583.6, 583.7, 

583.8, 583.81, 583.89, 583.9 

N02, N02.0, N02.1, N02.2, N02.3, N02.4, 

N02.5, N02.6, N02.7, N02.8, N02.9, N03, 

N03.0, N03.1, N03.2, N03.3, N03.4, N03.5, 

N03.6, N03.7, N03.8, N03.9, N04, N04.0, 

N04.1, N04.2, N04.3, N04.4, N04.5, N04.6, 

N04.7, N04.8, N04.9, N05, N05.0, N05.1, 

N05.2, N05.3, N05.4, N05.5, N05.6, N05.7, 

N05.8, N05.9, N06, N06.0, N06.1, N06.2, 

N06.3, N06.4, N06.5, N06.6, N06.7, N06.8, 
N06.9 

 

 

 

Hypertension 

403, 403.0, 403.00, 403.01, 403.1, 

403.10, 403.11, 403.6, 403.9, 

403.90, 403.91, 404, 404.0, 

404.00, 404.01, 404.02, 404.03, 

404.1, 404.10, 404.11, 404.12, 

404.13, 404.9, 404.90, 404.91, 

404.92, 404.93 

 

 

I12, I12.0, I12.1, I12.2, I12.9, I13, I13.0, I13.1, 
I13.10, I13.11, I13.2, I13.9 

 

 

 

 

 

 

Other 

 

 

 

589, 589.0, 589.1, 589.9, 753.0, 

753.1, 753.10, 753.11, 753.12, 

753.13, 753.14, 753.15, 753.16, 

753.17, 753.19, 753.2, 753.20, 

753.21, 753.22, 753.23, 753.29, 

753.3, 283.11, 710.0, 753.0, 

753.21, 753.22, 753.29 

N07, N07.0, N07.1, N07.2, N07.3, N07.4, 

N07.5, N07.6, N07.7, N07.8, N07.9, N08, 

N08.0, N08.1, N08.2, N08.3, N08.4, N08.5, 

N08.8, N15.0, Q61, Q61.0, Q61.00, Q61.01, 

Q61.02, Q61.1, Q61.11, Q61.19, Q61.2, 

Q61.3, Q61.4, Q61.5, Q61.8, Q61.9, Q62, 

Q62.0, Q62.1, Q62.10, Q62.11, Q62.12, 

Q62.2, Q62.3, Q62.31, Q62.32, Q62.39, 

Q62.4, Q62.5, Q62.6, Q62.60, Q62.61, 

Q62.62, Q62.63, Q62.69, Q62.7, Q62.8, 

D59.3, M31.31, M32.14, M32.15, N11.9, 

N13.70, N13.8, Q60.2, Q63.8, N14.0, N14.1, 
N14.3, N25.89, N26.9, N28.0 

 
In order to maintain consistency between GBD estimates of type 1 diabetes prevalence estimates 

and CKD due to type 1 diabetes prevalence estimates and generalise the results of the Geisinger 

analysis to all locations, we performed a location-specific correction for the proportion of CKD due to 

type 1 and type 2 diabetes. Type 1 diabetes makes up a larger proportion of total diabetes in the 

United States than it does in other locations. For each diabetic subtype (e) for a given location (l), 

age (a), and sex (g), the ratio of subtype-specific diabetes prevalence to total diabetes prevalence (r) 

was calculated as: 
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This ratio is used to adjust the proportion of CKD due to a given diabetic subtype (p) for a given CKD 

stage (s), l, a, and g by scaling the predicted proportion of CKD due to that subtype (k) by the ratio of 

total DM due to e in l to the ratio of total DM due to e in the United States (USA). 

 

 

 

The stage-specific approach utilised to estimate the prevalence of CKD stages is limited by the use of 

data from a single geographical region. 

All CKD due to diabetes were forced to be type 1 diabetes under the age of 20. 

For end-stage kidney disease on dialysis and end-stage kidney disease after transplant, we ran 

DisMod- MR 2.1 models to obtain estimates of proportions for each subtype by location, year, age, 

and sex. Data for CKD due to overall DM were more widely available than data by type of DM. 

Models for the proportion of CKD due to hypertension and diabetes included covariates for mean 

systolic blood pressure and the age-standardised prevalence of diabetes, respectively.  

In order to make use of all available data, we modelled the proportion of CKD due to overall DM, DM 

type 1, and DM type 2. Proportion of CKD due to DM type 1 and DM type 2 were then scaled to sum 

to the proportion of overall DM at the gender, age, and country-matched level. The results from all 

subtype- specific models were adjusted so that estimates across the subtypes equaled 1 at each of 

1000 draws. 

These adjusted proportions were applied to the DisMod models for dialysis and transplant to obtain 

estimates of each of these entities by aetiology. 

 

Section 7.3.2.6. Severity splits and disability weights 

Estimates of prevalence and incidence are split using CKD aetiology proportion models, resulting in 

CKD estimates by stage and aetiology. Then a portion of each aetiology split for CKD stages III, IV, 

and V is attributed a disability weight associated with mild, moderate, or severe anaemia.2 

 

Severity level Lay description Disability weight 
(95% CI) 

Albuminuria Asymptomatic -- 

CKD stage III without 
anaemia 

Asymptomatic -- 

CKD stage III with mild 
anaemia 

Feels slightly tired and weak at times, but this 
does not 

interfere with normal daily activities. 

0.004 

(0.001–0.008) 

CKD stage III with 
moderate anaemia 

Feels moderate fatigue, weakness, and 
shortness of breath after exercise, making daily 
activities more difficult. 

0.052 

(0.034–0.076) 
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CKD stage III with severe 
anaemia 

Feels very weak, tired, and short of breath, and 
has problems with activities that require 
physical effort or deep 

concentration. 

0.149 

(0.101–0.21) 

CKD stage IV without 
anaemia 

Tires easily, has nausea, reduced appetite, and 
difficulty sleeping. 

0.104 

(0.07–0.147) 

CKD stage IV with mild 
anaemia 

 0.108 

(0.072–0.151) 

CKD stage IV with 

moderate anaemia 

 0.15 

(0.103–0.207) 

CKD stage IV with 

severe anaemia 

 0.237 

(0.165–0.324) 

CKD stage V without 
anaemia 

Has lost a lot of weight and has constant pain. 
The person has no appetite, feels nauseated, 
and needs to spend most 

of the day in bed. 

0.569 

(0.389–0.727) 

CKD stage V with mild 
anaemia 

 0.570 

(0.391–0.727) 

CKD stage V with 

moderate anaemia 

 0.591 

(0.414–0.743) 

CKD stage V with severe 
anaemia 

 0.631 

(0.456–0.782) 

End-stage kidney disease, 
on dialysis 

Is tired and has itching, cramps, headache, 
joint pains, and shortness of breath. The 
person needs intensive medical care every 
other day lasting about half a day. 

0.571 

(0.397–0.725) 

End-stage kidney disease, 
with kidney transplant 

Sometimes feels tired and down, and has some 
difficulty with daily activities. 

0.024 

(0.014–0.039) 

Note: the DWs for CKD 4 and 5 stages with anaemia are derived from a multiplicative function 

combining the CKD stage DW and the corresponding severity of anaemia DW 

 

Section 8. Risk factor estimation 
Section 8.1. Overview 
The comparative risk assessment (CRA) conceptual framework was developed by Murray and 

Lopez,13 who established a causal web of hierarchically organised risks or causes that contribute to 

health outcomes, which allows for quantification of risks or causes at any level in the framework. In 

GBD 2019, as in previous iterations of the GBD study, we evaluated a set of behavioural, 

environmental and occupational, and metabolic risks, in which risk-outcome pairs were included 

based on evidence rules. These risks were organised in four hierarchical levels, where Level 1 

represents the overarching categories (behavioural, environmental and occupational, and metabolic) 

nested within Level 1 risks; Level 2 contains both single risks and risk clusters (such as child and 

maternal malnutrition); Level 3 contains the disaggregated single risks from within Level 2 risk 
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clusters (such as low birthweight and short gestation); and Level 4 details risks with the most 

granular disaggregation, such as for specific occupational carcinogens, the subcomponents of child 

growth failure (stunting, wasting, underweight), and suboptimal breastfeeding (discontinued and 

non-exclusive breastfeeding). At each level of risk, we evaluated whether risk combinations were 

additive, multiplicative, or shared common pathways for intervention. This approach allows the 

quantification of the proportion of risk-attributable burden shared with another risk or combination 

of risks and the measurement of potential overlaps between behavioural, environmental and 

occupational, and metabolic risks. To date in the GBD, we have not quantified the contribution of 

other classes of risk factors. We do provide some insights into the potential magnitude of distal 

social, cultural, and economic factors through an analysis of the relationship between risk exposures 

and development measured by using the Socio-demographic Index (SDI) (see appendix section 12). 

Two types of risk assessments are possible within the CRA framework: attributable burden and 

avoidable burden. Attributable burden is the reduction in current disease burden that would have 

been possible if past population exposure had shifted to an alternative or counterfactual distribution 

of risk exposure. Avoidable burden is the potential reduction in future disease burden that could be 

achieved by changing the current distribution of exposure to a counterfactual distribution of 

exposure. Murray and Lopez identified four types of counterfactual exposure distributions: (1) 

theoretical minimum risk; plausible minimum risk; (3) feasible minimum risk; and (4) cost-effective 

minimum risk.4 The TMREL is the level of risk exposure that minimises risk at the population level or 

the level of risk that captures the maximum attributable burden. Other possible forms of risk 

quantification include plausible minimum risk – which reflects the distribution of risk that is 

conceivably possible and would minimise population-level risk if achieved – whereas feasible 

minimum risk describes the lowest risk distribution that has been attained within a population, and 

cost-effective minimum risk is the lowest risk distribution for a population that can be attained in a 

cost-effective manner. Because no robust set of forecasts for all components of GBD is available, in 

this study we focus on quantifying attributable burden by using the theoretical minimum risk 

counterfactual distribution. Given the focus in this study on attributable burden, risk reversibility is 

not a criterion used in estimation here. 

The methods described here provide a high-level overview of the analytical logic. The Methods 

Appendix to Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a 

systematic analysis for the Global Burden of Disease Study 2019,4 upon which this section of the 

Methods Appendix is based, provides sufficient detail on the methods and overall structure of the 

estimation process. This study complies with the GATHER recommendations, as documented in the 

above-mentioned Methods Appendix,4 proposed  by the World Health Organization (WHO) and 

others, which include recommendations on documentation of data sources, estimation methods, 

and statistical analysis. 

 

Section 8.2. Steps in calculation of burden 
The process of calculation of burden for risk factors passes through several steps, specifically: 

1. effect size estimation based on relative risk data obtained from the literature,  

2. exposure estimation, 

3. determination of the counterfactual level of minimum risk, the TMREL, 

4. estimation of the population attributable fraction, 
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5. estimation of summary exposure value, 

6. mediation of the effects of a given risk factor by others, and 

7. estimation of the attributable burden 

 

Four key components are included in the estimation of the burden attributable to a given risk factor: 

the metric of burden being assessed (the number of deaths, YLLs, YLDs, or DALYs [the sum of YLLs 

and YLDs]); the exposure levels for a risk factor; the RR of a given outcome due to exposure; and the 

counterfactual level of risk factor exposure. Estimates of attributable burden as DALYs for risk-

outcome pairs were generated by using the following model: 

𝑤 

𝐴𝐵𝑗𝑎𝑠𝑔𝑡 = ∑ 𝐷𝐴𝐿𝑌𝑗𝑜𝑎𝑠𝑔𝑡 𝑃𝐴𝐹𝑗𝑜𝑎𝑠𝑔𝑡 

𝑜=1 

 
where 𝐴𝐵𝑗𝑎𝑠𝑔𝑡 is the attributable burden for risk factor 𝑗 for age group 𝑎, sex 𝑠, location 𝑔, and 

year 𝑡; 

𝐷𝐴𝐿𝑌𝑗𝑜𝑎𝑠𝑔𝑡 is total DALYs for cause 𝑜 (of 𝑤 relevant outcomes for risk factor 𝑗) for age group 𝑎, sex 

𝑠, location 𝑔, and year 𝑡; and 𝑃𝐴𝐹𝑗𝑜𝑎𝑠𝑔𝑡 is the PAF for cause 𝑜 due to risk factor 𝑗 for age group 𝑎, 

sex 𝑠, location 𝑔, and year 𝑡. The proportions of deaths, YLLs, or YLDs attributable to a given risk 

factor or risk factor cluster were analogously computed by sequentially substituting each metric in 

place of DALYs in the equation provided. 

 

Section 8.3. Diagrams of steps involved in the estimation of attributable burden 
The process is an extremely complicated one, as has been described in further detail.4 Appendix 

Figure 5 presents an analytical flowchart of the comparative risk assessment for the estimation of 

population attributable fractions by geography, age, sex, and year for GBD 2019. 
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Appendix Figure 5. Analytical flowchart of the comparative risk assessment for the estimation of 

population attributable fractions. Ovals represent data inputs, rectangular boxes represent analytical 

steps, cylinders represent databases, and parallelograms represent intermediate and final results. 

GBD=Global Burden of Disease. SEVs=summary exposure values. TMREL=theoretical minimum-risk 

exposure level. PAFs=population attributable fractions. YLLs=years of life lost. YLDs=years lived with 

disability. DALYs=disability-adjusted life-years 

Two modelling processes are central to summarising exposure information and other steps in this 

assessment – DisMod-MR 2.1, described above, and the spatiotemporal Gaussian process regression 

(ST-GPR).  

Appendix Figure 6 presents the spatiotemporal Gaussian process regression (ST-GPR) flowchart 

 

Appendix Figure 6: Spatiotemporal Gaussian process regression (ST-GPR) flowchart 
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Section 8.4. High fasting plasma glucose 
 

 
Section 8.4.1. Case definition 
High fasting plasma glucose (FPG) is measured as the mean FPG in a population, where FPG is a 

continuous exposure in units of mmol/L. Since FPG is along a continuum, we define high FPG as any 

level above the TMREL, which is 4.8–5.4 mmol/L. 

 

Section 8.4.2. Data seeking 
We conducted a systematic review for FPG and diabetes in GBD 2019. We use all available sources on 

FPG and prevalence of diabetes in the FPG model. 

Search terms: 

Diabetes mellitus search string: (diabetes[TI] AND (prevalence[TIAB] OR incidence[TIAB])) OR 

('Diabetes Mellitus'[MeSH Terms] AND 'epidemiology'[MeSH Terms]) OR (diabetes[TI] AND 

'epidemiology'[MeSH Terms]) NOT gestational[All Fields] NOT ('neoplasms'[MeSH Terms] OR 

'neoplasms'[All Fields] OR 'cancer'[All Fields]) NOT ('mice'[MeSH Terms] OR 'mice'[All Fields]) NOT 

('schizophrenia'[MeSH Terms] OR 'schizophrenia'[All Fields]) NOT ('emigrants and immigrants'[MeSH 

Terms] OR ('emigrants'[All Fields] AND 'immigrants'[All Fields]) OR 'emigrants and immigrants'[All 

Fields] OR 'immigrants'[All Fields]) NOT ('pregnancy'[MeSH Terms] OR 'pregnancy'[All Fields] OR 

'gestation'[All Fields]) NOT ('rats'[MeSH Terms] OR 'rats'[All Fields] OR 'rat'[All Fields]) NOT 

('kidney'[MeSH Terms] OR 'kidney'[All Fields]) NOT renal[All Fields] NOT ('vitamins'[Pharmacological 

Action] OR 'vitamins'[MeSH Terms] OR 'vitamins'[All Fields] OR 'vitamin'[All Fields]) 

 

and 

 

FPG search string: ((“glucose”[Mesh] OR “hyperglycemia”[Mesh] OR “prediabetic state”[Mesh]) AND 

"Geographic Locations"[Mesh] NOT "United States"[Mesh]) AND ("humans"[Mesh] AND 

"adult"[MeSH]) AND ("Data Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population 

Surveillance"[Mesh] OR "Vital statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] 

OR surve*[TiAb]) NOT Comment[ptyp] NOT Case Reports[ptyp]) NOT "hospital"[TiAb] 
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Section 8.4.3. Data inputs 
Data inputs come from three sources: 

 Estimates of mean FPG in a representative population 

 Individual-level data of fasting plasma glucose measured from surveys 

 Estimates of diabetes prevalence in a representative population 
 

Data sources that did not report mean FPG or prevalence of diabetes are excluded from analysis. 

When a study reported both mean fasting plasma glucose (FPG) and prevalence of diabetes, we use 

the mean FPG for exposure estimates. Where possible, individual-level data supersede any data 

described in a study. Individual-level data are aggregated to produce estimates for each five-year 

age group, sex, location, and year of a survey. 

 

Number of sources (globally) used in exposure and relative risk models in GBD 2019 

Measure Total sources Countries with data 

Total 549 127 

Relative risk 20 - 

Exposure 529 127 

 

Number of sources (in the Americas) used in exposure and relative risk models in GBD 2019 

Location Source count 

Argentina 7 

Chile 4 

Uruguay 1 

Canada 3 

USA 10 

Barbados 3 

Belize 1 

Cuba 1 

Dominica 1 

Dominican Republic 1 

Jamaica 5 

Suriname 1 

Trinidad and Tobago 1 

Bolivia 1 

Ecuador 4 

Peru 6 

Colombia 5 

Costa Rica 1 

El Salvador 1 

Guatemala 1 
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Mexico 7 

Venezuela 3 

Brazil 8 

Paraguay 1 

Greenland 2 

Puerto Rico 2 

 

 

Section 8.4.4. Data processing 
We perform several processing steps to the data to address sampling and measurement 

inconsistencies that will ensure the data are comparable. 

Small sample size 

A sex and age group with a sample size <30 persons is considered a small sample size. In order to 

avoid small sample size problems that may bias estimates, data are collapsed into the next age 

group in the same study until the sample size reach at least 30 persons. The intent of collapsing the 

data is to preserve as much granularity between age groups as possible. If the entire study sample 

consists of <30 persons and did not include a population weight, the study is excluded from the 

modelling process. 

 

Crosswalks 

We predicted mean FPG from diabetes prevalence using an ensemble distribution. We characterised 

the distribution of FPG using individual-level data. Details on the ensemble distribution can be found 

in the next section of this Appendix. Before predicting mean FPG from prevalence of diabetes, we 

ensured that the prevalence of diabetes was based on the reference case definition: fasting plasma 

glucose (FPG) >126 mg/dL (7 mmol/L) or on treatment. For more details on how the case-definition 

crosswalk is conducted, please see the diabetes mellitus appendix in Global, regional, and national 

incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries, 

1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 

 

Section 8.4.5. Exposure modelling 
Exposure estimates are produced for every year between 1980 to 2019 for each national and 

subnational location, sex, and for each five-year age group starting from 25 years. As in previous 

rounds of   GBD, we used a spatiotemporal Gaussian process regression (ST-GPR) framework to model 

the mean fasting plasma glucose at the location, year, age, and sex level. Updates to the ST-GR 

modelling framework for GBD 2019 are detailed elsewhere in the Appendix. 

Fasting plasma glucose is frequently tested or reported in surveys aiming at assessing the prevalence 

of diabetes mellitus. In these surveys, the case definition of diabetes may include both a glucose test 

and questions about treatment for diabetes. People with positive history of diabetes treatment may 

be excluded from the FPG test. Thus, the mean FPG in these surveys would not represent the mean 

FPG in the entire population. In this event, we estimated the prevalence of diabetes assuming a 

definition of FPG>126 mg/dL (7mmol/L), then crosswalked it to our reference case definition, and 

then predicted mean FPG. 
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To inform our estimates in data-sparse countries, we systematically tested a range of covariates and 

selected age-specific prevalence of obesity as a covariate based on direction of the coefficient and 

significance level. 

Mean FPG is estimated using a mixed-effects linear regression, run separately by sex: 

 

 
 
where poverweightc,a,t is the prevalence of overweight, IA[a] is an indicator variable for a fixed 

effect on a given five-year age group, and αs αr αc are random effects at the super-region, region, 

and country level, respectively. The estimates were then propagated through the ST-GPR framework 

to obtain 1000 draws for each location, year, age, and sex. 

 

Section 8.4.6. Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level (TMREL) for FPG is 4.8–5.4 mmol/L. This was calculated 

by taking the person-year weighted average of the levels of FPG that were associated with the 

lowest risk of mortality in the pooled analyses of prospective cohort studies.1 

 

Section 8.4.7. Relative risks 
We estimate 15 outcomes due to high fasting plasma glucose (continuous risk) or diabetes 

(categorical risk). 

 

Risk Outcome 

Fasting plasma glucose Ischaemic heart disease 

Fasting plasma glucose Ischaemic stroke 

Fasting plasma glucose Subarachnoid haemorrhage 

Fasting plasma glucose Intracerebral haemorrhage 

Fasting plasma glucose Peripheral vascular disease 

Fasting plasma glucose Type 1 diabetes 

Fasting plasma glucose Type 2 diabetes 

Fasting plasma glucose  CKD due to type 1 diabetes 

Fasting plasma glucose CKD due to type 2 diabetes 

Diabetes mellitus Drug-resistant tuberculosis 

Diabetes mellitus Drug-susceptible tuberculosis 

Diabetes mellitus Multidrug-resistant tuberculosis 

without extensive drug resistance 

Diabetes mellitus Extensively drug-resistant 

tuberculosis 

Diabetes mellitus Liver cancer due to NASH 
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Diabetes mellitus Liver cancer due to other causes 

Diabetes mellitus Pancreatic cancer 

Diabetes mellitus Ovarian cancer 

Diabetes mellitus Colorectal cancer 

Diabetes mellitus Bladder cancer 

Diabetes mellitus Lung cancer 

Diabetes mellitus Breast cancer 

Diabetes mellitus Glaucoma 

Diabetes mellitus Cataracts 

Diabetes mellitus Dementia 

 

Section 8.4.7.1. Relative risks for high fasting plasma glucose (continuous risk) 
After a review of the chronic kidney disease literature, we determined that there is only an 

attributable risk of chronic kidney disease due to diabetes type 1 and chronic kidney disease due to 

diabetes type 2 to FPG. Thus, in GBD 2019 we removed chronic kidney disease due to 

glomerulonephritis, chronic kidney disease due to hypertension, chronic kidney disease due to other 

causes as an outcome. 

Relative risks (RR) were obtained from dose-response meta-analysis of prospective cohort studies. 

Please see the citation list for a full list of studies that are utilised. For cardiovascular outcomes, we 

estimated age-specific RRs using DisMod-MR 2.1 with log (RR) as the dependent variable and median 

age at event as the independent variable with an intercept at age 110. Morbidity and mortality 

directly caused by diabetes type 1 and diabetes type 2 is considered directly attributable to FPG. 

 

Section 8.4.7.2. Relative risks for diabetes mellitus (categorical risk) 
Relative risks were obtained from meta-analysis of cohort studies.  

 

Section 8.5. Risk factors for diabetes  
Risks factors for type 2 diabetes are high body-mass index, low physical activity, diet low in fruits, 

diet low in whole grains, diet low in nuts and seeds, diet high in red meat, diet high in processed 

meat, diet high in sweetened beverages, alcohol use, smoking and secondhand smoke, ambient 

particulate matter, household air pollution, and non-optimal temperature. Exposure information for 

air pollution was obtained from several sources, including satellite data. 

Methodological details of these risk factors are to be found in the Methods Appendix 

(Supplementary Appendix 1) of the 2019 GBD article: Global burden of 87 risk factors in 204 

countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 

2019. Lancet 2020; 396: 1223–49.4  

 

Section 9. Socio-demographic Index  
We used the GBD Socio-demographic Index (SDI)2 groups to explore the difference in mortality rates 

between countries with different levels of development. The SDI is a composite indicator of 

development status strongly correlated with health outcomes. In short, it is the geometric mean of 0 
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to 1 indices of total fertility rate in those under 25 years old, mean education for those age 15 years 

or older, and lag-distributed income per capita (LDI). An index score of 0 represents the minimum 

level of each covariate input past which selected health outcomes can get no worse, and an index 

score of 1 represents the maximum level of each covariate input past which selected health 

outcomes cease to improve. As a composite, a location with an SDI of 0 would have a theoretical 

minimum level of development relevant to these health outcomes, and a location with an SDI of 1 

would have a theoretical maximum level of development relevant to these health outcomes. 

Detailed information about SDI calculation and the SDI values for each country has been described 

elsewhere.2 

 

Section 10. Universal Health Coverage (UHC) Effective Care Index 
As applied in this analysis and explained in greater detail elsewhere,3 the UHC effective coverage 

measurement framework involves 30 unique cells from a matrix of five health service types—

promotion, prevention, treatment, rehabilitation, and palliation— against five population-age 

groups (reproductive and newborn, children younger than 5 years, children and adolescents aged 5–

19 years, adults aged 20–64 years, and older adults aged ≥65 years). Treatment is sub-divided into 

two separate groups: first, communicable diseases and maternal, newborn, and child health; and 

second, non-communicable diseases. Effective coverage indicators were then mapped to these cells 

to represent needed health services across the life course. 23 effective coverage indicators were 

included in the present analysis. Data for directly measuring effective intervention coverage are 

rarely available across health services, locations, and over time. Subsequently, we used viable proxy 

measures and analytical techniques to approximate effective coverage for conditions considered 

amenable to health care. Criteria set forth by the WHO 13th General Work Program (GPW13) Expert 

Reference Group guided selection of effective coverage indicators and preferred measurement 

approaches. Such criteria stipulated that effective coverage indicators should be currently 

measurable (ie, data and methods that support indicator measurement today); reflect differences in 

effective health services and not factors outside the immediate scope of health systems and UHC 

(eg, tobacco taxation and physical infrastructure such as roads and water systems); and use 

indicators already encompassed within the Sustainable Development Goals (SDGs) and GPW13, or 

draw from data systems required for monitoring of SDGs and GPW13. 

Four effective coverage indicators were measures of intervention coverage, and 19 were mortality-

based measures to proxy access to quality of care. For the mortality-based measures, we primarily 

used mortality-to-incidence ratios (MIRs) and mortality-to-prevalence ratios (MPRs) for chronic or 

longer-term conditions (eg, diabetes or asthma).  

Effective coverage indicators for intervention coverage were kept on their natural scale (0–100%), 

whereas the 19 other effective coverage indicators were transformed to values on a 0–100 scale. 

Across locations and from 1990 to 2019, 0 was set by values at the 97·5th percentile or higher (ie, 

“worst” levels of MIRs) and 100 by the 2·5th percentile or lower (ie, “best” levels of MIRs). 

Population-level measures of effective coverage should represent the fraction of total health gains a 

health system could potentially provide, given currently available interventions that a health system 

actually delivers. This construct is thus grounded in the principle of comparability—all health 

systems ought to maximise potential health gains for their populations—but also requires 

accounting for local health needs and epidemiological profiles. For instance, if a country currently 

experiences a high burden of diabetes and a comparatively lower burden of HIV, at least equal or 
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even higher priority in expanding services for diabetes should occur relative to HIV in order to 

further support health gains. 

To construct the UHC effective coverage index, we weighted each effective coverage indicator 

relative to their health gain weights, a metric approximating the population health gains potentially 

deliverable by health systems for each location-year. In brief, calculations were based on three 

inputs for each effective coverage indicator and corresponding population-age group: estimates on 

the 0–100 scale, targeted disease burden, and effectiveness categories of associated interventions or 

services. For effectiveness, incremental values were assumed by category (ie, 90% effectiveness for 

category 1, 70% for category 2, 50% for category 3, and so on).  
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GATHER checklist 
 

Checklist of information that should be included in new reports of global health 

estimates 

Item 

# 

Checklist item Reported on page # 

Objectives and funding 

1 Define the indicator(s), populations (including age, sex, and geographic 

entities), and time period(s) for which estimates were made. 

5, 8 

2 List the funding sources for the work. 9 

Data Inputs 

   For all data inputs from multiple sources that are synthesized as part of the study: 

3 Describe how the data were identified and how the data were accessed.  6, 7,  

 

Methods appendix section 

4.1, section 6.1.1.1,  

Section 6.1.2.1,  

Section 6.2.1, 

Section 7.3 

Section 8.4 

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions. 6, 7 

5 Provide information on all included data sources and their main 

characteristics. For each data source used, report reference information or 

contact name/institution, population represented, data collection method, 

year(s) of data collection, sex and age range, diagnostic criteria or 

measurement method, and sample size, as relevant.  

Methods appendix section 

4.1, section 6.1.1.1,  

Section 6.1.2.1,  

Section 6.2.1, 

Section 7.3 

Section 8.4 

 

http://ghdx.healthdata.o

rg/gbd‐2019 

6 Identify and describe any categories of input data that have potentially 

important biases (e.g., based on characteristics listed in item 5). 

Methods appendix section 

4.1, section 6.1.1.1,  

Section 6.1.2.1,  

Section 6.2.1, 

Section 7.3 

Section 8.4 

 

   For data inputs that contribute to the analysis but were not synthesized as part of the study: 

7 Describe and give sources for any other data inputs.  http://ghdx.healthdata.o

rg/gbd‐2019 

 

   For all data inputs: 

8 Provide all data inputs in a file format from which data can be efficiently 

extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-

data listed in item 5. For any data inputs that cannot be shared because of 

ethical or legal reasons, such as third-party ownership, provide a contact 

http://ghdx.healthdata.o

rg 

 

http://ghdx.healthdata.org/gbd‐2019
http://ghdx.healthdata.org/gbd‐2019
http://ghdx.healthdata.org/gbd‐2019
http://ghdx.healthdata.org/gbd‐2019
http://ghdx.healthdata.org/
http://ghdx.healthdata.org/
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name or the name of the institution that retains the right to the data. https://vizhub.healthdat

a.org/gbd-compare/ 

 

Data analysis 

9 Provide a conceptual overview of the data analysis method. A diagram may 

be helpful.  

5-9 

 

Methods appendix  

section  6.1,  

Section 6.2, 

Section 7.3 

Section 8.4 

 

10 Provide a detailed description of all steps of the analysis, including 

mathematical formulae. This description should cover, as relevant, data 

cleaning, data pre-processing, data adjustments and weighting of data 

sources, and mathematical or statistical model(s).  

Methods appendix  

Section 5, 

section  6.1,  

Section 6.2, 

Section 7 

Section 8 

 

11 Describe how candidate models were evaluated and how the final model(s) 

were selected. 

Methods appendix  

section  6.1,  

Section 6.2, 

Section 7.3 

Section 8.4 

 

12 Provide the results of an evaluation of model performance, if done, as well as 

the results of any relevant sensitivity analysis. 

Methods appendix  

section  6.1,  

Section 6.2, 

Section 7.3 

Section 8.4 

 

13 Describe methods for calculating uncertainty of the estimates. State which 

sources of uncertainty were, and were not, accounted for in the uncertainty 

analysis. 

9 

 

Methods appendix  

Section 5.1 

Section 7.1.5 

Section 7.2 

 

14 State how analytic or statistical source code used to generate estimates can be 

accessed. 

Code is provided in an 

online repository 

https://github.com/ihme

uw/ihme-

modeling/tree/main/gbd

_2019 

 

  

 

 

https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
https://github.com/ihmeuw/ihme-modeling/tree/main/gbd_2019
https://github.com/ihmeuw/ihme-modeling/tree/main/gbd_2019
https://github.com/ihmeuw/ihme-modeling/tree/main/gbd_2019
https://github.com/ihmeuw/ihme-modeling/tree/main/gbd_2019
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Results and Discussion 

15 Provide published estimates in a file format from which data can be 

efficiently extracted. 

Main text, methods 

appendix, and online 

data tools (data 

visualization tools, data 

query tools, and the 

Global Health Data 

Exchange, 

http://ghdx.healthdata.o

rg 

 

 

16 Report a quantitative measure of the uncertainty of the estimates (e.g. 

uncertainty intervals). 

9-13 

17 Interpret results in light of existing evidence. If updating a previous set of 

estimates, describe the reasons for changes in estimates. 

13-17 

18 Discuss limitations of the estimates. Include a discussion of any modelling 

assumptions or data limitations that affect interpretation of the estimates. 

17-18 

This checklist should be used in conjunction with the GATHER statement and Explanation and Elaboration document, 

found on gather-statement.org 

 

 

http://ghdx.healthdata.org/
http://ghdx.healthdata.org/
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Supplementary Table 1. List of regions and countries of the Americas.        
High-Income North America   

Canada  
Greenland  
United States of America  

Caribbean   
Antigua and Barbuda  
Bahamas  
Barbados  

Central Latin America   
Colombia  
Costa Rica  
El Salvador  
Guatemala  
Honduras  
Mexico  
Nicaragua  
Panama  
Venezuela  

Belize  
Bermuda  
Cuba  
Dominica  
Dominican Republic  
Grenada  
Guyana  
Haiti  
Jamaica  
Saint Lucia  
Saint Vincent and the Grenadines  

Andean Latin America   
Ecuador  
Peru  
Bolivia  

Suriname  
Trinidad and Tobago   
Saint Kitts and Nevis  
United States Virgin Islands  

Southern Latin America   
Argentina  

Puerto Rico   
  

Chile  
Uruguay  

Tropical Latin America   
Brazil   
Paraguay  
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Supplementary Table 2 - Number of data sources and sample sizes (in thousands) by region and 

year. 

Region 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-2019 

Non-fatal       

Overall Diabetes*       

Andean Latin America 
1 

(4,000) 

1  

(5.1) 
0 

6  

(27.6) 

5 

(46.1) 

1 

(0.2) 

Caribbean+ 
4  

(17,66.9) 

4 

(13.5) 

2 

(2.6) 

10 

(340.6) 

8  

(1,152.2) 
0 

Central Latin America 
5 

(33,234.8) 

2  

(27.9) 

6 

(38.8) 

12 

(78.6) 

9 

(93,022.9) 

3 

(12.2) 

High-Income North 

America+ 
7 

(10,599.1) 

7 

(15,569.5) 

11 

(9,309.3) 

6 

(9,211.1) 

18 

(1,246.9) 

1 

(5.3) 

Southern Latin America+ 
5 

(34,937.0) 

3 

(6,361.3) 

3 

(3,146.3) 

5 

(19.1) 

5 

(64.5) 
0 

Tropical Latin America+ 
3  

(9,713.9) 

5 

(473.5) 

11 

(535.4) 

7 

(364.9) 

3 

(28.3) 
0 

Type 1 diabetes only       

Andean Latin America 
1 

(4,000.0) 
0 0 0 0 0 

Caribbean 
1 

(17,169.0) 
0 0 0 

1 

 (326.8) 
0 

Central Latin America 
1 

(33,168.8) 
0 0 0 0 0 

High-Income North 

America+ 
4 

(4,035.8) 

4 

(6,735.8) 

5 

(3,597.5) 

1 

(826.7) 

11 

(607.1) 
0 

Southern Latin America+ 
4 

(24,107.2) 
1 1 0 0 0 

Tropical Latin America 
2 

(9,444.3) 

1 

(231.5) 

1 

(253.1) 

1 

(180.5) 
0 0 

High Fasting Plasma Glucose       

Andean Latin America 0 
1 

(5.1) 

2 

(53.3) 

2 

(3.3) 

4 

(39.9) 
0 

Caribbean+ 
2 

(8.1) 

3 

(1.5) 

1 

(35.7) 

7 

(166.8) 

3 

(57.6) 
0 

Central Latin America+ 
1 

(10.7) 

2 

(1,305.5) 

6 

(114.3) 

4 

(43,145.0) 

2 

(120.9) 
0 

High-Income North 

America 
1 

(14.2) 

2 

(45.4) 

3 

(14.9) 

7 

(108.2) 

2 

(4.7) 
0 

Southern Latin America 
1 

(0.1) 

2 

(17.3) 

3 

(71.3) 

2 

(2.0) 

1 

(100.0) 
0 

Tropical Latin America 
1 

(1.5) 

2 

(41.9) 

2 

(3.4) 

3 

(8.6) 

1 

(1.3) 
0 

*These surveys do not distinguish the type of diabetes.    

** We chose to use end year of each source as the metric for determining which 5-year-bin a 

source was classified as.  

+Some sources did not include sample size.  
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Supplementary Table 3 - Death counts and percentage of all-cause deaths due to diabetes. The 

Americas, regions, and countries. 

 Death count Percent of all deaths 

Location N (95% UI) % (95% UI) 

The Americas 409000 (373000 to 443000) 5.9% (5.4% to 6.2%) 

High-income North America 121000 (109000 to 132000) 3.8% (3.4% to 4.1%) 

Canada 8920 (7830 to 9880) 3.1% (2.7% to 3.5%) 

Greenland 7.47 (5.98 to 8.99) 1.6% (1.4% to 1.8%) 

USA 113000 (101000 to 122000) 3.9% (3.5% to 4.2%) 

Andean Latin America 19600 (16200 to 23400) 6.8% (6.2% to 7.4%) 

Bolivia 5270 (4160 to 6580) 8.2% (7.1% to 9.4%) 

Ecuador 7170 (5730 to 9070) 8.5% (7.7% to 9.2%) 

Peru 7170 (5370 to 9330) 5.2% (4.5% to 5.7%) 

Caribbean 23500 (19900 to 27800) 6.9% (6.3% to 7.6%) 

Antigua and Barbuda 69.1 (60.1 to 78.8) 11.6% (10.8% to 12.4%) 

The Bahamas 184 (153 to 222) 7% (6.4% to 7.5%) 

Barbados 354 (297 to 410) 11.7% (10.7% to 12.5%) 

Belize 191 (168 to 217) 10.5% (9.9% to 11.2%) 

Bermuda 30.6 (25.7 to 36.8) 5.3% (4.8% to 5.8%) 

Cuba 2870 (2340 to 3510) 2.7% (2.5% to 3%) 

Dominica 72 (60.2 to 86) 10.2% (9.3% to 11.1%) 

Dominican Republic 3640 (2790 to 4660) 5.7% (5% to 6.4%) 

Grenada 92.6 (84.2 to 101) 11.7% (11% to 12.5%) 

Guyana 665 (527 to 830) 10.7% (10% to 11.4%) 

Haiti 4930 (3480 to 7060) 6.8% (5.4% to 8.8%) 

Jamaica 2730 (2230 to 3280) 14.4% (13.2% to 15.3%) 

Puerto Rico 4090 (3210 to 5090) 12.5% (11.2% to 13.5%) 

Saint Kitts and Nevis 43.8 (36.8 to 51.1) 9.1% (8% to 9.9%) 

Saint Lucia 154 (131 to 181) 11.3% (10.4% to 12.3%) 

Saint Vincent and the Grenadines 124 (109 to 141) 12.5% (11.6% to 13.3%) 

Suriname 357 (300 to 422) 8.8% (8.1% to 9.6%) 

Trinidad and Tobago 2040 (1570 to 2600) 17.8% (16.7% to 18.9%) 

Virgin Islands 98.1 (84.1 to 112) 7.8% (7.1% to 8.5%) 

Central Latin America 142000 (125000 to 161000) 10.7% (9.8% to 11.4%) 

Colombia 10000 (7780 to 12600) 4.3% (3.8% to 4.8%) 

Costa Rica 1020 (796 to 1330) 4.3% (3.8% to 4.9%) 

El Salvador 3690 (2800 to 4710) 9.7% (8.7% to 10.6%) 

Guatemala 8780 (6970 to 10900) 10.7% (10.1% to 11.4%) 

Honduras 2260 (1800 to 2860) 4.8% (4% to 5.7%) 

Mexico 97100 (83600 to 111000) 14% (13.1% to 14.8%) 

Nicaragua 3120 (2580 to 3710) 11.8% (10.7% to 12.8%) 

Panama 1610 (1270 to 2040) 8.8% (7.8% to 9.6%) 

Venezuela 14500 (11200 to 18800) 8.3% (7.6% to 8.9%) 

Tropical Latin America 80500 (73600 to 85400) 6% (5.4% to 6.3%) 
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Brazil 77400 (70800 to 82100) 5.9% (5.3% to 6.2%) 

Paraguay 3100 (2430 to 3920) 9.8% (8.7% to 10.6%) 

Southern Latin America 22500 (20400 to 24500) 4.7% (4.2% to 5.1%) 

Argentina 15900 (14400 to 17500) 4.7% (4.3% to 5.2%) 

Chile 5360 (4760 to 5920) 4.8% (4.3% to 5.3%) 

Uruguay 1200 (1090 to 1310) 3.6% (3.3% to 3.9%) 

 

 

 

 

 

 

  



 

Supplementary Table 4. Age-standardised DALYs per 100,000 due to diabetes in the Americas by location: 2019 values, percentage change from 1990 to 2019, percentage of 

total DALYs, and percentage due to type 2 diabetes. 

  All-ages DALYs 2019   Age-standardised DALYs  

  Rate (per 100,000)   Percentage type 2 diabetes   2019 rate (per 100,000)   Percentage change 1990–2019 

    

95% uncertainty 

interval     

95% uncertainty 

interval     

95% uncertainty 

interval     

95% uncertainty 

interval 

Location Value Lower Upper   Value Lower Upper   Value Lower Upper   Value Lower Upper 

Global 1,608 1,374 1,881   91.5% 89.9% 92.9%   1,589 1,359 1,856   23.1% 16.9% 28.5% 

The Americas 2,266 1,930 2,649   92.6% 91.3% 93.8%   2,036 1,732 2,385   26.2% 20.8% 31.3% 

    High-income North America 2,016 1,656 2,430   92.0% 90.8% 93.1%   1,513 1,238 1,829   31.2% 25.9% 36.1% 

        Canada 1,192 951 1,460  86.6% 84.2% 88.6%  838 667 1,030  16.0% 5.7% 26.0% 

        Greenland 998 795 1,241  90.8% 89.0% 92.3%  919 733 1,136  0.9% -16.4% 18.1% 

        USA 2,112 1,736 2,549  92.3% 91.2% 93.4%  1,594 1,307 1,928  32.7% 27.5% 37.8% 

    Southern Latin America 1,648 1,395 1,942   92.5% 90.9% 93.8%   1,489 1,258 1,760   15.6% 8.3% 22.9% 

        Argentina 1,702 1,453 1,989  91.7% 90.0% 93.2%  1,575 1,344 1,840  13.4% 6.2% 20.9% 

        Chile 1,567 1,266 1,910  94.5% 93.3% 95.7%  1,385 1,120 1,688  22.4% 12.3% 31.8% 

        Uruguay 1,423 1,212 1,664  91.4% 90.0% 92.7%  1,094 929 1,284  27.6% 15.9% 40.2% 

    Andean Latin America 1,634 1,360 1,931   92.3% 90.4% 93.9%   1,825 1,523 2,153   32.7% 15.4% 50.2% 

        Bolivia 2,257 1,821 2,770  92.2% 89.9% 94.0%  2,794 2,263 3,425  18.0% -3.2% 45.7% 

        Ecuador 2,142 1,751 2,623  92.8% 90.8% 94.5%  2,427 1,987 2,962  64.0% 39.8% 94.4% 

        Peru 1,184 944 1,453  92.0% 90.0% 93.5%  1,277 1,017 1,566  20.3% -1.2% 47.2% 

    Caribbean 2,901 2,423 3,472   92.5% 90.8% 94.0%   2,814 2,353 3,366   7.0% -4.5% 18.7% 

        Antigua and Barbuda 3,664 3,083 4,291  92.7% 90.7% 94.1%  3,660 3,093 4,276  11.3% -0.5% 23.2% 

        Bahamas 2,922 2,381 3,553  90.8% 88.1% 92.8%  3,034 2,481 3,685  1.5% -12.7% 15.9% 

        Barbados 4,490 3,737 5,296  94.5% 92.9% 95.5%  3,438 2,864 4,053  0.8% -11.6% 12.6% 

        Belize 2,836 2,448 3,278  89.9% 87.4% 91.8%  3,650 3,163 4,199  51.5% 36.0% 68.7% 

        Bermuda 2,230 1,812 2,733  94.1% 92.6% 95.2%  1,525 1,239 1,862  -16.8% -26.7% -6.4% 

        Cuba 2,094 1,593 2,683  95.8% 94.3% 96.8%  1,637 1,246 2,098  -7.2% -17.6% 2.7% 

        Dominica 4,810 4,001 5,758  93.4% 91.6% 94.8%  4,202 3,496 5,029  14.9% -1.2% 32.4% 

        Dominican Republic 1,968 1,569 2,423  89.9% 87.7% 91.9%  2,209 1,765 2,715  58.7% 30.4% 91.8% 

        Grenada 4,414 3,821 5,099  93.2% 91.1% 94.6%  4,459 3,873 5,140  14.0% 3.1% 24.3% 

        Guyana 5,052 4,106 6,114  91.8% 89.5% 93.5%  5,840 4,769 7,034  25.0% 2.5% 51.0% 



 

        Haiti 2,935 2,233 3,867  88.7% 86.1% 91.5%  4,154 3,190 5,442  -8.6% -25.4% 12.8% 

        Jamaica 4,014 3,298 4,802  94.4% 92.4% 95.6%  4,146 3,404 4,957  31.4% 13.0% 51.7% 

        Puerto Rico 4,741 3,845 5,769  93.7% 92.1% 95.1%  3,260 2,646 3,977  12.1% -2.6% 28.6% 

        Saint Kitts and Nevis 3,816 3,119 4,525  92.4% 89.4% 94.9%  3,805 3,156 4,459  -9.3% -21.7% 4.0% 

        Saint Lucia 4,416 3,672 5,247  94.0% 92.2% 95.3%  4,193 3,483 4,973  -9.4% -19.3% 0.7% 

        Saint Vincent and the Grenadines 5,206 4,511 6,043  93.7% 91.9% 94.9%  4,826 4,191 5,602  10.2% -1.6% 22.4% 

        Suriname 3,919 3,256 4,695  93.2% 91.1% 94.8%  3,850 3,213 4,582  44.5% 29.1% 62.3% 

        Trinidad and Tobago 6,347 5,067 7,889  95.6% 94.2% 96.5%  5,519 4,400 6,847  -11.5% -27.9% 6.7% 

        Virgin Islands 4,478 3,777 5,351  94.2% 92.7% 95.3%  3,124 2,618 3,732  25.7% 9.3% 43.3% 

    Central Latin America 3,267 2,823 3,806   93.3% 91.3% 94.9%   3,485 3,017 4,059   20.4% 11.3% 29.7% 

        Colombia 1,676 1,283 2,113  95.7% 94.2% 96.7%  1,647 1,261 2,075  -7.7% -18.7% 3.3% 

        Costa Rica 1,774 1,375 2,250  94.4% 92.1% 96.1%  1,786 1,386 2,262  16.8% 4.2% 30.3% 

        El Salvador 3,231 2,588 3,968  90.0% 86.4% 92.6%  3,458 2,764 4,250  118.7% 79.7% 163.9% 

        Guatemala 3,217 2,637 3,870  91.0% 88.7% 93.2%  4,357 3,579 5,237  162.0% 119.4% 215.1% 

        Honduras 1,998 1,592 2,488  91.1% 87.2% 94.0%  2,665 2,138 3,298  58.0% 41.8% 79.3% 

        Mexico 4,195 3,598 4,858  93.3% 91.3% 94.9%  4,505 3,874 5,214  15.7% 4.7% 26.4% 

        Nicaragua 2,869 2,371 3,481  91.1% 87.7% 93.8%  3,788 3,134 4,535  60.7% 41.4% 83.1% 

        Panama 2,387 1,909 2,929  94.4% 92.5% 95.8%  2,425 1,939 2,980  58.8% 39.5% 81.8% 

        Venezuela 2,880 2,314 3,536  94.1% 91.9% 95.7%  2,886 2,326 3,542  32.4% 12.3% 57.1% 

    Tropical Latin America 1,886 1,625 2,175   92.9% 91.7% 94.0%   1,914 1,651 2,205   -5.6% -9.6% -2.1% 

        Brazil 1,875 1,613 2,160  92.9% 91.7% 94.0%  1,895 1,632 2,179  -7.2% -11.2% -3.6% 

        Paraguay 2,251 1,798 2,728   93.1% 91.3% 94.5%   2,723 2,181 3,296   88.3% 56.4% 129.2% 
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Supplementary Table 5 - All-age DALYs rates per 100,000 in 2019 and percentage change 

of DALYs due to diabetes by type. 

 All-age DALYs 2019 Change 1990-2019 

Location Rate (95% UI) % (95% UI) 

Type 1 diabetes   

 Global 136 (111.5 to 162) 1.96% (-8.14% to 12.41%) 

 The Americas 166.4 (134.6 to 198.7) 21.44% (9.38% to 33.18%) 

 High-income North America 161.4 (129.6 to 199.6) 17.37% (5.53% to 25.59%) 

 Central Latin America 218.4 (163.3 to 286) 67.69% (38.95% to 98.02%) 

 Caribbean 217.3 (170.3 to 272.4) 5.82% (-13.09% to 27.62%) 

 Andean Latin America 125.4 (93.2 to 164.2) 16.86% (-5.23% to 42.2%) 

 Tropical Latin America 134.1 (108 to 159.2) -0.79% (-12.74% to 9.26%) 

 Southern Latin America 123.9 (99.1 to 150.9) -5.41% (-13.17% to 3%) 

Type 2 diabetes   

 Global 1472.3 (1247.7 to 1737.7) 54.04% (46.92% to 60.75%) 

 The Americas 2099.5 (1779.7 to 2472.7) 59.22% (52.75% to 65.52%) 

 High-income North America 1855 (1518.6 to 2253.2) 69.75% (62.37% to 77.02%) 

 Central Latin America 3048.7 (2614.2 to 3579.7) 64.57% (52.39% to 76.87%) 

 Caribbean 2684 (2232 to 3218.7) 34.39% (20.29% to 48.81%) 

 Andean Latin America 1509 (1263.9 to 1791.8) 73.89% (51.75% to 96.26%) 

 Tropical Latin America 1751.5 (1506.2 to 2026.3) 29.68% (24.12% to 34.58%) 

 Southern Latin America 1524.5 (1282.6 to 1811.9) 36.05% (27.34% to 44.49%) 
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Supplementary Table 6 - Country-specific age-standardized DALYs rate in 2019 and percentage change 

1990-2019, by type of diabetes. 

 Type 1 diabetes Type 2 diabetes 

Location 2019 (per 100000) Change 1990-2019 2019 (per 100000) Change 1990-2019 

 Rate  (95% UI) % (95% UI) Rate (95% UI) % (95% UI) 

Canada 141.6 (108.9 to 180.3) -0.3% (-11.8% to 13.4%) 696.9 (551 to 862.4) 20.0% (7.5% to 32.9%) 

Greenland 88.9 (65.8 to 119.3) -13.3% (-25.6% to -1.3%) 830.5 (661.5 to 1030.9) 2.7% (-15.6% to 21.4%) 

USA 152.4 (122.9 to 187.1) 13.3% (1.8% to 20.5%) 1441.8 (1175.6 to 1757.4) 35.2% (29.5% to 41%) 

Bolivia 193.7 (131.6 to 277.7) -2.6% (-28.9% to 32%) 2600.4 (2112.2 to 3185.5) 19.9% (-1.2% to 46.9%) 

Ecuador 160.3 (112.8 to 224.5) 36.5% (4.7% to 74.1%) 2267 (1862.2 to 2762.1) 66.4% (41.7% to 95.9%) 

Peru 97.4 (70 to 131.9) -7.1% (-29.6% to 21.7%) 1179.6 (942.9 to 1462.5) 23.3% (1.6% to 50.2%) 

Antigua and 

Barbuda 
259.3 (204.8 to 335.5) -12.6% (-27.1% to 5.4%) 3400.7 (2872.9 to 3994.2) 13.7% (1.9% to 25.7%) 

The Bahamas 263.4 (200.5 to 350.1) -3.3% (-23.7% to 23.1%) 2770.5 (2255.6 to 3388.2) 1.9% (-11.3% to 15.8%) 

Barbados 228.2 (176.8 to 297.4) -8.2% (-25% to 13.7%) 3209.4 (2666.8 to 3818.6) 1.5% (-10.7% to 13.3%) 

Belize 299 (233.5 to 386.5) 52.5% (27.3% to 81.1%) 3350.5 (2893.6 to 3859.7) 51.4% (36.1% to 68.5%) 

Bermuda 109.8 (86 to 137.4) -30.9% (-42.4% to -16.5%) 1415.2 (1136.3 to 1740.1) -15.5% (-25.5% to -5.3%) 

Cuba 81.5 (60.7 to 106.4) -28% (-44% to -2.4%) 1555 (1177.1 to 2017.8) -5.8% (-16.1% to 4.1%) 

Dominica 310.5 (236.4 to 407.8) 4.8% (-18.2% to 34.4%) 3891 (3231.6 to 4684.2) 15.7% (0.1% to 32.8%) 

Dominican Republic 204.3 (145.9 to 278.3) 34.7% (-0.5% to 78.3%) 2004.7 (1597.6 to 2464.7) 61.6% (34.2% to 93.9%) 

Grenada 300.3 (233.6 to 387.4) -9.9% (-25.6% to 9.2%) 4159.1 (3605.2 to 4837.1) 16.2% (5.4% to 26.4%) 

Guyana 426.3 (308.9 to 594.2) 10.9% (-20.5% to 52%) 5413.3 (4423.9 to 6523.4) 26.3% (4.2% to 51.6%) 

Haiti 362.5 (244.7 to 531.7) -21.7% (-44.2% to 14.6%) 3791.6 (2895.5 to 4967.9) -7.1% (-23.9% to 14%) 

Jamaica 231.4 (167.5 to 322.8) 14.1% (-15.4% to 57%) 3915 (3221.5 to 4664.1) 32.5% (14.5% to 52.8%) 

Puerto Rico 260.3 (194.3 to 338.4) -5.1% (-26.8% to 21.1%) 2999.7 (2420.8 to 3669.5) 13.9% (-0.3% to 29.4%) 

Saint Kitts and 

Nevis 
274.7 (169 to 395.4) -37.4% (-60.2% to -13.8%) 3529.9 (2927.9 to 4147.3) -6.0% (-17.4% to 6.7%) 

Saint Lucia 255 (197.4 to 328.3) -13.8% (-29.1% to 4.5%) 3937.7 (3255.5 to 4711.9) -9.1% (-18.9% to 0.9%) 

Saint Vincent and 

the Grenadines 
319.4 (252.6 to 405.1) 2% (-15.3% to 23.8%) 4506.7 (3885.2 to 5257.3) 10.8% (-0.7% to 22.6%) 

Suriname 259.5 (193.7 to 340.5) 22.4% (-2.3% to 53.7%) 3590.5 (2979.3 to 4295.4) 46.5% (31.3% to 63.3%) 

Trinidad and 

Tobago 
262.8 (187.2 to 372.3) -9.5% (-33.1% to 21.9%) 5256.6 (4191.2 to 6520.9) -11.6% (-27.5% to 6.3%) 

Virgin Islands 219.1 (169.6 to 283.2) -2.8% (-24.2% to 25%) 2905.2 (2426.7 to 3478.2) 28.5% (12.4% to 45.7%) 

Colombia 72.1 (52.1 to 96.9) -29.6% (-43% to -13.3%) 1574.5 (1205.2 to 1999.9) -6.3% (-17.5% to 4.3%) 

Costa Rica 98.0 (68.3 to 139.2) 27.0% (-0.3% to 62.7%) 1688.1 (1308.2 to 2156.6) 16.2% (4.2% to 28.7%) 

El Salvador 342.9 (230.7 to 507) 124.8% (64.5% to 203%) 3114.9 (2490.9 to 3813.3) 118% (80.2% to 161%) 

Guatemala 323.9 (223.9 to 445.7) 106.1% (50.3% to 175.2%) 4032.9 (3298.8 to 4843.1) 167.9% (125.3% to 221%) 

Honduras 210.6 (131.1 to 319.5) 43.4% (3.2% to 95.4%) 2454.6 (1972 to 3045.9) 59.4% (44.1% to 79.4%) 

Mexico 283.8 (207.6 to 374.4) 60.8% (31.1% to 92.7%) 4221.7 (3630.6 to 4902.7) 13.5% (3.5% to 23.9%) 

Nicaragua 286.7 (186.3 to 417.3) 57.2% (22.8% to 97%) 3501.1 (2889.4 to 4191.8) 61% (42.5% to 83%) 

Panama 134.1 (94.6 to 188) 47.8% (12.7% to 87.9%) 2290.8 (1813.3 to 2831.6) 59.5% (41% to 81.4%) 

Venezuela 165 (111.1 to 240.1) 42% (5% to 86.2%) 2721.5 (2193.2 to 3348.7) 31.9% (12.6% to 55%) 

Brazil 131.9 (106 to 156.2) -13.2% (-23% to -5.6%) 1762.9 (1515.7 to 2039.5) -6.7% (-10.8% to -3%) 

Paraguay 168.1 (121.1 to 233.4) 59.4% (23.3% to 110.7%) 2554.7 (2059.8 to 3104) 90.5% (58.4% to 131.1%) 

Argentina 137.6 (110.2 to 166) -8.6% (-16.2% to 0%) 1437 (1218.6 to 1697.4) 16.1% (8.5% to 23.8%) 

Chile 81.0 (62.8 to 100.7) -6.1% (-15.3% to 4.5%) 1303.6 (1051.6 to 1597.2) 24.7% (14.5% to 34.6%) 

Uruguay 114.3 (89.8 to 140.3) 0.7% (-7.3% to 8.5%) 979.4 (831.1 to 1156.7) 31.7% (17.9% to 46%) 



 

 

Supplementary Table 7 - Percentage of DALYs due to years of life lost (YLLs) and years lived with disability 

(YLDs) by type of diabetes for the Americas and by region, 1990 and 2019. 

  1990   2019 

 YLLs  YLDs   YLLs  YLDs 

Location % (95% UI) % (95% UI)  % (95% UI) % (95% UI) 

The Americas           

       Type 1 diabetes 6.7% (5.4% to 8.4%) 2.8% (2.1% to 3.5%)  5.2% (4.0% to 6.7%) 2.2% (1.6% to 2.8%) 

       Type 2 diabetes 52.1% (45.4% to 59.8%) 38.5% (30.6% to 45.6%)  47.6% (40.4% to 56%) 45% (36.3% to 52.7%) 

HI North America      

Type 1 diabetes 6.1% (4.8% to 7.8%) 5.1% (4% to 6.5%)  4.1% (3.0% to 5.2%) 3.9% (3.0% to 5.0%) 

Type 2 diabetes 43% (36.3% to 50.5%) 45.8% (37.9% to 52.8%)  36.9% (30.3% to 44.4%) 55.1% (47.0% to 62.0%) 

Caribbean      

Type 1 diabetes 8.5% (6.8% to 10.2%) 0.8% (0.6% to 1.1%)  6.6% (5.0% to 8.4%) 0.9% (0.7% to 1.2%) 

Type 2 diabetes 58.3% (51.6% to 65.3%) 32.4% (24.5% to 40%)  49.9% (41.0% to 58.8%) 42.6% (32.9% to 52.5%) 

Central LA      

Type 1 diabetes 5.9% (4.7% to 7.6%) 0.7% (0.5% to 0.9%)  6.1% (4.5% to 8.2%) 0.6% (0.4% to 0.7%) 

Type 2 diabetes 57.7% (51.2% to 65.2%) 35.7% (27.6% to 43.1%)  54.8% (47.4% to 63.4%) 38.5% (29.3% to 46.7%) 

Andean LA      

Type 1 diabetes 9.4% (7.4% to 11.7%) 1.6% (1.1% to 2.2%)  6.3% (4.6% to 8.4%) 1.4% (1.0% to 1.8%) 

Type 2 diabetes 61.4% (54.7% to 68.3%) 27.6% (20.3% to 35.2%)  56.9% (48% to 65.5%) 35.4% (26.2% to 45%) 

Tropical LA      

Type 1 diabetes 7.3% (5.8% to 9.3%) 1.8% (1.3% to 2.4%)  4.8% (3.6% to 6.1%) 2.4% (1.8% to 3.1%) 

Type 2 diabetes 56.8% (50.1% to 63.9%) 34.1% (26.5% to 41.5%)  51.6% (44.2% to 59.8%) 41.3% (33.1% to 49.1%) 

Southern LA      

Type 1 diabetes 8.2% (6.3% to 10.2%) 2.3% (1.7% to 3%)  5.2% (3.9% to 6.9%) 2.3% (1.7% to 3%) 

Type 2 diabetes 60.1% (53% to 67.2%) 29.5% (22.1% to 37.2%)   48.9% (40.8% to 57.5%) 43.5% (34.2% to 52.5%) 

  



 

  

Supplementary Table 8 - All-age high fasting plasma glucose DALYs due to specific causes in 2019 by the Americas regions. 

 

Cardiovascular 

diseases 
Neoplasms 

Neurological 

disorders 

Sense organ 

diseases 
Tuberculosis Type 1 diabetes Type 2 diabetes 

Location Rate (95% UI) Rate (95% UI) Rate (95% UI) Rate (95% UI) Rate (95% UI) Rate (95% UI) Rate (95% UI) 

The Americas 1469.3 (1063.6 to 2001.6) 294.3 (84.6 to 584.5) 85.9 (15.4 to 274.8) 11.3 (2.8 to 25.4) 11.8 (7.7 to 16.2) 179.1 (144.2 to 214.5) 2348.8 (1989.8 to 2765) 

HI North America 1770 (1271.7 to 2420.3) 479.9 (137 to 943.6) 114.7 (21.7 to 358) 7 (1.8 to 15.8) 1.7 (1 to 2.4) 170.6 (136.3 to 210.3) 2027.4 (1660.4 to 2460.8) 

Caribbean 2132 (1508.4 to 2926.7) 259.9 (72.7 to 539.5) 74.6 (13.2 to 234) 13 (3.4 to 29.5) 32.2 (20.6 to 45.7) 234.8 (183.3 to 296.2) 3028.6 (2518.6 to 3627.2) 

Central LA 1409.2 (987.6 to 1921.2) 167.9 (47.7 to 348.8) 72.2 (12.5 to 229.7) 16.3 (4.1 to 36.4) 19.8 (12.9 to 27.7) 240.5 (178.7 to 319) 3497.7 (2999.3 to 4107.5) 

Andean LA 661.5 (437.1 to 960.1) 95.4 (26.1 to 205.3) 45.7 (7.7 to 149.7) 14.8 (3.6 to 34.3) 29.3 (17.8 to 43.1) 139.9 (103.3 to 185.1) 1743.5 (1459.4 to 2069.9) 

Tropical LA 1163.8 (842.3 to 1630.1) 147 (40.4 to 303.1) 65.1 (11.2 to 212.7) 13.7 (3.4 to 31.1) 14.4 (9.2 to 19.9) 144.5 (115.9 to 172.1) 1972.2 (1696.4 to 2281) 

Southern LA 1117.9 (784.3 to 1576.3) 281.2 (77.9 to 568.8) 68.9 (12 to 227.6) 7.9 (1.9 to 18) 9.2 (5.7 to 13.1) 133.9 (106.5 to 163.5) 1712.5 (1441 to 2036.2) 
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Supplementary Table 9 - Correlation of the SDI, the HAQ Index, and prevalence of 

diabetes with the age-standardised DALY rate due to diabetes in the Americas, 2019 

Variable 

Age-standardised 

DALYs rate R2 p value 

SDI (10% increase) -411.6 0.097 0.054 

HAQ Index (10% increase) -645.4 0.36 <0.001 

Prevalence of diabetes (1% increase) 322.4 0.72 <0.001 

 

  



 

Supplementary Table 10. Diabetes prevalence and incidence rates (95% Uncertainty Intervals) in adults in the Americas in 

1990 and 2019 and their change from 1990 to 2019 (95% Uncertainty Interval). 

  Prevalence (age-standardised rate)  Incidence (age-standardised rate) 

Location  1990 (per 100) 2019 (per 100) % change, 1990–2019  1990 (per 1000) 2019 (per 1000) % change, 1990–2019 

Type 1 diabetes         

Global  0.29 (0.24 to 0.35) 0.37 (0.30 to 0.46) 29.5 (24.6 to 34.8)  0.037 (0.027 to 0.051) 0.055 (0.039 to 0.078) 48.9 (42.3 to 55.0) 

The Americas  0.54 (0.44 to 0.65) 0.57 (0.46 to 0.71) 6.9 (1.9 to 11.9)  0.069 (0.051 to 0.095) 0.086 (0.062 to 0.120) 24.2 (19.7 to 29.5) 

High-income 

North America 
 0.86 (0.70 to 1.04) 0.96 (0.77 to 1.21) 12.0 (4.2 to 19.4) 

 
0.120 (0.086 to 0.167) 0.163 (0.114 to 0.232) 35.8 (29.3 to 43.4) 

Central LA   0.14 (0.11 to 0.17) 0.18 (0.14 to 0.22) 26.7 (24.0 to 29.4)  0.015 (0.011 to 0.022) 0.018 (0.013 to 0.027) 19.2 (14.4 to 23.4) 

Caribbean  0.18 (0.15 to 0.22) 0.25 (0.20 to 0.32) 38.3 (31.3 to 46.7)  0.025 (0.018 to 0.035) 0.036 (0.026 to 0.052) 43.8 (34.4 to 52.5) 

Andean LA    0.19 (0.15 to 0.24) 0.24 (0.19 to 0.31) 26.8 (23.4 to 30.6)  0.029 (0.021 to 0.042) 0.036 (0.025 to 0.050) 20.7 (16.3 to 24.5) 

Tropical LA   0.32 (0.26 to 0.39) 0.46 (0.37 to 0.57) 45.9 (38.3 to 52.9)  0.047 (0.035 to 0.065) 0.077 (0.056 to 0.107) 62.6 (53.8 to 69.8) 

Southern LA   0.34 (0.24 to 0.35) 0.45 (0.36 to 0.56) 35.1 (22.6 to 51.0)  0.020 (0.016 to 0.026) 0.034 (0.023 to 0.050) 68.5 (34.2 to 110.2) 

Type 2 diabetes          

Global   5.6 (5.1 to 6.1) 8.3 (7.6 to 9.1) 48.9 (47.0 to 50.6)  2.9 (2.6 to 3.1) 4.0 (3.7 to 4.3) 40.5 (38.9 to 42.1) 

The Americas   7.1 (6.6 to 7.7) 10.4 (9.6 to 11.1) 45.2 (42.5 to 48.4)  3.8 (3.5 to 4.1) 5.2 (4.8 to 5.6) 36.7 (34.7 to 39.2) 

High-income 

North America 
  6.9 (6.3 to 7.5) 10.6 (9.8 to 11.4) 54.0 (48.1 to 60.8) 

 
3.6 (3.3 to 3.9) 5.3 (4.9 to 5.7) 49.3 (44.3 to 54.9) 

Central LA   10.2 (9.5 to 11.0) 13.4 (12.3 to 14.4) 30.6 (26.8 to 34.1)  5.6 (5.2 to 6.0) 6.4 (6.0 to 6.9) 15.8 (12.2 to 19.1) 

Caribbean  8.3 (7.7 to 8.9) 11.8 (10.9 to 12.7) 42.3 (37.1 to 48.2)  4.3 (4.0 to 4.5) 5.6 (5.2 to 6.1) 31.5 (26.6 to 36.6) 

Andean LA   4.0 (3.7 to 4.3) 6.7 (6.1 to 7.3) 68.3 (61.7 to 75.1)  2.4 (2.2 to 2.5) 3.7 (3.4 to 4.0) 55.1 (49.3 to 61.2) 

Tropical LA  6.9 (6.3 to 7.4) 7.9 (7.2 to 8.6) 14.4 (11.2 to 18.1)  3.8 (3.5 to 4.1) 4.2 (3.8 to 4.5) 10.5 (7.7 to 13.7) 

Southern LA  4.4 (4.1 to 4.8) 8.0 (7.2 to 8.7) 79.8 (68.5 to 91.3)  2.7 (2.5 to 2.9) 4.3 (3.9 to 4.7) 60.6 (51.5 to 70.7) 
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Supplementary Table 11 - Prevalent and incident cases of diabetes globally, in the 

Americas and by region in 2019.  

 

Prevalent cases (in 

thousands) 

Incident cases (in 

thousands) 

Location N (95% UI) N (95% UI) 

Type 1 diabetes   

   Global 19300 (15400 to 23900) 281 (201 to 398) 

   The Americas 4200 (3400 to 5170) 59.4 (43.6 to 82.9) 

   High-income North America 2800 (2240 to 3510) 40.4 (29.9 to 56) 

   Central Latin America 287 (227 to 358) 3.02 (2.05 to 4.45) 

   Caribbean 80 (63.6 to 100) 1.14 (0.808 to 1.6) 

   Andean Latin America 95.8 (75.5 to 120) 1.45 (1.02 to 2.07) 

   Tropical Latin America 725 (577 to 905) 11.9 (8.67 to 16.5) 

   Southern Latin America 214 (170 to 262) 1.56 (1.08 to 2.25) 

Type 2 diabetes   

   Global 436000 (400000 to 475000) 21200 (19500 to 23000) 

   The Americas 81300 (75200 to 87200) 3880 (3590 to 4190) 

  High-income North America 38100 (35300 to 41100) 1650 (1520 to 1790) 

  Central Latin America 20700 (19000 to 22200) 1040 (960 to 1120) 

  Caribbean 3820 (3540 to 4130) 182 (169 to 197) 

  Andean Latin America 2430 (2230 to 2640) 139 (128 to 151) 

  Tropical Latin America 12300 (11200 to 13400) 666 (612 to 729) 

  Southern Latin America 4070 (3670 to 4450) 208 (189 to 227) 

 



 

 

Supplementary Table 12 - Crude population attributable fraction of DALYs due to type 2 diabetes for the main risk factors for diabetes identified by GBD 2019, 

by region. 

 Air pollution Dietary risks High body-mass index 
Low physical 

activity 

Non-optimal 

temperature 
Tobacco 

Location % (95% UI) % (95% UI) % (95% UI) % (95% UI) % (95% UI) % (95% UI) 

The Americas 10.8% (7.3% to 14.8%) 27.5% (23.1% to 31.6%) 63.2% (48.3% to 75.7%) 7.3% (3.7% to 12.3%) 3.2% (2.2% to 4.4%) 13.1% (9.4% to 16.3%) 

High-income North America 5% (2.3% to 8.7%) 34.5% (29.3% to 39.4%) 66.4% (51.3% to 78.1%) 5.8% (2.4% to 10.6%) 3.9% (2.7% to 5.7%) 14.6% (11.4% to 17.9%) 

Central Latin America 15.5% (11.1% to 20%) 22.2% (17.9% to 26.3%) 62.1% (46% to 75.6%) 4.6% (1.8% to 8.9%) 3.4% (2.3% to 4.6%) 11.1% (7.2% to 14.7%) 

Caribbean 14.4% (9.3% to 19.8%) 19.4% (14.7% to 23.5%) 56.9% (43.2% to 69.2%) 11.3% (5.9% to 18.1%) 0.5% (-0.2% to 1.3%) 12.4% (8.9% to 15.5%) 

Andean Latin America 16.1% (11.4% to 20.7%) 19.4% (15% to 23.6%) 62.3% (47% to 74.9%) 4.7% (1.9% to 9%) 3.7% (2.2% to 5.4%) 7.6% (4.7% to 10.2%) 

Tropical Latin America 10.8% (6.7% to 15.5%) 26.7% (22.2% to 30.9%) 63.1% (49.8% to 75.1%) 15.7% (9% to 22.8%) 1.6% (0.2% to 4.4%) 14.1% (9.9% to 17.9%) 

Southern Latin America 11.6% (7.5% to 16.3%) 33.4% (28.4% to 37.8%) 55.8% (39.6% to 70.5%) 2.8% (1.2% to 5.4%) 5.4% (2.9% to 8.4%) 17% (12.3% to 20.9%) 
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Supplementary Figure 1: Association of the Socio-demographic Index (Panel A) and the Healthcare 

Access and Quality Index (Panel B) with DALYs due to type 1 diabetes 
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Supplementary Figure 2. Changes in the age-standardised YLLs rate and age-standardised YLDs rate in 

regions of the Americas over time, 1990 to 2019. Each point represents both rates for a given year for the 

regions shown. The years in each series, except for initial years for high-income North America, advance 

from left to right. 
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Supplementary Figure 3: Age-standardised prevalence of type 2 diabetes across the range of the 

prevalence of obesity in the Americas, 2019 
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