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Supplementary Fig. 1.
Bmal1 KO cells and Cry1/Cry2 DKO cells lose the circadian clock oscillation.

(a-c) Protein domain structures (Upper panels) and edited regions of nucleotide sequences (Lower) of
Bmal1 (a), Cry1 (b) and Cry2 (c) genes. NIH3T3 cells stably expressing a firefly luciferase reporter under
the regulation of a 0.3-kb Bmal1 promoter were used as previously reported®?. The NIH3T3 Bmal1-luc cells
were genome-edited for generating Bmal1 KO, Cry1 KO, Cry2 KO and Cry1/Cry2 DKO cells. Amino acid
sequences to be translated are shown below the protein domain structures. Nucleotide sequences are
shown in boxes, where upper case and lower case letters indicate those in exons and introns, respectively.
Gray letters indicate the 5’-UTR regions. Cas9-targets and PAM sequences are highlighted in yellow and
blue, respectively. The predicted Cas9 cleavage sites are indicated by diagonal lines. (d-g) Representative
bioluminescence rhythms from the Bmal1 KO cells (d), the Cry1 KO cells (e), the Cry2 KO cells (f) and the
Cry1/Cry2 DKO cells (g). These cells were synchronized by 2-hr pulse treatment with dexamethasone just
before the bioluminescence monitoring. We thank Dr. Takao Kondo (Nagoya Univ.) for a 24-well dish-type
of PMT-Tron and Dr. Hidetoshi Kassai (The Univ. Tokyo) and Dr. Tomoya Shiraki (The Univ. Tokyo; Present
address, National Institute of Genetics, Japan) for their helpful discussion about the CRISPR-Cas9 system.
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Supplementary Fig. 2.
Two RREs in the 5’-UTR of Bmal1 are sufficient for gene expression rhythm.

(a) Alignment of the nucleotide sequences of mammalian Bmal1 5-UTR containing the two RREs. RRE
elements are highlighted in purple and nucleotides diverged from the other sequences are highlighted in
white background. The sequence data are obtained from UCSC Genome Browser on Mouse Dec. 2011
(GRCmM38/mm10) Assembly. (b) Diagrams of the WT Bmal1-luc reporter and the Bmal7-ARRE luc reporter.
For generating the Bmal1-ARRE luc reporter, 47-bp sequence (highlighted in black background) including
two RREs was deleted in a Bmal7-luc/pGL4.12-hyg plasmid. (c) Diagrams of the WT Bmal1-luc reporter
and the Bmal7-mutRRE luc reporter. Plasmids used in this experiment were a Bmal1us0.3-luc wild
type/pGL3 plasmid and a Bmal1us0.3-luc Mut. RORE/pGL3 plasmid, which were reported previously®®. The
mutated sequences were highlighted in black background. (d-e) Representative traces of bioluminescence
signals recorded from NIH3T3 cells expressing the luciferase reporters. NIH3T3 cells were transiently
transfected with either of these plasmids to monitor the bioluminescent rhythm. Data using the mutant luc
reporters and the control luc reporters were indicated in purple and gray, respectively.
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Supplementary Fig. 3.
The mutant cells and mice deficient for two RREs of Bmal1 gene were generated.

(a) The genome structure of the Bmal1 gene locus (Upper panel) and the sequences of ARRE cell lines and
ARRE mouse lines (Lower). Thick and thin lines indicate exons and introns of Bmal1, respectively. The
genome sequence of exon1 is shown in the box. Cas9-targets and PAM sequences are highlighted in
yellow and blue, respectively. RRE elements are indicated by two boxes in purple (Upper) or bold italic
letters in purple (Lower). (b) Temporal profiles of Bmal1 mRNA levels in the ARRE #1 (n=3 for WT, n=4 for
ARRE #1, Data are means + SEM) and ARRE #2 (n=2) mice liver. Livers were harvested at 4-hr intervals,
followed by quantitative RT-PCR. The mRNA levels of Bmal1 were normalized by Rps29. Blue and black
lines indicate the ARRE mutants and the controls, respectively. Data of the ARRE mutant #1 and its control
were reproduced from Fig. 1c.
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Supplementary Fig. 4.
Wheel-running rhythms of mice were maintained in the absence of the RRE-mediated rhythmic
transcription of Bmal1.

Double-plotted actograms of wheel-running activities of the ARRE homozygous and littermate WT mice.
Horizontal black and yellow bars above each actogram indicate dark and light phases in the light-dark (LD)
cycle, respectively. The circadian periods were determined via a chi-square periodogram procedure based
on the locomotor activities in days 11 to 24 after the start of DD condition. The determined circadian periods
are shown in the lower right corner of each actogram.
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Supplementary Fig. 5.
Bioluminescence rhythms of mouse tissues were maintained in the ARRE mutant.

(a) Bioluminescence rhythms in the cultured SCN slice, lung and eWat isolated from PER2::LUC-WT and
PER2::LUC-ARRE mice. The tissues were cultured on the Millicell membrane for the long-term monitoring.
The upper, middle, and bottom panels show the bioluminescence data smoothed by 2-hr moving averages,
the data detrended by subtracting 24-hr centered moving averages, and the data normalized to the
maximum value in the detrended data as 1. The data of ARRE mutants and WT (littermate) controls were
shown in blue and black , respectively. (b) The circadian periods of the rhythms in the SCN, lung and eWAT
are shown. Data are means £+ SEM (n = 3). Source data are provided as a Source Data file.
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Supplementary Fig. 6.
Cellular bioluminescence rhythms were maintained in the ARRE mutant NIH3T3 cells.

(a) Representative relative bioluminescence rhythms from the ARRE mutant and WT NIH3T3 cells. A
Luciferase reporter containing RREs was transiently transfected to monitor the bioluminescent rhythm. Cells
were synchronized by 2-hr pulse treatment with dexamethasone just before the monitoring. Traces in dark
blue, purple and black indicate the signals recorded from ARRE mutant #2 cells, ARRE mutant #3 cells and
WT cells, respectively. Data of WT cells were reproduced from Fig. 2f. (b) The circadian periods of the
cellular rhythms. Data of the ARRE mutant #1 and WT cells were reproduced from Fig. 2g. Data are means
+ SEM (n = 4). Two-sided Student’s t test, *P < 0.05; **P < 0.01; ***P < 0.001 vs. WT (#1, P=0.0016; #2,
P=0.023; #3, P=0.000018). Source data are provided as a Source Data file.
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The rhythmicity of clock proteins levels was maintained in the ARRE mutant mouse.

(a) Temporal expression profiles of clock proteins in the nuclei of the ARRE mutant and WT mouse livers.

The mouse liver nuclei prepared at 4-hr intervals were subjected to immunoblot analysis using a series of
antibodies for clock proteins. Horizontal grey and black bars above protein bands indicate subjective day

and night in the constant-dark (DD) cycle, respectively. (b) Quantified data of the immunoblot analysis. Data

are represented as dots (n=3) and as lines for means.
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Supplementary Fig. 8.
The circadian oscillation was observed even in the mutant model deficient for the transcriptional
rhythms of both Bmal1 and Clock.

(a) Simulated temporal mRNA expression profiles of clock genes. Black and Green lines respectively
indicate relative mRNA levels in the WT model and the Bmal1- and Clock-ARRE mutant model in which
Bmal1 mRNA and Clock mRNA are expressed at their constant levels by the mutations of their RREs.

(b) Simulated circadian periods in the Bmal1- and Clock-ARRE mutant and WT models. (¢) Simulated
expression profiles of phosphorylated BMAL1 in the Bmal1- and Clock-ARRE mutant and WT models.
(d-e) Effects of CLOCK knockdown on the bioluminescence rhythms in the ARRE mutant and WT NIH3T3
cells. Relative amplitudes of the cellular rhythms are shown in (e) as means £ SEM (n = 3). Source data
are provided as a Source Data file.
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Supplementary Fig. 9.
The perturbation of CRY1 degradation rate had a larger effect on the phospho-BMAL1 rhythm than
that of CRY2 degradation rate.

(a) Simulated temporal expression profiles of CRY1 (Upper panel) and phosphorylated BMAL1 (Lower)
depending on CRY1 degradation rate. The degradation rate of CRY1 in the nucleus was decreased by 60%
(Center panel) and 75% (Right). Enlarged figures of the Right panel are shown next to them. (b) Simulated
temporal expression profiles of CRY2 (Upper panel) and phosphorylated BMAL1 (Lower) depending on
CRYZ2 degradation rate. The degradation rate of CRY2 in the nucleus was decreased by 60% (Center
panel) and 75% (Right). Blue and black lines indicate the ARRE mutant and WT models, respectively.
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The circadian period of the ARRE mutant is sensitively lengthened by perturbations of CRY1 protein

rhythm.

(a) Simulated circadian periods in the ARRE mutant and WT models when the CRYs degradation rate was
decreased (i.e., CRYs were more stabilized) by 20%, 40% and 60%. (b) Effects of KLOO1 on the circadian
period of the bioluminescence rhythms in the ARRE mutant and WT NIH3T3 cells. Data are means + SEM
(n = 3). Two-sided Student’s t test, **P < 0.01; ***P < 0.001 vs. WT (0 pM, P=0.00070; 0.5 pM,
P=0.0000079; 1.0 M, P=0.0031; 2.0 uM, P=0.0015). Source data are provided as a Source Data file. (c)
Effects of SR9009, an agonist of REV-ERBs, on the circadian period of the bioluminescence rhythms in the
ARRE mutant and WT NIH3T3 cells. Data are means + SEM (n = 3). Two-sided Student’s { test, *P < 0.05;
***P < 0.001 vs. WT (10 uM, P=0.020; 20 uM, P=0.00076). Source data are provided as a Source Data file.
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Supplementary Fig. 11.
The WT model is more robust to random parameter variations than the ARRE model.

(a) Venn diagrams depicting the number of parameter sets that permit oscillations in the ARRE mutant and
WT models with various criteria for oscillation. Four thousand parameter sets were obtained by randomly
perturbing the values of the model parameters within a range of =50% (see Materials and Methods). (b)
The number of perturbed parameter sets that permit oscillations only in the WT model (shown in gray) and
only in the ARRE model (shown in light blue).
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Supplementary Fig. 12.
Perturbation of parameters associated with REV-ERBs and CRYs largely decreased the amplitude in

the ARRE model.

(a) A schematic illustration describing how to estimate the influence of individual parameter perturbation on
the circadian rhythms in the two models. Each model parameter was decreased by 50%, and then the effect
on the rhythm amplitude in the WT and mutant models was examined. (b) Amplitude ratio (ARRE/WT) when
each parameter was perturbed. Highlighted in red are the top six parameter perturbations that largely
decrease amplitude in the ARRE model. Source data are provided as a Source Data file.
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The number of rhythmic genes peaking in the afternoon was reduced in the ARRE mutant mouse

liver.

Venn diagram of the number of genes showing weak rhythmicity (Upper panel), medium rhythmicity
(Middle), and strong rhythmicity (Lower) in the transcriptome analysis of the ARRE mutant and WT mouse
liver. Histograms of the number of rhythmic genes peaking at each circadian time were shown in the right

panel. Bars in blue and black indicate the gene numbers in the ARRE mutant and WT littermate,

respectively.
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Supplementary Fig. 14.
The total-proteome analysis reveals that the ARRE mutation might result in physiological
abnormalities.

(a,b) Hierarchical clustering trees from Gene Ontology (GO) analysis. Among 2,974 proteins that were
quantified in the total-proteome analysis across the 24 hours, we identified 66 upregulated proteins and 47
downregulated proteins in the mutant when the mean values of all the time points were compared between
the ARRE mutant and WT samples (see Dataset S2 for details). The upregulated proteins and the
downregulated proteins were functionally categorized by GO analysis, and the top 20 significantly enriched
pathways were illustrated in the hierarchical clustering trees. Bigger dots indicate more significant p values.
The lists of the significant pathways are in Dataset S3.
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Supplementary Fig. 15.
The phospho-proteome analysis reveals that rhythmicities of some kinase activities and

phosphorylated peptides are affected by the ARRE mutation.

(a) Temporal profiles of representative phosphorylated peptides derived from clock proteins.
Phosphorylated peptides (phospho-peptides) were enriched by a FeNTA column and subjected to LC-

MS/MS analysis, by which 6,348 phospho-peptides were quantified across the 24 hours (see Dataset S4 for
details). Data are represented as dots for individual samples and as lines for means. (b) Representative
kinase activity profiles estimated by Kinase-Substrate Enrichment Analysis (KSEA) based on kinase-

substrate relationships. Positive and negative values indicate relatively higher and lower kinase activities,

respectively. (c¢) The network of representative protein kinases and their substrates identified in the
phospho-proteome analysis. Kinases/substrates upregulated by the ARRE mutation are shown in red, and
those downregulated are shown in blue. Rhythmic phosphosite are labeled with a “rhythmic symbol” in WT
(at the left side of each phosphosite) or the ARRE mutant (at the right side).
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Supplementary Fig. 16.

The phase relationship between the peak times of phospho-BMAL1 rhythm and Rev-erba mRNA
rhythm was lengthened by the ARRE mutation.

Simulated temporal expression profiles of the phosphorylated BMAL1 protein, Rev-erba mRNA, and active
BMAL1 protein. The phosphorylated BMAL1 and active BMAL1 abundances were normalized by the
maximum BMAL1 protein abundance in the WT model. The Rev-erba mRNA abundance was normalized by
the maximum Rev-erba abundance in the WT model.



Supplementary Figure 17
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Supplementary Fig. 17.
Uncropped versions of the immunoblot analysis data shown in Fig. 3d.

Circadian variation of BMAL1 phosphorylation in the CLOCK-BMAL1 complex in NIH3T3 cells (Upper panel)
and mouse liver nuclei (Lower). The cropped areas are indicated by black (WT) and blue (ARRE) squares.
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Temporal expression profiles of clock proteins in the nuclei of the ARRE mutant and WT mouse livers. The
cropped areas are indicated by black (WT) and blue (ARRE) squares.



Table S1. sgRNA sequences

sgRNA name

Guide sequence

Bmal1-ARRE-sgRNA1 GAGCGGATTGGTCGGAAAGT
Bmal1-ARRE-sgRNA2 GGGAAGGCAGAAAGTAGGTC

Bmal1-KO-sgRNA1
Bmal1-KO-sgRNA2
Cry1-KO-sgRNA1
Cry1-KO-sgRNA2

Cry2-KO-sgRNA

GTAAACTCACCGTGCTAAGGA
GAACACGTAACCCTAAGTGAC
GAGCGGATGGTGTCGGCGCCC
GTTGGAAGAGCCGGCGAACC
GTCCGCGCCCATCGATTGCG

Table S2. Primer sequences for gRT-PCR

Primer name Sequence (5’ to 3')

Bmal1-Fw GCAGTGCCACTGACTACCAAGA
Bmal1-Rv TCCTGGACATTGCATTGCAT
Dbp-Fw AATGACCTTTGAACCTGATCCCGCT
Dbp-Rv GCTCCAGTACTTCTCATCCTTCTGT
Rev-erba-Fw CGTTCGCATCAATCGCAACC
Rev-erba-Rv GATGTGGAGTAGGTGAGGTC
E4bp4-Fw GTCTTCTGATGGGGAAGACG
E4bp4-Rv TCCACTGGAGAATGGATGG
Clock-Fw CCTATCCTACCTTGGCCACACA
Clock-Rv TCCCGTGGAGCAACCTAGAT
Rps29-Fw TGAAGGCAAGATGGGTCAC
Rps29-Rv GCACATGTTCAGCCCGTATT

Supplementary Table



