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Supplementary Methods

Simulation details

Linear correlations. We generated n = 50 independent samples with d = 100 taxa, n = 100
independent samples with d = 200 taxa from Negative-Binomial distributions A ~ NB(u, «),
where p = 2000 represents rare taxa, u = 10,000 represents low abundant taxa, pu = 40,000
represents medium abundant taxa, and p = 100,000 represents high abundant taxa. The
proportions of rare, low, median, and high abundant taxa were set to be 10%, 40%, 40%, 10%.
The dispersion parameter o = 0.5 or 2, representing low and high over dispersion, respectively.
For the first 50 taxa, each taxon was set to be linearly correlated with its adjacent taxon.
Specifically, the underlying true correlation coefficient matrix was:

Bsox50 0(4-50)x50

RO — 1,9 _ — )
[Pimlt.m=1,...a 0(d-50)x50  L(d—50)x (d—50)

where
(1) B =Iy5x05 ® 117,1 = (1,1)7, ® is the Kronecker product,
(2) 0 is the zero matrix,
(3) Iis the identity matrix.

The iteration number for each (n, d, &) combination was set to 100, and the significance level was
set to be 0.001. To obtain sparse correlation matrices for other competing methods, the following
strategies were implemented for each method. Standard Pearson correlation coefficient: used
the same p-value filtering strategy as in SECOM (Pearson2) and SECOM (Distance). SparCC:
Used a cutoff of p; = 0.3 as recommended in Friedman et al. [1], i.e., pym = pimI(|pim| > pt)-
Proportionality method: To deal with the asymmetry issue, the symmetrized form ¢y, =
min(dy,, ¢m;) was used. Since the closer ¢ is to zero, the stronger the proportionality, we set
the 5! percentile of all ¢, (denoted it as ¢s5) as the cutoff value, i.e., ¢ = Gl (Prm < b5).
SPIEC-EASI: We used a larger number of stars repetitions (rep.num = 50), and set the number
of penalties (nlambda) to be 20, the min/max ratio of the penalty parameter (lambda.min.ratio)
to be 0.01 as recommended in the corresponding R package user manual.

Nonlinear correlations. We generated n = 50 independent samples with d = 100 taxa, n = 100
independent samples with d = 200 taxa from Log-Normal distributions A ~ LN (d,0?) (so
a = logA ~ (8,0%)), where § = logp — 302 and o2 = log(’“:)é“2 + 1). The Log-Normal
distribution was selected for its convenience in specifying the covariance structure, and the
parameters of Log-Normal distribution A ~ LN (§,02) were specified so that E(A) and Var(A)
were the same as those from Negative-Binomial distributions A ~ NB(u,«). As stated above,
1 = 2000 represents rare taxa, y = 10,000 represents low abundant taxa, u = 40, 000 represents
medium abundant taxa, and g = 100,000 represents high abundant taxa. The proportions of
rare, low, median, and high abundant taxa were set to be 10%, 40%, 40%, 10%. The dispersion
parameter o = 0.5 or 2, representing low and high over dispersion, respectively. For the first 50
taxa, each taxon was set to be quadratically correlated with its adjacent taxon. Specifically, the
following pairs, (a1j,az;), (asj, asj), ..., (asrj, as9.j), (aag,j, aso ), were quadratically correlated.
The rest of taxa were uncorrelated. The iteration number for each (n,d,«) combination was
set to 100, and the significance level was set to be 0.001. Strategies to obtain sparse correlation
matrices were the same as those implemented in simulations of linear correlations.




Multiple ecosystems. Two absolute abundance tables (ecosystems) were generated from Negative-
Binomial distributions A ~ NB(u,«), where the sample size and the number of taxa were

(n = 50,d = 100) or (n = 100,d = 200) as above. Similarly, © = 2000 represents rare taxa,
= 10,000 represents low abundant taxa, p = 40,000 represents medium abundant taxa, and

u = 100,000 represents high abundant taxa. The proportions of rare, low, median, and high
abundant taxa were set to be 10%, 40%, 40%, 10%. The dispersion parameter o« = 0.5 or 2,
representing low and high over dispersion, respectively. For the first 50 taxa in ecosystem 1,
each taxon was set to be linearly correlated with its corresponding taxon in ecosystem 2. The
rest of taxa were uncorrelated either within or between ecosystems. Specifically, the underlying
true correlation coefficients were:

0o _
P = 1I{j:j’ from the same ecosystem} + 1I{j:j’€{1,...,50} from different ecosystems}- (1)

The iteration number for each (n,d, «) combination was set to 100, and the significance level
was set to be 0.001. Strategies to obtain sparse correlation matrices were the same as those
implemented in simulations of linear correlations.

Comparison between CCA and Add One. 20 absolute abundances for a pair of taxa (Aj, A2)
were generated from Negative-Binomial distributions. For uncorrelated case, Ai, As were gen-
erated independently from N B(200,2); while for the correlated case, Ay ~ NB(200,2) and
Ao = 2A,. Structural zeros were generated by forcing the the first 8 samples of A; and the last
8 samples of Ay to be 0s, and set O; = 0.141, O3 = 0.1A45. Sampling zeros were generated by
introducing relatively small sampling fractions, i.e., O1 = 0.01A4; and O = 0.01A4s.

Comparison between CCA and imputation methods (GBM and MICE). We generated n =
100 independent samples for d = 50 taxa from Log-Normal distributions A ~ LN (6,02) (so a =
log A ~ (6,0?)), where § = logn — 0% and 02 = log(%%‘“2 + 1). The Log-Normal distribution
was selected for its convenience in specifying the covariance structure, and the parameters of
Log-Normal distribution A ~ LN (8, 0%) were specified so that E(A) and Var(A) were the same
as those from Negative-Binomial distributions A ~ NB(u,a). We set p = 200, 1,000, 10,000
and o = 2, and focused on only one pair of taxa with © = 200 (the remaining 48 taxa were
not surveyed but treated as predictors for GBM). For the uncorrelated case, the correlation
coefficient was set to 0; while for the correlated case, the correlation coefficient was set to 0.8.
A range of sampling fraction (0.1, 0.05, 0.02, 0.01, 0.005) was applied to the true abundances
to generate (sampling) zeros, which corresponded to the proportion of zeros ranging from 0 to
around 70%. The iteration number was set to 100.



Proofs of Theorems
Proofs presented below use some of the techniques developed in Kaul et al. (2017). [2].

Lemma 1: Suppose a;; — E(a;j)|M;; = 1 and e;; follow sub-Gaussian distributions. For
1<i<n,1<j<d,denote

wi = E(yi;) =0, 0w = Cov(yir,Yim),  Pim = Corr(yi, Yyim), R = [pimlim=1,....d-

Let n;; = %, then with probability at least 1 — exp(—cy logd),
1 logd
S <
1%??75%d |n(l,m)| ‘ Z (nzlnlm le)‘ > Co n

ien(l,m)
for some finite positive constants ¢y and c;.

Proof: First, since
yij = (ai; — a;) + (eij — €;),

therefore

yij — 1y Pat(aig — Elaig)) = 5 Yu(an — Ban)) + "tei — 5 3 €
Vi Vi ’
which is the summation of independent sub-Gaussian random variables. Thus, n;; also follows

a sub-Gaussian distribution.
Observe that

1
> (munim — Enimim)‘ < Z‘ > [(ml +10im)* — E(na + nim)ﬂ ‘

ien(l,m) ien(l,m)

+ i‘ > [(ml —1im)” — E(i — 77im)2] ‘
ien(l,m)

= (T1) + (T2). (2)

For (T1), since the sum of sub-Gaussian random variables (not necessarily independent) is also
sub-Gaussian, and the square of a sub-Gaussian random variable is sub-exponential [3], we have

(it + im)? — E(mig + Nim)? ~ subE(\),  for some constant A > 0.

Therefore, by Bernstein’s inequality,

1 n(l,m 2t
P(m > [(mz + 1im)? — E (i +mm)2} > t!Mz) < exp [— wmm(vu)
’ ien(l,m)
n(l,m)[t?
< exp( L)

Applying a union bound and monotonic property of conditional expectation, we have

1

1,m)|t?
P( max ———1 D V2= E(ng 4 )2 <2f® max Eexn(_1MEmIE
(1§l7maX§d |n(l,m)]) [(7711 im) (it 1im) ” = t) <2 ax exp(

1<l,m<d 22

).
(3)

en(l,m)



On the other hand, note that [n(l,m)| = 3", Ii(l,m), where, I;(l,m) = I(My = M;, = 1) for
any 1 <[,m < d. Since I;(I,m) are independent r.v.’s over 1 < i < n, we have

In(l,m)|t* t2 t2
\max Bexp(—oipi) = max exp{ — gpEln(lm)| jEexp{ ~ 5o (n(t.m)| ~ Eln(L.m)]) }
t2 n t2
= max exp{ - o ;6<z,m>}Eexp{ — 5y (In(tm)] = Eln(t,m)) |
Nt min t2
< _ - _
< exp(="55 ™) max Bexp{ — 5y (in(l.m)| — Eln(t.m)))}
t25min
= exp(— 2 ) max (T3). (4)

202 7 1<im<d

Since |Ii(l,m) — EL(L,m)| < 1, and |n(l,m)| — Eln(l,m)| = S0, [Ii(l,m) - Eli(z,m)},

[n(l,m)| — E|n(l,m)| ~ subG(n), therefore by Hoeffding’s inequality,

t44 ‘n nt4
4\ _

Based on (3), (4), and (5), we obtain the upper bound for (T1) as

(T3) < exp(

1 § 2 2 2 nt25mm nt4
P(lsr?%)(sd ’n(l,m)” ien(lm) [(mH”lm) E Qi+ lim) ” - t) < 207 exp(=—535— ) exp(gyg)
Similar to (T1), for (T2), we have
P _ P < — )
PO, il 2 [Om =) = Bl —min)?]| > 1) < 26 exp(= =555 exp(gzg)

ien(l,m)
Combining the upper bounds for (T1) and (T2), and plug into (2), we obtain

1 9 nt28min it
P( max )’) Z (mmim—Emmim)) > t) < d” exp(— 72 + 8?) (6)

1<t;m<d |n(l,m)|]
ien(l,m)

Choose a sufficiently small ¢ such that

_ N0 min n7t4 _ Nt28min
2)\2 8\t — 42
Therefore,
2
Choosing t = ¢g 10551 and plugging into the above expression, we obtain
2 2
2 C()(Smin _ C()(Smin
(6) < d*exp(— 5% logd) = exp{ —( VSV 2) logd}.
Choose ¢ such that
GOomin _ 2>0
402 ’

we then obtain the right hand side of (6) < exp(—c; logd). This completes the proof.



Lemma 2: Suppose the assumptions of Lemma 1 hold. Let

Oim = M > Wi — ) Yim — fim),

ien(l,m)

zEn
Olm

0 = — R = |p — .
plm \/m? [plm]l,m 1,...,d

Then, for some positive finite constants ¢; and, ¢z, |R — Rl|so < co logd , with a probability of
at least 1 — exp(—cy logd).
Proof: Let Yl e want to prove that
fi Let iy = “s p
1 logd
ax —— il Tim — < , 7
1§IEmX§d In(l,m)] ‘ Z (it im plm)‘ > n (7)

ien(l,m)

with probability at least 1 — exp(—c; logd).

Define the event
logd
A= { max |0y, — o] < cOKQ\/ ﬁ},
1<i,m<d n

where K is the upper bound for o;; defined in Assumption 0.1. Then from Lemma 1 we have

P(A) > 1 —exp(—cy logd).

Note that
|ﬁlm - plm’ = ffl?l - Jtm ‘

VOuGmm — /OUTmm

_ Oim _ Olm + Olm . Olm ’
VOUTmm \/UllUmm \/Ullamm \/gllUmm

< &lm . 5-lm ‘ 5-lm . Olm ‘

T IVeuGmm  VoUTmm VOuTmm  \/TlCmm

= |Alm’ + |Blm‘ (8)

Within event A, it is easy to verify that

logd
max |B <g¢ .
1<l,m<d [ Bim| < co

On the other hand, A;; = \/;;&L (1 — \/%). Therefore |A;;| <144/ g;;gmm Also, within

event A,
Tim 00K2 log log
max — < \/

Thus, if event A holds,

(9)

logd
Al < . 10
(2 A < e (10)
Combining (8), (9), and (10), we therefore have maxi<; m<d |fim — Pim| < €2 logd with proba-

bility at least 1 — exp(—c logd).



Lemma 3: If Assumption 0.1 holds, then with probability at least 1 — c;;dc%ogd

— logd
si—g.—(si—g‘)‘gq o8 ,
n

for some constant 0 < ¢5 < 1,0 < ¢3, ¢4 < 00, where

— _ 1 1
D D R o rr e VD DR o vy

O;5 — O.
jed(i) ” i) led

Proof: First of all, note that

therefore

Var(si/-—\g) = wJQ- Z Var(oij — 0.5) + Z WiwWy, Cov(0;; — 0.1, Oim, — 0.m),

jed(i) I#m

= 0(d™?)0(d) + Z wiwm Cov(ag — a.q, Qi — Q)
l#m
1
=0(d™) +0(d™*) Y (1= ~)op,
l#m

= O(d™ 1) 4+ 0(d"?)o(d?), based on Assumption 0.1,
=O0(d™ 1) +o(1),
= 0(d™®),

o —

for some 0 < ¢5 < 1. Also, since E(s; — §.) = s; — §., by Chebyshev’s inequality, we have

Var(s; — 3.)
t2 '

o

Choosing t = c3 loid in (11), the right hand side of (11) reduces to

si/—\g.—(s,»—g.)‘ Zt) <

n n

O(d_cs)O( ) = O(idc5 log d

log d )

which completes the proof.

Proof of Theorem 0.1
Let

1 1
iy = - Yij, Olm = — (G — 1) Wim — fim),
7 ()] Z.Ezn:(j) ! In(l,m)| Z.@%;m)

Olm

ﬁlm = W7 Rn = [ﬁlm]l,m:l,...,d-
mm

n

We want to prove that |R, — R|lec = Op( 1°gd).

(11)



First, observe that || R, — Rllso < ||Rn— R|loo+||R— R||so. From Lemma 2 we have | R—R||o =
Op(\/ log d ) What remains is to bound || R, RHOO
8;— 5 — ’ = (\/ logd) } Then, from Lemma 3
we have P(B) > 1 — ¢3 5557

Since yij — ij = si — 5. — (s; — §.), therefore it is easy to verify that within the event B,

= 0 (/8 and |55 — iy — (g — i) | = Op(1/"52). Define gi; — s = viy — i+,

Tij — Yij

and 7;; = Yij _Hi ;“J = %, then
77

hoi = Yl and event B = {

Let 7;; = N

Yij — fij + 0 o+
~ ~ o 2 ’
Gis+ w5y Lienty Wi — )0 +02 V3 2

Mij =

where ¢1, co < 00. Since § = o(1), therefore

N 6162+5CQ—61\/C%+52 N c1C2 + 6cy — c169 - )

B s — ~ = =0(9).
A cov/C5 + 62 cav/C5 + 62 V3 + 62 ©)
Thus, on event B,
. . logd
iy — 7| = op( ). (12)
n
Since
pAlm = Z nzlnz'rm
zen(l m)

based on (12), one can verify that on event B,

e 1)“ 2 (ﬁilﬁim_ﬁilﬁim)‘20p< 10gd)>

1<tm<d [n(l,m)|! n

ien(l,m)
which completes the proof.
Proof of Theorem 0.2
Start with defining

rij — E(rij) ,
Gij = 1<i1<d1<i<n.
Var(ri;)

The proof is very similar to the proof of Theorem 0.1, except that we don’t need to assume
a;j|M;; = 1 and e;; follow sub-Gaussian distributions, since given the configuration of taxa

presence M;,7 =1,...,n, assuming no ties, note that
n(j)| +1
E(rij) = )+ 1 (‘7)2‘

() +D(n() ~ 1)

Var(riy) = B(ry) = [E(ry)]* = 12

¥




Therefore, we have

1= B(ry) _ VT2 [nG) =1 _
min (;; = -
jen(y) Var(mj) 2 In(4)] + 1
— FE(r;; 12 V1

max C’U — n (r]) — ])| S )

jen(j) Var(rij) \ () +1 2
which implies that

V12 V12
Gj € [ 777] with E(G;5)

By Hoeffding’s lemma, ¢;; ~ subG(c? = 3).

Proof of Theorem 0.3
Let

A=R-R= argmin F(A) st. R+A>el,Aj; =0,
A
where F(A) = 3[R+ A — Ry|2 + AR+ Al
Based on Theorem 0.1, define the event

€ = {13 — piml <2},

where \ = Op< 1Ogd).

n

On event C, consider any A € D for
D= {A A=AT R+A=el,Ajj=0,j=1,....d||Allp > 5q1/2)\},
where ¢ is the cardinality of the non-diagonal support of R, denoted as Ay = {l,m : I # m, pym #
0}.
Denote Ay, as an matrix such that [A, ]y, = [Al, for (I,m) € Ag and [Aa,]im = 0 for
(I,m) & Ap. We see that
1 1
F(A) = F(0) = S|[R+A - Ryl% — SIR= Rol|% + A(IR+ Al — |R|1)
1
= SIAIF + (AR = Ru) + MA gl + A Rag + Aol — [Rao )
1
> SIAIF = AAL + A ugl = Al agh

1
= SIAI - 2244

\Y]

1
§HA||% —20¢"/?||A||r by Cauchy-Schwartz ineq.
>0 since A € D.

Because G(A) = F(A) — F(0) is convex, G(A) > 0 for any A € D, and G(0) = 0, we see that
the global optimal solution A that minimizes G(A) must satisfy A € D, i.e.

IR — R|r < 5¢2A. (13)

Therefore, on event C, we have

17~ RI% = 0, (¢ 27).



Supplementary Figures
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Supplementary Figure 1: The distribution of p-values (two-sided, not corrected for multiple

comparisons) generated by standard Pearson correlation coefficient
(red) and SECOM using distance correlation measure (blue) based on
log observed abundances as shown in Fig. 1b. For the Pearson cor-
relation coefficient, the p-values are derived using t-distribution. For
the distance correlation, the p-value is calculated using a permuta-
tion test [4]. The vertical dashed line represents the p-value of 0.005.
P-values generated by standard Pearson correlation coefficient do not
account for differential sampling fractions and sequencing efficiencies.
Consequently, larger the sequencing depth, the more the observed
abundances. This results in inflated values for Pearson correlation
coefficients, and thus an inflation of significant p-values. On the other
hand, p-values generated by SECOM, which takes into account two
sources of biases, do not suffer from inflation of false positives and
thus, the distribution of p-values are approximately around the diag-
onal line representing the uniform distribution.
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Supplementary Figure 2: The relationship between Ruminococcaceae and Enterobacteriaceae
based on data obtained from the Norwegian Microbiota (NoMIC)
study at day 120. The blue dashed line represents the robust poly-
nomial regression (4" degree) fit. X- and y-axis represent the bias-
corrected abundances for Enterobacteriaceae and Ruminococcaceae,
respectively, derived from SECOM. The adjusted R? derived from
MM-estimation using bisquare weighting for linear and polynomial
regression (4'" degree) are shown on the embedded text.
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Supplementary Figure 3: Pearson correlation vs. Distance correlation.
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Supplementary Figure 4: Comparisons of estimation accuracy and false/true positive rate

(FPR/TPR) for identifying linear relationships within an ecosystem.
The average relative norm loss (Frobenius/Spectral) and FPR/TPR
of various correlation methods (including the standard Pearson cor-
relation coefficient) are shown in a and b, respectively. Synthetic
data were generated from Negative-Binomial (NB) distributions. The
X-axis denotes the simulation settings, which are a combination of
sample size n, number of taxa d, and the dispersion parameter a.. Re-
sults are represented by the average of corresponding measure (Frobe-
nius/Spectral norm loss, or FPR/TPR) =+ standard errors (shown as
error bars) across 100 simulation runs for each n/d/« setting. Data
points are added to the bar charts using dots with jittering. Color and
the name of the corresponding correlation methods are shown at the
bottom within the graph. The results demonstrate that SECOM and
SPIEC-EASI outperformed all existing methods not only in terms of
estimation accuracy, but also in terms of uniformly small FPR, and
comparable TPR.
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Supplementary Figure 5: Comparisons of false/true positive rate (FPR/TPR) for identifying
nonlinear relationships (including the standard Pearson correlation
coefficient) within an ecosystem. Synthetic data were generated from
log-normal distributions. The X-axis denotes the simulation settings,
which are a combination of sample size n, number of taxa d, and
the dispersion parameter a. Results are represented by the average
of corresponding measure (FPR/TPR) + standard errors (shown as
error bars) across 100 simulation runs for each n/d/« setting. Data
points are added to the bar charts using dots with jittering. Color
and the name of the corresponding correlation methods are shown
at the bottom within the graph. Results showed that only SECOM
controlled the FPR while maintaining high TPR. Other than SECOM,
none of existing methods identify nonlinear relationships.
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Supplementary Figure 6: Comparisons of estimation accuracy and false/true positive rate
(FPR/TPR) for identifying linear relationships between two ecosys-
tems. The relative norm loss (Frobenius/Spectral) and FPR/TPR of
various correlation methods (including the standard Pearson correla-
tion coefficient) are shown in a and b, respectively. Synthetic data
were generated from Negative-Binomial (NB) distribution. The X-
axis denotes the simulation settings, which are a combination of the
sample size n, the number of taxa d, and the dispersion parameter
«. Data from different ecosystems have different sampling fractions
and sequencing efficiencies in each simulation run. Results are repre-
sented by the average of corresponding measure (Frobenius/Spectral
norm loss, or FPR/TPR) =+ standard errors (shown as error bars)
across 100 simulation runs for each n/d/a setting. Data points are
added to the bar charts using dots with jittering. Color and the name
of the corresponding correlation methods are shown at the bottom
within the graph. Results demonstrated that SECOM methods were
the only methods to successfully quantify microbial correlations be-
tween ecosystems.
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Supplementary Figure

7: Correlations between forehead and palm genera [5] using proportion-
ality method. a the correlation matrix calculated by concatenating
forehead and palm data, b the correlation matrix calculated using
the forehead data solely, ¢ the correlation matrix calculated using the
palm data solely. The top 5 most abundant common genera were se-
lected for the visualization purpose. Genera from forehead are colored
in green and genera from palm are colored in brown in x and y axes.
The correlation coefficient ranges from -1 to 1, color coded by blue to
red, respectively.
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Supplementary Figure 8: Correlations between forehead and palm genera [5] using SparCC.
a the correlation matrix calculated by concatenating forehead and
palm data, b the correlation matrix calculated using the forehead
data solely, ¢ the correlation matrix calculated using the palm data
solely. The top 5 most abundant common genera were selected for
the visualization purpose. Genera from forehead are colored in green
and genera from palm are colored in brown in x and y axes. The
correlation coefficient ranges from -1 to 1, color coded by blue to red,

respectively.
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Supplementary Figure

9: Correlations between forehead and palm genera [5] using SPIEC-EASI
(MB). a the correlation matrices calculated by concatenating forehead
and palm data, b the correlation matrix calculated using the forehead
data solely, ¢ the correlation matrix calculated using the palm data
solely. The top 5 most abundant common genera were selected for
the visualization purpose. Genera from forehead are colored in green
and genera from palm are colored in brown in x and y axes. The
correlation coefficient ranges from -1 to 1, color coded by blue to red,
respectively.
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Supplementary Figure 10: Temporal patterns of bias-corrected a abundance and b relative
abundances for Norwegian infant gut microbiome data among phyla.
The x-axis represents days (30, 120, and 365 days) and y-axis denotes
either the bias-corrected abundances or relative abundances. The top
10 most abundant phyla up to 365 days were selected for the visual-
ization purpose. Phyla with prevalence across samples < 10% were
not shown separately and grouped into ”Others”. Different taxa were
coded by different colors as shown on the legends.
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Supplementary Figure 11: Temporal patterns of correlations for Norwegian infant gut micro-

biome data among families using SparCC. Families from day 30, 120,
and 365 are colored in green, brown, and purple in x and y axes, re-
spectively. Blue dashed lines are used to separate families between
different time points. The top 10 most abundant families up to 365
days were selected for the visualization purpose. The threshold for
SparCC estimates was set at 0.30. Any estimate below 0.3 in its
absolute value is coded as 0. The correlation coeflicient ranges from
-1 to 1, color coded by blue to red, respectively.
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Supplementary Figure 12: Comparisons between complete case analysis (CCA) and adding
pseudo-count of one (Add One) in handling structural zeros for a
uncorrelated taxa and b correlated taxa, and sampling zeros for c
uncorrelated taxa and d correlated taxa respectively. Scatter plots
are ordered in columns, where the left column represents the true log
abundances; the middle column represents the complete (non-zero)
log abundances; and the right columns represent the log abundances
after adding the pseudo-count of one. The blue dashed line in the
plot represents the linear regression fit. The sample Pearson correla-
tion coefficient together with its p-value (two-sided, calculated based
on t-distribution, not corrected for multiple comparisons) are shown
on the embedded text of each plot.
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Supplementary Figure 13: Comparisons between complete case analysis (CCA), gradient boost-

ing machine (GBM), and multivariate imputation by chained equa-
tions (MICE) in handling zeros for a uncorrelated taxa and b cor-
related taxa, respectively. X-axis represents the sampling fractions
ranging from 0.1 to 0.005, which corresponds to the proportion of ze-
ros ranging from 0 to around 70%. Y-axis represents the estimated
Pearson correlation coefficients. Results are represented by the av-
erage of estimated Pearson correlation coefficients 4+ standard errors
(shown as error bars) across 100 simulation runs with the number
of samples n = 100, the number of taxa d = 50, dispersion parame-
ter a = 2, and the corresponding sampling fraction specified in the
X-axis. Data points are added to the bar charts using dots with
jittering. The horizontal dashed line in b standards for the true cor-
relation coefficient of 0.8. CCA, GBM, and MICE are colored in red,
blue, and green, respectively.
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Supplementary Figure 14: Distance correlations calculated using the original data vs. rank-
transformed data for a linear relationships, b nonlinear relationships.
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Supplementary Tables

SECOM | Proportionality | SparCC | SPIEC-EASI (MB) | SPIEC-EASI (GL)

3.7 1.2

16.1 217.4 357.9

Supplementary Table 1: Comparison of CPU times (in seconds)

SECOM (Distance)
True False

SECOM (Pearson2)

True 27.61 (TP = 24.93, FP = 2.68) 3.60 (TP = 0, FP = 3.6)

False 3.65 (TP = 0.07, FP = 3.58)  4915.14 (TN = 4915.14, FN = 0)

Supplementary Table 2: A 2 x 2 contingency table of SECOM results using Pearson correlation

and distance correlation measures for identifying linear relationships.
Simulation setting: n = 50,d = 100,a = 0.5, iteration number =
100. Rows represent the results obtained from SECOM (Pearson2)
and columns represent the results obtained from SECOM (Distance).
Each cell in the table represents a mutually exclusive combination of
SECOM (Pearson2) and SECOM (Distance) results (on average of
100 iterations) with true/false positive (TP/FP) or true/false nega-
tive (TN/FN) frequencies shown in the parenthesis.

SECOM (Distance)
True False

SECOM (Pearson2)

True  2.27 (TP = 0, FP = 2.27) 3.95 (TP = 0, FP = 3.95)

False 25.56 (TP = 22.8, FP = 2.76) 4918.22 (TN = 4916.02, FN = 2.2)

Supplementary Table 3: A 2 x 2 contingency table of SECOM results using Pearson correlation

and distance correlation measures for identifying nonlinear relation-
ships. Simulation setting: n = 50,d = 100, a = 0.5, iteration number
= 100. Rows represent the results obtained from SECOM (Pearson2)
and columns represent the results obtained from SECOM (Distance).
Each cell in the table represents a mutually exclusive combination of
SECOM (Pearson2) and SECOM (Distance) results (on average of
100 iterations) with true/false positive (TP/FP) or true/false nega-
tive (TN/FN) frequencies shown in the parenthesis.
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N=89

Age
min
max
mean (sd)
BMI
min
max
mean (sd)
Gender (%)
F
M
NA
Ethnicity (%)
African American
Asian/Pacific island
Caucasian
Caucasian/Asian
Caucasian/Hispanic
Hispanic
Others
NA

18.00
55.00
23.36 (5.79)

16.82
33.84
22.92 (3.11)
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Supplementary Table 4: Demographic summary of forehead and palm samples



Family Day 30 Day 120 Day 365

Bacteroidaceae 0.33 0.14 0.91
Bifidobacteriaceae  0.96 1 1
Clostridiaceae 0.24 0.34 1
Enterobacteriaceae 0.78 0.82 1
Fusobacteriaceae 0.09 0.16 0.15
Lachnospiraceae 0.11 0.3 1
Moraxellaceae 0.02 0 0.15
Pasteurellaceae 0.2 0.02 0.44
Ruminococcaceae 0.59 0.50 0.97
Staphylococcaceae 0.15 0 0.38

Supplementary Table 5: Prevalence of families in NoMIC data
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