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Supplemental Notes 

S1. Estonian Biobank (EstBB): overview, CNV detection and quality control 

Dataset overview 

EstBB1 is an Estonian population-based cohort of over 200,000 adult (aged ≥18 at recruitment) 

individuals recruited in years 2002-2020. All samples were genotyped using Illumina Global 

Screening Array (GSA) v1.0, GSA v2.0, GSA v2.0_ESTChip, and GSA v3.0_ESTChip2 arrays 

in 12 batches at the Core Genotyping Lab of the Institute of Genomics, University of Tartu. A 

subset of ~7,750 individuals recruited before 2012 have additionally been genotyped using 

Illumina Infinium OmniExpress-24 genotyping array. Another subset of ~2,500 individuals 

have whole-genome sequencing (WGS) data available2. The overlap between OmniExpress 

and WGS samples is ~1,000 individuals. Additionally, as part of smaller initiatives, RNA 

sequencing3 and methylation (Infinium Human Methylation 450k Beadchip) data have been 

generated for subsets of the OmniExpress samples. Altogether, 1,066 OmniExpress samples 

have at least one out of WGS, methylation and RNA sequencing datasets available and are 

referred to as the EstBB multi-omics set or EstBB-MO.  

Quality control of GSA and OmniExpress CNV samples 

For both the OmniExpress and GSA datasets, we excluded samples with genotype call rate 

<98%, Hardy-Weinberg equilibrium test P-value <1×10-4 or mismatched sex based on 

chromosome X heterozygosity. Only one of each duplicated samples was retained. We 

created the intensity files (log R ratios (LRR) and B allele frequencies (BAF)) with Illumina 

GenomeStudio v2.0.4. For GSA samples, genotypes were re-clustered by manual realignment 

of cluster locations. 

Autosomal copy number variations (CNVs) were called for 7,509 OmniExpress samples and 

193,844 GSA samples using PennCNV detection software4. We denote the (true and false 

CNV) regions output by PennCNV as pCNV. The hhall.hmm (included in PennCNV software 

package) was chosen for the Hidden Markov Model (HMM) file and GC model file was created 

from hg19.gc5Base.txt file that was downloaded from the UCSC Genome Browser 

(https://hgdownload.soe.ucsc.edu). For OmniExpress, the population frequency of the B allele 

(PFB) file was created using all samples. Adjacent CNV calls were merged. We excluded all 

OmniExpress samples with >200 pCNV calls and with pCNV length >10Mb. For GSA, the PFB 

file was created based on 1,000 randomly selected individuals from the first batch. Again, 

adjacent CNV calls were merged. Two full genotyping batches were found to be outliers based 

on the intensity signal compared to the rest of the batches and, thus, were excluded. 



Genotyping plates with >3 samples with either >200 called pCNVs or a total length of pCNV 

calls >10 Mb were excluded. Individual samples meeting these criteria were further removed. 

In total, 7,396 OmniExpress and 156,254 GSA samples were retained after filtering. The size 

of the sample overlap between the two datasets was 3,881 (out of which 39 samples belonged 

to the EstBB-MO subset).  

Relatives extraction and exclusion 

Relative pairs were detected using SNV genotypes with KING-robust kinship estimator5 

included in the PLINK 2.0 software (https://www.cog-genomics.org/plink/2.0/). We extracted 

monozygotic (MZ) twins (N=312 individuals; KING coefficient >0.354) and a subset of samples 

consisting of first-degree relatives (N=79,903 individuals; KING coefficient 0.177-0.354) from 

GSA samples. We excluded samples included in the EstBB-MO set from the OmniExpress 

samples and extracted the relative pairs with KING coefficient >0.177 (N=504 individuals). In 

order to create a GSA association study dataset, we excluded one sample of each pair with 

kinship coefficient >0.0884. This resulted in 89,516 unrelated GSA samples identical to what 

is used in6. 

Phenotype data 

We extracted four anthropometric measurements (body mass index (BMI), height, weight and 

waist-to-hip ratio (WHR)) for each of the GSA association study samples. BMI, height and 

weight were collected during the biobank recruitment, while WHR was parsed from health 

registries and doctors’ notes. If several WHR measurements were available, the most recent 

was retained. Phenotypes were inverse normal transformed and residualised on sex, age, 

age2, genotyping batch and first 20 principal components. 

S2. Lifelines Deep (LLDeep) 

LLDeep is a subset of ~1,500 unrelated deeply phenotyped samples from the Dutch Lifelines 

cohort. All samples were genotyped using HumanCytoSNP-12 array and have RNA 

sequencing7 and methylation (Infinium Human Methylation 450k Beadchip)8 data available. 

The genotype dataset, as well as the quality control steps of omics data, are described 

elsewhere9. CNVs were detected in two batches of 865 and 522 samples. The hhall.hmm 

was chosen for the HMM file and GC correction was applied. The full dataset was included in 

the analyses as no individuals had >200 pCNVs or pCNVs longer than 10Mb. 

S3. Swiss Kidney Project on Genes in Hypertension (SkiPOGH) 

SkiPOGH is a family and population-based study of genetic determinants of blood pressure 

and renal function10,11. The samples were collected between 2009 and 2013 from the cantons 



of Bern and Geneva, and from the city of Lausanne. It contains 1,128 adult (aged ≥18) samples 

from 274 families (mostly trios) and is part of a larger European Project on Genes in 

Hypertension (EPOGH) study. All samples were genotyped using a dense Illumina 2.5 array. 

CNVs were detected in one batch of 675 samples using PennCNV software. The hhall.hmm 

was chosen for the HMM file and GC correction was applied. All carriers with >200 pCNVs or 

pCNVs longer than 10Mb were excluded resulting in 466 samples. Out of these, 405 had gene 

expression and 148 had methylation data available12. A separate set was compiled with all 

parent-child pairs that meet the CNV filtering criteria (319 samples from 102 families). 

S4. UK Biobank (UKB): overview, CNV detection and filtering 

Dataset overview 

UKB is a population-based cohort of ~500,000 individuals from United Kingdom aged between 

40 and 69 at recruitment. The majority of the samples (~450,000) are genotyped on Affymetrix 

UK Biobank Axiom array while the rest (~50,000) are genotyped on Affymetrix UK BiLEVE 

Axiom array. The dataset and general genotype quality control steps have been described by 
13. Although (exome) sequencing data is now available for a subset of UKB samples, this was 

not the case at the time of most of our analyses. 

CNV detection and quality control for familial analysis 

CNVs were detected in 106 batches using PennCNV. Individual specific intensity files 

containing B allele frequencies (BAF) and log R ratios (LRR) per probe were created using 

PennCNV-Affy conversion pipeline prior CNV detection. The PFB files were created for each 

batch separately, using 250 randomly selected samples per batch. The hhall.hmm was used 

and no GC correction was performed. Finally, adjacent CNV calls were merged. All samples 

with >200 pCNVs or pCNV total length >10Mb were excluded. Altogether, 401,571 samples 

were retained. Relative pairs were calculated using KING-robust kinship estimator5. 

Analogously to EstBB-GSA samples, we extracted MZ twins (N=302; coefficient >0.354) and 

first-degree relatives (N=42,032; KING coefficient 0.177-0.354).  

CNV detection and quality control for association analyses 

The subset of UKB samples and anthropometric phenotypes used for association analysis 

was prepared in a separate pipeline as described in 6. Namely, the CNVs were called in 106 

batches using Affymetrix genome-wide 6.0 array HMM file and GC correction. Samples 

genotyped on plates with mean pCNV count per sample >100 were excluded. Samples with 

>200 pCNVs or a single pCNV >10Mb were further removed. After these quality control steps, 

331,522 unrelated British samples were retained. Four anthropometric traits were extracted 



and inverse normal transformed prior correction for sex, age, age2, genotyping batch, and 

PC1-40. 

S5. CNV detection from whole-genome sequencing reads 

The Genome STRiP pipeline14 was used to call CNVs in five separate batches for EstBB-MO 

samples. Eleven samples with excessive number of calls (#calls/#samples > median (across 

all samples) + 3 median absolute deviation) were removed. The union of the discovered sites 

was genotyped with Genome STRiP SVGenotyper module in all batches separately and 

merged. Duplicate calls were removed using the standard Genome STRiP duplicate removal 

settings, involving site overlap greater than 50% and duplicate score (logarithm of odds (LOD) 

score of genotype concordance at most discordant sample) greater than zero. In addition, low-

quality (LQ) CNVs and CNVs with call rate less than 90% were excluded. Additionally, the 

pipeline excludes deletions shorter than 1,000bp and duplications shorter than 2,000bp. 

S6. Preparations of methylation data 

Methylation data from Infinium Human Methylation 450k Beadchip was collected for EstBB-

MO, LLDeep and SkiPOGH samples. We extracted the methylation data matrices containing 

methylated and un-methylated intensities from sample-specific idat files using R package 

minfi15 and summed those matrices to an overall intensity matrix. We eliminated all Type I 

methylation probes (N=135,476), since these cannot be used for capturing overall summed 

intensity, and only used Type II probes (N=350,036) in our study. All intensities that had 

detection P-values > 1×10-16 were marked as missing and all probes with >5% missingness 

were filtered out. We corrected the overall intensity of each probe for age and sex. In EstBB-

MO and SkiPOGH we additionally corrected for first four genotype principal components 

(PCs).  

To exclude as much noise as possible while retaining the effect of CNVs on methylation data, 

we tested correcting the data for several numbers of methylation intensity PCs, ranging from 

0 to 200 (using the following fixed categories: 0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150 and 

200). CNV quality metrics based on methylation data (MET metric; as described in the main 

text) were calculated for each set of PCs. In each dataset, we chose the best set of PCs by 

maximising correlation with previously published consensus-based CNV quality score (cQS) 
16 or WGS metric in EstBB-MO samples. The best number of PCs for MET metric was 30 for 

EstBB-MO deletions, 10 for EstBB-MO duplications, 100 for LLDeep deletions, 30 for LLDeep 

duplications, 1 for SkiPOGH deletions and 4 for SkiPOGH duplications (see Figure S1). Note 

that results obtained with different numbers of PCs did not vary substantially. 



S7. Preparations of gene expression data 

RNA-sequencing counts were obtained for EstBB-MO, LLDeep and SkiPOGH samples. We 

further processed the data as follows: (1) we removed genes with low or no expression in the 

majority of individuals by requiring for each gene to have ≥ 5 individuals with a count per million 

(cpm) value greater than 0.5; (2) we normalized remaining genes by weighted trimmed mean 

of M-values; (3) we calculated the log(cpm) values of each gene, and Z-transformed these 

values; (4) we corrected the resulting gene expression measures for covariates: age, sex, 

blood component values, and batch.  In EstBB-MO and SkiPOGH we additionally corrected 

for genotyping PC1-4.  

Analogously to methylation data, we corrected the remaining residual expression of each gene 

for up to 200 expression PCs (calculated on the residuals) to further clean the signal. 

Additionally, we corrected expression residuals of each gene for the gene’s independent SNP 

cis-eQTL effects (P-value < 0.05) in EstBB-MO and LLDeep. For EstBB-MO set the cis-eQTL 

analysis was run on SNPs within 500kbp proximity to the transcription start site using QTLtools 

v1.117. For LLDeep we used the already published eQTLs7. In SkiPOGH we did not correct for 

eQTLs. We calculated the scores both before and after eQTL corrections and saw that 

correlations obtained after corrections were slightly higher.  We also tested only including 

genes that showed R>0.1 correlation with copy number in 18. 

Gene expression based CNV quality metric (GE metric) was calculated for each set of PCs 

and filters. We only considered genes that had at least 80% overlap with a CNV. The best set 

was chosen by maximising the correlation between GE metric and previously published cQS16 

or WGS metric in EstBB-MO samples. The number of selected PCs for GE metric was 30 for 

EstBB-MO deletions, 4 for EstBB-MO duplications, 30 for LLDeep deletions, 50 for LLDeep 

duplications, 40 for SkiPOGH deletions and 30 for SkiPOGH duplications (Figure S2).  

S8. CNV quality modelling 

We used the stepwise regression with forward selection as an algorithm to pick the best 

parameters into the final omics-informed CNV quality score (OQS) model. Our first objective 

was to compile the initial parameter set. We did that using the PennCNV output, which 

contains a set of characteristics and parameters for each of the detected CNV regions. All 

parameters are described in Table S2. Altogether, we tested eight different models with 

slightly varying initial parameter sets. First two initial parameter sets we tested included all 

PennCNV output variables as was done before16. The remaining initial sets were compiled 

using subsets of PennCNV output variables and additional variables calculated based on 

PennCNV output. Initial sets per model are shown in Table S3. The models were built for three 

metrics (GE, MET and Combined) in LLDeep dataset and four metrics (WGS, GE, MET and 



Combined) in EstBB-MO dataset, resulting in 24 and 32 (not necessarily unique) models, 

respectively, for both deletions and duplications. 

During each model-building step of the stepwise forward selection process, the following 

parameters remaining in the initial parameter set were tested: 

a. PennCNV output (or derived) parameters not yet in the model; 

b. interactions between a CNV-specific and a sample-specific parameter already in the 

model; 

c. (if allowed) higher order terms of parameters already in the model. 

An extra term was added to the model if it minimized the average mean square error (MSE) 

from k-fold cross-validation. If no term minimized the MSE, the algorithm stopped and returned 

the existing model. Models were built separately for deletions and duplications. 
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Supplemental Tables 

Table S1. Mean (and standard deviation (SD)) of raw PennCNV parameters per 
cohort/platform 

Table characterise the quality controlled dataset (autosomes only) after the exclusion of samples with 

>200 CNV calls or calls larger than 10Mbp. 

PARAMETERS EstBB-MO EstBB-GSA LLDeep SkiPOGH UKB 

Array Illumina 
Infimum 
Omniexpress-
24 

Illumina Global 
Screening Array 

Illumina 
Infimum Human 
CytoSNP-12 

Illumina 2.5 Affimetrix UK 
BiLEVE/ 
Biobank 
Axiom 

# of array markers 730k 760k 300k 2.5M 820k 

mean LRR -0.0064 (0.019) -0.0027 (0.0076) -0.0042 (0.013) -0.0022 (0.0068) 0.0049 (0.0096) 

SD of LRR 0.13 (0.052) 0.11 (0.020) 0.11 (0.038) 0.16 (0.021) 0.28 (0.040) 

mean BAF 0.50 (0.0027) 0.50 (0.0012) 0.50 (0.0048) 0.50 (0.00080) 0.50 (0.00047) 

SD of BAF 0.040 (0.010) 0.036 (0.0044) 0.033 (0.013) 0.037 (0.0028) 0.029 (0.0036) 

BAF drift 0.00066 
(0.0033) 

0.00035 (0.00023) 0.00017 
(0.00069) 

0.00044 (0.00024) 0.00008 
(0.00004) 

absolute waviness 
factor 

0.011 (0.0077) 0.0073 (0.0022) 0.014 (0.0063) 0.024 (0.0051) 0.014 (0.0030) 

DELETIONS      

CNV count per 
sample 

17.029 (13.99) 9.32 (12.17) 5.46 (5.74) 39.83 (31.07) 2.57 (3.18) 

CNV length 33,583 (82,122) 31,994 (86,139) 64,992 
(127,927) 

14,773 (51,723) 98,336 
(187,287) 

number of probes 9.81 (18.11) 10.12 (17.83) 7.33 (10.14) 17.54 (28.39) 32.94 (42.49) 

confidence value 26.45 (51.68) 27.28 (43.75) 23.05 (29.80) 29.61 (48.11) 34.99 (50.85) 

DUPLICATIONS      

CNV count per 
sample 

9.25 (15.13) 8.04 (5.29) 3.74 (3.32) 51.91 (31.56) 1.52 (2.74) 

CNV length 58,401 
(184,153) 

61,117 (170,842) 97,586 
(179,278) 

40,991 (128,057) 251,993 
(388,058) 

number of probes 15.04 (51.76) 14.50 (29.15) 11.16 (17.88) 21.15 (44.20) 88.97 (86.32) 

confidence value 32.16 (67.74) 26.63 (39.21) 33.27 (54.71) 21.57 (51.95) 33.19 (45.12) 

 



Table S2. Parameters used for CNV quality modelling  

BAF – B allele frequency, LRR – log R ratio. 

Parameter Sample/variant-
specific 

Obtained  Variable name 

mean BAF  sample from PennCNV output BAF_mean 

standard deviation of 

BAF 

” ” BAF_SD 

BAF drift ” ” BAF_drift 

mean LRR ” ” LRR_mean 

standard deviation of 

LRR 

” ” LRR_SD 

absolute waviness factor ” ” WF 

number of variant calls ” ” NumCNV 

variant confidence variant ” Max_Log_BF 

variant length ” ” Length_bp 

number of probes ” ” No_probes 

variant length per probe ” calculated as  
Length_bp / No_probes 

Length_per_Probe 

number of variant calls 

corrected for genotyping 

array size 

sample calculated as  
NumCNV / number of probes on array 
since number of variants per sample 
directly depends on array density 

NumCNV_corr 

corrected and 
dichotomised number of 

variant calls 

sample We noticed in several independent 
datasets that the CNV quality starts to 
decline rapidly for samples with 
number of CNVs (corrected for array 
density) over a certain threshold. We 
used ROC curves in order to pinpoint 
this threshold and found that in case 
of deletions, its value falls into a 
narrow range of 3.8×10-5...3.9×10-5 
dependent on the dataset (Figure 
S4). Therefore, we compiled a 
parameter for deletions that equals 
zero if NumCNV_corr is below and 
one if it is above the given threshold. 

NumCNV_bin 

 

  



Table S3. Initial sets of explanatory variables included in the step-wise model selection 
algorithm  

The explanatory variables are either output parameters of PennCNV software or directly 

calculated from these output parameters (Table S2). Two out of eight models allow higher 

order terms. All models allow interactions between sample-specific and CNV-specific 

parameters. Model building is described in Supplemental Note S8. The final set of 

parameters selected to the model depends on the dataset.   

Model 
No. 

Initial parameter set Higher 
terms 

1 Sample-specific parameters, CNV confidence score, NumCNV, Length_bp, 
No_Probes 

No 

2 Sample-specific parameters, CNV confidence score, NumCNV, Length_bp, 
No_Probes 

Yes 

3 Sample-specific parameters, CNV confidence score, NumCNV, Length_per_Probe Yes 
4 Sample-specific parameters, CNV confidence score, NumCNV No 
5 Sample-specific parameters, CNV confidence score, NumCNV_corr, Length_bp, 

No_Probes 
No 

6 Sample-specific parameters, CNV confidence score, NumCNV_bin, Length_bp, 
No_Probes 

No 

7 Sample-specific parameters, CNV confidence score, NumCNV_bin, 
Length_per_Probe 

No 

8 Sample-specific parameters, CNV confidence score, NumCNV_bin No 

  



Table S4. CNV quality filtering thresholds used for PennCNV output in publications 

 Wang et al.4  Palta et al.19  Chettier et 
al.20  

Pinto et al.21  

LRR sd <0.3 ≤0.25 <0.24 ≤0.27 

BAF drift <0.01 ≤0.002   

BAF sd  ≤0.05  ≤0.13 

|WF| <0.05 ≤0.04 <0.05  

No. CNVs <100    

Call rate   >0.99 ≥0.98 

Confidence  ≥5   

No. Probes   ≥10 ≥5 

Length  ≥1 kb  ≥1 kb 

   



Table S5. 21 CNV region–phenotype pairs analysed in the EstBB-GSA and UKB cohorts  

All pairs reached an association P-value < 1×10-4 in previously published study22, using cQS16, 

in at least one analysis type (mirror/ deletion only/ duplication only; flagged with “+”). In the 

EstBB-GSA and UKB columns, the “+” sign indicates that the corresponding association was 

also significant (for at least one probe in the CNV region) in the respective analysis of our 

current study. In this case the significance threshold was set to P-value < 0.05/21 = 2.38×10-

3 (using raw PennCNV calls). *In the EstBB-GSA, the CNV region on chromosome 18 

contained a probe with P < 2.38e-3 but the CNV structure in the region and the association 

with BMI/weight was clearly not the same as reported before 22. Therefore, this region was not 

included in the EstBB-GSA follow-up analyses (Figure S6). 

Phenoty
pe 

CNV region (hg37) Macé et al. 
(2017) 

EstBB-GSA UKB 
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BMI 16:28820000-29040000 + +    +  + +  

 16:29590000-30200000 + +   + +  + +  

 18:57660000-57900000 + +   +* +*  + +  

 22:19030000-20310000  + +   +  + + 

 22:20740000-21000000  + +     + + 

Weight 1:146530000-147430000 + +      + +  

 2:111580000-111780000  +       +  

 2:112680000-112780000  +       +  

 3:196220000-196420000  +         

 16:28820000-29040000 + +    +  + +  

 16:29590000-30200000 + +   + +  + +  

 18:57660000-57900000 + +   +* +*  + +  

 22:20740000-21000000  + +  +   + + 

Height 1:146530000-147430000 + +   + +  + +  

 3:196220000-196420000  +       +  

 3:196710000-196920000  +       +  

 11:27010000-27230000 + +   + +     

 15:22780000-23070000 + +      + +  

 16:29590000-30200000 + +   + +  + +  

WHR 7:73020000-73110000  + +       

 16:29590000-30200000 + +   + +  + +  

 

  



Table S6. Number of PennCNV calls evaluated per omics layer 

The number and percentage of PennCNV calls (pCNVs) that could be evaluated using 

methylation (MET), gene expression (GE) and whole-genome sequencing (WGS) based 

quality metrics in EstBB-MO, LLDeep and SkiPOGH datasets. The combined metric (EXTR) 

requires the availability of at least two out of three omics based metrics. The percentage is 

calculated as the fraction of pCNVs evaluated amongst all autosomal pCNVs of the set of 

individuals with respective omics dataset available (after sample exclusion in quality control). 

In case of GE metric, 80% gene-pCNV overlap is required.  

 EstBB-MO LLDeep SkiPOGH 
MET metric 3,228 (41.8%) 3,476 (68.7%) 5,048 (44.9%) 
GE metric 462 (4.7%) 706 (7.1%) 1,497 (3.8%) 
WGS metric 23,977 (100%) - - 
Combined metric 
(EXTR) 

3,496 441 410 

  



Table S7. Number of pCNVs per combined (EXTR) metric range in three datasets 

Metric 
range 

EstBB-MO LLDeep SkiPOGH 
Deletions Duplications Deletions Duplications Deletions Duplications 

[0;0.1] 828 829 110 63 163 107 

(0.1;0.2] 36 33 9 2 13 8 

(0.2;0.3] 10 15 1 2 1 6 

(0.3;0.4] 7 19 0 0 0 3 

(0.4;0.5] 2 6 0 1 2 0 

(0.5;0.6] 2 9 1 0 0 0 

(0.6;0.7] 23 33 0 2 0 3 

(0.7;0.8] 45 77 3 6 1 5 

(0.8;0.9] 71 129 2 20 0 11 

(0.9;1.0] 726 596 92 127 50 37 

 

  



Table S8. Mean scores for familial and non-familial pCNVs calculated using models built 
on Estonian OmniExpress samples  

The models are tested on monozygotic twins of UK Biobank and EstBB-GSA samples, as well 

as parent-child pairs form the SkiPOGH dataset. Altogether we tested eight models (Table 
S3) for three omics-based metrics (WGS – whole-genome sequencing metric, MET – 

methylation metric, GE – gene expression metric) and a combined metric (EXTR). The best 

model was selected as the one that maximises the difference between familial and non-familial 

pCNVs over three independent datasets. (Table in a separate .xlsx file) 

 

Table S9. Mean scores for familial and non-familial pCNVs calculated using models built 
on LLDeep samples.  

Models are tested on monozygotic twins of UK Biobank and EstBB-GSA samples, as well as 

parent-child pairs form SkiPOGH dataset. Altogether we tested eight models (Table S3) for 

two omics-based metrics (MET – methylation metric, GE – gene expression metric) and a 

combined metric (EXTR). The best model was selected as the one that maximises the 

difference between familial and non-familial pCNVs over three independent datasets. The best 

model is highlighed in blue. (Table in a separate .xlsx file) 

  



Table S10. Description of best omics-informed CNV quality model for deletions  

All parameters are explained in Table S2. ‘X:Y’ denotes the interaction term between 

parameters X and Y. 

Parameter Effect size (beta) 

(Intercept) -2.12350638759242 

Max_Log_BF 0.138074328580999 

LRR_mean 192.33129681258 

NumCNV_bin -1.17079719833943 

Max_Log_BF:LRR_mean -6.07975553625751 

 

 

Table S11. Description of best omics-informed CNV quality model for duplications 

All parameters are explained in Table S2. ‘X:Y’ denotes the interaction term between 

parameters X and Y. 

Parameter Effect size (beta) 

(Intercept) -114.039850181999 

Max_Log_BF -0.0368788122813245 

Length_bp -9.76978925613445e-06 

LRR_SD -34.7848931008816 

BAF_mean 233.943409217459 

BAF_drift -2032.95959074771 

Max_Log_BF:LRR_SD 0.60672686014698 

Length_bp:LRR_SD 0.000111986438009925 

 

  



Table S12. CNV associations analysis results in EstBB-GSA dataset 

Results for seven settings (raw PennCNV, four published quality filtering approaches4,19–21, 

cQS16 and omics-informed quality score (OQS)) in EstBB-GSA dataset. 21 CNV region-

phenotype pairs (P<1×10-4; 22) are included in the analysis (Table S5). (Table in a separate 

.xlsx file) 

 

Table S13. CNV associations analysis results in UKB dataset  

Results for seven settings (raw PennCNV, four published quality filtering approaches4,19–21, 

cQS16 and omics-informed quality score (OQS)) in UKB dataset. 21 CNV region-phenotype 

pairs (P<1×10-4; 22) are included in the analysis (Table S5). (Table in a separate .xlsx file) 

 
Table S14. Average F statistic values per phenotype and dataset 

F statistics characterise the change in explained variance when comparing OQS to raw 

PennCNV, four filtering setting used in publications4,19–21 and cQS16 in two datasets (EstBB-

GSA / UKB). F>1 means an increase and F<1 a decrease in explained variance (i.e. F=1.16 

indicates a 16% increase in explained variance). The values presented in this table are 

calculated as an average over 20 runs. None of the values reach even nominal statistical 

significance (P<0.05) due to the low number of independent associated regions per 

phenotype. 

Phenotype Analysis 
type 

F (raw 
PennCNV) 

F (Wang et 
al, 20074) 

F (Palta et 
al, 201519) 

F (Chettier 
et al, 201420) 

F (Pinto et 
al, 201121) 

F (cQS 
(Macé et al, 
201616)) 

BMI mirror 1.17 / 1.02 1.21 / 1.13 1.17 / 2.53 1.18 / 3.23 1.19 / 1.52 1.55 / 0.97 

Height mirror 1.16 / 1.05 1.21 / 1.21 1.17 / 2.83 1.03 / 4.40 1.10 / 1.74 1.23 / 0.83 

Weight mirror 1.02 / 0.99 0.99 / 1.17 1.05 / 3.91 1.12 / 4.58 1.07 / 1.79 1.49 / 1.09 

WHR mirror 1.34 / 1.10 1.56 / 1.06 1.15 / 3.46 1.15 / 5.11 1.16 / 2.64 1.40 / 0.85 

BMI deletion-only 1.19 / 1.02 1.27 / 1.15 1.23 / 2.64 1.12 / 3.32 1.18 / 1.44 1.30 / 0.93 

Height deletion-only 1.08 / 0.97 1.11 / 1.27 1.13 / 3.35 1.01 / 5.60 1.07 / 1.74 1.09 / 0.96 

Weight deletion-only 1.33 / 1.09 1.39 / 1.10 1.34 / 2.65 1.17 / 3.43 1.33 / 1.47 1.46 / 0.88 

WHR deletion-only 1.13 / 1.10 1.42 / 1.14 1.11 / 3.98 1.04 / 4.76 1.10 / 1.81 1.23 / 0.82 

BMI duplication-

only 

0.85 / 1.00 0.76 / 1.06 1.71 / 5.37 0.93 / 4.85 0.91 / 2.08 1.43 / 1.01 

Weight duplication-

only 

. / 1.03 . / 0.97 . / 4.69 . / 2.76 . / 1.99 . / 1.02 

 



Supplemental Figures 

 

Figure S1. Methylation metric correlations per number of principal components 

Methylation metrics for (A) deletion and (B) duplication quality (MET) calculated using 0 to 200 

methylation intensity principal components (PCs; Supplemental Note S6) and correlated 

(Pearson’s correlation) with WGS metric in EstBB-MO and cQS16 in LLDeep and SkiPOGH. 

The number of PCs chosen for further analyses are indicated with large points. We used MET 

values corrected for 30 PCs for EstBB-MO deletions, 10 PCs for EstBB-MO duplications, 100 

PCs for LLDeep deletions, 30 PCs for LLDeep duplications, 1 PCs for SkiPOGH deletions and 

4 PCs for SkiPOGH duplications, as these maximised the corresponding correlations in the 

respective datasets.   



 

Figure S2. Gene expression metric correlations per number of principal components 

Gene expression metrics for (A) deletion and (B) duplication quality (GE) calculated using 0 

to 200 expression principal components (PCs; dotted line). Additionally we tested correcting 

gene expression for eQTLs prior score calculations (dashed line) and only including genes 

which showed correlation to CNV status in 18 (solid line; Supplemental Note S7). We 

correlated (Pearson’s correlation) GE values with WGS metric in EstBB-MO and cQS16 in 

LLDeep and SkiPOGH. In most cases, correcting for eQTLs slightly increased the correlation 

while gene filtering improved the correlations significantly. The number of PCs chosen for 

further analyses are indicated with large points. We used GE metric values corrected for 

eQTLs and 30 PCs for EstBB-MO deletions, 4 PCs for EstBB-MO duplications, 30 PCs for 

LLDeep deletions, 50 PCs for LLDeep duplications, 40 PCs for SkiPOGH deletions and 30 

PCs for SkiPOGH duplications, as these maximised the corresponding correlations in the 

respective datasets.  

  



 

Figure S3. Pearson correlations between WGS/MET metrics and GE metrics calculated 
using three different approaches  

GE_onesided refers to the approach for GE calculation where GE>0 for deletions and GE<0 

for duplications were set to zero. GE_absolute refers to the approach where GE can take both 

positive and negative values and its absolute values are used in the correlation calculations. 

  



 

Figure S4. Comparison of omics-based combined metrics 

For each PennCNV call (pCNV), we calculated up to three omics-based CNV quality metrics 

(GE, MET and WGS). Our aim was to combine them into one metric per pCNV. We considered 

using the mean (MEAN), maximum (MAX) and the most extreme (i.e., furthest from 0.5, EXTR) 

metric. We divided the metric value range into three subranges: false positive [0; 0.1), 

ambiguous [0.1; 0.9] and true positive (0.9, 1]. For the majority of pCNVs (64.4% in EstBB-

MO (full set N=3,496) and 67.3% in LLDeep (N=441)) all omics-based metrics were in close 

agreement with all values falling into the same subrange. For these cases the exact choice of 

combined metric makes little difference. Here we bring three toy examples of cases where the 

metrics do not agree: (A) at least one metric indicates a true positive CNV while others are 

ambiguous; (B) at least one metric indicates a false positive CNV while others are ambiguous; 

(C) at least one metric indicates a false positive CNV and at least one other a true positive 

CNV. Each example is followed by the values of corresponding combined metrics and the 

percentages on pCNVs that fall under these example categories in EstBB-MO and LLDeep. 

The usage of MEAN metric dilutes the effect of omics-based metrics that clearly indicate the 

presence of a true or false positive CNV, which is only reasonable in example C (2.2%-2.9% 

of cases). The usage of MAX metric is only intuitive when we expect the CNV to be true 

positive (example A; 11.3%-18.2% of cases). The usage of EXTR metric is intuitive in both 

examples A and B (29.7%-33.4% of cases) and even in example C it produces correct 

estimations in roughly half of the cases. Therefore, we chose to use EXTR as our combined 

metric per pCNV. 

  



  

Figure S5. Number of pCNVs per sample as pCNV quality predictor 

ROC curves built on (A) EstBB-MO and (B) LLDeep pCNVs with number of pCNVs per person 

as predictor. The true and false calls are defined as methylation metric MET  >0.9 and <0.1, 

respectively. We used MET metric as it was present in both datasets in greater extent that 

combined metrics (the results for combined metric did not differ significantly). For duplications 

(blue) in EstBB-MO and deletions (yellow) in both datasets, there is a clear cut-off for the 

number of pCNVs per sample that can be used to discriminate between true and false calls. 

These cut-offs values are presented as dots on the ROC curves (followed by the 

corresponding specificity and sensitivity values). The exact cut-off is not generalisable as it is 

dependent on array density (~730k for EstBB-MO and ~300k for LLDeep). After correction for 

array density, the values for deletions are comparable: 3.9×10-5 in EstBB and 3.8×10-5 in 

LLDeep. We used these values to create a binary variable out of number of CNVs corrected 

for array density. 

  



 

Figure S6. 18q21.32 CNV region in EstBB-GSA and UKB datasets 

In EstBB-GSA analyses we excluded the 18q21.32 CNV previously associated with body 

mass index and weight22. Although there were EstBB-GSA CNVs (A) overlapping the region 

of interest (indicated with red dashed lines), they are not the CNVs for which the association 

was detected. In UKB (B) this region was included in the association tests.  



 

 

Figure S7. Overview of CNV quality metrics in LLDeep 

(A) Distributions of CNV quality metrics based on methylation (MET) and gene expression 

(GE) as well as their combination metric in LLDeep cohort for duplications (blue) and deletions 

(yellow). Altogether, 4,211 pCNVs have either MET or GE metric calculated. The combined 

metric is calculated for 441 pCNVs. 50.5% of deletions and 28.3% of duplications are high 

confidence false calls based on the combined metric (value <0.1), 42.2% of deletions and 

57.0% of duplications are high confidence true calls (value >0.9). Number of deletions (B) and 

duplications (C) in LLDeep dataset that could be evaluated with MET and/or GE metrics. 

Pearson correlations between different quality metrics for deletions (D) and duplications (E), 

including with previously published cQS16. 



 

Figure S8. Overview of CNV quality metrics in SkiPOGH 

(A) Distributions of CNV quality metrics based on methylation (MET) and gene expression 

(GE) as well as their combination metric in SkiPOGH cohort for duplications (blue) and 

deletions (yellow). Altogether, 6,135 pCNVs have either MET or GE metric calculated. 

Combined score was calculated for 410 pCNVs. 70.9% of deletions and 59.4% of duplications 

are high confidence false calls based on at least one omics metric (value <0.1), only 21.7% of 

deletions and 20.6% of duplications are high confidence true calls (value >0.9). Since the 

fraction of false positive calls is much higher and true positive calls much lower in this dataset 

compared to others, we did not exclude SkiPOGH in CNV quality model building step. Number 

of deletions (B) and duplications (C) in SkiPOGH dataset that could be evaluated with MET 

and/or GE metrics. Pearson correlations between different quality metrics for deletions (D) 

and duplications (E), including with previously published cQS16. 

  



 

Figure S9. Number of EstBB-MO CNVs per omics layer 

Venn diagrams with number of deletions (A) and duplication (B) that can be evaluated using 

whole-genome sequencing (WGS), methylation (MET) and/or gene expression (GE) metrics 

in EstBB-MO dataset. The combined metric (EXTR) is calculated for pCNVs that have at least 

two omics metrics available. 

  



 

Figure S10. The composition of combined omics-based metric 

The composition is shown separately for (A) EstBB-MO and (B) LLDeep datasets and for 

deletions (yellow) and duplications (blue). The co-occurrence of predictor sources in the figure 

indicates the cases where two or more omics-based metrics have equal value and either can 

be chosen for the value of the combined metric. 

 

  



 

Figure S11. Overview of false positive (FP) CNVs in 979 Estonian samples  

FP were defined as PennCNV calls with <10% of its basepairs validated by WGS-CNVs. We 

calculated FP counts and FP rate (FPR) in a probe-by-probe manner using Illumina 

OmniExpress array autosomal probe positions (N=709,358). Only probes that overlap with at 

least one PennCNV call (N=155,448) were included in the figures. We summarised FP CNVs 

by studying (A) a histogram of FPR bins and (B) FP counts against PennCNV call frequency. 

Additionally, we illustrated the FP counts across genomic positions.  

 

 

  



 

Figure S12. False negative (FN) pCNV across probe bins 

Fraction (%) of FN PennCNV calls (y-axis) in function of the number of overlapping genotyping 

array probes (x-axis), stratified by CNV type (all CNV, deletions only, duplications only). The 

number of CNVs corresponding to each setting is indicated as N. 

  



 

 

Figure S13. Overview of false negative (FN) CNVs in 979 Estonian samples  

In FN calculation, WGS-CNV that overlap with ≥3 probes were defined as true CNVs. FN were 

defined as a set of true CNVs with <10% basepairs overlapping with a PennCNV call. FN 

counts and FN rate (FNR) were calculated in a probe-by-probe manner using Illumina 

OmniExpress array autosomal probe positions (N=709,358). Only probes that overlap with at 

least one true CNV (N=30,182) were included in the figures. We summarised FN CNVs by 

studying (A) a histogram of FNR bins and (B) FN counts against true CNV frequency. 

  



 

 

Figure S14. Comparison of quality scores on pCNVs of closely related UKB and EstBB-
GSA samples 

cQS16 and omics-informed (OQS) CNV quality score comparisons between non-familial and 

familial pCNVs in (A) the UKB and (B) the EstBB-GSA first-degree relatives. Having a pCNV 

replicate in a family member is a good proxy for a pCNV to be a true call, while non-familial 

pCNV sets contain both true and false calls. Additionally, we included rare (frequency <0.1%, 

striped background) familiar pCNVs as a subset of CNVs unlikely to validate in a relative by 

chance. The mean score of each pCNV group is shown on top of the figure. For both deletions 

(yellow) and duplications (blue), OQS shows higher scores for familial pCNVs compared to 

cQS, and even higher scores for rare familial pCNVs. Outliers are not shown on the figure but 

are still included in the mean calculations. 

  



 

Figure S15. Distribution of predicted OQS in EstBB-MO dataset  

The pCNV are divided into false positives (calculated omics-based EXTR metric < 0.1) and 

true CNVs (EXTR > 0.9). 

 

Figure S16. ROC curves of OQS in EstBB-MO dataset  

The pCNV are divided into false positives (calculated omics-based EXTR metric < 0.1) and 

true CNV (EXTR > 0.9). For deletions AUC=0.91, for duplications AUC=0.87. 

  



 

Figure S17. Impact of OQS on CNV-trait deletion-only associations 

The change of variance explained in deletion-only model when using OQS over raw 

PennCNV, four published quality filtering approaches4,19–21 or cQS16 in both EstBB-GSA and 

UKB depicted as distribution of F statistics calculated by randomising the probe pruning priority 

order 20 times (see Methods). Explained variance is increased when F>1 and decreased 

when F<1. Larger F values indicate greater improvement in statistical power when using OQS 

over the given reference approach. 


