- 1 SUPPLEMENT 2. Statistical Analysis Plan for "Effect of aspirin vs enoxaparin on
- 2 symptomatic venous thromboembolism in patients undergoing hip or knee arthroplasty:
- 3 the CRISTAL randomized trial"
- 4
- 5
- 6
- 7 This trial statistical analysis plan has been provided to give readers additional information
- 8 about the authors' work.
- 9

10	TABLE OF CO	DNTENTS	
11			
12			
13	This supplem	nent contains the following items:	
14			
15			
16	i.	Initial Statistical Analysis Plan	Pages 3 – 26
17			
18	ii.	Final Statistical Analysis Plan	Pages 27 – 51
19			
20	iii.	Summary of Changes	Pages 52 – 54
21			
22			

23	<u>STATIS</u>	STICAL ANALYSIS PLAN (INITIAL): 14 May 2021
24		
25	<u>TITLE I</u>	PAGE
26		
27	Study	Title
28	CRISTA	AL (A cluster-randomised, crossover, non-inferiority trial of aspirin compared to low
29	arthro	placty a registry posted study): statistical analysis plan
30	artino	plasty, a registry liested study). statistical allalysis plain
32		
33	Corres	ponding Author:
34	Dr Ver	inder Singh Sidhu (author)
35	Postal	Address: Whitlam Orthopaedic Research Centre, Level 1, The Ingham Institute for
36	Applie	d Medical Research, 1 Campbell Street, Liverpool, NSW, 2170
37	Email a	address: <u>Verinder.s.sidhu@gmail.com</u>
38	Phone	: +61 422 167 435
39 40	Fax NU	Imper: +61 2 8738 3850
40 41	Co-Δ ιι	thors
42	2	Dr Thu-Lan Kelly (senior statistician)
43	2.	Affiliation: Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research
44		Centre University of South Australia Adelaide South Australia Australia
77 15	3	Dr Nicole Pratt (senior statistician)
45	5.	Affiliation: Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research
40		Centre University of South Australia, Adelaide, South Australia, Australia
47	Л	Professor Stoven Graves
40	4.	Affiliation: Australian Orthonaudic Association National Joint Poplacement Pogistry
49		Adelaida, South Australia, Australia
50	F	Adelaide, South Australia, Australia
21	э.	
52		Amiliations:
53		Department of Epidemiology and Preventive Medicine, Mionash
54		University School of Public Health, Melbourne, Victoria, Australia
55		II. Wionash Department of Clinical Epidemiology, Cabrini Institute,
56	-	Melbourne, Victoria, Australia
5/	6.	Associate Professor Justine Naylor
58		Affiliation: Whitlam Orthopaedic Research Centre, Ingham Institute for Applied
59		Medical Research, South West Sydney Clinical School, The University of New South
60		Wales Sydney, Sydney, NSW, Australia
61	7.	Professor Richard de Steiger
62		Affiliation: Department of Surgery, Epworth Healthcare, University of Melbourne,
63		Melbourne, Victoria, Australia
64	8.	Associate Professor Ilana Ackerman

65		Affiliation: Dep	partment of Epidemiology and Preventive Medicine, Monash
66		University Sch	ool of Public Health and Preventive Medicine, Melbourne, Victoria,
67		Australia	
68	9.	Associate Prof	essor Sam Adie
69		Affiliation: St.	George and Sutherland Clinical School, The University of New South
70		Wales Sydney,	Sydney, NSW, Australia
71	10.	Ms Michelle Lo	primer
72		Affiliation: Sou	th Australian Health and Medical Research Institute, Adelaide, South
73		Australia, Aust	ralia
74	11.	Mrs Durga Bas	tiras
75		Affiliation: Aus	stralian Orthopaedic Association National Joint Replacement Registry,
76		Adelaide, Sout	h Australia, Australia
77	12.	Ms Kara Cashr	nan
78		Affiliation: Sou	th Australian Health and Medical Research Institute, Adelaide, South
79		Australia, Aust	ralia
80	13.	Professor Ian I	Harris (chief investigator)
81		Affiliations:	
82		i.	Whitlam Orthopaedic Research Centre, Ingham Institute for Applied
83			Medical Research, South West Sydney Clinical School, The University
84			of New South Wales Sydney, Sydney, NSW, Australia
85		ii.	Institute of Musculoskeletal Health, School of Public Health, The
86			University of Sydney, Sydney, NSW, Australia
87			

88 80	ABSTRACT
09	Background
90 Q1	This a priori statistical analysis plan describes the analysis for CRISTAL
02	This a phon statistical analysis plan describes the analysis for CRISTAL.
93	Methods:
94	CRISTAL (cluster-randomised, crossover, non-inferiority trial of aspirin compared to low
95	molecular weight heparin for venous thromboembolism prophylaxis in hip or knee
96	arthroplasty, a registry nested study) aims to determine whether aspirin is non-inferior to
97	low molecular weight heparin (LMWH) in preventing symptomatic venous
98	thromboembolism (VTE) following hip arthroplasty (HA) or knee arthroplasty (KA). The study
99	is nested within the Australian Orthopaedic Association National Joint Replacement
100	Registry. The trial was commenced in April 2019 and after an unplanned interim analysis,
101	recruitment was stopped (December 2020), as the stopping rule was met for the primary
102	outcome.
103	
104	The clusters comprised hospitals performing > 250 HA and/or KA procedures per annum,
105	whereby all adults (> 18 years) undergoing HA or KA were recruited. Each hospital was
106	randomised to commence with aspirin, orally, 85-150mg daily or LMWH (enoxaparin),
107	40mg, subcutaneously, daily within 24 hours postoperatively, for 35 days after HA and 14
108	days after KA. Crossover was planned once the registration target was met for the first arm.
109	
	The primary end point is symptomatic VTE within 90 days. Secondary outcomes include
111	readmission, reoperation, major bleeding and death within 90 days, and reoperation and
112 112	patient-reported pain, function and health status at 6 months.
117 117	The main analyses will focus on the primary and secondary outcomes for nationts
115	undergoing elective primary total HA and KA for osteoarthritis. The analysis will use an
116	intention-to-treat approach with cluster summary methods to compare treatment arms. As
117	the trial stopped early, analyses will account for incomplete cluster crossover and unequal
118	cluster sizes.
119	
120	Conclusions:
121	This paper provides a detailed statistical analysis plan for CRISTAL.
122	
123	Trial registration: Australian and New Zealand Clinical Trials Registry, ID:
124	ACTRN12618001879257. Registered on 19/11/2018.
125	
126	
127	Key Words
128	Venous Thromboembolism, Hip Arthroplasty, Knee Arthroplasty, Aspirin, Low Molecular
129	Weight Heparin, Statistical Analysis Plan
130	

131 MANUSCRIPT

132

133 Background

134 Despite the increasing use of aspirin as a sole chemotherapeutic agent for symptomatic

135 venous thromboembolic event (VTE) prophylaxis following hip arthroplasty (HA) and knee

arthroplasty (KA) [1], there remains limited high quality comparative evidence for its safety

and efficacy. The majority of studies supporting the safety and efficacy of aspirin compared

to other agents, including low molecular weight heparin (LMWH), have been retrospective

- or non-randomised [2-11]. The only randomised trials have been underpowered or have
- used an alternative form of prophylaxis (e.g., LMWH or a novel oral anticoagulant (NOAC))
- for the immediate postoperative period following HA or KA prior to changing to aspirin for

extended prophylaxis, which does not reflect the way aspirin is used in Australia [12, 13].
 CRISTAL is a pragmatic. multicentre cluster-randomised. crossover trial that aims to

- 143 CRISTAL is a pragmatic, multicentre cluster-randomised, crossover trial that aims to 144 determine if aspirin is non-inferior to LMWH in the prevention of symptomatic VTE
- following HA and KA. It is nested within the Australian Orthopaedic Association National
- 146 Joint Replacement Registry (AOANJRR).
- 147

148 The trial commenced in April 2019 and the estimated timeline for completion of patient

149 registration was 24 months. However, after an unplanned interim analysis in which the trial

150 stopping rule was met, patient registration was ceased in December 2020, resulting in

151 incomplete crossover. This statistical analysis plan details the planned analyses for CRISTAL

- to facilitate transparency of data analysis. The trial protocol has previously been published[14].
- 154

155 STUDY OVERVIEW

156

- 157 Ethics
- 158 Ethics approval was granted from all relevant central, lead ethics committees involved and
- all participating hospitals, as outlined in the published trial protocol [14]. The trial is
- 160 registered with the Australian New Zealand Clinical Trials Registry

161 (ACTRN12618001879257p) and is endorsed by the Australia and New Zealand

- 162 Musculoskeletal (ANZMUSC) Clinical Trials Network.
- 163

164 Participating Hospitals and Patient Registration

165 The clusters in CRISTAL comprise 31 consenting hospitals that perform greater than 250 HA

- 166 and/or KA procedures per annum.
- 167

168 Each recruited hospital was responsible for registering patients and complying with the trial

- 169 protocol. The AOANJRR routinely collects data pertaining to the procedure, patient age, sex,
- 170 American Society of Anaesthesiologists (ASA) class and body mass index (BMI) and death on
- 171 all patients undergoing HA and KA procedures. Patient-reported outcomes are collected
- 172 through the electronic Clinical Trials Platform, which requires pre-operative registration of
- 173 the patient onto the electronic system. All adult (age 18 and older) patients undergoing HA
- 174 or KA were eligible for registration into the study and eligible to receive the allocated study
- drug, except for those who were already on long-term anticoagulation (specifically a NOAC,
- 176 warfarin or dual antiplatelet therapy (DAPT)) and those with a medical contraindication to

either drug, e.g., an allergy or a medical comorbidity such as thrombophilia that precludedtreatment with the study drug.

179

180 Patients who were not registered in the electronic Clinical Trials Platform will be included in

- 181 secondary analyses, as procedure information, demographics and mortality were still
- recorded even though the primary outcome and other patient-reported outcomes were notrecorded.
- 184

185 Intervention

Each hospital (cluster) was allocated to consecutive periods of a standard protocol of LMWH
and a standard protocol of aspirin as VTE prophylaxis, with the order being randomised.
Patients in the aspirin group received aspirin at 85-150mg once daily, orally for 35 days post
HA and for 14 days post KA, commencing within 24 hours of surgery. Patients in the LMWH
group received enoxaparin at 40mg once daily, subcutaneously for the same time periods,
with this dose reduced to 20mg for patients who weigh less than 50kg and for patients with

- an estimated glomerular filtration rate (eGFR) of less than 30mL/min who are not on
- 193 dialysis. Other interventions that were standard across all sites were the intra- and post-
- 194 operative use of intermittent pneumatic compression (IPC) calf devices until patients are
- mobile, the use of compression stockings, and mobilisation offered on day 0 or day 1postoperatively.
- 197

198 Randomisation and allocation

199 Study investigators have remained blinded to group allocation. Hospitals were randomised

- to commence with either LMWH or aspirin, in randomly permuted blocks of size four by
- statisticians from the South Australian Health and Medical Research Institute (SAHMRI),
- independent of study investigators. The randomisation sequence was generated using anonline application [15] and this was provided to an unblinded data manager from SAHMRI.
- The hospital was then allocated to a treatment sequence by SAHMRI staff and this
- 205 information was provided to the AOANJRR (independent of study investigators), with the
- site being informed of their allocated treatment arm the week prior to commencing initial patient registration. Hospitals were advised to crossover to the alternate treatment once
- 208 the sample size for the first treatment arm was met.
- 209

210 For clusters who did not reach the sample size for the first arm within 18 months of

- commencement, crossover occurred prior to reaching the sample size so that an equal
- number of patients could be registered in each arm within the study timeframe.
- 213

214 Evaluation of adherence to the study protocol and protocol deviations

At a hospital level, during the course of the trial each hospital was audited within the first month of each treatment arm to ensure they were complying with the trial protocol. The audit consisted of the first 20 patients of each treatment arm. If a site had a compliance of less than 80%, the site was educated on methods of improving protocol compliance and

- 219 subsequently re-audited until compliance to the protocol was above 80%.
- 220
- Hospitals were also advised to inform trial co-ordinators of patients not receiving the
- correct study drug or those patients who had the study drug withheld for greater than 48

223 hours due to side effects (e.g. allergy, excessive wound drainage or bleeding events). These

- 224 protocol deviations were recorded using the Clinical Trials Platform.
- 225
- 226

227 Outcome variables

- 228 The primary outcome of the study is symptomatic VTE within 90 days of surgery. Secondary 229 outcomes are:
- 230 Deep vein thrombosis (DVT) only (total, below-knee and above-knee) within 90 days •
- 231 Pulmonary embolism (PE) only within 90 days •
- 232 Readmission related to the original surgery or associated treatment (including • 233 bleeding and VTE-related) within 90 days
- 234 • Reoperation on the same joint within 90 days and within 6 months of surgery
- 235 Major bleeding events within 90 days defined as bleeding events resulting in • 236 readmission, reoperation or death
- 237 Death within 90 days •
- 238 Change in patient-reported pain, function and health status measures as measured • 239 by the Oxford Hip Score (OHS), Oxford Knee Score (OKS), EQ-5D score and the EQ-240 VAS from baseline to 6 months postoperatively
- 241
- 242
- 243 Outcome and demographic data were collected preoperatively (demographics, patient 244 reported pain, function and health status) and at 90 days and 6 months postoperatively. 245 Data for all primary and secondary outcomes are patient-reported (except for death). All 246 patients who responded 'yes' to having experienced a VTE or a secondary operation within 247 6 months had this result verified by AOANJRR staff through contact with treating doctors 248 and hospitals. A random audit of 200 patients who did not report a VTE event was 249 undertaken to detect the false negative reporting rate. All data collected for registered 250 patients specific to CRISTAL have been outlined in the published protocol [14]. Mortality 251 data were collected through linkage between the AOANJRR and the National Death Index. 252 253 In the published protocol [14], mortality was to be measured at 90 days and 6 months. Due to the lack of sensitivity in measuring VTE-related mortality at 6 months, and due to the lag

in data availability for mortality, we will only analyse mortality at 90 days [16].

- 254
- 255
- 256
- 257

258 Power and sample size

259 For the sample size calculation in CRISTAL, we used an estimated overall event rate of 2% 260 (based on the current available literature) [17, 18], a non-inferiority margin of 1% (based on 261 clinician opinion and a recent randomised controlled trial) [12], i.e., an event rate of 2.5% 262 for aspirin and 1.5% for LMWH, a power of 90% and a one-sided significance level of 0.025. 263 For an individual randomised trial, this yields a sample size of 4,117 per treatment group or 264 a total of 8,234 patients. For a cluster-randomised crossover trial with an intracluster 265 correlation of 0.01, an interperiod correlation of 0.008 and 31 clusters, the required sample 266 size is 11,160 patients [19, 20]. From each cluster and from each arm, we aimed to register 267 251 patients eligible for the primary objective of the study [14]. This provided a total of 268 15,562 patients and allows for a 27% loss to follow-up.

269 STATISTICAL ANALYSIS PLAN

270	Patient Populations and Subgroups for Analyses					
271	The total patient population for CRISTAL comprises all patients undergoing HA or KA at					
272	participating institutions over the duration of the study, regardless of whether these					
273	patients were registered or eligible to receive the study drug (defined as population 5, see					
274	Figure 1).					
275						
276	Within this total population, the following populations will be used to form the basis of the					
277	analyses:					
278	 Registered patients undergoing any form of HA or KA (including partial or revision 					
279	surgery, for any indication) regardless of eligibility to receive the study drug					
280	(population 4)					
281	 Registered patients undergoing any form of HA or KA (including partial or revision 					
282	surgery, for any indication) who were eligible to receive the study drug (population					
283	3)					
284	Registered patients undergoing elective primary THA or TKA (for any indication) who					
285	were eligible to receive the study drug (population 2)					
286	 All registered patients undergoing elective primary THA or TKA for a recorded 					
287	diagnosis of osteoarthritis (OA) who were eligible to receive the study drug					
288	(population 1)					
289						
290	These populations are represented diagrammatically in Figure 1.					
291						
292						
293						

294 Figure 1. Patient populations within CRISTAL

295

296

336 Legend:

337	bbreviations: HA hip arthroplasty, KA knee arthroplasty, THA total hip arthroplasty, TKA total knee arthroplastv	y, OA
~~~		

- 338 osteoarthritis
- + Study drug excluded for patients who already on long-term anticoagulation (specifically a novel oral anticoagulant –
- 340 NOAC, warfarin or dual antiplatelet therapy DAPT) and those who have a medical contraindication
- 341

342 Each outcome (primary and secondary) will be assessed for populations 1, 2, 3 and 4 listed 343 in Figure 1. Mortality will be assessed for all populations (including population 5). The 344 primary objective of the study as outlined in the published protocol [14], was the analysis of 345 population 1 only (registered patients undergoing primary THA or TKA for a diagnosis of OA 346 who are eligible to receive the study drug), as this was the focus of the sample size calculation. This population will remain the focus of the main analyses. 347 348 349 Population 1 was chosen as the focus of the main analysis as these patients represent the 350 majority of patients undergoing HA or KA procedures and there are known differences in 351 outcomes and co-morbidities with other diagnoses (e.g., fracture, tumour), which could 352 confound the primary outcome [21]. 353 354 For the primary end point of VTE, the following subgroup analyses will be conducted within 355 the corresponding populations listed: 356 Type of joint replacement: primary THA compared to primary TKA – population 1 357 Bilateral arthroplasty: patients undergoing simultaneous bilateral arthroplasty • 358 compared to those who are not – population 1 359 Revision arthroplasty: patients undergoing revision hip or knee arthroplasty 360 compared to those undergoing primary arthroplasty - population 3 361 Prior history of VTE: patients with a prior history of VTE compared to those without – 362 population 1 363 364 365 **Analysis principles** 366 Data will be analysed according to the intention-to-treat principle with clusters analysed 367 according to assigned group allocation. Although hospital and patient protocol deviations 368 will be recorded, no as-treated analyses will be performed, as there are no verified data 369 available to determine whether individual patients received the assigned study drug for the 370 full period, given the pragmatic nature of the trial. The timing of analyses will be stratified 371 by follow-up time of the outcomes measured (90 days and 6 months). The difference in 372 absolute risk for symptomatic VTE between each group and 95% confidence intervals (upper 373 and lower) will be examined to determine if the non-inferiority margin is met. 374 375 Continuous variables will be summarised using standard measures of central tendency and 376 dispersion, using either mean and standard deviation or median and interguartile range. 377 Categorical variables will be summarised by frequencies and percentages. 378 379 Analyses will be performed using SAS version 9.4 (SAS Institute, Cary USA) and R (R 380 Foundation for Statistical Computing Platform) version 4.0.2 or higher. 381 382 383 Interim analysis 384 An interim analysis was not initially planned, as both treatments are considered standard 385 practice for VTE prophylaxis in Australia and the trial is investigating an adverse event as the 386 primary outcome. However, due to concerns of an increased adverse event rate 387 (symptomatic VTE and death) in one of the prophylaxis groups, a Data Safety Monitoring

Board (DSMB) was convened one year into patient recruitment. The DSMB consisted of an

- orthopaedic surgeon, a haematologist and a statistician, all independent of the trial.
- 390

The DSMB were advised by the Trial Management Committee (TMC) to conduct an interim analysis. In conjunction with the DSMB (prior to the interim analysis), the TMC applied the Haybittle-Peto stopping rule of a two-sided significance of 0.001 for the primary outcome in the population 1 [22, 23]. This stopping rule was chosen as it does not require adjustment of the significance threshold for the final analysis and allows further interim analyses using the same threshold (if required).

397

398 After the first interim analysis (in September 2020), the DSMB recommended continuing the

trial and performing a second interim analysis in November 2020. After reviewing the second interim analysis, the DSMB recommended ceasing patient recruitment as the

second interim analysis, the DSMB recommended ceasing patient recruitment as the
 stopping rule had been met. The study ceased recruiting patients in December 2020 and

- 402 sites reverted to their usual VTE prophylaxis pathways.
- 403

## 404 *Methods used for Interim Analyses*

405 Interim analyses were conducted for VTE and mortality within 90 days for population 1. To 406 account for unequal cluster sizes, incomplete crossover or clusters which had not yet 407 crossed over, a composite analysis was designed. For clusters which had crossed over, 408 including with partial completion of the second period, the cluster weighted estimator 409 intended for the primary outcome was used. Clusters which had not crossed over were 410 analysed using the cluster period summaries, weighted by cluster size, in a parallel design 411 approach. Estimates for the two approaches were combined using inverse variance weights 412 to provide a final estimate. Confidence intervals were constructed using the Haybittle-Peto

- 413 boundary of 0.001.
- 414

# 415 Data integrity

416 Integrity of data will be checked prior to conducting the final analysis. The data set will be

- 417 checked for errors, omissions and double data entry. These will be resolved prior to
- 418 commencing the analysis in consultation with the data management plan [14].
- 419

# 420 Blinding

421 The DSMB were blinded to treatment allocation (groups in the interim analyses were

- 422 labelled A and B). All researchers involved in the preparation of this analysis plan will have
- 423 no access to trial data broken down by treatment allocation for the final statistical analysis.
- 424 Once data integrity checks have been conducted, a blind review to quantify missing data of
- the entire dataset will be conducted and any final amendments to the statistical analysis
- 426 plan will be made before the database is locked. During analysis and interpretation, group
- 427 allocation will be masked by dummy group names and the true allocation will be unmasked
- 428 only after the final statistical report has been completed and interpretation has been agreed
- 429 to by the writing group and minuted.
- 430

# 431 Methods for handling missing data

- 432 Multiple imputation using chained equations will be used to account for missing data, using
- 433 auxiliary variables gathered from routine AOANJRR data (including age, sex, baseline health,
- 434 pain and function, diagnosis and surgical factors). If there is any possibility of bias due to

- 435 perfect prediction of rare outcomes such as VTE [24] or imputing values out of range for
- 436 bounded variables such as pain scores or EQ5D [25], imputation will not be performed.
- 437 Since the most likely reason for loss to follow-up is difficulty in contacting patients
- 438 postoperatively (rather than association with treatment assignment or outcome), missing
- 439 data will be assumed to be missing at random.
- 440
- 441

## 442 Trial profile and baseline characteristics

The flow of participating hospitals through the study and participating patients will be
reported in line with the Consolidated Standards of Reporting Trials (CONSORT) statement
(Figures 2 and 3).

446

The number of patients registered for population 1 (the population used for the sample size

- calculation) by each participating hospital and the overall registration rate of each hospital
- will be presented as outlined in Table 1. The overall registration rate describes the number
- 450 of registered patients undergoing any HA or KA procedure (population 4) divided by the
- number of patients who underwent any HA or KA procedure over the duration of the trial at
- 452 participating hospitals (regardless of whether they were registered population 5). Hospital
- 453 names will remain anonymous.
- 454
- 455 Descriptive statistics of baseline patient characteristics for all registered patients eligible to
- 456 receive the study drug (population 3) will be presented by prophylaxis group (Table 2).
- 457

458 Figure 2. Flowsheet of participating hospitals









**Figure 3.** Flowsheet of patients within population 1⁺

**Table 1.** Number of registered patients for population 1⁺ by treatment group and overall

509 registration rate for each participating hospital

Hospital	Sequence Allocation?	LMWH Group (Population 1)	Aspirin Group (Population 1)	Overall Registration Rate (combined for both groups)
1		n	n	%
2		n	n	%
3		n	n	%
4		n	n	%
5		n	n	%
6		n	n	%
7		n	n	%
8		n	n	%
9		n	n	%
10		n	n	%
11		n	n	%
12		n	n	%
13		n	n	%
14		n	n	%
15		n	n	%
16		n	n	%
17		n	n	%
18		n	n	%
19		n	n	%
20		n	n	%
21		n	n	%
22		n	n	%
23		n	n	%
24		n	n	%
25		n	n	%
26		n	n	%
27		n	n	%
28		n	n	%
29		n	n	%
30		n	n	%
31		n	n	%
Total		n	n	%

Population 1 refers to registered patients undergoing primary THA or TKA for a diagnosis of OA, who are eligible to receive the study drug

**Table 2.** Baseline patient characteristics for all registered patients eligible to receive study

518 drug (population 3), according to treatment allocation

	LMWH	Aspirin
	(n = X)	(n = X)
Age (years)	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
BMI (kg/m ² )	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
Male sex	n (%)	n (%)
ASA Grading		
1	n (%)	n (%)
2	n (%)	n (%)
3	n (%)	n (%)
4	n (%)	n (%)
5	n (%)	n (%)
Previous venous thromboembolism	n (%)	n (%)
Long term anticoagulant use		
Aspirin	n (%)	n (%)
Other single antiplatelet	n (%)	n (%)
Joint replacement		
THA	n (%)	n (%)
ТКА	n (%)	n (%)
Other HA	n (%)	n (%)
Other KA	n (%)	n (%)
Bilateral	n (%)	n (%)
Type of surgery		
Primary total	n (%)	n (%)
Primary partial	n (%)	n (%)
Primary resurfacing	n (%)	n (%)
Revision	n (%)	n (%)
Other	n (%)	n (%)
Indication		
Osteoarthritis	n (%)	n (%)
Inflammatory	n (%)	n (%)
Avascular Necrosis	n (%)	n (%)
Fracture	n (%)	n (%)
Other	n (%)	n (%)
Prosthesis		
Cemented	n (%)	n (%)
Hybrid	n (%)	n (%)
Uncemented	n (%)	n (%)
Pain and Function		
Oxford Hip Score	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
Oxford Knee Score	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
EQ-5D	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
EQ-VAS	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n

 Abbreviations: BMI body mass index, ASA American society of anaesthesiologists

## 525 MAIN ANALYSES

526

The main analyses will include the primary and secondary outcomes for registered patients
eligible to receive the study drug undergoing THA or TKA for a diagnosis of OA (population
1). In addition, the primary and secondary outcomes will be analysed for populations 2, 3
and 4. Mortality will also be analysed for population 5 (see "Additional analyses" below).

531

532 For the primary outcome, the analysis will test the between-group difference of cases 533 developing a symptomatic VTE within 90 days for non-inferiority of aspirin at a margin of 534 1%. Cluster summary methods will be used to estimate the treatment effect using cluster 535 level differences. These have been shown to be appropriate for cluster-randomised 536 crossover trials with rare outcomes, and the intracluster and interperiod correlation 537 coefficients expected in this trial. The crossover difference per cluster is the mean outcome 538 for the intervention period minus the mean outcome for the control period. In a linear 539 regression of cluster differences on treatment sequence, the treatment effect estimate is 540 the intercept. To account for potential unequal cluster sizes, a cluster size weighted 541 estimator will be used with harmonic mean weights of the number of patients in the two 542 periods [26, 27]. Treatment effects will be presented as absolute risk differences and 95% 543 confidence intervals will be examined to determine whether the non-inferiority margin has 544 been met and whether superiority of one drug can be concluded. The primary outcome will 545 be presented in Table 3 and Figure 4 will be used to demonstrate whether the non-546 inferiority margin has been met for the population 1 [28].

547

548 The secondary outcomes will investigate non-VTE complications (death, re-operation, 549 readmission and major bleeding events) within 90 days, and reoperation and patient-related 550 pain and function at 6 months (OHS, OKS, EQ-5D and EQ-VAS). Cluster summary methods 551 will be used within an intention-to treat approach. For binary outcomes, the cluster mean 552 per period will be the proportion of patients who had the outcome, while for continuous 553 outcomes such as pain score, the cluster mean will be the mean outcome. Treatment 554 effects will be presented as absolute risk differences and 95% confidence intervals to 555 determine if one treatment is superior to the alternative. Results for the secondary 556 outcomes in population 1 will be presented in tabular form (Table 3) and results for the 557 primary and secondary outcomes in populations 2, 3 and 4 in Table 4. 558 559 Due to the early stopping of the trial, final analyses of the primary and secondary outcomes

- 560 will use the composite method for the interim analyses with appropriate confidence
- 561 intervals.
- 562

563	Table 3.	Outcomes	for	popul	ation	1
-----	----------	----------	-----	-------	-------	---

Outcome	LMWH Allocation	Aspirin Allocation	Absolute Risk Difference	95% Confidence Interval	p-value
	(n = X)	(n = X)			
Any Venous thromboembolism	n (%)	n (%)	Х	X – X	
Type of Venous thromboembolism					
Pulmonary embolism	n (%)	n (%)	х	X – X	
Deep venous thrombosis	n (%)	n (%)	х	X – X	
Both Pulmonary embolism and	n (%)	n (%)	Х	X – X	
deep venous thrombosis					
Above knee deep venous	n (%)	n (%)	Х	X – X	
thrombosis					
Below knee deep venous	n (%)	n (%)	Х	X – X	
thrombosis					
Death	n (%)	n (%)	Х	X – X	
Re-operation (90d)	n (%)	n (%)	Х	X – X	
Reoperation (6 months)	n (%)	n (%)	Х	X – X	
Re-admission	n (%)	n (%)	Х	X – X	
Major Bleeding	n (%)	n (%)	Х	X – X	
Pain and Function (median and					
IQR) [†]			Х	X – X	
Oxford Hip Score	X (X – X)	X (X – X)	Х	X – X	
Oxford Knee Score	X (X – X)	X (X – X)	Х	X – X	
EQ-5D	X (X – X)	X (X – X)	Х	X – X	
EQ-VAS	X (X – X)	X (X – X)			

[†] at 6 months

**Figure 4.** Between group change in overall 90-day symptomatic VTE rate and non-inferiority

569 margin. The dotted line represents the non-inferiority margin



Population	Outcome	LMWH Allocation (n = X)	Aspirin Allocation (n = X)	Absolute Risk Difference	95% Confidence Interval	p-value
All primary THA/TKA for	Any Venous thromboembolism	n (%)	n (%)	х	X – X	
any diagnosis eligible to	Type of Venous thromboembolism					
receive study drug	Pulmonary embolism	n (%)	n (%)	х	X – X	
(population 2)	Deep venous thrombosis	n (%)	n (%)	х	X – X	
	Both Pulmonary embolism and	n (%)	n (%)	х	X – X	
	deep venous thrombosis					
	Above knee deep venous	n (%)	n (%)	х	X – X	
	thrombosis	(04)	(04)			
	Below knee deep venous	n (%)	n (%)	х	X – X	
	thrombosis	n (0/)	m (0()	v		
	Re-operation (90d)	n (%)	n (%)	×	X - X X - X	
	Reoperation (500)	n (%)	n (%)	X	X – X X – X	
	Re-admission	n (%)	n (%)	x	X – X	
	Major Bleeding	n (%)	n (%)	X	X – X	
	Pain and Function (median and IQR) [†]					
	Oxford Hip Score			х	X – X	
	Oxford Knee Score	X (X – X)	X (X – X)	х	X – X	
	EQ-5D	X (X – X)	X (X – X)	х	X – X	
	EQ-VAS	X (X – X)	X (X – X)	х	X – X	
		X (X – X)	X (X – X)			
All HA/KA eligible to	Any Venous thromboembolism	n (%)	n (%)	Х	X – X	
(population 3)	Type of Venous thromboembolism					
	Pulmonary embolism	n (%)	n (%)	X	X – X	
	Deep venous thrombosis	n (%)	n (%)	X	X – X	
	Both Pulmonary embolism and	n (%)	n (%)	х	X – X	
	Above knee deep venous	n (%)	n (%)	v	<b>Y</b> – <b>Y</b>	
	thrombosis	11 (76)	11 (76)	^	~ ~ ~	
	Below knee deep venous	n (%)	n (%)	х	X – X	
	thrombosis					
	Death	n (%)	n (%)	Х	X – X	
	Re-operation (90d)	n (%)	n (%)	х	X – X	
	Reoperation (6 months)	n (%)	n (%)	х	X – X	
	Re-admission	n (%)	n (%)	X	X – X	
	Major Bleeding	n (%)	n (%)	х	X – X	
	Ovford Hip Score			v	× ×	
	Oxford Knee Score	$\mathbf{x} (\mathbf{x} - \mathbf{x})$	$\mathbf{x} (\mathbf{x} - \mathbf{x})$	×	X - X X - X	
	FO-5D	X (X - X) X (X - X)	X(X - X) X(X - X)	X	X – X X – X	
	EQ-VAS	X(X - X)	X(X - X)	x	X – X	
		X(X - X)	X(X - X)			
All HA/KA including study	Any Venous thromboembolism	n (%)	n (%)	Х	X – X	
drug exclusion (population	Type of Venous thromboembolism					
4)	Pulmonary embolism	n (%)	n (%)	x	X – X	
	Deep venous thrombosis	n (%)	n (%)	х	X – X	
	Both Pulmonary embolism and	n (%)	n (%)	х	X – X	
	deep venous thrombosis					
	Above knee deep venous	n (%)	n (%)	х	X – X	
	thrombosis	(0()	(0()			
	Below knee deep venous	n (%)	n (%)	X	X – X	
	Death	n (%)	n (%)	v	Y . V	
	Be-operation (90d)	n (%)	n (%)	×	× - × × - ×	
	Reoperation (6 months)	n (%)	n (%)	x	X – X	
	Re-admission	n (%)	n (%)	x	X – X	
	Major Bleeding	n (%)	n (%)	x	X – X	
	Pain and Function (median and IQR) [†]		. ,			
	Oxford Hip Score			х	X – X	
	Oxford Knee Score	X (X – X)	X (X – X)	х	X – X	
	EQ-5D	X (X – X)	X (X – X)	х	X – X	
	EQ-VAS	X (X – X)	X (X – X)	х	X – X	
F7C	l	X (X – X)	X (X – X)			

## **Table 4.** Outcomes for populations 2, 3 and 4

577 [†] at 6 months

## 580 Subgroup Analyses

581 Subgroup analyses for the primary outcome will include THA or TKA, bilateral or unilateral 582 procedures and a prior history of VTE or not for population 1, and primary arthroplasty or 583 revision arthroplasty for population 3.

584

To assess treatment effects for each subgroup separately, cluster summaries will be
produced for each subgroup. An interaction term between treatment group and subgroup
(e.g., THA/TKA, bilateral/unilateral) will be added to the model for the primary outcome.

- 588 The treatment differences for each subgroup will be assessed for non-inferiority. Since the
- trial was stopped early, the same composite method for the primary outcome will be used.
- 591

## 592 Sensitivity analyses

593 Sensitivity analyses will be performed to determine: (a) the effect of high-volume 594 arthroplasty sites; (b) sites with high and low overall registration rates; (c) sites that

- 595 required multiple compliance audits; and (d) the effect of patients who take long-term
- aspirin therapy on the results of the analyses for the primary outcome in population 1.
- 597

## 598 Order of planned analyses

- 599Analyses will be performed in the following order:
- Interim analyses of population 1
- Primary and secondary outcomes for population 1
- Subgroup analyses for population 1
- Primary and secondary outcomes for populations 2, 3 and 4
- Subgroup analyses of population 3
- 605 Sensitivity analyses in population 1
- 606
- 607

## 608 ADDITIONAL ANALYSES

609

#### 610 Mortality Analysis

611 In addition to analysing between-group mortality for populations 1, 2, 3 and 4, the between-612 group 90-day mortality will be analysed for two further populations:

- 613
  1. All patients undergoing HA or KA over the duration of the study at participating
  614 hospitals, regardless of whether they were registered (total population described
  615 above, population 5)
- All patients undergoing elective THA or TKA over the duration of the study at
  participating hospitals regardless of whether they were registered (a subset of
  population 5)
- 619
- Analysing these additional populations will assess the effect of implementing the VTE
- prophylaxis protocol on mortality at an institutional/departmental level (the unit ofrandomisation), on an intention-to-treat basis.
- 623

## 624 Sub-Studies

- Data from this trial will be used to form the basis of sub-studies. These will include a sub-
- 626 study comparing rates of persistent wound drainage between LMWH and aspirin groups at
- 627 two participating sites and a sub-study investigating rates of post-hospital discharge
- 628 compliance to either study drug.
- 629
- 630
- 631

## 632 Conclusions

- 633 CRISTAL aims to provide much needed definitive evidence about the effectiveness and
- 634 safety of aspirin compared to LMWH in preventing symptomatic VTE following HA or KA.
- 635 This statistical analysis plan details the study's planned analyses, including modifications to
- 636 intended analyses to account for early stopping of the trial.
- 637
- 638

## 639 **DECLARATIONS**

#### 640

## 641 Ethics Approval

642 Ethics approval was granted by the Sydney Local Health District (Royal Prince Alfred Zone) 643 Human Research and Ethics Committee, which is a lead ethics committee in Australia 644 (approval number X18-0424) prior to study commencement. Site-specific approvals for each 645 participating hospital were granted from the following ethics committees prior to study 646 commencement: Calvary John James Memorial Hospital Australian Capital Territory (3-2019 647 CRISTAL), Mid-North Coast Local Health District New South Wales (NSW – SSA/19/NCC/41), 648 South Western Sydney Local Health District (NSW, SSA/10/LPOOL/22), Sydney Local Health 649 District (NSW, SSA/19/RPAH/12, SSA/18/RPAH/762), Ramsay Hospital Research Foundation 650 (NSW, HREC/18/RPAH/603), South Eastern Sydney Local Health District (NSW, 19/G/028, 651 18/G/338), Nepean Blue Mountains Local Health District (NSW, SSA/19/NEPAN/11), 652 Northern Sydney Local Health District (NSW, RESP/19/027, RESP/19/028), Metro North 653 Hospital and Health Service (Queensland, HREC/18/RPAH/603), University of South Australia 654 (SA – 201215), Calvary Health Care Adelaide (SA, 19-CHREC-F001), Southern Adelaide Local 655 Health Network (SA, HREC/18/RPAH/603), Bendigo Health Victoria (SSA/48255/BHCG-2019), 656 Barwon Health (18/246), Peninsula Health Victoria (SSA/48255/PH-2019), Western Health 657 Victoria (48255), St John of God Health Care Victoria (1540), South Metropolitan Health 658 Western Australia (WA – Western Australia, RGS000001358), North Metropolitan Health 659 (WA – RGS0000001358), Sir Charles Gardiner Hospital (WA – RGS0000001358) and 660 Launceston General Hospital Tasmania (H0017903).

661

## 662 Consent for publication

663 Not applicable.

## 664 Availability of data and materials

665 The datasets during and/or analysed during the current study will be made available from 666 the corresponding author on reasonable request

## 667 Competing interests

668 The authors declare that they have no competing interests

## 669 Funding

- 670 The study is being funded by a four-year Medical Research Futures Fund (MRFF Australian
- Federal Government) grant. The funding was not provided with any conditions and the
- 672 MRFF has no authority over the design of the study or collection, management, analysis or
- 673 interpretation of data or the writing of manuscripts for submission. No industry funding or
- other sources of funding are being used for this trial.

## 675 Authors' contributions

- All authors listed have contributed to this protocol and the ICMJE guidelines were consulted
- 677 for determining authorship. VS, IAH, RB, SG, SA, JMN, RdS, NP, INA, ML, DB, KC and TLK
- 678 were responsible for the planning of the trial, protocol development and writing, TLK and

- 679 NP were responsible for the description of the statistical analyses used. All authors
- 680 reviewed the final version of this manuscript prior to submission.

681

682

## 683 Acknowledgements

684 Not applicable.

686	REFER	ENCES
687		
688	1.	Mirkazemi C, Bereznicki LR, Peterson GM. Comparing Australian orthopaedic
689		surgeons' reported use of thromboprophylaxis following arthroplasty in 2012 and
690		2017. BMC Musculoskelet Disord. 2019; 20:57.
691	2.	Adam SS, McDuffie JR, Lachiewicz PF, Ortel TL, Williams JW, Jr. Comparative
692		effectiveness of new oral anticoagulants and standard thromboprophylaxis in
693		patients having total hip or knee replacement: a systematic review. Ann Intern Med.
694		2013; 159:275-284.
695	3.	Gomez-Outes A. Terleira-Fernandez AI. Suarez-Gea ML. Vargas-Castrillon E.
696		Dabigatran, rivaroxaban, or apixaban versus enoxaparin for thromboprophylaxis
697		after total hip or knee replacement: systematic review, meta-analysis, and indirect
698		treatment comparisons. BMJ. 2012: 344:e3675.
699	4.	Cao YB. Zhang JD. Shen H. Jiang YY. Rivaroxaban versus enoxaparin for
700		thromboprophylaxis after total hip or knee arthroplasty: a meta-analysis of
701		randomized controlled trials. Eur J Clin Pharmacol. 2010; 66:1099-1108.
702	5.	Cohen A. Drost P. Marchant N. Mitchell S. Orme M. Rublee D. et al. The efficacy and
703		safety of pharmacological prophylaxis of venous thromboembolism following
704		elective knee or hip replacement: systematic review and network meta-analysis. Clin
705		Appl Thromb Hemost, 2012: 18:611-627.
706	6.	Harenberg J. Marx S. Dahl OE. Marder VJ. Schulze A. Wehling M. et al. Interpretation
707		of endpoints in a network meta-analysis of new oral anticoagulants following total
708		hin or total knee replacement surgery. Thromb Haemost, 2012: 108:903-912
709	7.	Neumann I. Rada G. Claro JC. Carrasco-Labra A. Thorlund K. Akl FA. et al. Oral direct
710		Eactor Xa inhibitors versus low-molecular-weight henarin to prevent venous
711		thromboembolism in patients undergoing total hip or knee replacement: a
712		systematic review and meta-analysis. Ann Intern Med. 2012: 156:710-719.
713	8	Turun S. Banghua I. Yuan Y. Zhenhui I. Ying N. Jin C. A systematic review of
714	0.	rivaroxaban versus enoxaparin in the prevention of venous thromboembolism after
715		hin or knee replacement. Thromb Res. 2011: 127:525-534
716	9	Bozic KI, Vail TP, Pekow PS, Maselli IH, Lindenauer PK, Auerbach AD, Does asnirin
717	5.	have a role in venous thromboembolism prophylaxis in total knee arthroplasty
718		natients? LArthronlasty 2010: 25:1053-1060
719	10	Jameson SS Baker PN Charman SC Deehan DI Reed MR Gregg PI et al The effect
720	10.	of aspirin and low-molecular-weight heparin on venous thromboembolism after
721		knee replacement: a non-randomised comparison using National Joint Registry Data
722		I Bone Joint Surg Br. 2012: 94:914-918
722	11	Jameson SS Charman SC Gregg PI Reed MR van der Meulen IH. The effect of
724	<b>11</b> .	asnirin and low-molecular-weight benarin on venous thromboembolism after hin
725		replacement: a non-randomised comparison from information in the National Joint
726		Registry   Bone Joint Surg Br. 2011: 93:1/65-1/170
720	12	Anderson DR Dunbar M Murnaghan L Kabn SR Gross P Forsythe M et al Asnirin
728	12.	or Rivarovahan for VTE Pronhylavis after Hin or Knee Arthronlasty. N Engl I Med
720		2018: 378:600-707
720	13	Anderson DR Dunhar MI Kahn SR Asnirin versus low-molecular-weight henarin
731	10.	after total hin arthronlasty Ann Intern Med 2013: 150:502-503
121		arter total mp artinoplasty. Ann intern wed. 2015, 153-502-505.

732	14.	Sidhu VS, Graves SE, Buchbinder R, Naylor JM, Pratt NL, de Steiger RS, et al. CRISTAL:
733		protocol for a cluster randomised, crossover, non-inferiority trial of aspirin
734		compared to low molecular weight heparin for venous thromboembolism
735		prophylaxis in hip or knee arthroplasty, a registry nested study. BMJ Open. 2019;
736		9 <b>:</b> e031657.
737	15.	[https://www.sealedenvelope.com]
738	16.	Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous
739		thromboembolism after major joint surgery. J Bone Joint Surg Br. 2006; 88:386-391.
740	17.	Kulshrestha V, Kumar S. DVT prophylaxis after TKA: routine anticoagulation vs risk
741		screening approach - a randomized study. J Arthroplasty. 2013; 28:1868-1873.
742	18.	Bawa H, Weick JW, Dirschl DR, Luu HH. Trends in Deep Vein Thrombosis Prophylaxis
743		and Deep Vein Thrombosis Rates After Total Hip and Knee Arthroplasty. J Am Acad
744		Orthop Surg. 2018; 26:698-705.
745	19.	Giraudeau B. Ravaud P. Donner A. Sample size calculation for cluster randomized
746		cross-over trials. Stat Med. 2008: 27:5578-5585.
747	20.	Kelly T-L. Pratt N. A note on sample size calculations for cluster randomised
748		crossover trials with a fixed number of clusters. Stat Med. 2019: 38:3342-3345.
749	21.	AOA. Australian Orthopaedic Association National Joint Replacement Registry
750		Annual Report, 2019.
751	22.	Peto R. Pike MC. Armitage P. Breslow NF. Cox DR. Howard SV. et al. Design and
752		analysis of randomized clinical trials requiring prolonged observation of each patient.
753		I. Introduction and design. Br J Cancer, 1976: 34:585-612.
754	23.	Havbittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J
755		Radiol. 1971: 44:793-797.
756	24.	White IR. Daniel R. Royston P. Avoiding bias due to perfect prediction in multiple
757		imputation of incomplete categorical variables. Comput Stat Data Anal. 2010:
758		54:2267-2275.
759	25.	Rodwell L. Lee KJ. Romaniuk H. Carlin JB. Comparison of methods for imputing
760		limited-range variables: a simulation study. BMC Med Res Methodol. 2014: 14:57.
761	26.	Forbes AB. Akram M. Pilcher D. Cooper J. Bellomo R. Cluster randomised crossover
762		trials with binary data and unbalanced cluster sizes: application to studies of near-
763		universal interventions in intensive care. Clin Trials. 2015: 12:34-44.
764	27.	Turner RM, White IR, Croudace T, Group PIPS, Analysis of cluster randomized cross-
765		over trial data: a comparison of methods. Stat Med. 2007: 26:274-289.
766	28.	Schumi J. Wittes JT. Through the looking glass: understanding non-inferiority. Trials.
767	-	2011: 12:106.
768		
769		
770		
771		
772		
773		
774		
775		
776		
777		

778	STATISTICAL ANALYSIS PLAN (FINAL): 20 July 2021
779	
780	TITLE PAGE
781	Study Title
782	CRISTAL (A cluster-randomised, crossover, non-inferiority trial of aspirin compared to low
783	molecular weight heparin for venous thromboembolism prophylaxis in hip or knee
784	arthroplasty, a registry nested study): statistical analysis plan
785	
786	
787	Corresponding Author:
788	Dr Verinder Singh Sidhu (author)
789	Postal Address: Whitlam Orthopaedic Research Centre, Level 1, The Ingham Institute for
790	Applied Medical Research, 1 Campbell Street, Liverpool, NSW, 2170
791	Email address: <u>Verinder.s.sidhu@gmail.com</u>
792	Phone: +61 422 167 435
793	Fax Number: +61 2 8738 3850
794	
795	Co-Authors
796	14. Dr Thu-Lan Kelly (senior statistician)
797	Affiliation: Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research
798	Centre, University of South Australia, Adelaide, South Australia, Australia
799	15. Dr Nicole Pratt (senior statistician)
800	Affiliation: Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research
801	Centre, University of South Australia, Adelaide, South Australia, Australia
802	16. Professor Steven Graves
803	Affiliation: Australian Orthopaedic Association National Joint Replacement Registry,
804	Adelaide, South Australia, Australia
805	17. Professor Rachelle Buchbinder
806	
807	III. Department of Epidemiology and Preventive Medicine, Monash
808	University School of Public Health, Melbourne, Victoria, Australia
809	IV. Monash Department of Clinical Epidemiology, Cabrini Institute,
810	Melbourne, Victoria, Australia
811	18. Associate Professor Justine Naylor
812	Affiliation: Whitiam Orthopaedic Research Centre, Ingham Institute for Applied
813	Medical Research, South West Sydney Clinical School, The University of New South
814	Wales Sydney, Sydney, NSW, Australia
815	19. Professor Richard de Stelger
810	Affiliation: Department of Surgery, Epworth Healthcare, University of Melbourne,
81/ 010	Melbourne, Victoria, Australia
818	20. Associate Professor Ilana Ackerman
819	Amiliation: Department of Epidemiology and Preventive Medicine, Monash
820	University School of Public Health and Preventive Medicine, Melbourne, Victoria,
821	Australia
822	21. ASSOCIATE PROTESSOR SAM AGIE
823	Amiliation: St. George and Sutherland Clinical School, The University of New South
824	wales Sydney, Sydney, NSW, Australia

825	22. Ms Michelle I	Lorimer
826	Affiliation: So	uth Australian Health and Medical Research Institute, Adelaide, South
827	Australia, Aus	stralia
828	23. Mrs Durga Ba	istiras
829	Affiliation: Au	stralian Orthopaedic Association National Joint Replacement Registry,
830	Adelaide, Sou	ith Australia, Australia
831	24. Ms Kara Cash	man
832	Affiliation: So	uth Australian Health and Medical Research Institute, Adelaide, South
833	Australia, Aus	stralia
834	25. Professor lan	Harris (chief investigator)
835	Affiliations:	
836	iii.	Whitlam Orthopaedic Research Centre, Ingham Institute for Applied
837		Medical Research, South West Sydney Clinical School, The University
838		of New South Wales Sydney, Sydney, NSW, Australia
839	iv.	Institute of Musculoskeletal Health, School of Public Health, The
840		University of Sydney, Sydney, NSW, Australia
841		

842	ABSTRACT
843	
844	Background:
845	This <i>a priori</i> statistical analysis plan describes the analysis for CRISTAL.
846	
847	Methods:
848	CRISTAL (cluster-randomised, crossover, non-inferiority trial of aspirin compared to low
849	molecular weight heparin for venous thromboembolism prophylaxis in hip or knee
850	arthroplasty, a registry nested study) aims to determine whether aspirin is non-inferior to
851	low molecular weight heparin (LMWH) in preventing symptomatic venous
852	thromboembolism (VTE) following hip arthroplasty (HA) or knee arthroplasty (KA). The study
853	is nested within the Australian Orthopaedic Association National Joint Replacement
854	Registry. The trial was commenced in April 2019 and after an unplanned interim analysis,
855	recruitment was stopped (December 2020), as the stopping rule was met for the primary
856	outcome.
857	
858	The clusters comprised hospitals performing > 250 HA and/or KA procedures per annum,
859	whereby all adults (> 18 years) undergoing HA or KA were recruited. Each hospital was
860	randomised to commence with aspirin, orally, 85-150mg daily or LMWH (enoxaparin),
861	40mg, subcutaneously, daily within 24 hours postoperatively, for 35 days after HA and 14
862	days after KA. Crossover was planned once the registration target was met for the first arm.
863	
864	The primary end point is symptomatic VTE within 90 days. Secondary outcomes include
865	readmission, reoperation, major bleeding and death within 90 days, and reoperation and
866	patient-reported pain, function and health status at 6 months.
867	
868	The main analyses will focus on the primary and secondary outcomes for patients
869	undergoing elective primary total HA and KA for osteoarthritis. The analysis will use an
870	intention-to-treat approach with cluster summary methods to compare treatment arms. As
871	the trial stopped early, analyses will account for incomplete cluster crossover and unequal
872	cluster sizes.
873	
874	Conclusions:
875	This paper provides a detailed statistical analysis plan for CRISTAL.
876	
877	Trial registration: Australian and New Zealand Clinical Trials Registry, ID:
878	ACTRN12618001879257. Registered on 19/11/2018.
879	
880	
881	Key Words
882	Venous Thromboembolism, Hip Arthroplasty, Knee Arthroplasty, Aspirin, Low Molecular
883	Weight Heparin, Statistical Analysis Plan
884	

#### 885 MANUSCRIPT

#### 886

## 887 Background

888 Despite the increasing use of aspirin as a sole chemotherapeutic agent for symptomatic 889 venous thromboembolic event (VTE) prophylaxis following hip arthroplasty (HA) and knee 890 arthroplasty (KA) [1], there remains limited high quality comparative evidence for its safety 891 and efficacy. The majority of studies supporting the safety and efficacy of aspirin compared 892 to other agents, including low molecular weight heparin (LMWH), have been retrospective 893 or non-randomised [2-11]. The only randomised trials have been underpowered or have 894 used an alternative form of prophylaxis (e.g., LMWH or a novel oral anticoagulant (NOAC)) 895 for the immediate postoperative period following HA or KA prior to changing to aspirin for 896 extended prophylaxis, which does not reflect the way aspirin is used in Australia [12, 13]. 897 CRISTAL is a pragmatic, multicentre cluster-randomised, two period cross-sectional

- 898 crossover trial that aims to determine if aspirin is non-inferior to LMWH in the prevention of
- symptomatic VTE following HA and KA. It is nested within the Australian OrthopaedicAssociation National Joint Replacement Registry (AOANJRR).
- 901

902 The trial commenced in April 2019 and the estimated timeline for completion of patient

903 registration was 24 months. However, after an unplanned interim analysis in which the trial

stopping rule was met, patient registration was ceased in December 2020, resulting in

905 incomplete crossover. This statistical analysis plan details the planned analyses for CRISTAL

to facilitate transparency of data analysis. The CONSORT statement for cluster randomised

trials was referred to in preparation of this document [14]. The trial protocol has previouslybeen published [15].

## 909 STUDY OVERVIEW

910

## 911 Ethics

912 Ethics approval was granted from all relevant central, lead ethics committees involved and

all participating hospitals, as outlined in the published trial protocol [15]. The trial is

914 registered with the Australian New Zealand Clinical Trials Registry

915 (ACTRN12618001879257p) and is endorsed by the Australia and New Zealand

- 916 Musculoskeletal (ANZMUSC) Clinical Trials Network.
- 917

# 918 Participating Hospitals and Patient Registration

- 919 The clusters in CRISTAL were defined as hospitals where hip and knee arthroplasty
- 920 procedures were performed. Hospitals were eligible for recruitment provided they agreed

921 to follow the trial protocol and if they performed greater than 250 HA and/or KA procedures

- 922 per annum. There were 31 hospitals (clusters) that were recruited.
- 923

924 Each recruited hospital was responsible for registering patients and complying with the trial

- 925 protocol. The AOANJRR routinely collects data pertaining to the procedure, patient age, sex,
- 926 American Society of Anaesthesiologists (ASA) class and body mass index (BMI) and death on
- all patients undergoing HA and KA procedures. Patient-reported outcomes are collected
- 928 through the electronic Clinical Trials Platform, which requires pre-operative registration of
- the patient onto the electronic system. All adult (age 18 and older) patients undergoing HA
- 930 or KA were eligible for registration into the study and eligible to receive the allocated study
- 931 drug, except for those who were already on long-term anticoagulation (specifically a NOAC,

warfarin or dual antiplatelet therapy (DAPT)) and those with a medical contraindication to
either drug, e.g., an allergy or a medical comorbidity such as thrombophilia that precluded
treatment with the study drug.

935

936 Patients who were not registered in the electronic Clinical Trials Platform will be included in

- 937 secondary analyses, as procedure information, demographics and mortality were still
- recorded even though the primary outcome and other patient-reported outcomes were notrecorded.
- 940

## 941 Intervention

942 Each hospital (cluster) was allocated to consecutive periods of a standard protocol of LMWH 943 and a standard protocol of aspirin as VTE prophylaxis, with the order being randomised. 944 Patients in the aspirin group received aspirin at 85-150mg once daily, orally for 35 days post 945 HA and for 14 days post KA, commencing within 24 hours of surgery. Patients in the LMWH 946 group received enoxaparin at 40mg once daily, subcutaneously for the same time periods, 947 with this dose reduced to 20mg for patients who weigh less than 50kg and for patients with 948 an estimated glomerular filtration rate (eGFR) of less than 30mL/min who are not on 949 dialysis. Other interventions that were standard across all sites were the intra- and post-950 operative use of intermittent pneumatic compression (IPC) calf devices until patients are 951 mobile, the use of compression stockings, and mobilisation offered on day 0 or day 1 952 postoperatively.

- 952
- 953 954

# 955 Randomisation and allocation

956 Study investigators have remained blinded to group allocation. All 31 participating hospitals 957 were randomised to commence with either LMWH or aspirin, in randomly permuted blocks 958 of size four by statisticians from the South Australian Health and Medical Research Institute 959 (SAHMRI), independent of study investigators. The randomisation sequence was generated 960 using an online application [16] and this was provided to an unblinded data manager from 961 SAHMRI. The hospital was then allocated to a treatment sequence by SAHMRI staff and this 962 information was provided to the AOANJRR (independent of study investigators), with the 963 site being informed of their allocated treatment arm the week prior to commencing initial 964 patient registration. Hospitals followed the designed protocol for patients for their allocated 965 treatment arm and were advised to crossover to the alternate treatment once the sample 966 size for the first treatment arm was met.

967

968 For clusters who did not reach the sample size for the first arm within 18 months of 969 commencement, crossover occurred prior to reaching the sample size so that an equal

970 number of patients could be registered in each arm within the study timeframe.

971

# 972 Evaluation of adherence to the study protocol and protocol deviations

At a hospital level, during the course of the trial each hospital was audited within the first month of each treatment arm to ensure they were complying with the trial protocol and to ensure each cluster received the intended allocated treatment. The audit consisted of the first 20 patients of each treatment arm. If a site had a compliance of less than 80%, the site

- 977 was educated on methods of improving protocol compliance and subsequently re-audited
- 978 until compliance to the protocol was above 80%.

979

- 980 Hospitals were also advised to inform trial co-ordinators of patients not receiving the
- 981 correct study drug or those patients who had the study drug withheld for greater than 48
- 982 hours due to side effects (e.g. allergy, excessive wound drainage or bleeding events). These
- 983 protocol deviations were recorded using the Clinical Trials Platform.
- 984

990

985

## 986 Outcome variables

- The primary outcome of the study is symptomatic VTE within 90 days of surgery. Secondaryoutcomes are:
- Deep vein thrombosis (DVT) only (total, below-knee and above-knee) within 90 days
  - Pulmonary embolism (PE) only within 90 days
- 991 Readmission related to the original surgery or associated treatment (including
   992 bleeding and VTE-related) within 90 days
- Reoperation on the same joint within 90 days and within 6 months of surgery
- Major bleeding events within 90 days defined as bleeding events resulting in
   readmission, reoperation or death
- 996 Death within 90 days
- 997 Change in patient-reported pain, function and health status measures as measured
   998 by the Oxford Hip Score (OHS), Oxford Knee Score (OKS), EQ-5D score and the EQ 999 VAS from baseline to 6 months postoperatively
- 1000
- 1001

1002 Outcome and demographic data were collected preoperatively (demographics, patient 1003 reported pain, function and health status) and at 90 days and 6 months postoperatively. 1004 Data for all primary and secondary outcomes are patient-reported (except for death). All 1005 patients who responded 'yes' to having experienced a VTE or a secondary operation within 1006 6 months had this result verified by AOANJRR staff through contact with treating doctors 1007 and hospitals. A random audit of 200 patients who did not report a VTE event was 1008 undertaken to detect the false negative reporting rate. All data collected for registered 1009 patients specific to CRISTAL have been outlined in the published protocol [15]. Mortality 1010 data were collected through linkage between the AOANJRR and the National Death Index. 1011

- 1012 In the published protocol [15], mortality was to be measured at 90 days and 6 months. Due 1013 to the lack of sensitivity in measuring VTE-related mortality at 6 months, and due to the lag 1014 in data availability for mortality, we will only analyse mortality at 90 days [17].
- 1015
- 1016

# 1017 **Power and sample size**

1018 For the sample size calculation in CRISTAL, we used an estimated overall event rate of 2% 1019 (based on the current available literature) [18, 19], a non-inferiority margin of 1% (based on 1020 clinician opinion and a recent randomised controlled trial) [12], i.e., an event rate of 2.5%

- 1021 for aspirin and 1.5% for LMWH, a power of 90% and a one-sided significance level of 0.025.
- 1022 For an individual randomised trial, this yields a sample size of 4,117 per treatment group or
- a total of 8,234 patients. For a cluster-randomised crossover trial with an intracluster
- 1024 correlation of 0.01, an interperiod correlation of 0.008 and 31 clusters, the required sample

- size is 11,160 patients, or 180 patients per arm for each cluster [20, 21]. However, due to
- 1026 the uncertainty surrounding the event rate and intracluster and interperiod correlations,
- 1027 loss to follow-up, uneven recruitment rates leading to unequal cluster sizes or clusters
- 1028 dropping out of the study, we aimed to register 251 patients eligible for the primary
- 1029 objective of the study, providing a total of 15,562 patients. This figure allowed for a
- 1030 maximum 27% reduction in the above sample size calculation [15], however, actual loss to
- 1031 follow-up was expected to be less than this.
- 1032
- 1033

## 1034 STATISTICAL ANALYSIS PLAN

1035	Patient Populations and Subgroups for Analyses				
1036	The total patient population for CRISTAL comprises all patients undergoing HA or KA at				
1037	participating institutions over the duration of the study, regardless of whether these				
1038	patients were registered or eligible to receive the study drug (defined as population 5, see				
1039	Figure 1).				
1040					
1041	Within this total population, the following populations will be used to form the basis of the				
1042	analyses:				
1043	<ul> <li>Registered patients undergoing any form of HA or KA (including partial or revision</li> </ul>				
1044	surgery, for any indication) regardless of eligibility to receive the study drug				
1045	(population 4)				
1046	<ul> <li>Registered patients undergoing any form of HA or KA (including partial or revision</li> </ul>				
1047	surgery, for any indication) who were eligible to receive the study drug (population				
1048	3)				
1049	Registered patients undergoing elective primary THA or TKA (for any indication) who				
1050	were eligible to receive the study drug (population 2)				
1051	<ul> <li>All registered patients undergoing elective primary THA or TKA for a recorded</li> </ul>				
1052	diagnosis of osteoarthritis (OA) who were eligible to receive the study drug				
1053	(population 1)				
1054					
1055	These populations are represented diagrammatically in Figure 1.				
1056					
1057					
1058					

#### 1059 **Figure 1.** Patient populations within CRISTAL



1095

1096

- 1097 Legend:
- 1098 Abbreviations: *HA* hip arthroplasty, *KA* knee arthroplasty, *THA* total hip arthroplasty, *TKA* total knee arthroplasty, *OA* 1099 osteoarthritis
- 1100 + Study drug excluded for patients who already on long-term anticoagulation (specifically a novel oral anticoagulant –
- 1101 NOAC, warfarin or dual antiplatelet therapy DAPT) and those who have a medical contraindication

1103 Each outcome (primary and secondary) will be assessed for populations 1, 2, 3 and 4 listed 1104 in Figure 1. Mortality will be assessed for all populations (including population 5). The primary objective of the study as outlined in the published protocol [15], was the analysis of 1105 1106 population 1 only (registered patients undergoing primary THA or TKA for a diagnosis of OA 1107 who are eligible to receive the study drug), as this was the focus of the sample size 1108 calculation. This population will remain the focus of the main analyses. 1109 1110 Population 1 was chosen as the focus of the main analysis as these patients represent the 1111 majority of patients undergoing HA or KA procedures and there are known differences in 1112 outcomes and co-morbidities with other diagnoses (e.g., fracture, tumour), which could 1113 confound the primary outcome [22]. 1114 1115 For the primary end point of VTE, the following subgroup analyses will be conducted within 1116 the corresponding populations listed: 1117 Type of joint replacement: primary THA compared to primary TKA – population 1 1118 Bilateral arthroplasty: patients undergoing simultaneous bilateral arthroplasty • 1119 compared to those who are not – population 1 1120 Revision arthroplasty: patients undergoing revision hip or knee arthroplasty 1121 compared to those undergoing primary arthroplasty - population 3 1122 Prior history of VTE: patients with a prior history of VTE compared to those without – 1123 population 1 1124 1125 1126 **Analysis principles** 1127 Data will be analysed according to the intention-to-treat principle with clusters analysed 1128 according to assigned group allocation. Although hospital and patient protocol deviations 1129 will be recorded, no as-treated analyses will be performed, as there are no verified data 1130 available to determine whether individual patients received the assigned study drug for the full period, given the pragmatic nature of the trial. The timing of analyses will be stratified 1131 1132 by follow-up time of the outcomes measured (90 days and 6 months). The difference in 1133 absolute risk for symptomatic VTE between each group and 95% confidence intervals (upper 1134 and lower) will be examined to determine if the non-inferiority margin is met. 1135 1136 Continuous variables will be summarised using standard measures of central tendency and 1137 dispersion, using either mean and standard deviation or median and interguartile range. 1138 Categorical variables will be summarised by frequencies and percentages. 1139 1140 Analyses will be performed using SAS version 9.4 (SAS Institute, Cary USA) and R (R 1141 Foundation for Statistical Computing Platform) version 4.0.2 or higher. 1142 1143 1144 Interim analysis 1145 An interim analysis was not initially planned, as both treatments are considered standard 1146 practice for VTE prophylaxis in Australia and the trial is investigating an adverse event as the 1147 primary outcome. However, due to concerns of an increased adverse event rate 1148 (symptomatic VTE and death) in one of the prophylaxis groups, a Data Safety Monitoring

1149 Board (DSMB) was convened one year into patient recruitment. The DSMB consisted of an

- 1150 orthopaedic surgeon, a haematologist and a statistician, all independent of the trial.
- 1151

The DSMB were advised by the Trial Management Committee (TMC) to conduct an interim analysis. In conjunction with the DSMB (prior to the interim analysis), the TMC applied the Haybittle-Peto stopping rule of a two-sided significance of 0.001 for the primary outcome in the population 1 [23, 24]. This stopping rule was chosen as it does not require adjustment of the significance threshold for the final analysis and allows further interim analyses using the same threshold (if required).

1158

After the first interim analysis (in September 2020), the DSMB recommended continuing the trial and performing a second interim analysis in November 2020. After reviewing the second interim analysis, the DSMB recommended ceasing patient recruitment as the stopping rule had been met. The study ceased recruiting patients in December 2020 and

1163 sites reverted to their usual VTE prophylaxis pathways.

1164

# 1165 *Methods used for Interim Analyses*

1166 Interim analyses were conducted for VTE and mortality within 90 days for population 1. To 1167 account for unequal cluster sizes, incomplete crossover or clusters which had not yet 1168 crossed over, a composite analysis was designed. For clusters which had crossed over, 1169 including with partial completion of the second period, the cluster weighted estimator 1170 intended for the primary outcome was used. Harmonic mean weighting when there are 1171 unequal cluster sizes has been shown to improve precision and 95% confidence interval 1172 coverage compared with unweighted or inverse variance estimates [25, 26]. Clusters which 1173 had not crossed over were analysed using the cluster period summaries, weighted by cluster 1174 size, in a parallel design approach, i.e., as if it were a cluster randomised trial without 1175 crossover. Estimates for the two approaches were combined using inverse variance weights 1176 to provide a final estimate. Confidence intervals were constructed using the Haybittle-Peto 1177 boundary of 0.001.

1178

# 1179 Data integrity

1180 Integrity of data will be checked prior to conducting the final analysis. The data set will be 1181 checked for errors, omissions and double data entry. These will be resolved prior to 1182 commencing the analysis in consultation with the data management plan [15].

1183

# 1184 Blinding

1185 The DSMB were blinded to treatment allocation (groups in the interim analyses were 1186 labelled A and B). All researchers involved in the preparation of this analysis plan will have 1187 no access to trial data broken down by treatment allocation for the final statistical analysis. 1188 Once data integrity checks have been conducted, a blind review to quantify missing data of 1189 the entire dataset will be conducted and any final amendments to the statistical analysis 1190 plan will be made before the database is locked. During analysis and interpretation, group 1191 allocation will be masked by dummy group names and the true allocation will be unmasked 1192 only after the final statistical report has been completed and interpretation has been agreed 1193 to by the writing group and minuted. 1194

#### 1196 Methods for handling missing data

1197 Multiple imputation using chained equations will be used to account for missing data. The imputation model will use auxiliary variables gathered from routine AOANJRR data 1198 1199 (including age, sex, baseline health, pain and function, diagnosis and surgical factors), as 1200 well as cluster and period effects. One hundred datasets will be imputed at the patient level, 1201 then each dataset will be analysed using the main analysis method with cluster summaries 1202 and combined using Rubin's rules. If there is any possibility of bias due to perfect prediction 1203 of rare outcomes such as VTE [27] or imputing values out of range for bounded variables 1204 such as pain scores or EQ5D [28], multiple imputation using chained equations will not be 1205 performed. Since the most likely reason for loss to follow-up is difficulty in contacting 1206 patients postoperatively (rather than association with treatment assignment or outcome), 1207 missing data will be assumed to be missing at random.

1208

1209 As a further sensitivity analysis for the primary outcome only, inverse probability weighting, 1210 where the complete cases are weighted by the inverse probability of being complete case 1211 will also be used to account for missing data. Inverse probability weighting has an advantage 1212 over multiple imputation when there are large blocks of missing data with either observed 1213 values for all variables or missing values for the majority of the variables, for example, pre-1214 operative pain and function scores [29]. The inverse probability weights will be used to 1215 produce weighted cluster summaries, which will be analysed using the main analysis method, with cluster sizes calculated as the sum of the inverse probability weights. 1216

1217 1218

#### 1219 Trial profile and baseline characteristics

1220 The flow of participating hospitals (including losses and exclusions) through the study and 1221 participating patients will be reported in line with the Consolidated Standards of Reporting 1222 Trials (CONSORT) statement (Figures 2 and 3).

1223

1224 Baseline characteristics of participating clusters, including number of annual HA and KA 1225 procedures performed in the year prior to trial commencement, hospital type (public or 1226 private hospital), initial treatment allocation and whether the hospital achieved crossover are shown in Table 1. This table also shows the number of patients registered for population 1227 1228 1 (the population used for the sample size calculation) by each participating hospital and the 1229 overall registration rate of each hospital will be presented as outlined. The overall 1230 registration rate describes the number of registered patients undergoing any HA or KA 1231 procedure (population 4) divided by the number of patients who underwent any HA or KA 1232 procedure over the duration of the trial at participating hospitals (regardless of whether 1233 they were registered – population 5). Hospital names will remain anonymous. 1234 1235 Descriptive statistics of baseline patient characteristics for all registered patients eligible to

- 1236 receive the study drug (population 3) will be presented by prophylaxis group (Table 2).
- 1237
- 1238



#### 1239 Figure 2. Flowsheet of participating hospitals



**Figure 3.** Flowsheet of patients within population 1⁺

**Table 1.** Number of registered patients for population  $1^{\dagger}$  by treatment group and overall 

registration rate for each participating hospital 

Hospital	Number of HA and KA Procedures performed	Insurance Status	Initial Treatment Allocation	Crossover Achieved	LMWH Group (Population 1)	Aspirin Group (Population 1)	Overall Registration Rate (combined for
- 1	(2018)						both groups)
1					n	n	%
2					n	n	%
3					n	n	%
4					n	n	%
5					n	n	%
6					n	n	%
7					n	n	%
8					n	n	%
9					n	n	%
10					n	n	%
11					n	n	%
12					n	n	%
13					n	n	%
14					n	n	%
15					n	n	%
16					n	n	%
17					n	n	%
18					n	n	%
19					n	n	%
20					n	n	%
21					n	n	%
22					n	n	%
23					n	n	%
24					n	n	%
25					n	n	%
26					n	n	%
27					n	n	%
28					n	n	%
29					n	n	%
30					n	n	%
31					n	n	%
Total					n	n	%

⁺ Population 1 refers to registered patients undergoing primary THA or TKA for a diagnosis of OA, who are eligible to receive the study

1294

drug

**Table 2.** Baseline patient characteristics for all registered patients eligible to receive study

1299 drug (population 3), according to treatment allocation

	LMWH	Aspirin
	(n = X)	(n = X)
Age (years)	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
BMI (kg/m ² )	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
Male sex	n (%)	n (%)
ASA Grading		
1	n (%)	n (%)
2	n (%)	n (%)
3	n (%)	n (%)
4	n (%)	n (%)
5	n (%)	n (%)
Previous venous thromboembolism	n (%)	n (%)
Long term anticoagulant use		
Aspirin	n (%)	n (%)
Other single antiplatelet	n (%)	n (%)
Joint replacement		
THA	n (%)	n (%)
ТКА	n (%)	n (%)
Other HA	n (%)	n (%)
Other KA	n (%)	n (%)
Bilateral	n (%)	n (%)
Type of surgery		
Primary total	n (%)	n (%)
Primary partial	n (%)	n (%)
Primary resurfacing	n (%)	n (%)
Revision	n (%)	n (%)
Other	n (%)	n (%)
Indication		
Osteoarthritis	n (%)	n (%)
Inflammatory	n (%)	n (%)
Avascular Necrosis	n (%)	n (%)
Fracture	n (%)	n (%)
Other	n (%)	n (%)
Prosthesis		
Cemented	n (%)	n (%)
Hybrid	n (%)	n (%)
Uncemented	n (%)	n (%)
Pain and Function		
Oxford Hip Score	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
Oxford Knee Score	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
EQ-5D	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n
EQ-VAS	xx.x (xx.x – xx.x), n	xx.x (xx.x – xx.x), n

Abbreviations: BMI body mass index, ASA American society of anaesthesiologists

#### 1305 MAIN ANALYSES

1306

The main analyses will include the primary and secondary outcomes for registered patients
eligible to receive the study drug undergoing THA or TKA for a diagnosis of OA (population
1). In addition, the primary and secondary outcomes will be analysed for populations 2, 3
and 4. Mortality will also be analysed for population 5 (see "Additional analyses" below).

1312 For the primary outcome, the analysis will test the between-group difference of cases 1313 developing a symptomatic VTE within 90 days for non-inferiority of aspirin at a margin of 1314 1%. Cluster summary methods will be used to estimate the treatment effect using cluster 1315 level differences. These have been shown to be appropriate for cluster-randomised 1316 crossover trials with rare outcomes, and the intracluster and interperiod correlation 1317 coefficients expected in this trial. The crossover difference per cluster is the mean outcome 1318 for the intervention period minus the mean outcome for the control period. In a linear 1319 regression of cluster differences on treatment sequence, the treatment effect estimate is 1320 the intercept. To account for potential unequal cluster sizes, a cluster size weighted 1321 estimator will be used with harmonic mean weights of the number of patients in the two 1322 periods, which was the same method used in the interim analyses for incomplete crossover 1323 [25, 26]. Treatment effects will be presented as absolute risk differences and 95% 1324 confidence intervals will be examined to determine whether the non-inferiority margin has 1325 been met and whether superiority of one drug can be concluded. The primary outcome will 1326 be presented in Table 3 and Figure 4 will be used to demonstrate whether the non-1327 inferiority margin has been met for the population 1 [30].

1328

1329

1330 The secondary outcomes will investigate non-VTE complications (death, re-operation, 1331 readmission and major bleeding events) within 90 days, and reoperation and patient-related 1332 pain and function at 6 months (OHS, OKS, EQ-5D and EQ-VAS). Cluster summary methods 1333 will be used within an intention-to treat approach. For binary outcomes, the cluster mean 1334 per period will be the proportion of patients who had the outcome, while for continuous 1335 outcomes such as pain score, the cluster mean will be the mean outcome. Treatment 1336 effects will be presented as absolute risk differences and 95% confidence intervals to 1337 determine if one treatment is superior to the alternative. Results for the secondary 1338 outcomes in population 1 will be presented in tabular form (Table 3) and results for the 1339 primary and secondary outcomes in populations 2, 3 and 4 in Table 4.

1340

1341 Due to the early stopping of the trial, final analyses of the primary and secondary outcomes 1342 will use the same composite method as the interim analyses which accounts for clusters 1343 with incomplete as well as no crossover, with 95% confidence intervals. No bias is expected 1344 from early stopping if the patients included in the trial are not systematically different from 1345 later patients who would have been included after the trial was stopped. Our composite 1346 analysis method accounts for clusters which either had incomplete crossover and or did not 1347 crossover. However, the lower sample size and unequal cluster sizes decreases the precision 1348 of the outcome estimates. Since we used cluster weighted estimates to account for unequal 1349 cluster sizes and increased the initial sample size by 27% above the minimum required, the 1350 loss of precision will be mitigated. The trial was stopped based on the Haybittle-Peto

- 1351 boundary of 0.001, so we anticipate the final analysis using 95% confidence intervals will
- have sufficient power.

#### **Table 3.** Outcomes for population 1

Outcome	LMWH	Aspirin	Absolute Risk	95% Confidence	p-value
	Allocation	Allocation	Difference	Interval	
	(n = X)	(n = X)			
Any Venous thromboembolism	n (%)	n (%)	х	X – X	
Type of Venous thromboembolism					
Pulmonary embolism	n (%)	n (%)	Х	X – X	
Deep venous thrombosis	n (%)	n (%)	Х	X – X	
Both Pulmonary embolism and	n (%)	n (%)	Х	X – X	
deep venous thrombosis					
Above knee deep venous	n (%)	n (%)	Х	X – X	
thrombosis					
Below knee deep venous	n (%)	n (%)	Х	X – X	
thrombosis					
Death	n (%)	n (%)	Х	X – X	
Re-operation (90d)	n (%)	n (%)	х	X – X	
Reoperation (6 months)	n (%)	n (%)	х	X – X	
Re-admission	n (%)	n (%)	х	X – X	
Major Bleeding	n (%)	n (%)	х	X – X	
Pain and Function (median and					
IQR) [†]			х	X – X	
Oxford Hip Score	X (X – X)	X (X – X)	Х	X – X	
Oxford Knee Score	X (X – X)	X (X – X)	Х	X – X	
EQ-5D	X (X – X)	X (X – X)	Х	X – X	
EQ-VAS	X (X – X)	X (X – X)			

1357 [†] at 6 months

1360 Figure 4. Between group change in overall 90-day symptomatic VTE rate and non-inferiority

1361 margin. The dotted line represents the non-inferiority margin



1365 Table 4. Outcomes	for populations 2, 3 and 4
------------------------	----------------------------

All primary THA/TA for receive study drug (population 2)       Apv Venous thromboembolism       n (%)       n (%)       x       X - X         Import of the study drug (population 2)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 2)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 2)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 2)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 2)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 3)       n (%)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 3)       n (%)       n (%)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 3)       n (%)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 3)       n (%)       n (%)       n (%)       n (%)       n (%)       x       X - X         Import of the study drug (population 3)       n (%)       n (%)       n (%	Population	Outcome	LMWH Allocation (n = X)	Aspirin Allocation (n = X)	Absolute Risk Difference	95% Confidence Interval	p-value
any diagnosis eligible to receive study drug (population 2)            Type of Vessues theoreboards in the periods of the periods thromobals and the periods and	All primary THA/TKA for	Any Venous thromboembolism	n (%)	n (%)	х	X – X	
(Federe study Orig) (population 2)         Public production 2)         n (%)         n (%)         n (%)         x x x x x x x x x x x x x x x x x x x	any diagnosis eligible to	Type of Venous thromboembolism					
jubulation 12         Deep remose thrombosis         n (%)         n (%)         n (%)         X         X         X           Above base deep venous         n (%)         n (%)         n (%)         X         X         X           Above base deep venous         n (%)         n (%)         n (%)         X         X         X           But monthosis         n (%)         n (%)         n (%)         X         X         X           But monthosis         n (%)         n (%)         n (%)         X         X         X           Resperation (% out)         n (%)         n (%)         n (%)         X         X         X           Resperation (% out)         n (%)         n (%)         n (%)         X         X         X           Plan and function (median and (%)         n (%)         n (%)         n (%)         X         X         X           (population 3)         Resperation (% out)         n (%)         n (%)         X         X         X           (population 3)         n (%)         n (%)         n (%)         X         X         X           (population 3)         n (%)         n (%)         n (%)         n (%)         X         X <td>receive study drug</td> <td>Pulmonary embolism</td> <td>n (%)</td> <td>n (%)</td> <td>х</td> <td>X – X</td> <td></td>	receive study drug	Pulmonary embolism	n (%)	n (%)	х	X – X	
Both Pulmonary embolism and deep venous trombools Botow knee deep venous         n (%)         n (%)         X         X - X           Above knee deep venous         n (%)         n (%)         x         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Both fine deep venous         n (%)         n (%)         X         x - x           Didit fine Score         X [X - X]         X [X - X]         X [X - X]         X [X - X]           Close thromboenbolism         n (%)         n (%)         X         x - x           Pain and function (median and (Q))         n (%)         x - x         x - x           Close thromboenbolism         n (%)         n (%)         X         x - x           Pain and function (median and (Q))         n (%)	(population 2)	Deep venous thrombosis	n (%)	n (%)	х	X – X	
dec.         dec.         n (%)         n (%)         n (%)         X         X - X           Hornbook         Bolow have deep venous         n (%)         n (%)         n (%)         X         X - X           Hornbook         Bolow have deep venous         n (%)         n (%)         n (%)         X         X - X           Hornbook         Resperation (Bol)         n (%)         n (%)         n (%)         X         X - X           Resperation (Bol)         n (%)         n (%)         n (%)         X         X - X           Major Bleeding         n (%)         n (%)         n (%)         X         X - X           Outor of this Score         X (X - X)         X (X - X)         X (X - X)         X - X           Column (X cae Score         X (X - X)         X (X - X)         X (X - X)         X - X           Point on thromboembolism         n (%)         n (%)         X         X - X           Depoint on thromboembolism         n (%)         n (%)         X         X - X           Depoint on thromboembolism         n (%)         n (%)         X         X - X           Below kee deep venous         n (%)         n (%)         X         X - X           Deparation (Bol)		Both Pulmonary embolism and	n (%)	n (%)	х	X – X	
Above kree deep venous         n (%)         n (%)         x         x - x           Below inne deep venous         n (%)         n (%)         n (%)         x         x - x           Below inne deep venous         n (%)         n (%)         n (%)         x         x - x           Below inne deep venous         n (%)         n (%)         n (%)         x         x - x           Below inne deep venous         n (%)         n (%)         n (%)         x         x - x           Respectation (month)         n (%)         n (%)         n (%)         x         x - x           Pain and function (median and (Q)'         x         x - x         x - x         x - x           Oxford (hee Score         x (x - x)         x (x - x)         x (x - x)         x (x - x)           (population 3)         Pay ef Venous thromboembolism         n (%)         n (%)         x - x           Polimoary embolism and deep venous         n (%)         n (%)         x - x         x - x           Both Pulmoary embolism and deep venous thromboembolism and deep venous thromboembolis <td></td> <td>deep venous thrombosis</td> <td></td> <td>6.0</td> <td></td> <td></td> <td></td>		deep venous thrombosis		6.0			
Interface         In (%)         n (%)         x         x - x           Death         n (%)         n (%)         n (%)         x         x - x           Reoperation (3001)         n (%)         n (%)         n (%)         x ×         x - x           Reoperation (3001)         n (%)         n (%)         n (%)         x ×         x - x           Major Bleeding         n (%)         n (%)         n (%)         x ×         x - x           Oldrof Hig Score         x (x - x)         x (X - x)         x (X - x)         x (X - x)           COSOF (X (x - x))         x (X - x)         x (X - x)         x (X - x)         x - x           COSOF (X (x - x))         x (X - x)         x (X - x)         x (X - x)         x - x           COSOF (X (x - x))         x (X - x)         x (X - x)         x - x         -           COSOF (X (x - x))         x (X - x)         x (X - x)         x - x         -           (population 3)         Any Vencus thromboembolism         n (%)         n (%)         x - x           Pail and function (median and (Q))         n (%)         n (%)         x - x         -           Death         n (%)         n (%)         n (%)         x - x         -		Above knee deep venous	n (%)	n (%)	Х	X – X	
Itrombotis         Itrom         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N		thrombosis Below knee deen venous	n (%)	n (%)	v	<b>X</b> – <b>X</b>	
Destination         Destination         n (%)         n (%)         X         X - X           Resperation (Bod)         n (%)         n (%)         n (%)         X         X - X           Readination         n (%)         n (%)         n (%)         X         X - X           Major Bleeding         n (%)         n (%)         n (%)         X         X - X           Oxford Hip Score         X (X - X)         X (X - X)         X         X - X           Quidof Knes Score         X (X - X)         X (X - X)         X         X - X           All HA/KA eligible to receive study drug (population 3)         more thromboembolism         n (%)         n (%)         X         X - X           Any Venues thromboembolism         n (%)         n (%)         X         X - X         X           Gopulation 3)         Type of Venues thromboembolism         n (%)         n (%)         X         X - X           Multipopulation biolis         n (%)         n (%)         x (X - X)         X - X         X           All HA/KA including study drug (population 3)         from thrombosis         n (%)         n (%)         X         X - X           Both function receive study drug (population 4)         from bosis         n (%)         n (%)<		thrombosis	11 (70)	11 (70)	~	X - X	
Reoperation (shorth)         n (%)         n (%)         n (%)         x         x-x           Readmission         n (%)         n (%)         n (%)         x         x-x           Major Sileding         n (%)         n (%)         x         x-x           Oxford Kines Sore         X (x-x)         X (x-x)         X (x-x)         x         x-x           Bit Ad/Ka eligible to receive study drug (population 3)         any Venous thromboemboils         n (%)         n (%)         X         x-x           Bit Ad/Ka eligible to receive study drug (population 3)         any Venous thromboemboils         n (%)         n (%)         x         x-x           Bit Pulmoary embolism drug orgo wenous thromboemboils         n (%)         n (%)         n (%)         x         x-x           Above fixed deap venous         n (%)         n (%)         n (%)         x         x-x           Above fixed deap venous         n (%)         n (%)         n (%)         x         x-x           Above fixed deap venous         n (%)         n (%)         n (%)         x         x-x           Above fixed deap venous         n (%)         n (%)         n (%)         x         x-x           Above fixed deap venous         n (%)         n (%)		Death	n (%)	n (%)	Х	X – X	
Resperation (somoths) Resperation (somoths) Major Bleeding Pain and functon (median and UQN)' Oxford Hip Score EQ-SDn (%) n (%) N (%)n (%) N (%)X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 		Re-operation (90d)	n (%)	n (%)	х	X – X	
Re-admission         n (%)         n (%)         n (%)         n (%)         x ×         x ×           Poin and Function (median and IQR)         Define the score         X (X × X)         X (X × X)         X         X × ×           Oxford Hip score         X (X × X)         X (X × X)         X         X × ×           Oxford Hip score         X (X × X)         X (X × X)         X         X × ×           EG VAS         X (X × X)         X (X × X)         X         X × ×           EG VAS         X (X × X)         X (X × X)         X         X × ×           (population 3)         Phy remous thromboenholism         n (%)         n (%)         X         X × ×           (population 3)         Phy remous thromboenholism         n (%)         n (%)         X         X × ×           Both Pulmonary embolism and         n (%)         n (%)         X         X × ×           Both Pulmonary embolism         n (%)         n (%)         X         X × ×           Both Pulmonary embolism         n (%)         n (%)         X         X × ×           Both Pulmonary embolism         n (%)         n (%)         X         X × ×           Both Pulmonary embolism         n (%)         n (%)         X		Reoperation (6 months)	n (%)	n (%)	х	X – X	
4) Major Bleeding Pain and Function (median and IQR)'' Point of Function (median and IQR)'' Point of Function (median and IQR)'' Point func		Re-admission	n (%)	n (%)	х	X – X	
Pain and Function (median and LQR)'         X         X         X         X           Difford Hip Score         X (X - X)         X (X - X)         X         X - X           Difford Kip Score         X (X - X)         X (X - X)         X         X - X           All Ha/XA eligible to receive study of the score         Any Venous thromboembolism         n (%)         n (%)         X         X - X           All Ha/XA eligible to receive study for the score         Any Venous thromboembolism         n (%)         n (%)         X         X - X           Pain car y enclosin         n (%)         n (%)         n (%)         X         X - X           Deep venous thromboesin         n (%)         n (%)         n (%)         X         X - X           Above knee deep venous         n (%)         n (%)         n (%)         X         X - X           Death         n (%)         n (%)         n (%)         X         X - X           Re-admission         n (%)         n (%)         n (%)         X         X - X           Pain and Function (median and IQR)'         n (%)         n (%)         X         X - X           Overof the score         X (X - X)         X (X - X)         X         X - X           Itaylis bl		Major Bleeding	n (%)	n (%)	Х	X – X	
Output in pactive         X (X - X)		Pain and Function (median and IQR)			Y	X X	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Oxford Knee Score	$\mathbf{x} (\mathbf{x} - \mathbf{x})$	$\mathbf{x} (\mathbf{x} - \mathbf{x})$	X	X – X X – X	
Image: Second		EO-5D	(X - X) X (X - X)	(X - X)	X	X - X X - X	
All H4/K4 lightle to receive study drug (population 3)         Any Venous thromboembolism Putmonary embolism of the performance of the performance study drug (population 3)         Any Venous thromboembolism Putmonary embolism and equipment of the performance study drug (population 3)         (Any Venous thromboembolism of the performance study drug (population 4)         (Any Venous thromboembolism of the performance study drug (population (population 4)         (Any Venous thromboembolism of the performance study drug (population (population 4)         (Any Venous thromboembolism of the performance study drug (population (population 4)         (Any Venous thromboembolism of the performance study drug (population (population (population 4)         (Any Venous thromboembolism of the performance study drug (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population (population		EQ-VAS	X(X - X)	X(X - X)	x	X – X	
			X(X - X)	X(X - X)			
Type of Venous thromboolism (population 3)         Type of Venous thrombosis Deep venous thrombosis deep venous thrombosis         n (%) n (%)         n (%) n (%)         X         X - X           Both Pulmonary embolism and deep venous thrombosis         n (%)         n (%)         N (%)         X         X - X           Both Pulmonary embolism and deep venous thrombosis         n (%)         n (%)         N (%)         X         X - X           Botow knee deep venous thrombosis         n (%)         n (%)         N (%)         X         X - X           Death         n (%)         n (%)         n (%)         N (%)         X         X - X           Reoperation (6 months)         n (%)         n (%)         n (%)         n (%)         X         X - X           Pain and Function (median and IQR) ¹ n (%)         n (%)         n (%)         X         X - X           Oxford Knee Score         X (X - X)         X (X - X)         X - X         X - X           Oxford Knee Score         X (X - X)         X (X - X)         X - X           All HA/KA including study         n (%)         n (%)         N (%)         X - X           Pulmoary embolism         n (%)         n (%)         X (X - X)         X - X           drug exclusion (population 4)	All HA/KA eligible to	Any Venous thromboembolism	n (%)	n (%)	x	X – X	
All HA/KA including study  drug exclusion (population  d)  All Versus thromboolism and  deep venous thromboolism and  difference  deep venous thromboolism and  deep venous thromboolism  difference  deep venous thromboolis  deference  de	(population 3)	Type of Venous thromboembolism					
All HA/KA including study differentiation of the set		Pulmonary embolism	n (%)	n (%)	Х	X – X	
$ 4) \begin{tabular}{ c c c c c } both from bots is and begin equal to the product of the produ$		Deep venous thrombosis	n (%)	n (%)	X	X – X	
All HA/KA including study drug exclusion (population of deep venous hromboembolism of n(%) n(%) x x - x + x + x + x + x + x + x + x + x		Both Pulmonary embolism and	n (%)	n (%)	×	X - X	
All HA/KA including study drug exclusion (population		Above knee deep venous	n (%)	n (%)	х	X – X	
$ \begin{array}{ c c c c c } & Below knee deep venous n(\%) & n(\%) & n(\%) & X & X-X \\ \hline \best{barrow} \\ \hline b$		thrombosis					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Below knee deep venous	n (%)	n (%)	х	X – X	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		thrombosis					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Death	n (%)	n (%)	X	X – X	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Re-operation (90d)	n (%)	n (%)	X	X – X	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Reoperation (6 months)	n (%)	n (%)	X	X - X X - Y	
$\begin{array}{ c c c c c } \hline Pain and Function (median and IQR)^{\dagger} & I & I & I & I & I & I & I & I & I & $		Major Bleeding	n (%)	n (%)	x	X – X X – X	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Pain and Function (median and IQR) [†]	(/0/	(///	~	~ ~	
$ \begin{array}{ c c c c c } \hline \begin{array}{ c c c } \hline Oxford Knee Score & X (X - X) & X (X - X) & X & X & X & X & X \\ EQ-5D & X (X - X) & X (X - X) & X & X & X - X \\ \hline X (X - X) & X (X - X) & X & X & X - X \\ \hline & X (X - X) & X (X - X) & X & X - X \\ \hline \hline & X (X - X) & X (X - X) & X & X - X \\ \hline \hline & Any Venous thromboembolism & n (\%) & n (\%) & X & X - X \\ \hline & Any Venous thromboembolism & n (\%) & n (\%) & X & X - X \\ \hline & Pulmonary embolism & n (\%) & n (\%) & X & X - X \\ \hline & Deep venous thrombosis & n (\%) & n (\%) & X & X - X \\ \hline & Deep venous thrombosis & n (\%) & n (\%) & X & X - X \\ \hline & Above knee deep venous \\ & Above knee deep venous \\ & thrombosis & & & & & & & & & \\ \hline & Deen h & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Deen h & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Deen h & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Deen h & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Reoperation (90d) & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Reoperation (90d) & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Reoperation (90d) & n (\%) & n (\%) & n (\%) & X & X - X \\ \hline & Pain and Function (median and IQR)^{\dagger} \\ \hline & Pain and Function (median and IQR)^{\dagger} \\ \hline & Pain and Function (median and IQR)^{\dagger} \\ \hline & Oxford Knee Score & X (X - X) & X (X - X) & X & X - X \\ \hline & EQ-VAS & X (X - X) & X (X - X) & X & X - X \\ \hline & X (X - X) & X (X - X) & X & X - X \\ \hline & X (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X (X - X) & X & X - X \\ \hline & Y (X - X) & X & X (X - X) & X & X - X \\ \hline & Y (X - X) & X & X - X & X$		Oxford Hip Score			х	X – X	
$ \begin{array}{ c c c c c c } \hline EQ-5D & X (X-X) & X (X-X) & X & X-X \\ EQ-VAS & X (X-X) & X (X-X) & X & X-X \\ \hline X (X-X) & X (X-X) & X & X-X \\ \hline X (X-X) & X (X-X) & X & X-X \\ \hline \\ \hline All HA/KA including study drug exclusion (population 4) \\ \hline 4) \\ \hline \\ All HA/KA including study drug exclusion (population 4) \\ \hline \\ 4) \\ \hline \\ \hline \\ All HA/KA including study drug exclusion (population 4) \\ \hline \\ 4) \\ \hline \\ \hline \\ All HA/KA including study drug exclusion (population 4) \\ \hline \\ \hline \\ 4) \\ \hline \\ \hline \\ All HA/KA including study drug exclusion (population 4) \\ \hline \\ 4) \\ \hline \\ \hline \\ \hline \\ 4) \\ \hline \\ \hline \\ \hline \\ 4) \\ \hline \\ 60 \\ \hline \\ 60 \\ 10 \\ \hline \\ 60 \\ 10 \\ \hline \\ 60 \\ 10 \\ 10 \\ 10 \\ \hline \\ 60 \\ 10 \\ 10 \\ 10 \\ \hline \\ 60 \\ 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline \\ 10 \\ \hline \\ 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ $		Oxford Knee Score	X (X – X)	X (X – X)	х	X – X	
EQ-VASX (X - X) X (X - X)X (X - X) X (X - X)X - X X (X - X)All HA/KA including study drug exclusion (population 4)Any Venous thromboembolismn (%)n (%)XX - XType of Venous thromboembolism Pulmonary embolismn (%)n (%)XX - XDeep venous thrombosis deep venous thrombosisn (%)n (%)XX - XBoth Pulmonary embolism and deep venous thrombosisn (%)n (%)XX - XBoth Pulmonary embolism and deep venous thrombosisn (%)n (%)XX - XBoth Pulmonary embolism and deep venous thrombosisn (%)n (%)XX - XBoth Pulmonary embolism Horombosisn (%)n (%)XX - XDeath Reoperation (90d)n (%)n (%)NX - XReadmission Pain and Function (median and IQR)* Oxford Hip Scoren (%)n (%)NX - XOxford Knee Score EQ-VASX (X - X)X (X - X)X (X - X)X - XEQ-VASX (X - X)X (X - X)X (X - X)X - X		EQ-5D	X (X – X)	X (X – X)	х	X – X	
All HA/KA including study drug exclusion (population 4)Any Venous thromboembolism n (%) $x (x-x)$ $x (x-x)$ Type of Venous thromboembolism Pulmonary embolism Deep venous thrombosis Above knee deep venous thrombosis $n (\%)$ $n (\%)$ $x$ $x-x$ Both Pulmonary embolism and deep venous thrombosis Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous thrombosis $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous thrombosis $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous thrombosis $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Below knee deep venous $n (\%)$ $n (\%)$ $x$ $x-x$ Re-operation (90d) $n (\%)$ $n (\%)$ $x$ $x-x$ R		EQ-VAS	X (X - X)	X (X – X)	х	X – X	
All hey KA including study drug exclusion (population 4) Type of Venous thromboembolism Pulmonary embolism Deep venous thrombosis Above knee deep venous thrombosis Below knee deep venous thrombosis Death Re-operation (90d) Reoperation (90d) Reoperation (90d) Re-operation (median and IQR) [†] Oxford Hip Score Oxford Hip Score Coff Knee Score Coff Kne	All HA/KA including study	Any Vanaus thromboomholism	X(X-X)	X(X-X)	v	× ×	
4) Type of vertices thromboenhousin Pulmonary embolism in (%) n (%) X X X - X Deep venous thrombosis n (%) n (%) X X X - X Both Pulmonary embolism and n (%) n (%) X X X - X deep venous thrombosis Above knee deep venous n (%) n (%) X X - X thrombosis Death n (%) n (%) X X - X thrombosis Death n (%) n (%) X X - X Re-operation (90d) n (%) n (%) X X - X Reoperation (90d) n (%) n (%) X X - X Readmission n (%) n (%) X X - X Readmission n (%) n (%) X X - X Readmission n (%) n (%) X X - X Najor Bleeding n (%) n (%) X X - X Pain and Function (median and IQR) [†] Oxford Hip Score X (X - X) X (X - X) X X - X EQ-VAS X (X - X) X (X - X) X X - X X (X - X) X (X - X) X X - X	drug exclusion (population	Tune of Veneus thromboombolism	11 (70)	11 (70)	^	x - x	
Lender, FunctionIn $(Y)$ In $(Y)$ <t< td=""><td>4)</td><td>Pulmonary embolism</td><td>n (%)</td><td>n (%)</td><td>x</td><td>X – X</td><td></td></t<>	4)	Pulmonary embolism	n (%)	n (%)	x	X – X	
Both Pulmonary embolism and deep venous thrombosisn (%)n (%)x $X - X$ Above knee deep venousn (%)n (%)X $X - X$ thrombosisn (%)n (%)X $X - X$ Below knee deep venousn (%)n (%)X $X - X$ thrombosisn (%)n (%)X $X - X$ Deathn (%)n (%)X $X - X$ Re-operation (90d)n (%)n (%)n (%)XReoperation (6 months)n (%)n (%)X $X - X$ Major Bleedingn (%)n (%)x $X - X$ Pain and Function (median and IQR) ⁺ $N (X - X)$ $X (X - X)$ $X - X$ Oxford Hip Score $X (X - X)$ $X (X - X)$ $X - X$ EQ-VAS $X (X - X)$ $X (X - X)$ $X - X$ EQ-VAS $X (X - X)$ $X (X - X)$ $X - X$		Deep venous thrombosis	n (%)	n (%)	x	X – X	
$ \begin{array}{ c c c c c } \hline deep \ venous \ thrombosis \\ Above \ knee \ deep \ venous \\ thrombosis \\ \hline Below \ knee \ deep \ venous \\ thrombosis \\ \hline Death & n(\%) & n(\%) & X & X-X \\ \hline Death & n(\%) & n(\%) & X & X-X \\ Reoperation (90d) & n(\%) & n(\%) & X & X-X \\ Reoperation (6 \ months) & n(\%) & n(\%) & X & X-X \\ Readmission & n(\%) & n(\%) & X & X-X \\ Readmission & n(\%) & n(\%) & X & X-X \\ Najor \ Bleeding & n(\%) & n(\%) & X & X-X \\ Pain \ and \ Function (median \ and \ IQR)^{\dagger} & & & \\ Oxford \ Hip \ Score & X & (X-X) & X & (X-X) \\ EQ-5D & X & (X-X) & X & (X-X) & X & X-X \\ EQ-VAS & X & X(X-X) & X & (X-X) & X & X-X \\ \hline \end{array} $		Both Pulmonary embolism and	n (%)	n (%)	x	X – X	
Above knee deep venous thrombosis Below knee deep venous thrombosisn (%)n (%)XX - XDeathn (%)n (%)XX - XRe-operation (90d)n (%)n (%)XX - XReoperation (6 months)n (%)n (%)XX - XRe-admissionn (%)n (%)XX - XMajor Bleedingn (%)n (%)XX - XPain and Function (median and IQR) ⁺ NN (X - X)X - XEQ-5DX (X - X)X (X - X)XX - XEQ-VASX (X - X)X (X - X)XX - XKe-2VASX (X - X)X (X - X)XX - X		deep venous thrombosis					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Above knee deep venous	n (%)	n (%)	х	X – X	
Death thrombosisIf (%)If (%)XX = XDeathn (%)n (%)NX = XRe-operation (90d)n (%)n (%)XX = XReoperation (6 months)n (%)n (%)XX = XRe-admissionn (%)n (%)XX = XMajor Bleedingn (%)n (%)XX = XPain and Function (median and IQR) ⁺ Oxford Hip ScoreX (X = X)X (X = X)X = XEQ-SDX (X = X)X (X = X)X = XEQ-VASX (X = X)X (X = X)X = XX (X = X)X (X = X)X (X = X)X = XX (X = X)X (X = X)X (X = X)X = XX (X = X)X (X = X)X (X = X)X = X		thrombosis Relevi know doon venous	n (%)	n (%)	v	× ×	
Deathn (%)n (%)XX - XRe-operation (90d)n (%)n (%)n (%)XX - XReoperation (6 months)n (%)n (%)n (%)XX - XRe-admissionn (%)n (%)XX - XMajor Bleedingn (%)n (%)XX - XPain and Function (median and IQR) ⁺ Oxford Hip ScoreX (X - X)XX - XEQ-5DX (X - X)X (X - X)XX - XEQ-VASX (X - X)X - X		thrombosis	11 (70)	11 (70)	^	~ ~ ~	
Re-operation (90d)n (%)n (%)xx - xReoperation (6 months)n (%)n (%)n (%)Xx - xRe-admissionn (%)n (%)xx - xMajor Bleedingn (%)n (%)Xx - xPain and Function (median and IQR) ⁺ Oxford Hip ScoreX (X - X)X (X - X)X - xEQ-5DX (X - X)X (X - x)X - xEQ-VASX (X - X)X (X - x)X - x		Death	n (%)	n (%)	х	X – X	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Re-operation (90d)	n (%)	n (%)	x	X – X	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Reoperation (6 months)	n (%)	n (%)	х	X – X	
Major Bleeding         n (%)         n (%)         X         X - X           Pain and Function (median and IQR) [†] X         X - X           Oxford Hip Score         X         X - X         X         X - X           Oxford Knee Score         X (X - X)         X (X - X)         X - X           EQ-5D         X (X - X)         X (X - X)         X - X           EQ-VAS         X (X - X)         X (X - X)         X - X		Re-admission	n (%)	n (%)	х	X – X	
Pain and Function (median and IQR)'         X         X - X           Oxford Hip Score         X (X - X)         X (X - X)           Oxford Knee Score         X (X - X)         X (X - X)           EQ-5D         X (X - X)         X (X - X)           EQ-VAS         X (X - X)         X (X - X)           X (X - X)         X (X - X)         X - X           X (X - X)         X (X - X)         X - X		Major Bleeding	n (%)	n (%)	х	X – X	
Oxford Hip score         X         X - X           Oxford Knee Score         X (X - X)         X (X - X)         X         X - X           EQ-5D         X (X - X)         X (X - X)         X         X - X           EQ-VAS         X (X - X)         X (X - X)         X         X - X           X         X - X         X (X - X)         X (X - X)         X - X		Pain and Function (median and IQR)				V V	
EQ-5D $X(X-X)$ $X(X-X)$ $X$ $X-X$ EQ-VAS $X(X-X)$ $X(X-X)$ $X$ $X-X$			X(X - X)	X(X - X)	X	X - X X - Y	
EQ-VAS $X(X-X)$ $X(X-X)$ $X$ $X-X$ $X(X-X)$ $X(X-X)$ $X(X-X)$ $X$		EO-5D	X(X - X)	X(X - X)	x	X – X	
$\mathbf{x} (\mathbf{x} - \mathbf{x})$ $\mathbf{x} (\mathbf{x} - \mathbf{x})$		EQ-VAS	X(X - X)	X(X - X)	x	X – X	
			X (X – X)	X (X – X)			

1367 [†] at 6 months

## 1370 Subgroup Analyses

- 1371 Subgroup analyses for the primary outcome (treatment group differences by subgroup) will
- 1372 include THA or TKA, bilateral or unilateral procedures, a prior history of VTE or not for
- 1373 population 1, and primary arthroplasty or revision arthroplasty for population 3.
- 1374
- 1375 To assess treatment effects for each subgroup separately, cluster summaries will be
- 1376 produced for each subgroup. An interaction term between treatment group and subgroup
- 1377 (e.g., THA/TKA, bilateral/unilateral) will be added to the model for the primary outcome.
- 1378 The treatment differences for each subgroup will be assessed for non-inferiority. Since the
- trial was stopped early, the same composite method for the primary outcome and interimanalyses will be used.
- 1381

## 1382 Sensitivity analyses

- 1383 Sensitivity analyses will be performed to determine: (a) the effect of high-volume
- arthroplasty sites; (b) sites with high and low overall registration rates; (c) sites that
- 1385 required multiple compliance audits; and (d) the effect of patients who take long-term
- aspirin therapy on the results of the analyses for the primary outcome in population 1. Thesame methods for the main analyses will be used.
- 1388

## 1389 Order of planned analyses

- 1390 Analyses will be performed in the following order:1391 Interim analyses of population 1
- Primary and secondary outcomes for population 1
- Subgroup analyses for population 1
- Primary and secondary outcomes for populations 2, 3 and 4
- Subgroup analyses of population 3
- Sensitivity analyses in population 1
- 1397
- 1398

## 1399 ADDITIONAL ANALYSES

1400

#### 1401 Mortality Analysis

1402 In addition to analysing between-group mortality for populations 1, 2, 3 and 4, the between-1403 group 90-day mortality will be analysed for two further populations:

- All patients undergoing HA or KA over the duration of the study at participating
  hospitals, regardless of whether they were registered (total population described
  above, population 5)
- 1407
  4. All patients undergoing elective THA or TKA over the duration of the study at
  1408
  1409
  1409
  population 5)

1410

- Analysing these additional populations will assess the effect of implementing the VTE
   prophylaxis protocol on mortality at an institutional/departmental level (the unit of
- 1413 randomisation), on an intention-to-treat basis.
- 1414

## 1415 Sub-Studies

- 1416 Data from this trial will be used to form the basis of sub-studies. These will include a sub-
- 1417 study comparing rates of persistent wound drainage between LMWH and aspirin groups at
- 1418 two participating sites and a sub-study investigating rates of post-hospital discharge
- 1419 compliance to either study drug.
- 1420
- 1421
- 1422

## 1423 Conclusions

- 1424 CRISTAL aims to provide much needed definitive evidence about the effectiveness and
- safety of aspirin compared to LMWH in preventing symptomatic VTE following HA or KA.
- 1426 This statistical analysis plan details the study's planned analyses, including modifications to
- 1427 intended analyses to account for early stopping of the trial.
- 1428

1429

## 1431 **DECLARATIONS**

#### 1432

## 1433 Ethics Approval

1434 Ethics approval was granted by the Sydney Local Health District (Royal Prince Alfred Zone) 1435 Human Research and Ethics Committee, which is a lead ethics committee in Australia 1436 (approval number X18-0424) prior to study commencement. Site-specific approvals for each 1437 participating hospital were granted from the following ethics committees prior to study 1438 commencement: Calvary John James Memorial Hospital Australian Capital Territory (3-2019 1439 CRISTAL), Mid-North Coast Local Health District New South Wales (NSW – SSA/19/NCC/41), 1440 South Western Sydney Local Health District (NSW, SSA/10/LPOOL/22), Sydney Local Health 1441 District (NSW, SSA/19/RPAH/12, SSA/18/RPAH/762), Ramsay Hospital Research Foundation 1442 (NSW, HREC/18/RPAH/603), South Eastern Sydney Local Health District (NSW, 19/G/028, 1443 18/G/338), Nepean Blue Mountains Local Health District (NSW, SSA/19/NEPAN/11), 1444 Northern Sydney Local Health District (NSW, RESP/19/027, RESP/19/028), Metro North 1445 Hospital and Health Service (Queensland, HREC/18/RPAH/603), University of South Australia 1446 (SA – 201215), Calvary Health Care Adelaide (SA, 19-CHREC-F001), Southern Adelaide Local 1447 Health Network (SA, HREC/18/RPAH/603), Bendigo Health Victoria (SSA/48255/BHCG-2019), 1448 Barwon Health (18/246), Peninsula Health Victoria (SSA/48255/PH-2019), Western Health 1449 Victoria (48255), St John of God Health Care Victoria (1540), South Metropolitan Health 1450 Western Australia (WA – Western Australia, RGS000001358), North Metropolitan Health 1451 (WA – RGS0000001358), Sir Charles Gardiner Hospital (WA – RGS0000001358) and 1452 Launceston General Hospital Tasmania (H0017903).

1453

## 1454 **Consent for publication**

1455 Not applicable.

## 1456 Availability of data and materials

- 1457 The datasets during and/or analysed during the current study will be made available from
- 1458 the corresponding author on reasonable request

## 1459 **Competing interests**

1460 The authors declare that they have no competing interests

## 1461 Funding

- 1462 The study is being funded by a four-year Medical Research Futures Fund (MRFF Australian
- 1463 Federal Government) grant. The funding was not provided with any conditions and the
- 1464 MRFF has no authority over the design of the study or collection, management, analysis or
- 1465 interpretation of data or the writing of manuscripts for submission. No industry funding or
- 1466 other sources of funding are being used for this trial.

## 1467 Authors' contributions

- 1468 All authors listed have contributed to this protocol and the ICMJE guidelines were consulted
- 1469 for determining authorship. VS, IAH, RB, SG, SA, JMN, RdS, NP, INA, ML, DB, KC and TLK
- 1470 were responsible for the planning of the trial, protocol development and writing, TLK and

- 1471 NP were responsible for the description of the statistical analyses used. All authors
- 1472 reviewed the final version of this manuscript prior to submission.
- 1473
- 1474

## 1475 Acknowledgements

- 1476 Not applicable.
- 1477

1478	REFER	ENCES
1479		
1480	1.	Mirkazemi C, Bereznicki LR, Peterson GM. Comparing Australian orthopaedic
1481		surgeons' reported use of thromboprophylaxis following arthroplasty in 2012 and
1482		2017. BMC Musculoskelet Disord. 2019;20:57.
1483	2.	Adam SS, McDuffie JR, Lachiewicz PF, Ortel TL, Williams JW, Jr. Comparative
1484		effectiveness of new oral anticoagulants and standard thromboprophylaxis in
1485		patients having total hip or knee replacement: a systematic review. Ann Intern Med.
1486		2013;159:275-84.
1487	3.	Gomez-Outes A, Terleira-Fernandez AI, Suarez-Gea ML, Vargas-Castrillon E.
1488		Dabigatran, rivaroxaban, or apixaban versus enoxaparin for thromboprophylaxis
1489		after total hip or knee replacement: systematic review, meta-analysis, and indirect
1490		treatment comparisons. BMJ. 2012;344:e3675.
1491	4.	Cao YB. Zhang JD. Shen H. Jiang YY. Rivaroxaban versus enoxaparin for
1492		thromboprophylaxis after total hip or knee arthroplasty: a meta-analysis of
1493		randomized controlled trials. Eur J Clin Pharmacol. 2010;66:1099-108.
1494	5.	Cohen A, Drost P, Marchant N, Mitchell S, Orme M, Rublee D, et al. The efficacy and
1495		safety of pharmacological prophylaxis of venous thromboembolism following
1496		elective knee or hip replacement: systematic review and network meta-analysis. Clin
1497		Appl Thromb Hemost. 2012;18:611-27.
1498	6.	Harenberg J, Marx S, Dahl OE, Marder VJ, Schulze A, Wehling M, et al. Interpretation
1499		of endpoints in a network meta-analysis of new oral anticoagulants following total
1500		hip or total knee replacement surgery. Thromb Haemost. 2012;108:903-12.
1501	7.	Neumann I, Rada G, Claro JC, Carrasco-Labra A, Thorlund K, Akl EA, et al. Oral direct
1502		Factor Xa inhibitors versus low-molecular-weight heparin to prevent venous
1503		thromboembolism in patients undergoing total hip or knee replacement: a
1504		systematic review and meta-analysis. Ann Intern Med. 2012;156:710-9.
1505	8.	Turun S, Banghua L, Yuan Y, Zhenhui L, Ying N, Jin C. A systematic review of
1506		rivaroxaban versus enoxaparin in the prevention of venous thromboembolism after
1507		hip or knee replacement. Thromb Res. 2011;127:525-34.
1508	9.	Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD. Does aspirin
1509		have a role in venous thromboembolism prophylaxis in total knee arthroplasty
1510		patients? J Arthroplasty. 2010;25:1053-60.
1511	10.	Jameson SS, Baker PN, Charman SC, Deehan DJ, Reed MR, Gregg PJ, et al. The effect
1512		of aspirin and low-molecular-weight heparin on venous thromboembolism after
1513		knee replacement: a non-randomised comparison using National Joint Registry Data.
1514		J Bone Joint Surg Br. 2012:94:914-8.
1515	11.	Jameson SS. Charman SC. Gregg PJ. Reed MR. van der Meulen JH. The effect of
1516		aspirin and low-molecular-weight heparin on venous thromboembolism after hip
1517		replacement: a non-randomised comparison from information in the National Joint
1518		Registry, J Bone Joint Surg Br. 2011:93:1465-70.
1519	12.	Anderson DR. Dunbar M. Murnaghan J. Kahn SR. Gross P. Forsythe M. et al. Aspirin
1520		or Rivaroxaban for VTE Prophylaxis after Hip or Knee Arthroplasty. N Engl I Med.
1521		2018:378:699-707.
1522	13.	Anderson DR, Dunbar MJ, Kahn SR. Aspirin versus low-molecular-weight heparin
1523		after total hip arthroplasty. Ann Intern Med. 2013;159:502-3.

1524	14.	Campbell MK, Piaggio G, Elbourne DR, Altman DG, Group C. Consort 2010 statement:
1525		extension to cluster randomised trials. BMJ. 2012;345:e5661.
1526	15.	Sidhu VS, Graves SE, Buchbinder R, Naylor JM, Pratt NL, de Steiger RS, et al. CRISTAL:
1527		protocol for a cluster randomised, crossover, non-inferiority trial of aspirin
1528		compared to low molecular weight heparin for venous thromboembolism
1529		prophylaxis in hip or knee arthroplasty, a registry nested study. BMJ Open.
1530		2019;9:e031657.
1531	16.	[https://www.sealedenvelope.com]
1532	17.	Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous
1533		thromboembolism after major joint surgery. J Bone Joint Surg Br. 2006;88:386-91.
1534	18.	Kulshrestha V, Kumar S. DVT prophylaxis after TKA: routine anticoagulation vs risk
1535		screening approach - a randomized study. J Arthroplasty. 2013;28:1868-73.
1536	19.	Bawa H, Weick JW, Dirschl DR, Luu HH. Trends in Deep Vein Thrombosis Prophylaxis
1537		and Deep Vein Thrombosis Rates After Total Hip and Knee Arthroplasty. J Am Acad
1538		Orthop Surg. 2018;26:698-705.
1539	20.	Giraudeau B, Ravaud P, Donner A. Sample size calculation for cluster randomized
1540		cross-over trials. Stat Med. 2008;27:5578-85.
1541	21.	Kelly T-L, Pratt N. A note on sample size calculations for cluster randomised
1542		crossover trials with a fixed number of clusters. Stat Med. 2019;38:3342-5.
1543	22.	AOA. Australian Orthopaedic Association National Joint Replacement Registry
1544		Annual Report. 2019;
1545	23.	Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, et al. Design and
1546		analysis of randomized clinical trials requiring prolonged observation of each patient.
1547		I. Introduction and design. Br J Cancer. 1976;34:585-612.
1548	24.	Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J
1549		Radiol. 1971;44:793-7.
1550	25.	Forbes AB, Akram M, Pilcher D, Cooper J, Bellomo R. Cluster randomised crossover
1551		trials with binary data and unbalanced cluster sizes: application to studies of near-
1552		universal interventions in intensive care. Clin Trials. 2015;12:34-44.
1553	26.	Turner RM, White IR, Croudace T, Group PIPS. Analysis of cluster randomized cross-
1554		over trial data: a comparison of methods. Stat Med. 2007;26:274-89.
1555	27.	White IR, Daniel R, Royston P. Avoiding bias due to perfect prediction in multiple
1556		imputation of incomplete categorical variables. Comput Stat Data Anal.
1557		2010;54:2267-75.
1558	28.	Rodwell L, Lee KJ, Romaniuk H, Carlin JB. Comparison of methods for imputing
1559		limited-range variables: a simulation study. BMC Med Res Methodol. 2014;14:57.
1560	29.	Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing data in statistical
1561		analyses: multiple imputation is not always the answer. Int J Epidemiol.
1562		2019;48:1294-304.
1563	30.	Schumi J, Wittes JT. Through the looking glass: understanding non-inferiority. Trials.
1564		2011;12:106.
1565		
1566		
1567		
1568		
1569		
1570		

1571	<u>CRIST</u>	AL: Aspirin or LMWH for VTE Prophylaxis After Hip or Knee Arthroplasty
1572		
1573	Histor	ical Summany of Amondments for Statistical Analysis Dian
1574	HISLOF	ical Summary of Amendments for Statistical Analysis Plan
1576		
1577	Previo	us Statistical Analysis (In Protocol): 29 October 2020
1578		
1579	Updat	ed in Initial Statistical Analysis Plan: 14 May 2021
1580		DRAFRIT 4. Changes from Droto and to Initial Statistical Analysis Diag
1581	AWEN	DIVIENT 1 – Changes from Protocol to Initial Statistical Analysis Plan
1583		
1584	1.	ITEM: <u>STUDY OVERVIEW – Outcome Variables.</u> Change in time point for secondary
1585		outcome of mortality as written in protocol
1586		CHANGE: Mortality to be measured at 90 days only, not at 90 days and 6 months
1587		<b>RATIONALE:</b> Due to the lack of sensitivity in measuring VTE-related mortality at 6
1588		months and due to the lag in data availability for mortality, we changed the analysis
1589		to measure mortality at 90 days only
1590	2.	ITEM: MAIN ANALYSES
1591		CHANGE: Inclusion of composite analysis method to account for incomplete
1592		crossover
1593		<b>RATIONALE:</b> After the interim analyses demonstrated that the stopping rule had
1594		been met, a composite analysis method was required given that a number of sites
1595		had not completed crossover
1596	3.	ITEM: MAIN ANALYSES – Subgroup Analyses.
1597		CHANGE: Addition of patients with a prior history of VTE or not and of patients on
1598		long-term single antiplatelet therapy as subgroup analyses (not previously in study
1599		protocol)
1600		<b>RATIONALE:</b> Given this data was collected preoperatively, the senior author (IAH),
1601		corresponding author (VS), lead statistician (TLK) and senior statistician (NP) decided
1602		to add these subgroup analyses
1603	4.	ITEM: MAIN ANALYSES – Subgroup Analyses.
1604		CHANGE: Clarification of the method used for subgroup analyses (using summaries
1605		by cluster and subgroup and an interaction term)
1606		<b>RATIONALE:</b> Methods used for subgroup analyses added to initial version of
1607		statistical analysis plan
1608	5.	ITEM: MAIN ANALYSES – Sensitivity Analyses.
1609		<b>CHANGE:</b> Addition of sensitivity analyses to determine: (a) the effect of high-volume
1610		arthroplasty sites; (b) sites with high and low overall registration rates; (c) sites that
1611		required multiple compliance audits and method used for sensitivity analyses
1612		provided (same as subgroup analyses)

1613 RATIONALE: To determine if the results for the primary outcome were consistent 1614 amongst sites despite variations in the above parameters. Addition of methods used 1615 for sensitivity analyses 1616 6. ITEM: MAIN ANALYSES - Order of Analyses 1617 CHANGE: Order of planned analyses changed to include interim analyses and 1618 specification of the Haybittle-Peto threshold 1619 RATIONALE: The initial statistical analyses in the protocol did not include the interim 1620 analysis and this was included in the initial version of the statistical analysis plan 1621 1622 1623

1624			
1625	Previous Statistical Analysis Plan (Initial): 14 May 2021		
1626			
1627	Updated in Statistical Analysis Plan (Final): 20 July 2021		
1628			
1629		DMENT 2 - Changes from Initial Statistical Analysis Plan to Final Statistical Analysis	
1631	Plan		
1632			
1633			
1634	1.	ITEM: STATISTICAL ANALYSIS PLAN – Methods used for Interim Analyses	
1635		CHANGE: Addition of using harmonic mean weighting as a method to account for	
1636		unequal cluster sizes	
1637		<b>RATIONALE:</b> Given early trial cessation and unequal cluster sizes, further information	
1638		provided on how unequal cluster sizes were analysed	
1639	2.	ITEM: STATISTICAL ANALYSIS PLAN – Methods for handling missing data	
1640		<b>CHANGE:</b> Addition of methods used for multiple imputation, "The imputation model	
1641		will use auxiliary variables gathered from routine AOANJRR data (including age, sex,	
1642		baseline health, pain and function, diagnosis and surgical factors), as well as cluster	
1643		and period effects. One hundred datasets will be imputed at the patient level, then	
1644		each dataset will be analysed using the main analysis method with cluster	
1645		summaries and combined using Rubin's rules."	
1646		RATIONALE: More in-depth description provided to account for clustering	
1647	3.	ITEM: STATISTICAL ANALYSIS PLAN – Methods for handling missing data	
1648		<b>CHANGE:</b> Addition of the use of inverse probability weighting as a sensitivity analysis	
1649		for the primary outcome to handle missing data	
1650		RATIONALE: An additional method (to that of multiple imputation) to account for	
1651		missing data	
1652	4.	ITEM: STATISTICAL ANALYSIS PLAN – Trial and baseline characteristics	
1653		<b>CHANGE:</b> Addition of demographic information to Table 1 for participating hospitals	
1654		(clusters) – number of joint replacements performed in year preceding trial,	
1655		insurance status	
1656		<b>RATIONALE:</b> Prior to this, there was no demographic description of participating	
1657		clusters, only numbers registered by each hospital	
1658	5.	ITEM: MAIN ANALYSES: Analyses of primary and secondary outcomes	
1659		CHANGE: Description of composite methods used (cluster weighted estimates) for	
1660		primary and secondary outcomes	
1661		RATIONALE: To explain methods used to mitigate bias and any possible loss of	
1662		precision from sites that had incomplete crossover or did not crossover	
1663			