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1. Experimental setup 

 

Figure S1. Schematic diagram of the experimental setup. 

 

Definition and calculations of key reaction performances: 

In the reaction, the conversion of CO2 is defined as: 

 

XCO2
(%) = 

CO2 converted (mol)

CO2 input (mol)
×100                                 (1) 

 

The conversion of H2 is defined as: 

 

XH2
(%) = 

H2 converted (mol)

H2 input (mol)
×100                                   (2) 

 

The selectivity of CO and CH4 is calculated as: 

 

SCO(%) = 
CO produced (mol)

CO2 converted (mol)
×100                                     (3) 

 

SCH4
(%) = 

CH4 produced (mol)

CO2 converted (mol)
×100                                    (4) 

 

 



 

The CO yield and CO formation rate are defined as: 

 

YCO(%) = XCO2
× SCO × 100                                                          (5) 

 

rCO(mmol h
-1

) = 
FCO2

 (mL min-1) × XCO2
(%) × SCO(%) × 60

22.4 (L mol
-1

)
                 (6) 

 

The energy efficiency for CO production is calculated as: 

 

EECO (mmol kJ
-1) = 

CO produced mol s
-1

Power (W)
                                   (7) 

 

The carbon balance is defined as: 

 

CB (%)=
CH4 produced (mol) + CO produced (mol)

CO2 converted (mol)
×100                          (8) 

 

2. Kinetic analysis  

To understand the effect of CO2 and H2 on the plasma-catalytic CO2 reduction, kinetic 

analysis was carried out to provide insights into the governing rate expression for the 

rate of CO production. According to previous studies [1], the power-law expression for 

the CO production rate in the plasma-catalytic CO2 hydrogenation can be described by 

Eq. 9. Therefore, the reaction orders (a for CO2 and b for H2) can be determined by 

changing the partial pressure of one reactant (CO2 or H2) in excess of the other reactant 

(H2 or CO2). The partial pressure of H2 (or CO2) supplied was reduced and replaced 

with Ar to keep a constant total flow rate of 120 mL min-1 when keeping a constant CO2 

(or H2) fraction and pressure (discharge power: 20 W, packing material: 0.5 g). The 

ratio of CO2/(Ar + H2) was kept at 2:1 when varying pH2, while the ratio of (Ar + 

CO2)/H2 was maintained at 1:5 when changing pCO2 (keeping the conversion of H2 or 

CO2 lower than 15%). It is known that Ar can participate in gas-phase reactions; 



 

however, the contribution of Ar could be minimized due to the low partial pressures of 

the reactants in this study. This assumption was also considered in the previous study 

of Barboun et al. [1]. 

 

rCO = k p
CO2

a p
H2

b                                                     (9) 

 

3. Characterization of the Pd-ZnO interface 

Figure S2a shows the binding energies of Zn 2p3/2 shifted from ∼1021.6 eV to ∼1021.0 

eV after the reduction of the catalyst, demonstrating the strong metal-support 

interaction (SMSI) between Pd and ZnO, which can partially reduce surface Zn2+ 

species to form a ZnOx overlayer with the generation of abundant oxygen vacancies [2, 

3]. As shown in Figure S2b, three peaks at ~531, ~532 and ~533 eV can be assigned to 

surface lattice oxygen (α, Olatt), chemisorbed oxygen species on oxygen vacancies (β, 

Oads), and hydroxyl-like groups (γ, OOH), respectively [4]. Compared to the calcined 

Pd/ZnO catalyst, the portion of peak β increased from 10.1% to 15.3% after the 

reduction of the catalyst, indicating more oxygen vacancies were formed on ZnOx of 

the reduced Pd/ZnO catalyst due to the SMSI between Pd and ZnO (Table S1). 

Moreover, the HRTEM images of the reduced Pd/ZnO confirm the formation of a ZnOx 

overlayer on the catalyst surface (Figure S3). 

 



 

 

Figure S2. (a) Zn 2p and (b) O 1s XPS spectra of calcined and reduced Pd/ZnO 

catalysts. 

 

Figure S3. HRTEM images of the reduced Pd/ZnO catalyst. 

 

4. Reaction performance of CO2 hydrogenation 

 

Figure S4. Effect of reaction temperature on thermal catalytic CO2 hydrogenation over 
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Pd/ZnO at ambient pressure (gas hourly space velocity (GHSV) = 2200 h−1, H2/CO2 = 

3:1, total flow rate = 40 mL min−1). 

 

Figure S5. Effect of Pd loading on plasma-catalytic CO2 hydrogenation (gas hourly 

space velocity (GHSV) = 2200 h−1, H2/CO2 = 3:1, total flow rate = 40 mL min−1, 

discharge power = 20 W). 
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Figure S6. Effect of total flow rate (a, c) and discharge power (b, d,) on the reaction 

performance (CO2 conversion and energy efficiency for CO production) in the plasma 

CO2 hydrogenation with and without packing (H2/CO2 = 3:1; fixed discharge power = 

20 W for a and c; fixed total flow rate = 40 mL min-1 for b and d). 

 

 

Figure S7. Stability test of CO2 hydrogenation with and without packing (H2/CO2 = 

3:1, total flow rate = 40 mL min−1, discharge power = 20 W) 
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5. Electrical and spectroscopic diagnostics  

      

 

Figure S8. (a) Electrical signals; (b) Q-U Lissajous figures of the discharges. The peak-

to-peak applied voltage was 9.2 kV, 11.2 kV and 11.5 kV for Plasma Only, Plasma + 

ZnO and Plasma + Pd/ZnO, respectively (H2/CO2 = 3:1, total flow rate = 40 mL min−1, 

discharge power = 20 W). 
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Figure S9. Emission spectra of the plasma CO2 hydrogenation with and without 

packing (H2/CO2 = 3:1, total flow rate = 40 mL min−1, discharge power = 20 W). 

 

 

6. In situ FTIR characterization of the catalyst surface under plasma conditions 

 

Figure S10. Scheme of the custom-designed in situ DBD/FTIR reactor for the analysis 
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of plasma-assisted surface reactions. 

 

 

Figure S11. Photo of the in situ DBD/FTIR reactor for the analysis of plasma-assisted 

surface reactions. 

 

 

 

Figure S12. In situ FTIR spectra of ZnO and Pd/ZnO during the plasma-catalytic H2 

hydrogenation of surface adsorbed CO2 (Corresponding to Figures 4b and 4d at 13 

min). 
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7. Carbon balance 

 

Figure S13. Carbon balance of plasma CO2 hydrogenation with and without packing 

(H2/CO2 = 3:1, total flow rate = 40 mL min−1, discharge power = 20 W) 

 

8. Catalyst characterization results 

The XRD patterns of the calcined, reduced and spent catalysts only exhibited ZnO 

peaks, suggesting that Pd nanoparticles (NPs) could be highly dispersed on the catalyst 

surface (Figures S14-S15). Figure S16 shows the XPS analysis of the surface Pd 

chemical state of Pd/ZnO. The calcined Pd/ZnO catalyst showed a peak of Pd2+ at 336.2 

eV, while the XPS of the reduced and spent Pd/ZnO exhibited a peak at 335.1 eV, which 

can be associated with the formation of Pd NPs on the ZnO surfaces [5]. The BET 

specific surface area of calcined, reduced and spent Pd/ZnO catalysts was 24.9, 18.4 

and 16.2 m2/g, respectively (Figure S17 and Table S4). Compared to the calcined 

Pd/ZnO, the decreased specific surface area of the reduced and spent Pd/ZnO catalyst 

can be ascribed to the presence of Pd NPs on the catalyst surface. The catalyst 
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characterization showed that the properties (pore size, crystal structure, Pd surface state 

and morphology) of the Pd/ZnO catalyst were almost unchanged after 6 h plasma 

reaction (Figures S14-S19). 



 

 

Figure S14. STEM-HAADF image of (a) calcined, (b) reduced and (c) spent Pd/ZnO. 
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Figure S15. XRD patterns of calcined, reduced and spent Pd/ZnO catalysts. 

 

 

20 30 40 50 60 70 80

 

In
te

n
s
it
y
 (

a
.u

.)

2 Theta (degree)

Fresh

 

In
te

n
s
it
y
 (

a
.u

.)
Reduced















 

 

In
te

n
s
it
y
 (

a
.u

.)

Spent



ZnO (No.01-089-7102)

（）

344 342 340 338 336 334 332 330

3d3/2

In
te

n
s
it
y
 (

a
.u

.)

Binding Energy (eV)

 Fresh 336.2 eV

3d5/2

In
te

n
s
it
y
 (

a
.u

.)

 Reduced 335.1 eV

 

In
te

n
s
it
y
 (

a
.u

.)

 Spent 335.1 eV

（）



 

Figure S16. XPS spectra of Pd 3d for calcined, reduced and spent Pd/ZnO catalysts. 

 

 

Figure S17. (a) Nitrogen adsorption-desorption isotherms and (b) the pore diameter of 

calcined, reduced and spent Pd/ZnO catalysts. 
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Figure S18. SEM images of (a1-a2) calcined, (b1-b2) reduced and (c1-c2) spent 

Pd/ZnO catalysts. 

 

Figure S19. Elemental mapping and their corresponding SEM images of the (a1-a3) 

calcined, (b1-b3) reduced and (c1-c3) spent Pd/ZnO. 

 

 



 

 

 

 

 

 

 

 

Table S1. XPS data of calcined (cal) and reduced (red) Pd/ZnO. 

Sample 

  α   β   γ   

  

B.E.a 

(eV) 

Content 

(%) 

  

B.E.a 

(eV) 

Content 

(%) 

  

B.E.a 

(eV) 

Content 

(%) 

  

Pd/ZnO 

(cal) 

 530.3  81.6   531.9 10.1  532.5  8.3   

Pd/ZnO 

(red) 

 529.9 76.2  531.5  15.3   532.1  8.4   

 a Binding Energy (B.E.) 

 

 

 

Table S2. H2-TPD-MS analysis of ZnO and Pd/ZnO. 

Sample 

  α   β   γ   Total a 

  T (oC) I   T (oC) I   T (oC) I   I b 



 

ZnO  129.4  32.1   ——  419.2  76.9   109.0 

Pd/ZnO  92.4  47.2   221.7  100.0   411.0  228.7   461.2 

    147.8  85.3                  

a “Total” means the H2 desorption amount calculated by α + β + γ. 

b “I” means the amount of H2 desorption (determined by the peak area) normalized 

against the peak area (area intensity of 100) marked in Figure 2a. 

 

 

Table S3. CO2-TPD-MS analysis of ZnO and Pd/ZnO. 

Sample 

  α   β   γ   Total a 

  T (oC) I   T (oC) I   T (oC) I   I b 

ZnO  73.2  13.5   268.8  9.7   558.9  82.5   108.7 

  139.4  3.0          

Pd/ZnO  86.8  37.5   256.2  100.0   458.3  6.3   220.1 

    151.1  8.0    335.0  68.3            

a “Total” means the CO2 desorption amount calculated by α + β + γ. 

b “I” means the amount of H2 desorption (determined by the peak area) normalized 

against the peak area (area intensity of 100) marked in Figure 2b. 

 

Table S4. BET analysis of the Pd/ZnO catalysts 

Catalyst 
BET surface area Pore volume Pore diameter 

(m2/g) (cm3/g) (nm) 



 

Calcined 24.9 0.15 24.8 

Reduced 18.4 0.09 26.1 

Spent 16.2 0.10 26.6 
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