
Supplementary Methods 
Extended methods surrounding our approach for neoantigen prediction (SHERPA; used to 
generate our NBS values) and calling HLA allele-specific loss of heterozygosity (DASH) are 
detailed below. These data represent core inputs for the generation of NEOPS, which 
incorporates both of these values. 
 
Neoantigen prediction 
We developed SHERPA, an algorithm for predicting pan-allelic MHC-peptide binding and 
presentation using allele-specific immunopeptidomics data generated using mono-allelic cell 
lines. To model native presentation we employed HLA-null K562 parental cells with stably  
transfected HLA alleles. SHERPA combines data from 128 mono-allelic and 384 multi-allelic 
samples with publicly available immunoproteomics data and binding assay data to improve 
generalizability and reproducibility. Details of our methodology are described below, as well as in 
the manuscript associated with the work (preprint version available through bioRxiv, Pyke et al, 
2021) 

Immunopeptidomics using mono-allelic cell lines 

Experimental design 
All peptides under evaluation were derived from the MHC-I immunopeptidome, with work 
performed on both tumor tissue and mono-allelic cell lines. For tumor tissue, 12 samples were 
processed without controls or replicates. Approximately 5x109 cells from 28 different mono-
allelic cell lines were processed. Three biological replicates were required for each cell line. An 
HLA-null line was used as a negative control. Peptides from 8 of the cell lines were processed a 
single time, and peptides from the other 20 cell lines were divided and processed on the mass 
spectrometer twice (11 with CID only, 9 with both CID and EThcD). Publicly available peptides 
were also analyzed to compliment data obtained from cell line studies. Wald test and two-sided 
T tests were used to determine significance. 

Cell culture 
Mono-allelic cell lines were generated using Jump-In™ technology (Thermo Fisher Scientific) to 
stably transfect K562 parental cells with a single allele of interest. Optimized plasmids containing 
sequences for HLA, beta 2 microglobulin (B2M) and IRES promoter were synthesized for each 
allele (GeneArt). Cultured cells with confirmed plasmid integration were expanded to 500M cells. 
Cells were pelleted following confirmation of surface expression of target alleles using flow 
cytometry (using W6/32 antibody). Transfection experiments were conducted by Thermo Fisher 
Scientific.  

Immunoprecipitation of peptide-MHC complexes 
Pelleted cells were resuspended in octylthioglucoside lysis buffer. The cell lysate was then 
incubated overnight with W6/32 antibody immobilized on Protein A sepharose. Following a wash 
of the resin, MHC bound peptides were eluted using 0.1 M acetic acid, 0.1% TFA. 
Immunoprecipitation success was verified using ELISA (enzyme-linked immunosorbent assay) to 
confirm depletion of MHC Class I complex in post-IP samples. Immunoprecipitations were 
performed by Cayman Chemical. 



Peptide sequencing using LC-MS/MS 
Peptides were first desalted using solid phase extraction (SPE; Empore C18), then loaded on a 
column and eluted using 80/20 acetonitrile/water (0.1% TFA). Samples were then lyophilized prior 
to storage. Samples were reconstituted in 0.1% TFA prior to analysis using liquid chromatography 
mass spectrometry (LC/MS/MS). A Waters NanoAcquity system with a 2h gradient was used for 
chromatographic separation. Peptides were then analyzed using a ThermoFisher Fusion Lumos 
in data dependent mode (MS1: Orbitrap at 60,000 FWHM resolution, m/z range: 300-800; 
isolation window: 1.6 Da; fragmentation: EThcD and CID; MS2: Orbitrap at 15,000 FWHM; cycle 
time: 3s). MS Bioworks, LLC performed all mass spectrometry experiments. 

Peptide identification  
PEAKS (PEAKS Studio 10.0 build 20190129) (Zhang et al. 2012) was used to identify peptides 
using the default two-step identification workflow: mass tags are first identified using de novo 
sequencing, followed by a second database search step where a subset of putative proteins are 
identified using mass tags identified in step one. The following settings were used in the workflow 
- Protein database: Swissprot proteome database (20,402 entries; dated 03-20-2019); Fragment 
mass tolerance: 0.02 Da; precursor mass tolerance: 10 ppm; Enzyme specificity: none; Variable 
modifications: oxidation of Methionine (+15.9949), N-terminal acetylation (+42.0106); Fixed 
modifications: carbamidomethylation of cysteine (+57.0215). Peptide-to-spectrum matches 
(PSMs) were filtered at 1% false discovery rate (FDR), estimated using decoy sequences.  

Post processing and quality control 
Spurious peptides identified at 1% FDR were further filtered using the following criteria: spurious 
peptides were defined as those from highly chimeric spectra (n>2), polymeric peptides, as well 
as identifications with fewer than 10 fragment ions. A mock transfection (GFP) was used to profile 
and remove background contaminants. Motif signatures were identified manually using Gibbs 
Clustering software (Andreatta, Alvarez, and Nielsen 2017) and peptide yields (cutoff of 500 
peptides per sample). 

Extraction and processing of public data sets 

Extraction and processing of publicly available mono- and multi- allelic data 
Raw data (.raw files) was downloaded from publicly-available sources, and HLA type-to-sample 
mappings were obtained from the respective publications. Data was then processed using a 
similar approach to in-house generated data. Peptide identifications from samples that passed 
QC as detailed above were aggregated. 

in vitro binding affinity data 
Raw HLA-peptidome data was downloaded from the Immune Epitope Database (IEDB) (date: 
03-09-2020). We then filtered the data for entries corresponding to in vitro binding assays. Non-
nM entries and any non-linear peptides were excluded. Additionally, only four digit MHC class I 
peptides of length 8-11 were included. The peptides were derived from the following 
‘Method/Technique’ categories: ‘purified MHC/competitive/fluorescence’, ‘purified 
MHC/competitive/radioactivity’, ‘purifiedMHC/direct/fluorescence’, ‘cellular 
MHC/direct/fluorescence’, ‘cellularMHC/competitive/fluorescence’,  ‘cellular 



MHC/competitive/radioactivity’, ‘lysate MHC/direct/radioactivity’ and ‘binding assay’. An IC50 
value >500nm was used to classify ligands as binders.  

Measurement and analysis of transcript expression 

Sequencing of mono-allelic cell lines 
Representative samples of mono-allelic K562 cell lines were sequenced in triplicate using 
ImmunoID NeXT™ according to the same approach outlined in the primary methods section. 
Reads were aligned using STAR, and transcript per million (TPM) values were determined. Data 
from the B721.221 cell line, was obtained from the American Type Culture Collection (ATCC) and 
assayed in triplicate using ImmunoID NeXT to minimize platform-related variance. 

Generation of transcriptomic data for external immunopepdomics data 
Transcriptomic data was re-created using ImmunoID NeXT for publicly available mono-allelic 
datasets generated with B721.221 cell lines (MSV000080527; MSV000084172) (Abelin et al. 
2017; Sarkizova et al. 2020), following the same protocol as described previously. All additional 
samples in the expanded dataset use imputed TPM values obtained from our internal database 
that were generated by using the median value of all samples from the same tissue type. 

Building prediction models and feature engineering 

Data splitting for training and evaluation 
Performance was assessed on novel peptides. First we ensured that no peptides had 
overlapping 8-mer cores in either the training, testing or validation datasets. We then used the 
unique set of peptides from the IEDB, immunopeptidomics, mono-allelic immunopeptidomics, 
and multi-allelic datasets. Next, peptides containing any identical 8-mer substrings (“nested” 
peptides) were grouped, with each peptide group assigned to one of ten different subsets. After 
approximately equal peptide numbers of peptides had been added to each subset, we selected 
one subset for validation (~10%), one for testing (~10%) and assigned the remaining eight 
subsets to training (~80%). 32 multi-allelic samples were held out from the training dataset and 
assessed using the ~10% test subset from the fully held out samples. feature engineering of the 
gene propensity and hotspot scores was conducted using all publicly available multi-allelic data 
(except for the 32 held out samples) to avoid potential bias that could arise from systematically 
holding out proteins or peptides. Deconvolution was performed using the training subset of the 
multi-allelic data.  

Prediction model specifications 
Two prediction algorithms were trained: one that models peptide binding and a second which 
models peptide presentation. The binding algorithm uses the following inputs to model MHC 
peptide interaction affinities: amino acid sequence and length of peptide ligands and HLA binding 
pocket information. The presentation algorithm simultaneously models antigen processing and 
peptide-MHC (pMHC) binding, using the following information as inputs: amino acid sequence 
and length of peptide ligands, HLA binding pocket information, proteasomal processing footprints 
identified in the right and left flanking regions of peptide ligands, source protein abundance 
(captured as gene expression), as well as two additional features which model propensity for 



antigen processing and presentation. Features corresponding to these inputs are generated as 
described:  
 

1. HLA binding pocket (B): A pseudo sequence of amino acids was used to represent the 
binding pocket as previously described (Nielsen et al. 2007). Briefly, 34 positions on the 
protein sequence of the HLA that are a distance of 4 Å or lesser in crystollagraphic 
structures were selected from the full protein to serve as the psuedo sequence. a 
BLOSUM62 substitution matrix was used to encode the amino acid sequence, with each 
amino acid represented by a 20-dimensional vector constituting the relative weights of 
amino acid substitutions. BLOSUM62 encoding was selected under the expectation that 
substitutions between evolutionarily similar amino acids will have a lower impact on 
epitope binding changes when compared to substitutions between dissimilar amino acids.  
  

2. Peptide ligand (P): The peptide ligand amino acid sequence is encoded using a 
BLOSUM62 substitution matrix, with each amino acid represented by a 20-dimensional 
vector constituting the relative weights of amino acid substitutions. To account for the 
variable length of HLA ligands (8- to 11-mers), we employed a middle-padding approach 
which inserts blanks into the middle of the to adjust all peptides to a length of 11 amino 
acids as described previously (Bulik-Sullivan et al. 2018). Briefly, for every peptide with 
less than 11 amino acids, we assign one to three 20-dimensional vector(s) of zeros to the 
middle of the peptide encoding to reach the full 11-mer length. This approach was used 
to ensure a pan-length algorithm that maintains peptide anchors in consistent columns of 
the matrix.  
 

3. Peptide length (L): Peptide length is defined as the number of amino acids in the peptide 
ligand. 
 

4. Left and right flanking regions (F): 5-mer peptide sequences to the left and right of the 
peptide ligand in the source protein are set as the left and right flanking regions 
respectively. In the event of multi-mapping the protein with the highest transcript 
expression is assigned to the peptide.  Left and right flanking 5-mers are encoded using 
BLOSUM62 substitution matrix.  

 
5. Hotspot score (H): The hotspot score was estimated using publicly available multi-allelic 

data. Peptide ligands from each sample are mapped to source proteins. In the event of 
mapping of peptides to multiple proteins, all potential mappings are used. The hotspot 
score of each amino acid was then calculated as the number of peptides overlapping each 
particular amino acid. For peptides, hotspot scores were determined by mapping the 
peptide to its source protein then taking the average of the hotspot score spanning the 
peptide. 

 
6. Gene propensity score (G): Gene propensity was estimated using publicly available multi-

allelic data. Peptide ligands from each sample are redundantly mapped to source proteins 
then to transcripts. The number of peptides mapping to each transcript-associated protein 
was determined. The expected number peptides for each transcript-associated protein 
was calculated using the TPM for each protein across all multi-allelic data sources, then 
normalizing by protein length and the number of peptides derived from each sample. The 
number of expected and observed peptides for each protein are then summed across all 
multi-allelic datasets. Lastly, observed values were divided by expected values to 



calculate a gene propensity score for each protein (gene). To deprioritize potential 
pseudogenes a score of -3 was given to all proteins without any observed transcripts 
across all samples. 

 
7. Abundance of source protein (T): Peptide ligands are redundantly assigned to all source 

proteins, followed by transcripts. The most highly expressed transcript (calculated as the 
TPM) is chosen. Both the TPM and transcript are then assigned to the peptide ligand.  

 
The contribution of each feature to the XGBoost model was then evaluated using the ‘gain’ metric, 
which  measures the relative contribution of each feature by aggregating individual contributions 
of the feature in each tree. Increased values indicate greater contribution. 

Generation of non-binding negative examples 
We synthetically generated non-binding negative examples as our immunopeptidomics 
experiments only generated peptides that were successfully bound to and presented by MHC 
molecules.  For every positive example in our training and validation datasets we generated 20 
negative examples. Negative examples were generated by randomly selecting a protein from the 
Swissprot proteome (downloaded on 03-20-2019), then randomly selecting a peptide from within 
that protein. Peptides were selected to have equal probability of being length 8, 9, 10 or 11. 
Flanking regions were the true flanking regions around the selected peptides. Gene expression 
values (TPM) were randomly assigned by selecting a transcript from the the associated positive 
example. Gene propensity and hotspot scores were assigned based on the protein and peptide 
position within the protein selected as the negative example.  

Training the prediction algorithm 
XGBoost, a gradient boosted decision tree algorithm was used to train all models (Chen and 
Guestrin 2016). To train the algorithm all encoded and numeric features were provided as a 
vectorized input feature vector. Sequential model-based optimization was performed to select an 
optimal set of training parameters using HyperOpt (Bergstra et al. 2015). The parameters used 
for final training were: loss function - binary logistic; max depth - 10; eta - 0.01; subsample - 0.7; 
early stopping rounds - 5; min child weight - 0.5; max delta step - 1; tree method - hist; number of 
estimators - 500. 

Calibrating raw scores using percent rank values 
A set of 500,000 peptides were selected at random from the human proteome. After training a 
model, the predictions across the set of random peptides were calculated with every allele. Next, 
raw prediction probability (output of XGBoost) for each allele was used to rank the random 
peptides. For each newly predicted peptide, the assigned rank equals the percentage of the 
random set that is predicted to bind or to be presented with a better raw score than the new 
peptide. Ranks range from 0-100, with lower scores indicating peptides with better binding or 
presentation. Ranks are re-calculated for each allele and model combination.  

Applying prediction models to patient samples and multi-allelic cell lines 
Binding ranks for peptides in the public multi-allelic samples (cell lines, tissues and tumors) with 
immunopeptidomics data were generated using the MONO-Binding model. Peptides were 
required to have either 8, 9, 10 or 11 amino acids to be considered. 10% of multi-allelic data was 



held out for testing.  For each sample predictions were made for all HLA alleles (up to six).  
Samples that lacked HLA typing were excluded from analysis.  

Deconvolution of multi-allelic data 
Data for each multi-allelic sample was deconvoluted to determine which allele-peptide pairs to 
include in the training dataset for the final model. Allele-peptide pairs with a predicted binding rank 
of ≥ 0.5 were excluded, removing all peptides which fail to bind to any of the designated alleles. 
Second, in the case of multiple alleles predicted to bind to a specific peptide, the strongest binding 
allele-peptide pair (lowest rank) was selected, and all other pairs excluded. Next, duplicate allele-
peptide pairs were removed. Lastly, for every new positive example derived from the multi-allelic 
data, 20 negative examples were generated (as described previously). 

Training composite models 
A total of three prediction models were trained for our composite model. Five additional models 
were trained to determine features that contribute to optimal performance. Prediction models in 
our composite model were trained as follows: 
 

1. MONO-Binding: Trained using the IEDB, public mono-allelic immunopeptidomics and in-
house mono-allelic immunopeptidomics data with B, P and L as features.  

2. SHERPA-Binding: Trained using the IEDB, public mono-allelic immunopeptidomics data, 
in-house mono-allelic immunopeptidomics and deconvoluted multi-allelic 
immunopeptidomics data with B, P and L as features.  

3. SHERPA-Presentation: Trained using public and in-house mono-allelic 
immunopeptidomics data with SHERPA-Binding, F, T, G and H as features. 

 
The five additional prediction models were trained as follows: 

1. PUBLIC-Binding: Trained using public mono-allelic immunopeptidomics data with B, P, 
and L as features.  

2. MONO-Binding-LOO: 126 allele-specific models trained using IEDB,  public mono-allelic 
immunopeptidomics and in-house mono-allelic immunopeptidomics data with B, P, L, 
IEDB-Binding, PUBLIC-Binding and INHOUSE-Binding as features. For training each 
allele-specific model, peptides from the respective alleles were held out from the training 
dataset.  

3. SHERPA-Binding+F: Trained using IEDB, public mono-allelic immunopeptidomics, in-
house mono-allelic immunopeptidomics and deconvoluted multi-allelic 
immunopeptidomics data with SHERPA-Binding and F as features.  

4. SHERPA-Binding+FT: Trained using IEDB, public mono-allelic immunopeptidomics, in-
house mono-allelic immunopeptidomics and deconvoluted multi-allelic 
immunopeptidomics data with SHERPA-Binding, F and T as features.  

5. SHERPA-Binding+FTG: Trained using the IEDB, public mono-allelic 
immunopeptidomics, in-house mono-allelic immunopeptidomics and deconvoluted multi-
allelic immunopeptidomics data with SHERPA-Binding, F, T and G as features.  



Benchmarking and evaluation of prediction models 

Generation of the mono-allelic held-out test data 
Approximately 10% of positive examples were held out of the training and validation datasets for 
the mono-allelic immunopeptidomics datasets (public and in-house). 999 negative examples were 
added for each positive example to reflect the positive to negative ratio commonly accepted in 
the field (Bassani-Sternberg et al. 2015; Hunt et al. 1992; H. G. Rammensee, Friede, and 
Stevanoviíc 1995; H. Rammensee et al. 1999; Vita et al. 2015). Approximately 10% of the 
negative and positive data was withheld from the training dataset for the IEDB data. To maintain 
the same positive to negative peptide ratio found in IEDB no supplementary negative examples 
were added to the test dataset. 

Evaluation metrics 
Performance of the prediction models was evaluated using three distinct metrics: 

1. Positive predictive value (PPV): PPVs were calculated using the full test dataset to make 
predictions. The percentage of peptides in the top X% of predictions that are positive 
examples was determined, with X representing the positive example portion of the dataset. 
Individual PPVs were calculated for the peptides of each allele, then combined using a 
median yielding a single value. 

2. Precision-recall curves: Precision-recall curves were created by calculating the precision 
and the recall for all possible cutoffs, then plotting them as a single line. 

3. Fraction of observed peptides predicted by model: This metric was employed for all multi-
allelic tumor validation analyses. First, a single score representing the best (lowest) rank 
predictions is selected to represent each peptide observed with immunopeptidomics. The 
score is then determined by calculating the percentage of observed peptides with a rank 
of ≤ 0.1.  

Leave-one-out pan-allelic analysis 
Pan-allelic performance of the MONO-Binding model used for model-based deconvolution was 
evaluated by training 126 independent models with the same features as the MONO-Binding 
model. For each model, the peptides from a specific allele from the set of peptides used to train 
the MONO-Binding model were excluded. The predicted motif for each allele was generated by 
predicting the binding rank for 500,000 random peptides for a given allele using the model for 
which the allele had been excluded from training. Next, the motif for peptides with the top 
percentile of binding ranks were generated. For each allele a threshold of 50 positive peptides in 
the training data was set as a cutoff for visualization of the motif. Precision recall curves were 
created using all 126 models to predict binding ranks for the mono-allelic immunopeptidomics 
data (public and in-house) that was excluded from training and validation (10% test dataset). 
Predictions for each allele were made using the model which excluded that allele from training.  

Generating validation data using tissue samples  
For patient validation 12 paired fresh frozen tumor/normal cases (five colorectal and seven lung) 
were obtained from a commercial biobank. All patients were consented, and specimen collected 
under IRB-approved protocols. Tumor samples were divided into two pieces for further evaluation. 
The first portion of tumor was used for immunoprecipitation of MHC complexes followed by LC-
MS-MS (as described above) to generate the immunopeptidomics data. DNA from the paired 



normal, and DNA/RNA from the remaining tumor tissue was extracted and analyzed with 
ImmunoID NeXT (as described above). 

Extraction of held-out validation data sets from external multi-allelic samples 
To generate the test dataset we withheld approximately 10% of multi-allelic immunopeptidomics 
data with non-overlapping ‘nested’ peptides from the training and validation datasets. 10 samples 
from two specific datasets were used to validate our internal tumor immunopeptidomics 
performance (datasets: PXD007635, PXD009602) (Schuster et al. 2017; Löffler et al. 2018). Only 
samples with 4-digit resolution typing of HLA-A, -B and -C were used for the analysis. 

Immunogenicity evaluation 
To elicit an immunogenic response, a peptide must be presented on the cellular surface by an 
MHC allele. As such, the ability of the algorithms to positively identify immunogenic peptides 
was evaluated using a publicly available dataset (Chowell et al. 2015). Percentage of 
immunogenic peptides that were predicted at <= 0.1 percentile rank was evaluated for the 
various models.  

Running comparison prediction algorithms 
NetMHCpan-4.1-BA, NetMHCpan-4.1-EL and MHCFlurry-2.0-BA prediction algorithms were 
used to benchmark comparative performance of SHERPA. Default settings were used when 
running all algorithms, and percentile rank outputs used for analysis.  
 
 
HLA allele-specific deletion  
HLA loss of heterozygosity (LOH) was detected using the machine-learning based algorithm 
DASH (Deletion of Allele-Specific HLAs) (a preprint version of the manuscript is available through 
bioRxiv, Pyke et al, 2021). Methodology surrounding the development of DASH are outlined 
below. 
 
Patient data 
The HLA allele-specific deletion algorithm was trained using paired tumor and adjacent normal 
or blood normal samples collected from 279 patients spanning 15 different tumor types 
(representing a subset of the 611 patients referenced in the following sections). These samples 
were purchased from various biobanks, and were collected under IRB-approved protocols from 
fully consented patients. For each case, paired fresh frozen or FFPE samples were profiled 
using ImmunoID NeXT as described elsewhere in the methods. 
 
HLA typing and somatic mutations 
NGS-based HLA-typing was performed using the paired blood or adjacent normal sample from 
each case. Polysolver (Shukla et al. 2015) was used to determine HLA types up to 6 digits using 
integrated tumor and normal data and default tool parameters.  
 
Tumor copy number alterations,  purity and ploidy estimates 
For each sample allele-specific copy number alterations, tumor purity and ploidy were estimated 
using  Sequenza (Favero et al. 2015) with default parameters.  

 
HLA allele database 



An imputation approach similar to (Shukla et al. 2015) was used to generate an HLA allele 
database which employs the multiple sequence alignment (MSA) format from IMGTv312 
(Magadan et al. 2019). For exons in alleles and incompletely sequenced alleles the cDNA file was 
used to infer a reference allele with matching protein-level 4 digit nomenclature, or 2 digit when 
no 4 digit matches were identified. In the event of multiple 2 digit matches, the first allele listed in 
the MSA was used. Intronic regions of each allele were imputed following the same approach with 
the gDNA file. Full length genomic sequences were inferred for each allele by assembling introns 
from the gDNA imputation step and exons from the cDNA imputation set.  
 
Feature assembly for DASH 
Each individual’s unique HLA alleles are used to create a subject-specific HLA reference. For 
HLA typing all reads that could map to the HLA region are collected using a 30 base pair seed, 
and mapped to the patient-specific HLA reference using BWA (Li and Durbin 2009). To preserve 
the highest quality coverage information reads were only considered for inclusion if they were 
an exact sequence match, and had soft clipping for <20% of their total length. If a somatic 
mutation was detected within the HLA alleles, stringency was reduced to allow single mismatch 
reads. Coverage was then calculated using Samtools (Li et al. 2009).  
 Positions of variance between alleles were determined  by aligning patient-specific 
homologous alleles, allowing for the detection of both SNVs and indels. To ensure consistent 
weighting for SNVs and indels, only the first position of each indel was considered. Alleles were 
considered homozygous if fewer than five positions of difference between them were detected.  
 Six features were included; three allele-specific features extracted from the coverage 
data, two patient-specific features and one exome-scale feature: 

1. Allele-specific coverage ratio: The ratio of tumor sample to normal sample coverage is 
calculated for each allele at each position of mismatch between the homologous alleles, 
then normalized by the exome-wide number of tumor reads divided by the exome-wide 
number of normal reads. This approach results in an allele-specific coverage ratio of one 
if there is no copy number variation, despite inter-run sequencing depth variability. For 
each bin, the median coverage ratio is then determined for each allele, and the smaller 
value between the two alleles is considered for that bin. The median value across all 
bins is then calculated, and used as the feature. Allele-specific coverage ratio has an 
expected value of 1 if there is no copy number variation, and a lower bound  of 0. Lower 
allele-specific coverage ratios are interpreted as increased likelihood of LOH in an HLA 
gene. 

2. Percentage coverage: Consistently observed lower coverage across all mismatch 
positions in an allele is more likely to be reflective of true HLA LOH. Accordingly, each 
allele is assigned a 0 or 1 for each bin depending on whether it has lower or higher 
coverage compared to its homologous allele. In the event allelic coverage of a bin 
cannot be determined (no mismatch sites), a value of 0.5 is assigned to each allele. The 
mean across all bins for each allele is then calculated, and the higher average assigned 
as the feature value. The feature value ranges from 0.5 to 1, with values closer to 1 
representing increased probability of HLA LOH.  

3. Adjusted b-allele frequency: The b-allele frequency (BAF) is calculated for the tumor and 
normal sample separately at each position of mismatch. The tumor BAF is then divided 
by the normal BAF to account for variability in probe capture of each specific allele. The 
ratios were collapsed into a single feature by first dividing the allele references into150 
base pairs length bins, then calculating the absolute value of the median adjusted-BAF 
for each bin. The median value across all bins being is then used as the feature. This 



feature has a lower bound of 0, with larger numbers indicating increased likelihood of 
LOH in the HLA gene.  

4. Tumor purity: Tumor purity is obtained from Sequenza, with values ranging from 0.1 to 1, 
with 0.1 being the least pure tumor and 1 being the most pure tumor.  

5. Tumor ploidy: Tumor ploidy is obtained from the Sequenza tumor ploidy estimation. 
Values are whole integers greater than or equal to one.  

6. Deletion of flanking regions: As the majority of HLA LOH occurs due to large deletions, 
we developed a feature which captures deletions in the flanking regions of each gene, 
allowing us to leverage information from a greater number of variable sites. B-allele 
deletion calls from Sequenza are used to make a flanking region deletion call when a 
deletion is detected within 10,000 base pairs in either direction of the gene. This feature 
is binary, with 0 representing a deletion.  

 
Training the DASH algorithm 
279 patients across multiple tumor types were used to collect a set of 720 heterozygous genes. 
Scalable gold standard HLA LOH labeling is cost and labor prohibitive. As such, we visualized 
all features described for each heterozygous gene, then manually labeled each case of HLA 
LOH. To train DASH, 500 heterozygous genes were used for training and 220 heterozygous 
genes held out for testing the algorithm. An XGBoost algorithm was then used to learn how to 
detect HLA LOH in each pair of alleles using the features outlined above. A secondary check to 
ensure that the allele-specific ratio of the lost allele is < 0.98 and that adjusted-BAF is > 0.02 
was performed to improve the specificity of DASH on low tumor purity samples.  If the algorithm 
detected HLA LOH, the lower coverage allele was labeled as deleted. In the rare case of a bi-
allelic deletion, where the algorithm detects HLA LOH and the allele with higher coverage has 
an allele-specific coverage ratio below 0.5 for at least 25% of the bins, both alleles are labeled 
as deleted. 
 
Limit of detection analysis using cell lines 
A paired tumor-normal lymphoblast cell line (NCI-H2009) was used to assess DASH’ limit of 
detection across varying levels of tumor purity and clonality. In the NCI-H2009 cell line, HLA-A 
is homozygous while HLA-B*51:01 and HLA-C*15:02 alleles are both deleted. The tumor and 
normal cell lines were sequenced to 50x coverage and 30x coverage, respectively. To stimulate 
typical sequencing depths, normal data was downsampled to reflect 25x sequencing coverage. 
To create a model of decreasing tumor purity, we mixed increasing proportions of normal reads 
into decreasing proportions of tumor reads, with the combined tumor and normal reads always 
summing to an average of 35G sequencing coverage. All combinations of tumor and normal sub 
samples were derived from the same sequencing runs and performed in replicates of 10 using 
the seqkit library. Lower sub clonality was simulated by setting the proportion of tumor reads 
used in the mixture as the product of desired tumor purity and sub clonality. Tumor purity was 
then artificially increased to reflect the desired level of purity. We simulated samples without 
HLA LOH by including only normal reads and artificially increasing the estimated tumor purity to 
the desired level. Specificity was estimated using these runs.  
 
Benchmarking performance against LOHHLA 
DASH was benchmarked against a known and tested publicly available tool, LOHHLA (Loss of 
Heterozygosity in Human Leukocyte Antigen), which was used to call HLA LOH in both the test 
dataset and in silico cell line dilutions (McGranahan et al. 2017). LOHHLA was run using cutoffs 
specified in the manuscript: alternate allele copy number of < 0.5 and the p-value related to this 
allelic imbalance is < 0.01. 



 
Allele-specific validation with digital PCR  
Because each patient has a unique set of up to 6 HLA class I alleles, high specificity subject-
specific primers and probes were designed for each patient. Due to the high degree of similarity 
between some homologous alleles, reliable probes and primers may not exist for all patients. 
Primers and probes were manually designed for eleven homologous allele pairs with DASH-
predicted HLA LOH from one cell line and ten different patients to maximize descrimination 
between alleles. A probe targeting RNase P (RPP25) was included as a positive control, and 
water was used as a negative control. To facilitate multiplexing, HLA allele and RPP25 probes 
were assigned different fluorophores (FAM and VIC, respectively). 

Primer and probe efficiency was assessed by performing dPCR in triplicate on DNA from 
normal and tumor samples (excluding one patient, which was performed in duplicate). Seven 
samples were fully independent, and the remaining three samples were from the training dataset. 
Lost and retained alleles are normalized by the control gene to account for sample input variation 
prior to analysis. Primer and probe design was deemed successful if the ratio of HLA allele copies 
to multiplexed RNaseP copies was 0.5 in the normal sample. This value was anticipated as the 
HLA allele is expected to be haploid, and RNaseP is expected to be diploid. For primer designs 
that met this requirement, allele:RNaseP ratio in tumor DNA is compared to allele:RNaseP ratio 
in the normal DNA using a one-sided T-test (null hypothesis: tumor ≥ normal) to determine if there 
has been a significant reduction in the tumor. Variability of dPCR measurements are assumed to 
follow a normal distribution. This test is performed for both the predicted retained, and lost allele. 
Allelic imbalance is identified as a significant difference between the predicted lost and retained 
alleles in the normal and tumor DNA. This validation approach focuses on specific gene sections 
and is not powered to identify small focal deletions in a small portion of the gene.  
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