# Science Advances

# Supplementary Materials for

# RNA binding protein RBM46 regulates mitotic-to-meiotic transition in spermatogenesis

Baomei Qian et al.

Corresponding author: Lan Ye, lanye@njmu.edu.cn; Jian Zhou, jianzhou@njmu.edu.cn; Mingyan Lin, linmingyan@njmu.edu.cn

*Sci. Adv.* **8**, eabq2945 (2022) DOI: 10.1126/sciadv.abq2945

### This PDF file includes:

Figs. S1 to S8

А

P12 WT YTHDC2 IP-MS targets

| Enriched GO biological precess terms                         | P-value  |
|--------------------------------------------------------------|----------|
| mRNA processing (GO:0006397)                                 | 1.50E-45 |
| ribonucleoprotein complex biogenesis (GO:0022613)            | 4.57E-43 |
| RNA splicing, via transesterification reactions (GO:0000375) | 1.21E-36 |
| regulation of mRNA metabolic process(GO:1903311)             | 4.76E-29 |
| RNA localization (GO:0006403)                                | 6.67E-27 |
| RNA transport (GO:0050658)                                   | 1.98E-22 |
| mRNA catabolic process(GO:0006402)                           | 1.63E-19 |
| ncRNA processing(GO:0034470)                                 | 3.50E-17 |

В

P21 WT YTHDC2 IP-MS targets

| Enriched GO biological precess terms              | P-value  |
|---------------------------------------------------|----------|
| mRNA processing (GO:0006397)                      | 1.33E-59 |
| RNA splicing (GO:0008380)                         | 4.18E-57 |
| ribonucleoprotein complex biogenesis (GO:0022613) | 2.58E-51 |
| ribonucleoprotein complex assembly (GO:0022618)   | 3.15E-46 |
| regulation of mRNA metabolic process (GO:1903311) | 1.29E-35 |
| regulation of translation (GO:0006417)            | 2.86E-35 |
| RNA localization (GO:0006403)                     | 3.94E-31 |

С

| P21 WT YTHDC2 IP-MS |                 |  |
|---------------------|-----------------|--|
| Protein identified  | Unique peptides |  |
| YTHDC2-IP           |                 |  |
| YTHDC2              | 57              |  |
| MEIOC               | 44              |  |
| UPF1                | 29              |  |
| DDX4                | 20              |  |
| PABPC1              | 19              |  |
| MOV10               | 18              |  |
| CNOT1               | 14              |  |
| RBM46               | 13              |  |
| CNOT10              | 10              |  |
| CNOT9               | 4               |  |

**Fig. S1. Mass spectrometry analysis of YTHDC2 immunoprecipitated complexes from P21 mouse testes.** (A) Gene ontology analysis of RBM46 interactors in mouse testes at P12. (B) GO analysis of RBM46 interactors in mouse testes at P21. (C) Selective YTHDC2-associated protein candidates identified by mass spectrometry analysis from P21 mouse testes (n=5).



**Fig. S2.** *Rbm46* is a conserved gene and its expression increases at the onset of meiosis. (A) Schematic representation of RBM46 protein structure. The mouse *Rbm46* gene contains 5 exons. The RNA binding domains (green boxes) are highly conserved, and RRM1 is indicated by dotted lines. Represented species are as follows: Homo sapiens; mouse, musculus; Rattus norvegicus; Pan troglodytes; Canis; Monodelphis domestica; Gallus gallus; Microcebus murinus; Myotis brandtii ; Xenopus tropicalis; Drosophila melanogaster; Danio. (B-C) *Rbm46* mRNA transcripts and its protein abundance were evaluated by qRT-PCR (B) and western blot (C) in various tissues from adult mice. (D) Quantitative RT-PCR analysis of *Rbm46* transcripts in mouse testes at indicated time points. (E) Western blot analysis of RBM46, YTHDC2, and MEIOC during spermatogenesis. GAPDH serves as a loading control. (F-G) Immunofluorescence for RBM46 (green), PNA (red) and DAPI (blue) in adult wild-type testis sections. PNA is an acrosome marker. DNA was counterstained with DAPI. Scale bars: 20 μm. Lower panels show magnification image of single cell in the upper panels. Scale bars: 5 μm. Abbreviations: Spg, spermatogonia; PL, pre-leptotene; Lep, leptotene; Zyg, zygotene; Pac, pachytene; RS, round spermatids; ES, elongating spermatids.





**Fig. S3. Generation of testis-specific** *Rbm46* **knockout mice.** (A) Genetic strategy for targeted disruption of *Rbm46* gene in mouse testis. *LoxP* sites were inserted into the intron 2 and intron 4 for flanking exon 3 and exon 4, which contain the putative RNA recognition motifs and RNA binding domains. Testis-specific deletion of *Rbm46* was achieved by breeding *Rbm*46<sup>fl/+</sup> to *Neurog*-cre transgenic mice. (B) Western blot analysis of RBM46 protein abundance in P21 wild-type and *Neurog*-cre *Rbm46* KO testis. (C) Metaphase-like cells with condensed chromosomes were observed *Neurog*-cre *Rbm46* KO testes at P12 and P18. Scale bar, 20 μm.



**Fig. S4.** *Rbm46* knockout does not affect the maturation-promoting factor complex, a Cyclin-CDK complex that promotes metaphase transition. (A) Frozen sections from P35 wild-type and *Neurog*-cre *Rbm46* KO testes were immunostained with pHH3 and SYCP3. (B) Western blot of testes lysates from wild-type and *Neurog*-cre *Rbm46* KO with the indicated antibodies. pT161-CDK1, phosphorylation of CDK1 at Thr161; pY15-CDK1, phosphorylation of CDK1 at Tyr15. (C) Immunofluorescence analysis with SYCP3 and CCNA2 antibodies on testis sections prepared from P35 WT and *Neurog*-cre *Rbm46* KO. Metaphase-like cells that express CCNA2 are indicated by arrows. Scale bar, 20 µm.



С

RBM46 eCLIP targets

| Enriched GO biological precess terms             | P-value  |
|--------------------------------------------------|----------|
| chromosome segregation (GO:0007059)              | 1.67E-27 |
| nuclear division (GO:0000280)                    | 9.65E-25 |
| RNA catabolic process (GO:0006401)               | 5.41E-23 |
| nuclear chromosome segregation (GO:0098813)      | 1.00E-22 |
| sister chromatid segregation (GO:0000819)        | 1.21E-19 |
| RNA localization (GO:0006403)                    | 1.64E-19 |
| mRNA processing (GO:0006397)                     | 1.29E-17 |
| mitotic cell cycle phase transition (GO:0044772) | 2.41E-16 |
| mitotic sister chromatid segregation(GO:0000070) | 4.55E-15 |

RBM46 eCLIP targets

| Enriched GO molecular function terms                     | P-value  |
|----------------------------------------------------------|----------|
| ATPase activity (GO:0016887)                             | 8.46E-18 |
| mRNA binding (GO:0003729)                                | 1.22E-16 |
| catalytic activity, acting on RNA (GO:0140098)           | 4.31E-16 |
| ubiquitin-like protein transferase activity (GO:0019787) | 1.46E-12 |
| ubiquitin protein ligase binding (GO:0031625)            | 1.72E-12 |
| protein serine/threonine kinase activity (GO:0004674)    | 5.69E-10 |
| ribonucleoprotein complex binding (GO:0043021)           | 8.81E-09 |
| helicase activity (GO:0004386)                           | 1.52E-09 |
| mRNA 3'-UTR binding (GO:0003730)                         | 5.25E-08 |



**Fig. S5. RBM46 preferentially binds mitotic-cell-cycle-related transcripts.** (A) Scatter plot indicating correlation (r=0.89) between region-based fold enrichment of RBM46 eCLIP-seq across biological duplicates. (B) Overlap between RBM46 peaks and its target genes from biologically two RBM46 eCLIP-seq replicates. RBM46 binding peaks were identified using a stringent parameter ( $P \le 0.001$ , fold change  $\ge 8$ ). (C) GO biological process and molecular function terms of the top 50% RBM46 targets by eCLIP-seq in testis ( $P \le 0.001$ , fold change  $\ge 8$ ). (D) Genome browser tracks showing RBM46 eCLIP-seq reads mapped to the 3' UTRs of the mitotic *Rad21* transcripts. (E) EMSA analysis of purified RBM46 protein with a 5' end-labelled single strand RNA probe (ssRNA) without RBM46 binding motif. This 20 nt synthetic ssRNA does not contain the RBM46 binding motif, and its sequence is from *Ccna2* 3' UTR. (F) EMSA experiments show that RBM46 protein doesn't bind a U-rich RNA sequence.



Fig. S6. Transcriptomic analysis of wild-type and *Neurog*-cre *Rbm46* KO testes. (A) RNA-seq analysis of differentially expressed genes in wild-type and *Neurog*-cre *Rbm46* KO testes at P10, when germ cells just enter meiosis. The upregulated and downregulated genes (p < 0.05, fold change >1.5) are shown as red dots and blue dots, respectively. Experiments were performed in biological duplicates. (B) *Ccna2* mRNA transcript levels in wild-type and *Neurog*-cre *Rbm46* KO testes at P14. n=3 for each genotype. \*\* *P* < 0.01, Student's t test.

В





**transcripts.** (A) Identification of RBM46-associating partners by immunoprecipitation experiments either with RBM46 or normal IgG antibodies from mouse testes at P12 and P21. Immunoprecipitated RBM46 protein complexes were separated by SDS-PAGE, and the gel image stained with silver is selectively shown. Testis lysates were prepared from mouse at P12 (n=8) and P21 (n=5). (B) Immunoprecipitation of RBM46 from mouse testes lysates at P21 and western blot with P-body components, including MOV10, CNOT6I, DDX4, PABPC1, and the nonsense-mediated mRNA decay regulator UPF1.



# RBM46 binding sites with adult YTHDC2 CLIP targets

within 100 nt window



within 70 nt window

Е

F



## D

#### RBM46 and YTHDC2 shared targets

| P-value  |  |  |
|----------|--|--|
| 2.73E-07 |  |  |
| 4.66E-06 |  |  |
| 5.04E-06 |  |  |
| 1.07E-05 |  |  |
| 1.94E-05 |  |  |
| 2.21E-05 |  |  |
| 5.55E-05 |  |  |
| 5.87E-05 |  |  |
|          |  |  |
| P-value  |  |  |
| 6.31E-08 |  |  |
| 4.47E-07 |  |  |
| 1.36E-04 |  |  |
| 1.68E-04 |  |  |
| 2.91E-04 |  |  |
| 4.94E-04 |  |  |
| 6.25E-04 |  |  |
| 1.47E-03 |  |  |
|          |  |  |



YTHDC2 U-rich motifs by iCLIP-seq



#### Top motifs flanking RBM46 motif within 100 nt







**Fig. S8. Comprehensive analysis of RBM46 eCLIP targets with YTHDC2 binding sites.** (A) Venn diagram depicting the overlap between RBM46 eCLIP targets and YTHDC2-bound mRNA targets identified by RIP-seq (*28*). A total of 4413 genes with RBM46 eCLIP peaks shared in two RBM46 eCLIP-seq replicates were identified ( $P \le 0.001$ , fold change  $\ge 8$ ). (B) The overlap between RBM46 eCLIP targets and MEIOC RIP-seq targets. (C) Pie chart depicting the overlap between RBM46 binding sites by eCLIP and adult YTHDC2 CLIP targets within a 100-nt and 70-nt window, respectively. (D) Gene ontology analysis of common mRNAs co-targeted by both RBM46 and YTHDC2. (E) YTHDC2-binding motifs predicted by HOMER analysis from FLAG CLIP-seq in P14 FLAG-tagged *Ythdc2* mice. (F) U-rich motifs were present within a 100-nt window flanking the RBM46 motif. The top three motifs with the most significant *P*-value were shown. (G) RIP-qPCR analysis of YTHDC2 recruitment at the previously-determined sites in wild type and *Neurog*-cre *Rbm46* KO mice at P10-P12. n=6-8 for each genotype. \*\*\* *P* < 0.001, Student's t test. (H) Single-cell expression profiling of human *Rbm46* transcripts using a published single-cell datasets. Human cells were derived from fertile adults with normal spermatogenesis (fertile adults), NOA patients with Y chromosome AZF deletion (AZF-Del), idiopathic NOA patients, and NOA patients with Klinefelter syndrome.