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Supplementary Fig. 1. Enhanced-Smart-seq2 method development, relative to Fig. 1. (a) 
Screening of distinct reverse transcriptases, as listed. 0 (negative control), 1, and 10 pg of total RNA 
was used as input. N = 3 replicates. (b) The profile of cDNA using Maxima H- reverse transcriptase. 
The hedgehog pattern from 100 – 3000 bp (with peaks from 100 to 500 bp) reflects the presence of 
oligo concatemers. The arrows show two unique peaks in cDNA from 1 pg RNA compared to the 
negative control (0 pg input RNA), suggesting that bone fide signal is masked by concatemers. (c) 
Profiles of cDNAs that were generated using different 5’ modified TSO primers. Maxima H- reverse 
transcriptase was used in all conditions. The condition using Biotin-TSO shows a high cDNA yield 
between 500 to 3000 bp with a relatively low amount of oligo dimers or concatemers (the hedge-
hog-like pattern with peaks from 100 to 500 bp). (d) cDNA yields of distinct experimental set-ups 
involving different combinations of Biotin-TSO, oligo-dT, and reverse transcriptase from 0 pg input 
RNA (upper panel) and 1 pg input RNA (middle panel). The net cDNA yield was calculated as the 
yield from 1 pg of input RNA minus signal stemming from 0 pg of input RNA (lower panel). The 
workflow with the highest net yield is highlighted using a red rectangle and forthwith termed 
“enhanced Smart-seq2”. N = 3 replicates. (e) Profiles of cDNA derived from the enhanced 
Smart-seq2 protocol. (f) The cDNA yield derived from 5 pg input RNA using original, UMI-bearing 
and (UMI + Barcode)-containing oligo-dTs.
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Supplementary Fig. 2. Additional quality controls of Live-seq data, relative to Fig. 2. (a) Number of input reads (input reads), the rate 
of reads uniquely mapped to the genome (uniquely mapped reads), the fraction of reads mapped to exons (Reads mapped in exon), total 
counts of all genes (nCount), number of detected genes (nGene) and the percentage of counts from mitochondrial genes (percent MT), for 
all 588 Live-seq samples/libraries are shown per cell type/state. N = 5 replicates, a total of 588 cells. (b) The read distribution along the 
body of housekeeping genes for the samples passing our quality control across different sample replicates (Rep1, Rep2, Rep3, Rep4, 
Rep5). (c) The correlation between the detected and expected amount of ERCC in each sample that passed the quality controls. The result 
is shown with all samples (All) or grouped by each replicate. (d) Plotted correlations between the number of detected genes on the one 
hand and respectively the total count of all genes (nCount, left panel) and the cDNA yield (right panel). The Pearson correlation value is 
displayed above each plot. N = 5 replicates, a total of 294 cells.
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Supplementary Fig. 3. Quality control of scRNA-seq and Live-seq data plotting distinct parameters side by side as indicated 
above each panel. Similar to Supplementary Fig. 2a.
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Supplementary Fig. 4. Comparison of 
Live-seq and scRNA-seq results per cell 
type, relative to Fig. 2. (a) Correlation of the 
logFC between non-treated versus treated cells 
of scRNA-seq vs Live-seq data (RAW cells and 
ASPCs). DMIR = adipogenic cocktail. (b) 
Correlation of the logFC between non-treated 
versus treated cells of down-sampled 
scRNA-seq vs Live-seq data. The scRNA-seq 
data were down-sampled to feature a similar 
library complexity (and cell number per catego-
ry) as the Live-seq data. (c) Barplot showing the 
number of genes shared between the different 
categories: None (not identified as differentially 
expressed (DE) genes), Both (identified as DE 
both in scRNA-seq and Live-seq data), Only 
Live-seq (only identified as DE in Live-seq), 
Only scRNA-seq (only identified as DE in 
scRNA-seq). The x-axis shows the number of 
genes belonging to each category derived from 
the comparison between Live-seq and 
scRNA-seq and the colors show how these 
genes overlap with those derived from the 
comparison between Live-seq and down-sam-
pled scRNA-seq. (d) Biological process (BP) 
and Cellular Component (CC) GO enrichment 
for genes detected as DE specific in either 
Live-seq or scRNA-seq for both ASPCs and 
RAW cells. The dot size corresponds to the 
significance of the term.
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Supplementary Fig. 5. The integration of down-sampled Live-seq and scRNA-seq data, relative to Fig. 2. Evaluation of the data 
integration as in Fig. 2f, g whereby each cell was down-sampled to the indicated number of reads.
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cell type was analyzed separately. ASPCs are shown in the upper panels, while RAW cells are shown in the lower panels. (b) RNA velocity 
analysis like Extended Data Fig. 8d, but each cell type was analyzed separately. ASPCs are shown in the upper panels while RAW cells in 
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Supplementary Fig. 7. The Tnf-mCherry intensity curves of additional RAW cells shown in Extended Data Fig. 9b. The complete 
data showing a linear relationship between the time post-LPS treatment (within a window of 3 to 7.5 hours post-LPS treatment) and the 
Tnf-mCherry fluorescence intensity (log transformed) in one cell. 
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Supplementary Fig. 8. Measuring the cell 
cycle phase (Fucci reporter) and LPS-in-
duced response (TNFα reporter) of RAW 
cells, relative to Extended Data Fig. 10b. Cell 
cycle phases of individual cells were determined 
using the Fucci reporter miRFP-hCdt1. The 
Fucci reporter and LPS-induced Tnf-mCherry 
intensities of each individual cell are shown 
separately, while all cells assigned to a specific 
cell cycle phase are merged into one meta-plot 
(at the top of each category) to facilitate direct 
comparisons. The time of LPS treatment is 
defined here as 0. Black dots indicate the 
mitosis time point. The curves of Fucci reporter 
after LPS treatment are not considered and are 
therefore shown in a lighter color. The G1/S 
boundary is inferred from the time point at which 
the Fucci reporter intensity drops. Cells that 
underwent mitosis but did not yet reach the 
G1/S boundary were annotated as G1 cells. 
Given the lack of a clearly discernable S/G2M 
boundary, cells were assigned to either the S or 
G2M phase based on the post G1/S boundary 
timing.



Supplementary Note:  
 
 
Since Smart-seq2 was widely appreciated as the most RNA-seq method to detect low input of RNA at 
the time of method development1, we tested whether it could amplify cDNA at the picogram scale. While 
successful in amplifying cDNA when the input total RNA input was above 5 pg, it failed with an RNA 
input of 1 pg (Extended Data Fig. 1a). However, 10% of the amount of cDNA reverse transcripted from 
10 pg of input RNA (equivalent to 1 pg input RNA) could be amplified (Extended Data Fig. 1a), 
suggesting that the reverse transcription product from 10 pg input RNA is more than 10 times than that 
from 1 pg input RNA. We thus reasoned that the reverse transcription step, rather than the PCR step, 
is the main reason for the failure. We thus focused on the optimization of the reverse transcription 
process. We first compared different reverse transcriptase. Among the 5 enzymes tested, only Maxima 
H Minus Reverse Transcriptase produced significant output with 1 pg total RNA, but showed a similar 
background signal compared to the negative control (0 pg RNA) (Supplementary Fig. 1a). Size 
analysis using a fragment analyzer revealed a hedgehog-like profile of both types of cDNA, indicating 
an amplification of adaptor concatemers (Supplementary Fig. 1b). However, cDNA from 1 pg RNA 
showed additional peaks at around 1.1 and 1.8kb (Supplementary Fig. 1b). We hypothesized that 1 
pg RNA could be efficiently reverse transcripted in this condition, but that this process was hindered by 
the large amount of adaptor concatemers. We thus tried to reduce the adaptor concatemers by 
modifying the template-switching oligonucleotide (TSO)2 . Modification of the 5’ end of the TSO by 
introducing a hairpin (hairpin-TSO) or non-natural nucleotides (iso-TSO)2 did not generate concatemers, 
but did also not yield cDNA (Supplementary Fig. 1c, Methods), while biotin modified TSO (biotin-
TSO)3 largely reduced the concatemer background and did not compromise the cDNA yield. We then 
tested combinations of different amounts of the TSO, oligo-dT and the reverse transcriptase, to further 
reduce the background and enhance net cDNA yield (Supplementary Fig. 1d). The condition with 0.8 
µM biotin-TSO, 1 µM oligo-dT and 0.1 µl Maxima H Minus Reverse Transcriptase (200 U/µl) 
outperformed (Supplementary Fig. 1d-e), and was thus defined as "the modified Smart-seq2 workflow" 
from hereon in the main manuscript. While adding UMI and barcode reduces PCR bias and enables 
multiplexing4, it seems not applicable in this scenario as the cDNA yield is largely reduced 
(Supplementary Fig. 1f). We then sequenced the libraries derived from modified Smart-seq2-
generated cDNA from 1 pg and 0 pg (negative control) of total RNA. For 1 pg of input RNA, the uniquely 
mapped rate (rate of the read mapped to the genome among total reads) and exon mapped rate (rate 
of reads mapped to exon among unique mapped reads) were more than 0.6, with more than 1300 
genes detected, while the 0 pg RNA library showed a low uniquely mapped rate, exon mapped rate and 
small amount of detected genes (Extended Data Fig. 1c). The sequences derived from oligo-dT and 
TSO were overrepresented in the 0 pg RNA library (Extended Data Fig. 1d, e). The top 20 genes 
absorbed most of the mapped reads of these libraries (Extended Data Fig. 1f). These are likely due to 
sequencing errors or mis-mapping of the A/T rich region and thus were not included in downstream 
data analyses. 
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