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Referee #1 (Remarks to the Author): 

The paper "Genome-wide molecular recording using Live-seq" by Chen et al combines Fluid-FM, a 

technique that uses an AFM probe with an internal channel to manipulate fluids, and sc-RNA-seq to 

study the single cell response of macrophages to LPS. 

The paper is well written. 

I have 2 major concerns: 

1) The authors overstate the technical novelty. While the group is among the world-leaders in this 

approach, the technique remains unfortunately only used by few. However, this that does not 

justify to claim the level of novelty as is done here, for what looks like a rather incremental novel 

application type of the existing technology. To the best of my knowledge, the technique has been 

introduced by Meister et al, NanoLetters 2009 (FluidFM: Combining Atomic Force Microscopy and 

Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond), and 

was then, and since then, used to inject and extract fluids into and out of cells. Later, several of 

the authors of this manuscript have 'introduced' in Guillaume-Gentil et al, Cell 2016 (Tunable 

Single-Cell Extraction for Molecular Analyses) the quantitative extraction of cytoplasm from single 

cells for various assays, including the extraction of RNA with subsequent PCR. Thus, while the work 

is technically of top-level quality in this field, there is conceptually much less novelty than the 

authors claim. 

2) The authors state that "Live-seq enables the profiling of cell transcriptomes without 

imposing major perturbations on a cell’s basic properties such as viability, transcriptome, or 

growth". Based on the cell images, eg Fig 1a, Fig 3d, 4j, and as documented in Extended Data 

Figure 3 - part 1, the cells (depending on the kind) have a volume of 1pL to 5pL. The RAW cells 

have a rather narrow volume distribution around 1pL (peaking at 1pL, with a mean of 1.2pL). 

According to the methods, the authors extract in average 1.1pL (line 215) or between 0.1pL and 

4.4pL with mean 1.1pL (line 548, 549). The volume extraction is performed by pressure changes 

and estimated using geometrical considerations (no loss considered, despite the large cell injury). 

Altogether, especially for the RAW cells, we must assume, that the process basically depletes 

100% of the cytoplasm in a highly non-specific way (see Extended Data Figure 3 - part 1a 

compare left panel and right panel, row RAW). It just puzzles me that the authors report a 86% 

viability of the RAW cells and claim 'no major perturbations'. 

Minor: The force of 500nN to maintain the probe inside the cell also seems excessive. In typical 

AFM experiments, one would expect that such forces would damage the cells irreversibly. 

Based on the analysis, the authors conclude that the expression levels of Nfkbia and Gelsolin were 

dominant in the macrophage response to LPS exposure. I find these findings interesting, and the 

approach (while not that novel) exciting, but doubt that the method does not induce significant 

alterations to the cells, which makes the method - at this point in time - similar to and maybe less 

performing than 'end-point' scRNA-seq. 



Referee #2 (Remarks to the Author): 

In their manuscript, Chen et al present Live-seq, a method for longitudinal single-cell 

transcriptomic profiling from individual cells. Live-seq utilizes fluid force microscopy (FluidFM) to 

perform cytoplasmic biopsies; multiple subsamples can be made from the same cell to assess 

cellular dynamics. The authors first describe the development of their method. After, they 

benchmark it and finally apply it to characterize transcriptional dynamics during the LPS response 

in RAW 264.7 cells. 

Overall, the work describes a first-of-its-kind platform for direct, physical, cytosolic transcriptome-

wide longitudinal single-cell profiling. The manuscript is methodical in the main and easy to follow 

– after all, it traces well-worn paths in molecular optimization and benchmarking. Nevertheless, it 

falls short of demonstrating the transformative promise of the technique outlined in the 

manuscript’s introduction. While we include comments about specific elements of the work, we 

cannot help but feel as though the manuscript is incomplete. As it stands, with minor revision, it 

feels like a great fit for a more methods-focused journal like Nature Methods; with a killer app 

(e.g., neuron before and after plasticity protocol; some cells pre-differention and then after; 

exhausted t cells to see if they can be reactivated by I/O; etc - honestly, there are many), it could 

be appropriate for Nature. 

Below, we provide comments by section/line/figure. 

The basics of Live-seq/Fig 1/ED Fig 1 

Line 94: How was cellular sampling optimized? How do assay information content and cell viability 

depend on sampling volume? What is the throughput of the method? If 15 minutes per sample, 

how many cells are sampled in each experiment listed and how many runs does each figure 

represent (e.g., Fig 4)? If multiple independent experiments (likely given numbers), how much of 

the authors’ observations are driven by experiment-to-experiment variability (e.g., differences in 

stimulation dynamics, cell density, etc; see Line 710)? A lot remains opaque. 

Line 95: How is temperature controlled? Does this impact cellular response dynamics? 

Lines 103-119: This should move to the supplement. The optimization of the molecular biology 

follows previous descriptions (like those in SmartSeq2 and Drop-seq). What is missing is more 

details specific to the optimization of the FluidFM method, which is the main contribution. 

Line 112: cDNA yield is not the right metric for optimization – it’s information content (e.g., ED Fig 

1h; see ED Fig 2e). Meanwhile, how many distinct experiments (not replicates) are represented in 

ED Fig 1a-g (i.e., distinct reagent mixtures for each test)? This is often the greatest source of 

variation. 

Line 124: Fig 1b: Please adjust the plot to end at 0 on y. The axes are misleading. Also, how does 

quality relate to read depth? Is that what drives the variance? Same for ED Fig 2a. 

Live-seq enables the stratification of cell types and states/Fig 2/ ED Fig 2 

Line 142: What are cell numbers per cell type/condition? 

Line 145: Why did such a low percentage of cells pass filter (compare ED Fig 2i)? This is critical 

(coupled with the question on Line 94) re: power. 

Line 150: When and how are ERCC spike-ins added? Are they preloaded into the AFM tip or are 

they added during RT. This is essential to determine their utility. 

Line 184: What is being correlated in ED Fig 2k? There are a few figures like this. Please make 

sure it is clear what is being plotted. 

Line 198: What is DE between Live-seq and standard scRNA-seq? How does variation change? 

Also, how many of the significantly DE genes in ED Fig 2q are part of the LPS response? 

Live-seq preserves cell viability, transcriptome, and growth/Fig 3/ED Fig 3 

Line 212: How viable are the cells if you wait longer than 6.5h? Does the stress induce long term 



changes/death? This seems critical for calibrating the method and its utility … and for 

understanding the data presented in Fig. 4 … and for distinguishing it from metabolic labeling 

modalities (Line 366). In truth, it’s hard to pinpoint something that couldn’t have been done before 

using existing methods (e.g., metabolic labeling, which has much, much higher throughput and 

can look at all cellular RNAs). 

Line 215: How does are cell volume, extracted volume and viability related? Co-dependence isn’t 

plotted. A more quantitative analysis per ED Fig. 3e would be helpful. 

Lines 233-247: This is a place where significantly more data is needed. Also, is this also true for 

primary cells? What about post-mitotic cells? We really don’t have a great sense of when and 

where the method is useful. 

Live-seq records molecular events that are predictive of a cell’s downstream phenotype/Fig 4/ED 

Fig 4 

Line 261: Some of the experimental details from the methods need to come to the front to aid 

interpretation. 

Lines 271-304: First, it is unclear why baseline RNA expression (rather than protein abundance) 

should be predictive (relatedly, how much does gene expression change in the 30 minutes 

between sampling and stimulation (Line 566))? Second, there is no validation. And, third, as 

highlighted, several of the hits are expected. In short, it is unclear how Live-seq uniquely enabled 

new biological insights here. This is the biggest shortcoming of the paper. Ditto Lines 306-325. 

Sequential Live-seq cell sampling to measure cellular dynamics 

Line 327-355: This analysis/section is dramatically underpowered and reads as preliminary. 

Dynamics are highlighted in the introduction and motivation as a key selling point but there are 

only 2/14 cells whose repeated sampling passed filtering. This yield seems like a flag and directly 

undermines the major selling points. 

Minor points: 

1. We would seriously reconsider what data is in main figures and what is in the ED figures. We’d 

bring aspects critical to the method to the main and move some that are less relevant panels to 

the back. 

2. It’s unclear from what is provided if the full transcriptome can be sampled. We might adjust the 

title based on a more nuanced analysis of ED Fig. 2q 

Referee #3 (Remarks to the Author): 

The authors used FluidFM to sample cytoplasmic sub-cellular liquid biopsies and developed a highly 

sensitive scRNA-seq protocol to perform RNA-sequencing on these small inputs. They demonstrate 

that this method, termed Live-seq, can capture cell-type and state differences. They use Live-seq 

to investigate if transcriptome states, prior to LPS stimulation, can explain variable macrophage 

responses to the LPS stimulation, as measured by Tnf-mCherry signal. They identify genes with 

high predictability of LPS response (slope and intercept) and that cells in S-phase had weaker LPS 

responses. Finally, they show that Live-seq can enable sequential biopsies of the same cell 

(although only performed on two cells). 

The main strength of this manuscript is the introduction of a method that can take cytoplasmic 

biopsies of cells in a manner compatible with cell-type and -state informative RNA-seq. 

Importantly, the cells having “donated” cytoplasmic biopsies mostly recovered and showed e.g. 

similar LPS response heterogeneity. This improvement is novel and important. 

The method was used to investigate molecular determinants dictating variable LPS responses in 

macrophages, revealing genes and cell-cycle phase as informative in separating LPS responses. 



The LPS experiments provided are however a bit preliminary (see comments below) as it was not 

fully clear to what extent significant gene-level effects was identified. For this manuscript to be a 

strong candidate in Nature, it will be important to demonstrate that Live-seq has sufficient power 

to identify gene-level effects, as that is how it would likely have its core applications in biology. 

Major comments. 

1. Clarifications of timescales in all experiments 

1a) The temporal aspects of all experiments provided need to be clarified. How long time does it 

take to perform cytoplasmic biopsies on one (or a hundred) cells. This impact on the time 

difference between cells in a population if they are all exposed to these biopsies. 

1b) The time after Live-seq cytoplasmic biopsies to LPS stimulation and sequential Live-seq 

sampling was not found. I assume LPS stimulation is provided directly after finishing the Live-seq 

cytoplasmic sampling? However, the time required to take cytoplasmic biopsies of tens to hundred 

of cells takes how long (comment 1a) and how does that relate to the timing in the LPS stimulation 

experiments. The timing is also relevant for the experiment linking cell-cycle phase of individual 

cells to the variable LPS response (the extra time for the first cytoplasmic biopsy compared to the 

last sampled cell). If certain times are allowed post-biopsies for cells to regain vitality, that should 

also be clearly stated as that impact future planning of Live-seq experiments. 

2. Live-seq method development 

The authors demonstrate that Live-seq is sufficiently accurate in profiling sub-cellular RNAs to 

enable cell-type and state separations, although the separations improve when “guided” by 

standard scRNA-seq (i.e. sparser Live-seq transcriptomes can be projected onto a high-quality 

low-dimensional representation of the standard scRNA-seq transcriptome patterns). I think the 

authors have done a great job of developing Live-seq and it clearly has merits. Having said that, 

any method aiming to profile sub-cellular RNAs would benefit from using UMIs to enable molecular 

counting, as amplicon effects are stronger with smaller initial starting RNA populations. Although 

not critical, adding UMIs to the Live-seq protocol would be highly desirable to improve the RNA 

counting (and can perhaps improve gene-level phenotype correlations – see comment below). 

3. LPS heterogeneity experiment. 

3a) Limited power to identify gene-level effects? 

The authors apply Live-seq to study the heterogenous response of macrophages to LPS 

stimulation. Using a linear model, they investigate gene expression levels (prior to stimulation) 

that can predict the Tnf-mCherry intensity from the same cells. The results sections provide 

correlation scores (r-square and Pearson correlations), with p-values for specific gene-mCherry 

correlations provided in Extended Data Table 3-4. The authors report the identification of known 

and unknown immune regulators, including Tnf, Gelsolin, Nfkbia, that show correlation with LPS 

responses. Nowhere in the results nor methods are the statistics performed described. Moreover, 

some of the reported gene-level interactions are not significant as listed in Extended Data Table 3-

4 (or am I not reading these tables correctly – the tables do lack headers and information so they 

are not easy to follow). The results section should clearly state whether mentioned gene-level 

interactions were significant (with what test) or if they were not significant. This is important, 

since the usefulness of Live-seq do depend on the ability to robustly estimate expression levels 

and if they are too noisy, they might not enable biological discoveries. If Pearson correlations were 

used, they are highly sensitive to outliers, and is likely not a robust method and should be 

complemented with rank-based approaches (or experiments showing that the used linear models 

are appropriate). The limited statistical significance (if lack of significance for some genes) is only 

followed up by discussions, as no functional follow up experiments are performed on any gene-

level effect. 

Permutation based significance estimation to identify gene-level predictors of Tnf-mCherry 

responses. 



3b) Irrespective of the exact statistical model used (which should be reported), I strongly advise 

the authors to compare their obtained gene-level effects (for slope and intercept, respectively) 

against large sets of random permutations of the data (where e.g. Tnf-mCherry data attached to 

each cell was randomized), to further investigate significance of gene interactions in a more 

controlled manner. This procedure should be performed on the analysis of slope and intercept, and 

it would provide information on the power of the Live-seq strategy to reveal molecular 

determinants of variable phenotypic responses. 

3c) Integration of cell-cycle phase and gene-level correlations. 

Subsequent cell-cycle experiments identify cells in S-phase to have weaker LPS responses. The 

authors do not mention whether this cell-cycle effect explains the previous results that highlighted 

Nfkbia as a main regulator of Tnf-mCherry response, e.g. if Nfkbia would be expressed in a cell-

cycle dependent fashion. More systematically, the authors could perform the linear modeling 

across genes and cell-cycle phase to comprehensively assess which genes-level correlations relate 

to cell-cycle and which gene-level observations are independent of cell-cycle (again, with 

permutation-based or more comprehensive statistical analysis). 

4. Contrasting Live-seq and metabolic labeling in single cells 

The authors mainly discuss Live-seq against traditional scRNA-seq analysis coupled to trajectory 

inference. Metabolic labeling in single cells is however the more relevant comparison as these 

published methods (that are referenced in the introduction) do enable two temporally linked 

cellular transcriptome snapshots from the same cell, and the metabolic labeling approaches is 

high-throughput in comparison to Live-seq. A discussion on the conceptual differences of Live-seq 

towards metabolic labeling methods is missing and would be highly useful to readers. Live-seq is 

the first method to enable sequential cellular transcriptome snapshots which is highly interesting. 

Yet, the ability of metabolic labeling to measure pre-existing to newly transcribed RNAs contains 

complementing information. For example, Live-seq is not well suited to identify transcriptional 

effects of perturbations (as the majority of RNA measured in the second snapshot would have 

been there before the initial perturbation was there), whereas metabolic labeling methods excel at 

that. Instead, it seems that Live-seq excel in experiments spanning longer time-periods between 

initial cytoplasmic sampling and downstream phenotypic recordings. I think this distinction would 

help readers understand when the different methods could be best applied. To fully understand the 

temporal resolution in Live-seq, detail clarification of the timings of the experiments presented in 

the present manuscript (comment 1 above) is needed. 

Moreover, the authors are correct in that Live-seq offers the first strategy to sample the same cell 

at two different time points (with no temporal dependencies) whereas metabolic labeling do 

achieve a similar goal but only when the two measured time periods are within 6 or 12 hours for 

the strategy to be powerful. However, having said that, the authors could balance the text to 

acknowledge that two temporal snapshots of cellular transcriptomes has in principle been achieved 

with metabolic labeling. 

5. Tracking of individual cells over time 

Where any positive controls used during Live-cell imaging to make sure the cells were tracked 

correctly, and consequently that the sequential biopsies were indeed performed on the same cell? 

Can one add dyes or barcoded polyA containing RNAs to cells during initial biopsy to have 

reference points later for the controlled re-capturing of cells in the sequential experiment to make 

sure the cell-mapping is correct?



Rebuttal Live-seq: #2021-03-04452A;
Chen, Guillaume-Gentil et al.

Author Rebuttals to Initial Comments:
We thank all three reviewers for taking the time to carefully examine our manuscript and for 
sharing their expertise with us. The comments greatly helped to guide us in revising the 
manuscript.

Referee #1 (Remarks to the Author):

The paper "Genome-wide molecular recording using Live-seq" by Chen et al combines Fluid- 
FM, a technique that uses an AFM probe with an internal channel to manipulate fluids, and sc- 
RNA-seq to study the single cell response of macrophages to LPS.

The paper is well written.

I have 2 major concerns:

1) The authors overstate the technical novelty. While the group is among the world-leaders in 
this approach, the technique remains unfortunately only used by few. However, this that does 
not justify to claim the level of novelty as is done here, for what looks like a rather incremental 
novel application type of the existing technology. To the best of my knowledge, the technique 
has been introduced by Meister et al, NanoLetters 2009 (FluidFM: Combining Atomic Force
Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications
and Beyond), and was then, and since then, used to inject and extract fluids into and out of 
cells. Later, several of the authors of this manuscript have 'introduced' in Guillaume-Gentil et 
al, Cell 2016 (Tunable Single-Cell Extraction for Molecular Analyses) the quantitative extraction
of cytoplasm from single cells for various assays, including the extraction of RNA with
subsequent PCR. Thus, while the work is technically of top-level quality in this field, there is 
conceptually much less novelty than the authors claim.

We recognize that the acknowledgement of the advances in this study in light of previously 
important achievements may not have been made sufficiently clear. We have therefore 
modified the introduction (Lines 98-131) and the results (The basics of Live-seq, Lines 135-
151) to clarify past and present achievements. Specifically, the FluidFM technology has indeed
been introduced before (2009; injection proof of concept into one cell), and then extended 
towards extraction of molecules with a first demonstration that the detection of a few abundant
house-keeping transcripts by qPCR is possible (2016). With this study, we now reach in our
opinion an entirely new level. We demonstrate that biologically relevant transcriptomes from 
single living cells can be generated with thousands of different transcripts that cover a range of 
4 orders of magnitude in expression, which has not been achieved by any other single-cell 
transcriptomic method. Importantly, we demonstrate that the data are of such quality that they 
can distinguish cell types and states reliably and can be used to detect heterogeneity that 
predicts future phenotypic states and allows the generation of cell trajectories from the very 
same cell. This achievement is remarkable since we subsample cells rather than scarifying the
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entire cell. To achieve this, it was critical to optimize the extraction protocol to maximize high- 
quality mRNA recovery and prevent transcript degradation during extraction, to develop a
protocol for material transfer from the tip, and to enhance detection sensitivity. The conceptual
advance manifests in the quality of the actual data that we are now able to routinely generate 
based on the technical advances of the study. The latter made it possible to robustly map 
different cell types and states using a transcriptome-wide readout (trajectory measurement) 
and to directly record “past” molecular states that influence “current” cell behaviors. As 
mentioned above, we rephrased the text to address the reviewer's comment on technological 
and conceptual advances .

2) The authors state that "Live-seq enables the profiling of cell transcriptomes without imposing 
major perturbations on a cell’s basic properties such as viability, transcriptome, or growth". 
Based on the cell images, eg Fig 1a, Fig 3d, 4j, and as documented in Extended Data Figure 3 
- part 1, the cells (depending on the kind) have a volume of 1pL to 5pL. The RAW cells have a 
rather narrow volume distribution around 1pL (peaking at 1pL, with a mean of 1.2pL). According 
to the methods, the authors extract in average 1.1pL (line 215) or between 0.1pL and 4.4pL 
with mean 1.1pL (line 548, 549). The volume extraction is performed by pressure changes and
estimated using geometrical considerations (no loss considered, despite the large cell injury).
Altogether, especially for the RAW cells, we must assume, that the process basically depletes
100% of the cytoplasm in a highly non-specific way (see Extended Data Figure 3 - part 1a 
compare left panel and right panel, row RAW). It just puzzles me that the authors report a 86% 
viability of the RAW cells and claim 'no major perturbations'.

Thank you for pointing out this apparent contradiction. We have modified Fig. 3 and Extended
Data Fig. 3, the Methods (Cell viability after extraction), and the Results (Live-seq preserves 
cell viability, growth, and transcriptome) to clarify this aspect.

The extracted volumes can be accurately measured in the FluidFM probe (due to the fixed
geometry of the cantilever tip). We can confirm that there is no leakage/loss of cell volume 
during the probe insertion and withdrawal without suction into the cantilever. In fact, the 
membrane immediately seals upon insertion and extraction. We have performed longitudinal 
cell volume measurements to monitor the volume of RAW cells before and after extraction (Fig.
3b and Extended Data Fig. 3a, b). These data show that the measured cell volume loss
matched the measured extracted volume for each individual cell. These data were generated 
with RAW cells, for which we have the opportunity to estimate cell volumes due to the spherical 
nature of the cells. Importantly, our data show that in most cases about half of the cell volume 
is withdrawn in these cells.

For the other (larger) cell types, cell volume estimates are not possible in the adherent
state, which we use for cell extraction. In this case, as we do not have information on the cell 
volume, but only the extracted volume, we might occasionally extract up to 100% of the cellular
content, as the reviewer points out. The cell volume data reported in Fig. 3a are based on
dissociated cells. Since these are spherical objects, the volume can be inferred. The data 
illustrate the inherent broad distribution within all cell types used in this study.
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Minor: The force of 500nN to maintain the probe inside the cell also seems excessive. In typical 
AFM experiments, one would expect that such forces would damage the cells irreversibly.

Indeed, 500 nN is higher than the minimal force required to insert the probe into the cell. Our 
force feedback data revealed that we need ~30 nN up to ~300 nN, depending on the cell type 
and spread extent. The application of larger forces does not result in further pressure or 
damage on the cells (for more details on force effects, please see Guillaume-Gentil et al. Small 
2013). Setting the force to 500 nN and maintain this force ensured that it is sufficient for the 
various cell types used in our study. It allowed us to set a threshold and, in consequence, 
achieve a higher throughput. The cells are not harmed upon application of higher forces than 
those required to drive the probe through the membrane. This is due to the sharp tip geometry 
and force action on the underlying substrate rather than the cell. It is in contrast to typical cell 
stiffness measurements (Young modulus) where mechanical forces are applied onto cells with 
rounded or flat surface geometry. We have modified the Methods to clarify this point (Lines
1100-1102).

Based on the analysis, the authors conclude that the expression levels of Nfkbia and Gelsolin 
were dominant in the macrophage response to LPS exposure. I find these findings interesting, 
and the approach (while not that novel) exciting, but doubt that the method does not induce
significant alterations to the cells, which makes the method - at this point in time - similar to and
maybe less performing than 'end-point' scRNA-seq.

We agree with the reviewer that it was imperative for the functionality of Live-seq to investigate 
potential alterations to the cells and it resonates with us. We provide both direct and indirect 
data to address this concern. Specifically, to explore potential molecular effects, we sampled 
IBA cells and compared the single cell transcriptomes of these cells 1h and 4h post-probing to 
control IBA cells (i.e. unprobed cells that also did not receive a biological stimulus during this 
time window). As described in the Results, downstream data analysis revealed no distinct 
condition-related clusters (Fig. 3e), further supported by the observation that only 12 genes 
were found to be significantly differentially expressed (DE) among the three conditions (Fig. 3f). 
Based on these findings, we conclude that Live-seq does not induce major, short-term gene 
expression alterations. Additional molecular evidence is indirect and consists of superimposing
Live-seq data with "end-point" scRNA data obtained under the same experimental conditions.
These integrative analyses revealed an overall congruence of the data in that scRNA-seq and 
Live-seq data tends to seamlessly integrate (e.g. Fig. 2e). Finally, we assessed cell viability 
(Fig. 3a), cell division (Fig. 3b, c), and cell function (“phenotypic response to LPS”, Extended
Data Fig. 4e.) as well as the newly added “adipogenic capacity” (Fig. 4c and Extended Data
Fig. 4b; Lines 710-725). While perhaps unexpected, all these data are consistent and suggest 
that Live-seq does not impose major perturbations on the function of the probed cells.
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Referee #2 (Remarks to the Author):

In their manuscript, Chen et al present Live-seq, a method for longitudinal single-cell 
transcriptomic profiling from individual cells. Live-seq utilizes fluid force microscopy (FluidFM) 
to perform cytoplasmic biopsies; multiple subsamples can be made from the same cell to 
assess cellular dynamics. The authors first describe the development of their method. After, 
they benchmark it and finally apply it to characterize transcriptional dynamics during the LPS 
response in RAW 264.7 cells.

Overall, the work describes a first-of-its-kind platform for direct, physical, cytosolic 
transcriptome-wide longitudinal single-cell profiling. The manuscript is methodical in the main 
and easy to follow – after all, it traces well-worn paths in molecular optimization and 
benchmarking. Nevertheless, it falls short of demonstrating the transformative promise of the 
technique outlined in the manuscript’s introduction. While we include comments about specific 
elements of the work, we cannot help but feel as though the manuscript is incomplete. As it
stands, with minor revision, it feels like a great fit for a more methods-focused journal like Nature
Methods; with a killer app (e.g., neuron before and after plasticity protocol; some cells pre-
differention and then after; exhausted t cells to see if they can be reactivated by I/O; etc - 
honestly, there are many), it could be appropriate for Nature.

We thank the reviewer for appreciating the value of our work. The reviewer is correct, many 
transformative applications are now possible, even beyond the molecular recording as a novelty 
that we already provided in the original version. We agree with the provided, constructive 
suggestions and have now conducted an entirely new experiment on cell differentiation ("cells 
pre-differentiation and then after”), as one of the prime applications of interest. To demonstrate
the potential of Live-seq in this respect, we chose an adipogenic differentiation model of primary
adipose stem and progenitor cells (ASPCs) (Lines 710-725). To do so, we GFP-labeled a 
subpopulation of ASPCs with each cell containing a unique barcode, and biopsied them to 
profile their transcriptome in the pre-differentiated state. We then induced their differentiation 
with a chemical cocktail and sampled the same cells a second time, two days later, to profile 
their transcriptome in a differentiating state (see Lines 710-725, Methods (Cytoplasmic 
biopsies), and Fig. 4c). Using these strategies, we succeeded to sequentially sample 44 cells 
and obtained eight paired, quality control-passing gene expression profiles from ASPCs, as 
confirmed by the recovery of the correct, respective barcodes (Fig. 4e). Further monitoring of 
the cells for up to seven days after the second extraction revealed that cell viability was not 
compromised (we lost 2 cells out of 44 compared to 3 cells from 41 non-extracted control cells). 
In addition, we observed lipid droplets in these sequentially probed cells indicative of their 
retained adipogenic differentiation capacity (for representative images, see Extended Data Fig.
4b). Projection of the retrieved ASPC transcriptomes onto the integrated Live-seq and scRNA-
seq data revealed the correct transition from pre- to differentiating ASPCs (Fig. 4d and
Extended Data Fig. 4a). Thus, our results demonstrate that for both rapid (macrophage
response to LPS) and slower (adipogenic differentiation of ASPCs) transition models, Live-seq 
data can be exploited to unambiguously establish the "correct" trajectory of cells that were
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processed using conventional scRNA-seq. This is in our opinion an unprecedented, 
technological achievement.

In parallel, we used Live-seq’s molecular recording capacity to investigate the factors that 
determine LPS response heterogeneity of macrophages. We found that the basal expression 
level of Nfkbia is a negative predictor of LPS-induced Tnf expression (Fig. 4h). In our revised 
manuscript, we now validate this finding using a newly created Nfkbia-BFP reporter cell line 
(Fig. 4j and Extended Data Fig. 4j ). We also found and validated that cells in S phase respond 
weaker to LPS stimulation (Fig. 4k-l). Together, these data provide new insights into how
stochastic variation in inflammatory response among macrophages arises, which, we believe,
could not be captured by a snapshot scRNAs-seq type of approach (Fig. 4i).

Below, we provide comments by section/line/figure.

1.  The basics of Live-seq/Fig 1/ED Fig 1
1-1) Line 94: How was cellular sampling optimized?

We have amended the text to better describe our efforts to optimize cellular sampling. 
Specifically, our efforts to optimize cellular sampling are described in the first part of the results 
(Lines 135-151, detailed in Methods, Cytoplasmic biopsies), which, together with the 
Introduction (Lines 98-131), we have now modified to better explain the past and present 
technological developments enabling biopsy sampling for downstream transcriptome profiling.

How do assay information content and cell viability depend on sampling volume?

Cell viability as a function of extracted volume is provided in Fig. 3a (former Extended Data Fig.
3a). Within the investigated volume range, we could not detect a dependence of the information 
content on the volume.

What is the throughput of the method? If 15 minutes per sample, how many cells are sampled 
in each experiment listed and how many runs does each figure represent (e.g., Fig 4)?

The entire procedure takes approximatively 15 min per extraction, with the cytoplasmic 
extraction itself lasting up to 5 min. We performed 43 extraction experiments in total, sampling 
10 to 20 cells in each experiment, which were further processed in five batches of library 
preparation. In the future, we anticipate that the throughput of Live-seq will be improved with 
automation. However, we like to point out that for our study, sampling a greater number of cells 
was not limited by the extraction itself but rather by the entire workflow which also involved the 
continuous monitoring of cell fate as well as imaging of cells with single cell resolution to provide 
cell viability and differentiation data. At present, data analysis (image and RNA-seq) has also 
been a limiting factor and in fact tends to surpass the time required for actual experimental 
handling. We are confident that sustained efforts and automation on pre-set parameters will
enhance throughput. This is true in particular for studies focused on one particular Live-seq
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application in the future. We have now modified the Methods to provide more details as 
requested (Lines 1117-1121).

If multiple independent experiments (likely given numbers), how much of the authors’ 
observations are driven by experiment-to-experiment variability (e.g., differences in stimulation 
dynamics, cell density, etc; see Line 710)? A lot remains opaque.

While the batch effect is always a source of technical variation in single cell-based approaches, 
we could show that the cell identity rather than the batch is the main driver of variation (Fig. 2b 
and Extended Data Fig. 2f). The seamless integration of scRNA-seq and Live-seq data (Fig.
2e) further indicates that the batch effects are minor compared to the observed biological
heterogeneity.

1-2) Line 95: How is temperature controlled? Does this impact cellular response dynamics?

For FluidFM manipulations and for live cell imaging, the temperature is controlled using a 
temperature-controlled incubation chamber (Zeiss) (See Methods, Optical microscopy setup). 
Therefore, we do not expect undesired temperature shift responses. In addition, all the 
experiments in this study were performed under the same environmental conditions. The cell
samples in our study features cells that were targeted for extraction but also includes non-
extracted neighboring cells that were used as controls. Dynamic cellular responses that were 
investigated and presented in this study included these control cells and were subjected to the 
same environmental conditions as the extracted cells.

1-3) Lines 103-119: This should move to the supplement. The optimization of the molecular
biology follows previous descriptions (like those in SmartSeq2 and Drop-seq). What is missing 
is more details specific to the optimization of the FluidFM method, which is the main contribution.

We have amended the text and details (Lines 135-142) illustrated in Fig. 1a and Methods 
(Cytoplasmic biopsies). The main optimizations are i) reducing the extraction time, ii) lowering 
the temperature, iii) implementing a preloading of the FluidFM probe with sampling buffer with 
the goal of immediately mixing the extracted cytoplasmic fluid with RNase inhibitors, iv) 
releasing the extract into a microliter droplet containing buffer that is compatible with 
downstream RNA-seq, v) introducing a washing step to avoid cross contamination, and vi) 
implementing image-based cell tracking for sequential extraction. We thereby believe that also
the part on the optimization of the underlying biochemistry is of similar importance, as
delineated in the current manuscript.

1-4) Line 112: cDNA yield is not the right metric for optimization – it’s information content (e.g., 
ED Fig 1h; see ED Fig 2e). Meanwhile, how many distinct experiments (not replicates) are 
represented in ED Fig 1a-g (i.e., distinct reagent mixtures for each test)? This is often the 
greatest source of variation.
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We agree with the reviewer that the library information content is the golden metric for 
experimental optimization. Specific to former line 112 (Extended Data Fig. 1e), our main goal
was to reduce primer concatemers, which can be observed in both the cDNA profile (Extended
Data Fig. 1f) and the cDNA yield from real RNA and negative controls (0 pg input RNA) in
highly cost- and time-efficient fashion. Thereafter, we indeed validated the information content 
of the libraries in the optimized condition (Extended Data Fig. 1h). As the reviewer points out, 
variation between different batches can be extensive in general for various scRNA-seq methods. 
The variation inside one batch is smaller, which is also shown in Extended Data Fig. 2e. As 
such, replicates were shown in Extended Data Fig. 1a-g, with 2-5 distinct experiments yielding
congruent results. This information has been added to the legend of Extended Data Fig. 1 of
the revised manuscript (Lines 1918-1919).

1-5) Line 124: Fig 1b: Please adjust the plot to end at 0 on y. The axes are misleading. Also, 
how does quality relate to read depth? Is that what drives the variance? Same for ED Fig 2a.

We have modified the figure as requested. As data in Extended Data Fig. 2a involved more 
cells, we used it to investigate the impact of read depth. We found that read depth is indeed a 
source of variance (Left panel, Figure below), but downsampling to the same read depth 
revealed that it is in fact not the only factor (Right panel, Figure below). Since these results are 
consistent with observations for conventional scRNA-seq (Luecken and Theis, MSB, 2019), we 
opted not to include these analyses in the revised manuscript, but would be happy to do so 
upon the reviewer’s / editor’s request.

Figure Legend: (Left panel)
Correlation between the number of 
input reads and the data quality 
(nGene, the number of genes
detected). R2 = 0.24, P = 5.2e-33, F-
test. (Right panel) The number of 
detected genes is still variable when 
the data were downsampled to 
feature an equal amount of 
sequencing reads per cell.

2. Live-seq enables the stratification of cell types and states/Fig 2/ ED Fig 2
2-1) Line 142: What are cell numbers per cell type/condition?

There are 61 not-differentiated ASPCs, 37 differentiated ASPCs, 55 IBA cells, 102 mock- 
treated RAW cells and 50 LPS-treated RAW cells. To improve clarity, we have now extended 
the description of the Fig. 2b legend in the revised manuscript.

2-2) Line 145: Why did such a low percentage of cells pass filter (compare ED Fig 2i)? This is 
critical (coupled with the question on Line 94) re: power.
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We extracted on average 1.1 pL of cytoplasm, as detailed in Lines 1105-1106. This represents 
a very low amount of input, rendering the standard scRNA-seq biochemistry not sufficient to 
amplify the RNA in all cases. It is in fact the main reason why we have modified the Smart-seq2 
approach to increase overall detection sensitivity. We expect that additional improvements in 
sensitivity will be offered by rapidly evolving biochemical scRNA-seq approaches such as the 
Smart-seq3 biochemistry. As a consequence, we anticipate that a higher percentage of cells 
(currently around 40%) will eventually pass the stringent filtering criteria that we applied in this 
study. To make this important point clearer, we have amended the Discussion in our revised 
manuscript (Lines 879-881).

2-3) Line 150: When and how are ERCC spike-ins added? Are they preloaded into the AFM tip 
or are they added during RT. This is essential to determine their utility.

We add the ERCC during the RT (see Methods for further details). Adding ERCC to the 
preloaded sampling buffer provides an opportunity to gage overall sample loss during the 
sampling process. However, as the volume of preloaded sampling buffer is variable, preloading 
the ERCC into the tip is less practical at the current stage.

2-4) Line 184: What is being correlated in ED Fig 2k? There are a few figures like this. Please 
make sure it is clear what is being plotted.

Extended Data Fig. 2k shows the gene expression correlation between each cell and the 
average of cells in the indicated groups. For example, each IBA cell correlates to the average 
of all IBA cells. The reviewer might also refer to Extended Data Fig. 2c. It is similar to Extended
Data Fig. 2k, but the ERCC rather than gene expression was correlated. We have clarified this
in the revised Figure legends accordingly (Lines 1967 and 1979).

2-5) Line 198: What is DE between Live-seq and standard scRNA-seq? How does variation 
change? Also, how many of the significantly DE genes in ED Fig 2q are part of the LPS 
response?

We have included additional analyses in the revised manuscript to address these questions. 
As shown in Extended Data Fig. 2q, 72% of the Live-seq DE genes are shared with scRNA-
seq and 46% of scRNA-seq DE genes are shared with Live-seq. Further analysis showed that
the gene expression change among Live-seq cell populations is highly correlated with that of 
scRNA-seq across all sampled cell populations (Fig. 2d). For the LPS-treated RAW cells, we 
show in Extended Data Figs. 2h and 2i that LPS treatment-related genes are highly enriched, 
as expected, with around 40% of the top 100 DE genes of both Live-seq and scRNA-seq cells 
being directly involved (Extended Data Tables 1 and 2). We refer to this new analysis in the 
revised manuscript (Lines 342-345).

3. Live-seq preserves cell viability, transcriptome, and growth/Fig 3/ED Fig 3
3-1) Line 212: How viable are the cells if you wait longer than 6.5h? Does the stress induce 
long term changes/death? This seems critical for calibrating the method and its utility … and
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for understanding the data presented in Fig. 4 … and for distinguishing it from metabolic 
labeling modalities (Line 366). In truth, it’s hard to pinpoint something that couldn’t have been 
done before using existing methods (e.g., metabolic labeling, which has much, much higher 
throughput and can look at all cellular RNAs).

1) The viability of RAW cells was monitored for ~10 hours post extraction (See Methods – Cell 
viability after extraction). We note here that all the cells that died after undergoing extraction 
were already dead when starting the time-lapse monitoring, i.e. within 1 to 4 hours after
extraction. No cell death was observed at later time points compared to control cells. The
viability of IBA and ASPC cells was assayed 2-4 hours post extraction, with similar results as 
for the RAW cells. In the LPS treatment experiments with RAW cells, we observed the cells for 
18-24 hours and did not observe additional cell death events. Perhaps most convincingly (and 
also surprisingly), we showed that there are only few gene expression changes between probed 
and control IBA cells within 1h and 4h after the cytoplasmic biopsy, a time window that 
corresponds to stress / immediate response changes (e.g. serum, dissociation etc.). Given the 
limited gene expression differences within this immediate response timeframe, we deem it 
highly unlikely that cells would still respond beyond this time window, consistent with our 
morphological and functional cell observations.

Finally, our new sequential sampling analysis of differentiating ASPCs allowed us to monitor 
the possible phenotypic impact of cellular biopsies over an extended time window (seven days), 
revealing that 95% (N=44) of the sequentially probed cells appeared viable compared to 90% 
for control, non-extracted cells (N=41), as mentioned in the general comments above (Lines
718-723). In addition, we observed lipid droplets in these Live-seq-subjected cells indicative of
their retained adipogenic differentiation capacity (for representative images, see Extended
Data Fig. 4b), together providing further support for our observation that Live-seq does not 
appear to induce major phenotypic changes in the sampled cells.

2) As for the comparison to metabolic labelling technologies, the latter indeed enable the 
detection of old and new transcripts, and undoubtedly contribute to the inference of cellular 
trajectories, which we acknowledge in the original manuscript. However, we hope that the 
reviewer will appreciate that these technologies are subject to the same limitation as
conventional scRNA-seq methods, namely that they only allow the cell to be profiled once. A
full reconstruction of a “past” molecular state using a “present” transcriptome thus requires 
knowledge of both the synthesis and degradation rates of each RNA species. While the RNA 
synthesis rate can be successfully recorded thanks to metabolic labelling, the degradation rate 
needs to be modeled / inferred. This is why such approaches tend to still be regarded as 
“inference” tools rather than “direct measurement” assays. This notion is acknowledged by the 
developers of such labelling technologies. For example, the developers of the sci-fate assay 
specifically state in their paper that they are “inferring single-cell transcriptional dynamics with
sci-fate” (Cao et al., Nature Biotech, 2020). In addition, they describe their workflow as one that
“captures information analogous to RNA velocity”. In contrast, Live-seq allows the direct 
measurement of the molecular state of a cell without lysing it, which we now show both for rapid
(LPS response) and slower (ASPC adipogenesis) cell state transitions. This constitutes a
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fundamental difference to existing scRNA-seq methods including metabolic labelling 
technologies, which we have now better highlighted in the revised manuscript (Lines 866-878).

3-2) Line 215: How does are cell volume, extracted volume and viability related? Co- 
dependence isn’t plotted. A more quantitative analysis per ED Fig. 3e would be helpful.

The general co-dependence between the extracted volume and the viability is shown in Fig.
3a. In most cases, while the extracted volume can be reliably measured from microscopy 
images of the microchannel after extraction, the volume of a particular cell undergoing 
extraction is unknown. Adherent cells indeed require dissociation to assume a spherical 
morphology and enable an estimation of their volume, which prevents measuring their volume 
before and after extraction. In the case of the semi-adherent RAW cells however, the 
measurement became feasible, as shown in former Extended Data Fig. 3d, e. We have now
extended these data (Fig. 3b, Extended Data Fig. 3a and 3b) to clarify these results. We
implemented the volume growth profiles of 4 control cells without LPS stimulation, 4 control 
cells with LPS stimulation, and 4 additional extracted cells stimulated with LPS (12 profiles of 
extracted cells in total). Such longitudinal volume growth was not measured for dead cells, as 
those did not present a spherical morphology as required for the measurement. Please see 
also our response to reviewer #1, comment 2) and the response to the next comment.

3-3) Lines 233-247: This is a place where significantly more data is needed. Also, is this also 
true for primary cells? What about post-mitotic cells? We really don’t have a great sense of 
when and where the method is useful.

While extraction is possible with any type of cell, the approximation of cell volume is limited to 
non- or semi-adherent cells, which have a spherical shape. In our study, we used semi- 
adherent RAW cells to convey a sense of what is the fraction of the cell volume that is effectively
extracted. Measuring the volumes of adherent cells is currently not possible in living cells
without perturbation. We believe however that the presented data are consistent and 
adequately demonstrate how the volume drops upon extraction, and how the cell recovers the 
volume change thereafter. We have now added more longitudinal volume profiles for extracted 
RAW cells (with LPS stimulation), and profiles of RAW cells that were not extracted (with and 
without LPS stimulation) (Fig. 3b, Extended Data Fig. 3 a, b).

4. Live-seq records molecular events that are predictive of a cell’s downstream phenotype/Fig
4/ED Fig 4
4-1) Line 261: Some of the experimental details from the methods need to come to the front to 
aid interpretation

In our revised manuscript, we have adjusted the Methods section to improve overall clarity 
(Lines 1132-1137).

4-2) Lines 271-304: First, it is unclear why baseline RNA expression (rather than protein 
abundance) should be predictive (relatedly, how much does gene expression change in the 30
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minutes between sampling and stimulation (Line 566))? Second, there is no validation. And,
third, as highlighted, several of the hits are expected. In short, it is unclear how Live-seq 
uniquely enabled new biological insights here. This is the biggest shortcoming of the paper. 
Ditto Lines 306-325.

We agree with the reviewer that it is unclear whether baseline RNA expression can be
predictive of the downstream phenotype or not. This is a fundamentally unsolved question in 
many biological systems, largely because there is no transcriptome-wide molecular recording 
method that links the baseline RNA profile with downstream phenotypes. We hope that the 
reviewer will appreciate that this is exactly what Live-seq aims for.

Furthermore, and as indicated above, we intentionally studied LPS macrophage response 
heterogeneity, since this system has been well described, allowing us to benchmark Live-seq. 
We thus agree and also expected to "rediscover" genes described in the context of LPS 
macrophage response and find this reassuring and important. Regarding new candidate genes, 
we found that RAW cells in S phase respond weaker to LPS. We validated this interesting 
finding experimentally. Our results also point to NFKBIA as the principal baseline determinant 
of downstream heterogeneity. The uniqueness here is that Live-seq allowed us to generate a 
transcriptome-wide gene ranking, which cannot be derived based on targeted approaches.
Moreover, even conventional scRNA-seq does not support such inference, as shown in Fig.
4h, i. To further strengthen the finding that is a major determinant, we generated a RAW-G9 
line containing a BFP reporter under the control of the Nfkbia promotor and were able to confirm
that BFP fluorescence is induced by LPS treatment like the endogenous Nfkbia expression,
synchronously with the induction of the Tnf-mCherry reporter (Extended Data Fig. 4j). The use 
of the reporter line allowed us to demonstrate that, as hypothesized, basal Nfkbia-BFP intensity 
is a negative predictor (R2 = 0.12, P = 0.003, F test) of the rate of Tnf-mCherry intensity increase 
(the slope) (Fig. 4j). We have included this additional validation in the revised manuscript 
(Lines 827-834) and also expanded the Methods section (Nfkbia reporter analyses).

5. Sequential Live-seq cell sampling to measure cellular dynamics
Line 327-355: This analysis/section is dramatically underpowered and reads as preliminary. 
Dynamics are highlighted in the introduction and motivation as a key selling point but there are
only 2/14 cells whose repeated sampling passed filtering. This yield seems like a flag and
directly undermines the major selling points.

We have substantially restructured the manuscript due to the addition of a new section on cell 
state transitions as a consequence of cell differentiation (Fig. 4c-e). While it is correct that we 
still have relatively few cell pairs (four for macrophages (two in the original manuscript) and
eight for ASPCs), in our opinion, our results with the present throughput indicate that it is often
already sufficient to probe the cell using Live-seq just once as phenotypes of the very same 
cell can be observed later. A second Live-seq sampling from the same cell is only desirable 
when further probing of the cell is required (e.g. over a longer timeframe) and was included 
here as a proof of concept. In addition, our sequential Live-seq data demonstrate that the 
probing of relatively few cells can already contribute to resolving complex biological processes
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in ways that snapshot scRNA-seq data cannot. These include the empirical determination of 
trajectories through Live-seq and conventional scRNA-seq data integration as well as the 
prediction of heterogeneous phenotypic behavior. Thus, we deem conventional scRNA-seq and
Live-seq to be highly complementary in that scRNA-seq can define the manifold in high-
dimensional space, while Live-seq provides guidance with respect to the information flow within 
that space. For such a hybrid approach, the monitoring of fewer cells is possible and therefore 
fully aligned with Live-seq’s current throughput. However, we acknowledge that technological 
innovations will still be required to standardize such analyses and perform them at a larger 
scale (Lines 816-819, 878-885, and 967-969).

Minor points:
1. We would seriously reconsider what data is in main figures and what is in the ED figures. 
We’d bring aspects critical to the method to the main and move some that are less relevant 
panels to the back.

We modified and expanded Figures and Extended Data. Specifically, Figs. 2d, 4c, 4e, 4j, and
Extended Data Figs. 2q, 2s, 3b, 4b, 4j represent newly added data, Figs. 3a, 3b were 
transferred to the main Figures and Extended Data Figs. 4e, 4m were transferred to Extended 
Data Figures. Please also note that most panels of Figs. 2-4 and Extended Data Figs. 2-4 have 
also been updated as new samples were added.

2. It’s unclear from what is provided if the full transcriptome can be sampled. We might adjust 
the title based on a more nuanced analysis of ED Fig. 2q

While the number of detected genes by Live-seq is lower than that by conventional scRNA-seq, 
as expected given the lower RNA input (shown in Fig. 3a), the seamless integration of Live-
seq with canonical scRNA-seq data supports the conclusion that Live-seq comprehensively
samples the transcriptome of individual cells (Fig. 2e). Nevertheless, and as the reviewer 
suggested, we have performed additional analyses to directly compare Live-seq and scRNA- 
seq data in the revised manuscript (Fig. 2d and Extended Data Fig. 2q-r). Taken together, we 
believe that these data validate the quality of Live-seq data.
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Referee #3 (Remarks to the Author):

The authors used FluidFM to sample cytoplasmic sub-cellular liquid biopsies and developed a 
highly sensitive scRNA-seq protocol to perform RNA-sequencing on these small inputs. They 
demonstrate that this method, termed Live-seq, can capture cell-type and state differences. 
They use Live-seq to investigate if transcriptome states, prior to LPS stimulation, can explain 
variable macrophage responses to the LPS stimulation, as measured by Tnf-mCherry signal. 
They identify genes with high predictability of LPS response (slope and intercept) and that cells 
in S-phase had weaker LPS responses. Finally, they show that Live-seq can enable sequential 
biopsies of the same cell (although only performed on two cells).

The main strength of this manuscript is the introduction of a method that can take cytoplasmic 
biopsies of cells in a manner compatible with cell-type and -state informative RNA-seq. 
Importantly, the cells having “donated” cytoplasmic biopsies mostly recovered and showed e.g. 
similar LPS response heterogeneity. This improvement is novel and important.

The method was used to investigate molecular determinants dictating variable LPS responses 
in macrophages, revealing genes and cell-cycle phase as informative in separating LPS 
responses. The LPS experiments provided are however a bit preliminary (see comments below) 
as it was not fully clear to what extent significant gene-level effects was identified. For this
manuscript to be a strong candidate in Nature, it will be important to demonstrate that Live-seq
has sufficient power to identify gene-level effects, as that is how it would likely have its core 
applications in biology.

Major comments.
1. Clarifications of timescales in all experiments

1a) The temporal aspects of all experiments provided need to be clarified. How long time does 
it take to perform cytoplasmic biopsies on one (or a hundred) cells. This impact on the time 
difference between cells in a population if they are all exposed to these biopsies.

We have improved our manuscript to enhance overall clarity. We now detail the temporal 
aspects in the Methods for the time required for a biopsy (Lines 1117-1121), and the time 
intervals during which the cells were sampled before and after application of a stimulus (LPS:
Lines 1131-1146; adipogenic differentiation: Lines 1148-1173).

1b) The time after Live-seq cytoplasmic biopsies to LPS stimulation and sequential Live-seq 
sampling was not found. I assume LPS stimulation is provided directly after finishing the Live- 
seq cytoplasmic sampling? However, the time required to take cytoplasmic biopsies of tens to 
hundred of cells takes how long (comment 1a) and how does that relate to the timing in the 
LPS stimulation experiments. The timing is also relevant for the experiment linking cell-cycle 
phase of individual cells to the variable LPS response (the extra time for the first cytoplasmic
biopsy compared to the last sampled cell). If certain times are allowed post-biopsies for cells to
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regain vitality, that should also be clearly stated as that impact future planning of Live-seq 
experiments.

We have improved our manuscript to clarify the timescales in all experiments (Methods, Lines:
1117-1173). For the hours’ time-scale studies that are presented in this work, 4 to 5 cells were 
extracted per individual sample run within a time window of 1 h. The cells were monitored for
30 minutes before adding the LPS to record a Tnf reporter signal baseline before LPS
stimulation. For the days’ time-scale study involving ASPC differentiation, cells were extracted 
during 3-4 hours, and the chemical cocktail to induce differentiation added directly after the last 
extraction. The number of samples and the number of extractions per sample can be adapted 
as desired to fulfill specific time-scale requirements of the biological system under investigation.

2. Live-seq method development
The authors demonstrate that Live-seq is sufficiently accurate in profiling sub-cellular RNAs to 
enable cell-type and state separations, although the separations improve when “guided” by 
standard scRNA-seq (i.e. sparser Live-seq transcriptomes can be projected onto a high-quality 
low-dimensional representation of the standard scRNA-seq transcriptome patterns). I think the 
authors have done a great job of developing Live-seq and it clearly has merits. Having said that, 
any method aiming to profile sub-cellular RNAs would benefit from using UMIs to enable 
molecular counting, as amplicon effects are stronger with smaller initial starting RNA 
populations. Although not critical, adding UMIs to the Live-seq protocol would be highly
desirable to improve the RNA counting (and can perhaps improve gene-level phenotype
correlations – see comment below).

We agree with the reviewer that the incorporation of UMIs could reduce the application bias.
However, it is well established that full length-based Smart-seq2 has much greater sensitivity 
than UMI counting-based approaches using a similar biochemistry (Ding et al., Nature Biotech, 
2020). Even in the recently released Smart-seq3 workflow, reads bearing a UMI take up only a 
minor proportion of total reads. Given the small mRNA amounts in the Live-seq procedure, we
anticipate that such reads would be even fewer and thus provide only limited information at
present. However, we agree that it is indeed desirable to improve detection sensitivity and 
throughput such that the application of UMIs can be implemented.

3. LPS heterogeneity experiment.

3a) Limited power to identify gene-level effects?
The authors apply Live-seq to study the heterogenous response of macrophages to LPS 
stimulation. Using a linear model, they investigate gene expression levels (prior to stimulation) 
that can predict the Tnf-mCherry intensity from the same cells. The results sections provide 
correlation scores (r-square and Pearson correlations), with p-values for specific gene-mCherry 
correlations provided in Extended Data Table 3-4. The authors report the identification of known 
and unknown immune regulators, including Tnf, Gelsolin, Nfkbia, that show correlation with 
LPS responses. Nowhere in the results nor methods are the statistics performed described. 
Moreover, some of the reported gene-level interactions are not significant as listed in Extended
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Data Table 3-4 (or am I not reading these tables correctly – the tables do lack headers and 
information so they are not easy to follow). The results section should clearly state whether 
mentioned gene-level interactions were significant (with what test) or if they were not significant. 
This is important, since the usefulness of Live-seq do depend on the ability to robustly estimate 
expression levels and if they are too noisy, they might not enable biological discoveries. If 
Pearson correlations were used, they are highly sensitive to outliers, and is likely not a robust 
method and should be complemented with rank-based approaches (or experiments showing 
that the used linear models are appropriate). The limited statistical significance (if lack of 
significance for some genes) is only followed up by discussions, as no functional follow up 
experiments are performed on any gene-level effect.
Permutation based significance estimation to identify gene-level predictors of Tnf-mCherry
responses.
3b) Irrespective of the exact statistical model used (which should be reported), I strongly advise 
the authors to compare their obtained gene-level effects (for slope and intercept, respectively) 
against large sets of random permutations of the data (where e.g. Tnf-mCherry data attached 
to each cell was randomized), to further investigate significance of gene interactions in a more 
controlled manner. This procedure should be performed on the analysis of slope and intercept, 
and it would provide information on the power of the Live-seq strategy to reveal molecular 
determinants of variable phenotypic responses.

We realize that the Extended Data Table was difficult to read in the presented PDF form. We 
have now provided the Extended Data Table in a more readable form.

For the linear regression model, we used an F-test to test the significance of the coefficient 
from linear regression, which we corrected for multiple testing (FDR). We acknowledge that 
most of our hits are only barely significant (e.g. the false-discovery rate of Nfkbia is 0.099). We 
have also performed a permutation-based analysis as the reviewer suggested, and here all 
genes have an FDR above 0.4 (these values are included in the Extended Data Table). This 
difference is as expected as these non-parametric tests have a lower power. To assess whether 
our original approach using the F-test is correct, we verified for our top hits whether the 
assumptions made by the linear model are invalid, namely the normality and homoscedacity of 
the data. This did not seem to be the case for the top 10 genes, although we here also 
acknowledge that this may be hard to determine using the limited number of processed cells. 
The qq-plot and scale-location plots are provided below for Nfkbia:
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As we emphasize in our revised manuscript (Lines 816-819), we believe that the main mission 
of Live-seq in its current format is to generate leads that can then be validated using targeted 
approaches. Our data show that Live-seq revealed a link to the cell cycle (see also our reply 
below), which we were able to validate. To further demonstrate the power of our approach, we 
now provide additional validation on Nfkbia, by generating and testing a BFP reporter (see Fig.
4j and Extended Data Fig. 4j), revealing that the basal expression level of Nfkbia can indeed
act as a negative predictor of LPS-induced Tnf expression (Fig. 4j), as hypothesized (Fig. 4h). 
We have now more specifically included a statement on the power of our current analyses in
the revised manuscript (Lines 967-969), refined the method (Lines 1488-1510) and also
inserted the Nfkbia validation data, Lines 827-834, Fig. 4j and Extended Data Fig. 4j).

3c) Integration of cell-cycle phase and gene-level correlations.
Subsequent cell-cycle experiments identify cells in S-phase to have weaker LPS responses. 
The authors do not mention whether this cell-cycle effect explains the previous results that 
highlighted Nfkbia as a main regulator of Tnf-mCherry response, e.g. if Nfkbia would be 
expressed in a cell-cycle dependent fashion. More systematically, the authors could perform 
the linear modeling across genes and cell-cycle phase to comprehensively assess which 
genes-level correlations relate to cell-cycle and which gene-level observations are independent 
of cell-cycle (again, with permutation-based or more comprehensive statistical analysis).

To explore whether the two processes, namely Nfkbia expression and cell cycle, are related,
we calculated the S and G2M scores using Seurat’s CellCycleScoring, and determined 
whether these scores are predictive for normalized Nfkbia expression using standard linear
regression. This does not seem to be the case for both the scRNA-seq and Live-seq data (p >
0.1, with respectively n = 190 and n = 50), which suggests that both processes are unrelated 
and contribute to the lower sensitivity of a cell to LPS. We did not include this analysis in the 
revised manuscript; however, we would be happy to do so upon request of the reviewer / editor.
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4. Contrasting Live-seq and metabolic labeling in single cells
The authors mainly discuss Live-seq against traditional scRNA-seq analysis coupled to 
trajectory inference. Metabolic labeling in single cells is however the more relevant comparison 
as these published methods (that are referenced in the introduction) do enable two temporally 
linked cellular transcriptome snapshots from the same cell, and the metabolic labeling 
approaches is high-throughput in comparison to Live-seq. A discussion on the conceptual 
differences of Live-seq towards metabolic labeling methods is missing and would be highly 
useful to readers. Live-seq is the first method to enable sequential cellular transcriptome 
snapshots which is highly interesting. Yet, the ability of metabolic labeling to measure pre- 
existing to newly transcribed RNAs contains complementing information. For example, Live-
seq is not well suited to identify transcriptional effects of perturbations (as the majority of RNA
measured in the second snapshot would have been there before the initial perturbation was 
there), whereas metabolic labeling methods excel at that. Instead, it seems that Live-seq excel 
in experiments spanning longer time-periods between initial cytoplasmic sampling and
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downstream phenotypic recordings. I think this distinction would help readers understand when 
the different methods could be best applied. To fully understand the temporal resolution in Live- 
seq, detail clarification of the timings of the experiments presented in the present manuscript 
(comment 1 above) is needed.

Moreover, the authors are correct in that Live-seq offers the first strategy to sample the same 
cell at two different time points (with no temporal dependencies) whereas metabolic labeling do 
achieve a similar goal but only when the two measured time periods are within 6 or 12 hours 
for the strategy to be powerful. However, having said that, the authors could balance the text 
to acknowledge that two temporal snapshots of cellular transcriptomes has in principle been 
achieved with metabolic labeling.

We have now included a more comprehensive discussion about the technical differences 
between Live-seq and metabolic labeling technologies in our revised manuscript (Lines 866-
878). We would thereby like to emphasize that there are fundamental differences between Live-
seq and metabolic labeling methods, see also our response to the metabolic labeling comment 
by reviewer 2 above (point 3-1). Finally, the comment by the reviewer that “Live-seq is not well 
suited to identify transcriptional effects of perturbations” is well taken as we wondered about 
this as well. This is yet another reason why we decided to study macrophage LPS response 
heterogeneity given that the perturbation (i.e. LPS exposure) needed to be assessed within a
relatively short timeframe. We believe that the results from these analyses show that Live-seq
can adequately detect these perturbation-driven gene expression changes, also in light of our 
control data from our dual sampling without LPS treatment experiments (Fig. 3d-f).

5. Tracking of individual cells over time
Where any positive controls used during Live-cell imaging to make sure the cells were tracked 
correctly, and consequently that the sequential biopsies were indeed performed on the same 
cell? Can one add dyes or barcoded polyA containing RNAs to cells during initial biopsy to have 
reference points later for the controlled re-capturing of cells in the sequential experiment to 
make sure the cell-mapping is correct?

The cells were monitored continuously, before, during and after the extraction, by optical 
microscopy, at time intervals optimized to non-ambiguously track the individual cells within the 
field of view (≤ 30 min intervals, Methods, Lines 1131-1146)). We did not require additional 
cell markers to unambiguously follow individual cells in the presented experiments, at the hours’ 
time-scale. However, the use of dyes or molecular barcodes as suggested by the reviewer is 
well taken. In fact, to perform the newly added sequential sampling of ASPCs pre- and post- 
differentiation, whereby the cells had to be relocated after 2 days, we introduced a unique
barcode in the 3’ UTR of the GFP reporter that was lentivirally transduced in a subset of ASPCs.
The barcode information could then be retrieved from the cDNA of each Live-seq sample and 
be used to evaluate the accuracy of the image-based tracking result such that samples can be 
confidently paired (Fig. 4e). These new experiments have been included in the revised 
manuscript (Lines 710-725, Methods: Lines 1148-1232, Fig. 4c-e, Extended Data Fig. 4a-
b).
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

Regarding point 1 from my first review, the authors have provided an improved 

introduction,mentioning refs 29-32 and what has been achieved before. Also, toning down some of 

the claims of novelty of the approach. I think the authors could still remove some of the qualitative 

terms of new/novel regarding the approach, as I have been thinking that their 2016 Cell paper 

provided this type of technical breakthrough. In the response, the authors have pointed out that 

they reached a 'new level', analyzing transcriptomes of relevant range, which seems to me like a 

fair description that should be stronger reflected in the manuscript (without the new). 

Regarding point 2 from my first review, the authors admit in their response that the extracted 

volumes represent significant percentages of the entire cell volume ("occasionally up to 100%"), 

but maintain, based on their data, that the approach has a high cell viability rate and that even the 

cell trajectories are preserved. 

In summary, I appreciated the care with which the authors have responded to my technical 

concerns and refer to the other reviewers to assess how strong the paper is within the field of 

transcriptomics, in light of the much lesser technical novelty and the potential invasiveness of the 

approach. Anyway, the authors are leaders in the use of FluidFM and have assembled a nice 

manuscript highlighting the state-of the-art of the technique. 

Referee #2 (Remarks to the Author): 

In this new version of manuscript, the authors introduce several modifications to the text, figures, 

and data. In particular, analysis of a new Live-seq ASPC differentiation dataset is presented, as 

well as experimental validations of Nfkbia expression and cell cycle state as predictors of LPS 

response in RAW 264.7 cells. 

Overall, we find these new additions interesting and pertinent. However, we feel these new results 

still fall short of demonstrating Live-seq’s promised potential at the level required for publication in 

Nature (e.g., answering a low-hanging, outstanding biological question). This seems to be a 

concern shared by Reviewers 1 and 3 as well. 

Many of our previous comments were addressed. Below, we highlight remaining issues by author 

response (initial comments and author responses in quotes), and also provide thoughts on the 

manuscript’s new additions. 

“Initial Author response: 

We thank the reviewer for appreciating the value of our work. The reviewer is correct, many 

transformative applications are now possible, even beyond the molecular recording as a novelty 

that we already provided in the original version. We agree with the provided, constructive 

suggestions and have now conducted an entirely new experiment on cell differentiation ("cells pre-

differentiation and then after”), as one of the prime applications of interest. To demonstrate the 

potential of Live-seq in this respect, we chose an adipogenic differentiation model of primary 

adipose stem and progenitor cells (ASPCs) (Lines 710-725). To do so, we GFP-labeled a 

subpopulation of ASPCs with each cell containing a unique barcode, and biopsied them to profile 

their transcriptome in the pre-differentiated state. We then induced their differentiation with a 

chemical cocktail and sampled the same cells a second time, two days later, to profile their 

transcriptome in a differentiating state (see Lines 710-725, Methods(Cytoplasmic biopsies), and 

Fig. 4c). Using these strategies, we succeeded to sequentially sample 44 cells and obtained eight 



paired, quality control-passing gene expression profiles from ASPCs, as confirmed by the recovery 

of the correct, respective barcodes (Fig. 4e). Further monitoring of the cells for up to seven days 

after the second extraction revealed that cell viability was not compromised (we lost 2 cells out of 

44 compared to 3 cells from 41 non-extracted control cells). In addition, we observed lipid droplets 

in these sequentially probed cells indicative of their retained adipogenic differentiation capacity (for 

representative images, see Extended Data Fig. 4b). Projection of the retrieved ASPC 

transcriptomes onto the integrated Live-seq and scRNA- seq data revealed the correct transition 

from pre- to differentiating ASPCs (Fig. 4d and Extended Data Fig. 4a). Thus, our results 

demonstrate that for both rapid (macrophage response to LPS) and slower (adipogenic 

differentiation of ASPCs) transition models, Live-seq data can be exploited to unambiguously 

establish the "correct" trajectory of cells that were processed using conventional scRNA-seq. This 

is in our opinion an unprecedented, technological achievement.” 

We agree that the ASPC differentiation assay is a pertinent application of the Live-seq method and 

we understand the technical feat. However, the number of paired cells is small and the results are 

in line with what is expected. In short, it is hard to see what Live-seq has taught us that is new. 

Further experiments and/or additional analyses (with validations) are needed to show that Live-

seq can answer an outstanding biological question (what can you find that you could not using 

existing state-of-the-art methods for inference and subsequent validation). For example, are only 

some stem cells primed for differentiation? Is differentiation terminal for all forms of stem cells 

and differentiated cells? Something about the events that dictate a specific cell’s decision (need to 

validate to establish Live-seq does not perturb this). Repeated sampling during differentiation as 

opposed to simply looking at two points might yield deeper insights into the process and actually 

enable tracking of the events that drive transitions. 

We note that it is unclear why the authors consistently choose to analyze different systems (ASPC, 

RAW, IBA) together. This should be fixed, especially around lines 727-736. Also, please do not mix 

your data when reporting metrics (e.g., ED Fig 2) - it’s misleading and inappropriate. Also, why do 

some of the IBA and RAW cells mix in ED Fig 2g? 

“1-1 point 2 How do assay information content and cell viability depend on sampling volume? 

Cell viability as a function of extracted volume is provided in Fig. 3a (former Extended Data Fig. 

3a). Within the investigated volume range, we could not detect a dependence of the information 

content on the volume.” 

This does not answer the question. How does extracted volume impact information content (i.e., 

genes detected, counts, etc)? Please provide a plot. 

“1-1 point 4 If multiple independent experiments (likely given numbers), how much of the authors’ 

observations are driven by experiment-to-experiment variability (e.g., differences in stimulation 

dynamics, cell density, etc; see Line 710)? A lot remains opaque. 

While the batch effect is always a source of technical variation in single cell-based approaches, we 

could show that the cell identity rather than the batch is the main driver of variation (Fig. 2b and 

Extended Data Fig. 2f). The seamless integration of scRNA-seq and Live-seq data (Fig. 2e) further 

indicates that the batch effects are minor compared to the observed biological heterogeneity.” 

We do not find the authors’ response convincing as Fig 2b,e and ED Fig 2f do not address our 

concern. All analyses should be done on a cell-type-by-cell-type basis. Calling variable genes 

across all of the systems at once is inappropriate as it masks critical differences within a system 

(RAW cells are very different than ASPCs) and can easily yield the results shown. NB there appears 

to be separation in ED Fig 2p among RAW cells. 

Please quantify your sources of variation, and provide appropriate statistics. 



“2-3) Line 150: When and how are ERCC spike-ins added? Are they preloaded into the AFM tip or 

are they added during RT. This is essential to determine their utility. 

We add the ERCC during the RT (see Methods for further details). Adding ERCC to the preloaded 

sampling buffer provides an opportunity to gage overall sample loss during the sampling process. 

However, as the volume of preloaded sampling buffer is variable, preloading the ERCC into the tip 

is less practical at the current stage.” 

As the authors acknowledge, ERCC spike-ins at RT likely yield less reliable normalizations. Given 

the volume variability in preloaded sampling buffer, could UMIs be used instead? Contrary to the 

response to Reviewer 3, this does not reduce quality or power. This would get a more accurate 

estimate of the information content extracted. A few simple control experiments could go a long 

way here. 

“2-5) Line 198: What is DE between Live-seq and standard scRNA-seq? How does variation 

change? Also, how many of the significantly DE genes in ED Fig 2q are part of the LPS response? 

We have included additional analyses in the revised manuscript to address these questions. As 

shown in Extended Data Fig. 2q, 72% of the Live-seq DE genes are shared with scRNA- seq and 

46% of scRNA-seq DE genes are shared with Live-seq. Further analysis showed that the gene 

expression change among Live-seq cell populations is highly correlated with that of scRNA-seq 

across all sampled cell populations (Fig. 2d). For the LPS-treated RAW cells, we show in Extended 

Data Figs. 2h and 2i that LPS treatment-related genes are highly enriched, as expected, with 

around 40% of the top 100 DE genes of both Live-seq and scRNA-seq cells being directly involved 

(Extended Data Tables 1 and 2). We refer to this new analysis in the revised manuscript (Lines 

342-345).” 

Can you explain the discrepancy? The limited degree of overlap is troubling (suggests the 

technique is not representative or not minimally perturbative). Does nuclear vs cytoplasmic 

localization of the RNA help explain the differences? If driven by power, what happens if you 

downsample and bootstrap? A more detailed analysis of what is happening here on a cell-type-by-

cell-type basis should be done. For example, what’s off diagonal in ED Fig 2r and Fid 2d (also, how 

is fold change calculated, compared to what; please make sure all of your data and legends are 

well referenced)? What arises when you explicitly do a differential expression analysis within 

group? 

Relatedly, in Fig 3e, how variable is the sampling time for each cell given the time it takes to run 

Live-seq - i.e., what does 1h and 4h actually represent? Relatedly, what these data show is 

recovery, not lack of perturbation contrary to the assertions in lines 469-478. 

Also, a direct comparison of the Live-seq and single-cell RNA-seq metrics (ED Fig 2j) would be an 

important addition. 

“3-2) Line 215: How does are cell volume, extracted volume and viability related? Co- dependence 

isn’t plotted. A more quantitative analysis per ED Fig. 3e would be helpful. 

The general co-dependence between the extracted volume and the viability is shown in Fig. 3a. In 

most cases, while the extracted volume can be reliably measured from microscopy images of the 

microchannel after extraction, the volume of a particular cell undergoing extraction is unknown. 

Adherent cells indeed require dissociation to assume a spherical morphology and enable an 

estimation of their volume, which prevents measuring their volume before and after extraction. In 

the case of the semi-adherent RAW cells however, the measurement became feasible, as shown in 



former Extended Data Fig. 3d, e. We have now extended these data (Fig. 3b, Extended Data Fig. 

3a and 3b) to clarify these results. We implemented the volume growth profiles of 4 control cells 

without LPS stimulation, 4 control cells with LPS stimulation, and 4 additional extracted cells 

stimulated with LPS (12 profiles of extracted cells in total). Such longitudinal volume growth was 

not measured for dead cells, as those did not present a spherical morphology as required for the 

measurement. Please see also our response to reviewer #1, comment 2) and the response to the 

next comment.” 

We think a plot showing viability as a function of cell volume and extracted volume would be useful 

to the reader to understand if the these are related. 

“4-2) Lines 271-304: First, it is unclear why baseline RNA expression (rather than protein 

abundance) should be predictive (relatedly, how much does gene expression change in the 30 

minutes between sampling and stimulation (Line 566))? Second, there is no validation. And, third, 

as highlighted, several of the hits are expected. In short, it is unclear how Live-seq uniquely 

enabled new biological insights here. This is the biggest shortcoming of the paper. Ditto Lines 306-

325. 

We agree with the reviewer that it is unclear whether baseline RNA expression can be predictive of 

the downstream phenotype or not. This is a fundamentally unsolved question in many biological 

systems, largely because there is no transcriptome-wide molecular recording method that links the 

baseline RNA profile with downstream phenotypes. We hope that the reviewer will appreciate that 

this is exactly what Live-seq aims for. 

Furthermore, and as indicated above, we intentionally studied LPS macrophage response 

heterogeneity, since this system has been well described, allowing us to benchmark Live-seq. We 

thus agree and also expected to "rediscover" genes described in the context of LPS macrophage 

response and find this reassuring and important. Regarding new candidate genes, we found that 

RAW cells in S phase respond weaker to LPS. We validated this interesting finding experimentally. 

Our results also point to NFKBIA as the principal baseline determinant of downstream 

heterogeneity. The uniqueness here is that Live-seq allowed us to generate a transcriptome-wide 

gene ranking, which cannot be derived based on targeted approaches. Moreover, even 

conventional scRNA-seq does not support such inference, as shown in Fig. 4h, i. To further 

strengthen the finding that is a major determinant, we generated a RAW-G9 line containing a BFP 

reporter under the control of the Nfkbia promotor and were able to confirm that BFP fluorescence 

is induced by LPS treatment like the endogenous Nfkbia expression, synchronously with the 

induction of the Tnf-mCherry reporter (Extended Data Fig. 4j). The use of the reporter line allowed 

us to demonstrate that, as hypothesized, basal Nfkbia-BFP intensity is a negative predictor (R2 = 

0.12, P = 0.003, F test) of the rate of Tnf-mCherry intensity increase (the slope) (Fig. 4j). We 

have included this additional validation in the revised manuscript (Lines 827-834) and also 

expanded the Methods section (Nfkbia reporter analyses).” 

Does baseline RNA expression correlate with protein abundance? This would provide support to 

findings of correlation between RNA expression of some genes and response to LPS. The data sets 

in Jovanovic et al, Science 2015 (DOI: 10.1126/science.1259038) should be instructive. 

Regarding the difference in LPS response by cell cycle phase, this too is expected. Please see Allen 

et al, Science Signaling 2019 (DOI: 10.1126/scisignal.aau1851). 

Lines 804-807: Adding the LPS data to this plot and comparing to pre-LPS Live-seq is 

inappropriate. There doesn’t seem to be a positive correlation between Tnf and Nfkbia at baseline 

(driven by the LPS stimulation). 

Regarding the Nfkbia-BFP/Tnf-mCherry validation experiment, the correlation plot would benefit 

from the indication of an R-squared, Spearman correlation coefficient, and associated p-value. 

Given that the association is not strong, it is our impression that the pattern is driven mostly by 



few datapoints with high basal BFP intensity. These results would be more convincing if additional 

datapoints could be obtained, with more points with high intensity. 

Finally, we agree with the authors that the anticorrelation of Nfkbia basal expression and LPS 

response/NFKB upregulation is an expected finding. In short, this is a validation of the method as 

pointed out above, rather than an indication of the full potential of Live-seq. The lack of new 

biological insights remains the biggest shortcoming of the paper. 

“5. Sequential Live-seq cell sampling to measure cellular dynamics 

Line 327-355: This analysis/section is dramatically underpowered and reads as preliminary. 

Dynamics are highlighted in the introduction and motivation as a key selling point but there are 

only 2/14 cells whose repeated sampling passed filtering. This yield seems like a flag and directly 

undermines the major selling points. 

We have substantially restructured the manuscript due to the addition of a new section on cell 

state transitions as a consequence of cell differentiation (Fig. 4c-e). While it is correct that we still 

have relatively few cell pairs (four for macrophages (two in the original manuscript) and eight for 

ASPCs), in our opinion, our results with the present throughput indicate that it is often already 

sufficient to probe the cell using Live-seq just once as phenotypes of the very same cell can be 

observed later. A second Live-seq sampling from the same cell is only desirable when further 

probing of the cell is required (e.g. over a longer timeframe) and was included here as a proof of 

concept. In addition, our sequential Live-seq data demonstrate that the probing of relatively few 

cells can already contribute to resolving complex biological processes in ways that snapshot 

scRNA-seq data cannot. These include the empirical determination of trajectories through Live-seq 

and conventional scRNA-seq data integration as well as the prediction of heterogeneous 

phenotypic behavior. Thus, we deem conventional scRNA-seq and Live-seq to be highly 

complementary in that scRNA-seq can define the manifold in high- dimensional space, while Live-

seq provides guidance with respect to the information flow within that space. For such a hybrid 

approach, the monitoring of fewer cells is possible and therefore fully aligned with Live-seq’s 

current throughput. However, we acknowledge that technological innovations will still be required 

to standardize such analyses and perform them at a larger scale (Lines 816-819, 878-885, and 

967-969).” 

We understand that sequential sampling of the same cells favorably impacts type 1 and type 2 

error allowing for smaller sample sizes. However, given stochastic, inherent variability in biological 

processes, a sample size of 4 appears small. Statistics should be used to guide the validity of all 

results discussed. 

A scRNA-seq / Live hybrid approach appears promising. Could it be a way to obtain new biological 

insights with the existing data? We understand the conceptual promise of the approach but are 

having trouble seeing its proof. 

“Minor point 2. It’s unclear from what is provided if the full transcriptome can be sampled. We 

might adjust the title based on a more nuanced analysis of ED Fig. 2q 

While the number of detected genes by Live-seq is lower than that by conventional scRNA-seq, as 

expected given the lower RNA input (shown in Fig. 3a), the seamless integration of Live- seq with 

canonical scRNA-seq data supports the conclusion that Live-seq comprehensively samples the 

transcriptome of individual cells (Fig. 2e). Nevertheless, and as the reviewer suggested, we have 

performed additional analyses to directly compare Live-seq and scRNA- seq data in the revised 

manuscript (Fig. 2d and Extended Data Fig. 2q-r). Taken together, we believe that these data 

validate the quality of Live-seq data.” 



These comparisons are instructive. Our comment refers to the potential spatial biases in RNA of 

different genes given that biopsies are cytoplasmic. Is the difference between DEG in Live-seq and 

scRNA-seq belong to a certain category of genes (e.g., nuclear vs not nuclear) or are they purely a 

consequence of sampling rate? This would help delineate how Live-seq signal can be interpreted. 

For example, what genes are sampled in 1b relative to matched whole cells? How do the metrics 

compare? Ditto 2a. Fig 3 hints at this in one systems for cells at rest. 

Similarly, can you show matched comparisons of Live-seq and total cell RNA-seq for ED Fig 2j? For 

Fig 2d/ED Fig 2r, we’d like to see enrichments of what’s off-diagonal and square axes. 

Referee #3 (Remarks to the Author): 

The authors have addressed many of the comments from the initial round, and the manuscript has 

improved. It is clear that Live-seq can accurately sample cytoplasm from cells, without detrimental 

damage to cells, and that the sampled RNAs can provide a decent transcriptional profile that e.g. 

identifies correct cell types (i.e. large biological differences). To this end, it is the first 

transcriptome-wide demonstration of multiple scRNA-seq measurement from the same cell (Figure 

2 – the strongest figure of the manuscript). 

However, the biological experiments in this manuscript are still weak. The one insight generated 

from the LPS heterogeneity experiment was the identification of Nfkbia (Fig 4h, non-significant) 

that was validated with borderline significance (dependent on a few outlier observations, Fig 4j), 

and the S-phase effect. 

The new analysis (Fig 3e) that investigated the effect of cytoplasm sampling on the cell is 

confusing. It seems very dangerous to here claim negative results – i.e. that the cells do not 

separate in tSNE - since often proper separation depend on accurate identification of the 

biologically variable genes (tSNE parameters etc). With 18 DE genes, in my experience, the cells 

would be highly likely to cluster. 

The discussion on metabolic labeling still misses the main point – in my opinion – that the real 

advantage of Live-seq lies in phenotypically linking cells over larger time intervals (>8 hours to 

days), as metabolic labeling will excel at shorter time points. Thus, the genes detected as 

differentially expressed (Fig 3f) are limited to those initially expressed at low (or no) levels, in 

order to be detected as differentially expressed in Live-seq (whereas metabolic labeling could 

detect all differentially expressed genes). On this topic, the LPS experiment would have much 

higher power if studied with metabolic labeling instead of Live-seq. 

Altogether, I applaud the authors efforts to establish this technology, but I am worried that at its 

current power and cellular throughput, there will be limited interest to establish this technology in 

other labs. Nevertheless, I could see increased interest in Live-seq if the method could be scaled 

to hundreds of cells (within a reasonable time frame), although I completely understand this is 

currently not achievable. The rather weak biological insights provided in the manuscript makes it 

still less compelling for Nature. 

Minor issues: 

I think certain analysis in the manuscript are rather biased towards promoting Live-seq. For 

example, the comparisons with RNA-velocity like trajectory inferences all use inference tools that 

will connect all cell types, although the experiment performed is using two different experimental 

model systems. Proper use of inference tools on each experiment alone would likely provide the 

correct flow. 



Figure 1b. The authors describe these QC as stringent, although they seem lenient? 

Ext Data Figure 2q: The number of differentially expressed genes are more than the number of 

genes identified in the cell types? Must be a typo somewhere, or erroneous gene set summation. 

Ext Data Figure 1b,g: show increased cDNA yields without RNA input after optimization? In fact, 

same cDNA yields were obtained from 0 as with 1 pg of RNA? In general, optimizations were done 

with very few cells per condition (2 to 3 cells per condition, that does not sound very robust). 

Details on how the short time-period experiments are performed is still lacking. For 1-2 hour 

treatment experiments, are individual cells sampled and treated alone? And the experimental 

setup repeated n times (every time stimulating one sampled cell?). 

All figures still look preliminary and I agree with reviewer 1 that the organization of results in main 

and extended data figures could be much improved.



Rebuttal for Manuscript #2021-03-04452B
Chen*, Guillaume-Gentil* et al.

Author Rebuttals to First Revision:
We would like to thank the reviewers for taking the time to carefully re-evaluate our work, their 
insightful comments and for acknowledging that the manuscript has been strengthened. We address 
the remaining technical and conceptual concerns in our detailed point-by-point reply below, striving 
to further clarify our conclusions regarding the novelty and uniqueness of Live-seq and thus the first 
transcriptome-wide demonstration of multiple scRNA-seq measurements from the same cell, as 
already acknowledged by the reviewers.

Thank you for your consideration.

Referee #1 (Remarks to the Author):
Regarding point 1 from my first review, the authors have provided an improved introduction,
mentioning refs 29-32 and what has been achieved before. Also, toning down some of the claims of 
novelty of the approach. I think the authors could still remove some of the qualitative terms of new/
novel regarding the approach, as I have been thinking that their 2016 Cell paper provided this type 
of technical breakthrough. In the response, the authors have pointed out that they reached a 'new 
level', analyzing transcriptomes of relevant range, which seems to me like a fair description that
should be stronger reflected in the manuscript (without the new). Regarding point 2 from my first
review, the authors admit in their response that the extracted volumes represent significant 
percentages of the entire cell volume ("occasionally up to 100%"), but maintain, based on their data, 
that the approach has a high cell viability rate and that even the cell trajectories are preserved. In 
summary, I appreciated the care with which the authors have responded to my technical concerns 
and refer to the other reviewers to assess how strong the paper is within the field of transcriptomics, 
in light of the much lesser technical novelty and the potential invasiveness of the approach. Anyway, 
the authors are leaders in the use of FluidFM and have assembled a nice manuscript highlighting the 
state-of the-art of the technique.

We thank the reviewer for appreciating our revision efforts. To directly state the novelty instead of 
naming it as such, we removed "new ground" and "novel avenue" from the first sentence of the 
conclusion section. It now reads (lines 535-538): " In summary, Live-seq breaks new ground by enables 
single cell transcriptome profiling as well as downstream molecular and functional analyses on the 
same cell at distinct time points (Fig. 4), providing a novel avenue unprecedented opportunities to 
address some of the long-standing biological questions pertaining to cell dynamics or cellular 
phenotypic variation…."

Referee #2 (Remarks to the Author):
In this new version of manuscript, the authors introduce several modifications to the text, figures, and 
data. In particular, analysis of a new Live-seq ASPC differentiation dataset is presented, as well as 
experimental validations of Nfkbia expression and cell cycle state as predictors of LPS response in RAW 
264.7 cells.

1) Overall, we find these new additions interesting and pertinent. However, we feel these new results 
still fall short of demonstrating Live-seq’s promised potential at the level required for publication in 
Nature (e.g., answering a low-hanging, outstanding biological question). This seems to be a concern 
shared by Reviewers 1 and 3 as well.

We thank the reviewer for appreciating our revision efforts. We believe that the LPS macrophage 
response study featured in our manuscript demonstrates the potential of Live-seq to provide both



benchmarking and biological advances. For example, it has not previously been shown that Nfkbia 
expression is the strongest predictor of the LPS response, which is a biological finding that we have 
independently confirmed. The reviewer might find the insight intuitive; however, we point out that it 
was not self-evident. In addition, please see also our response to point 18, essentially illuminating why 
predicting LPS response variation is even today a pertinent challenge that is of interest to the field.

Many of our previous comments were addressed. Below, we highlight remaining issues by author 
response (initial comments and author responses in quotes), and also provide thoughts on the 
manuscript’s new additions.

“Initial Author response: We thank the reviewer for appreciating the value of our work. The reviewer 
is correct, many transformative applications are now possible, even beyond the molecular recording 
as a novelty that we already provided in the original version. We agree with the provided, constructive 
suggestions and have now conducted an entirely new experiment on cell differentiation ("cells pre- 
differentiation and then after”), as one of the prime applications of interest. To demonstrate the 
potential of Live-seq in this respect, we chose an adipogenic differentiation model of primary adipose 
stem and progenitor cells (ASPCs) (Lines 710-725). To do so, we GFP-labeled a subpopulation of ASPCs 
with each cell containing a unique barcode, and biopsied them to profile their transcriptome in the pre- 
differentiated state. We then induced their differentiation with a chemical cocktail and sampled the 
same cells a second time, two days later, to profile their transcriptome in a differentiating state (see 
Lines 710-725, Methods(Cytoplasmic biopsies), and Fig. 4c). Using these strategies, we succeeded to 
sequentially sample 44 cells and obtained eight paired, quality control-passing gene expression profiles 
from ASPCs, as confirmed by the recovery of the correct, respective barcodes (Fig. 4e). Further 
monitoring of the cells for up to seven days after the second extraction revealed that cell viability was 
not compromised (we lost 2 cells out of 44 compared to 3 cells from 41 non-extracted control cells). In 
addition, we observed lipid droplets in these sequentially probed cells indicative of their retained 
adipogenic differentiation capacity (for representative images, see Extended Data Fig. 4b). Projection 
of the retrieved ASPC transcriptomes onto the integrated Live-seq and scRNA- seq data revealed the 
correct transition from pre- to differentiating ASPCs (Fig. 4d and Extended Data Fig. 4a). Thus, our 
results demonstrate that for both rapid (macrophage response to LPS) and slower 
(adipogenic differentiation of ASPCs) transition models, Live-seq data can be exploited to 
unambiguously establish the "correct" trajectory of cells that were processed using conventional 
scRNA-seq. This is in our opinion an unprecedented, technological achievement.”

2) We agree that the ASPC differentiation assay is a pertinent application of the Live-seq method and 
we understand the technical feat. However, the number of paired cells is small and the results are in 
line with what is expected.

We agree that the number of paired cells is small; however, the purpose of the paired transcriptomes 
was to show that they cluster together with state-of-the-art end point transcriptomes and that the 
technology is applicable beyond short term assessments of transcriptomes of individual cells. Thus, 
our choice fits its purpose. In fact, we would have considered it problematic if the results would have
been divergent. In this regard, the "expected" is a reassurance and makes our approach trustworthy,
while it is still the first demonstration of direct trajectory read-outs of differentiating cells.

3) In short, it is hard to see what Live-seq has taught us that is new. Further experiments and/or 
additional analyses (with validations) are needed to show that Live-seq can answer an outstanding 
biological question (what can you find that you could not using existing state-of-the-art methods for 
inference and subsequent validation). For example, are only some stem cells primed for 
differentiation? Is differentiation terminal for all forms of stem cells and differentiated cells? 
Something about the events that dictate a specific cell’s decision (need to validate to establish Live-



seq does not perturb this). Repeated sampling during differentiation as opposed to simply looking at 
two points might yield deeper insights into the process and actually enable tracking of the events that 
drive transitions

We agree that, similar to the scSLAM-seq paper (Erhard et al., Nature, 2019), the focus of our study is 
on technological innovation including comprehensive benchmarking to demonstrate the applicability 
of the technology. The Live-seq approach itself is orthogonal to any other approach: live versus dead; 
direct measurement versus statistical inference. We show that Live-seq can be used to sequentially 
sample and profile the same cell twice; and we demonstrate that it can be used as a molecular 
recorder to couple the transcriptome-wide ground state of a cell to downstream molecular and/or 
phenotypic events, which has not been possible by any other method. For the latter, we further show 
that the method provides new gene-level, biological insights on the widely studied LPS macrophage 
response. The questions raised by the reviewer are indeed pertinent; however, tackling these would 
be a whole new research program on itself and not feasible for a revision.

4) We note that it is unclear why the authors consistently choose to analyze different systems (ASPC, 
RAW, IBA) together. This should be fixed, especially around lines 727-736.

We included different systems to demonstrate the capacity of Live-seq to resolve cell types and states, 
as it otherwise may have been criticized that Live-seq appears restricted in scope to one specific cell 
type. Specifically for the trajectory analyses described in lines 354-358 (linked to ED Fig. 4c,d), we 
chose to analyze different cell types to mimic natural systems which typically contain more than one 
cell type. Consequently, we do not deem this a weakness but rather a strength of our study.

Nevertheless, we understand from the reviewer’s comment the request to also perform trajectory 
analyses on each cell type (and transition) individually, which we have now performed and show below 
(Rebuttal Fig. 1). For differentiating ASPCs, the pseudotime-based trajectories varied between 
approaches (Rebuttal Fig. 1a), while the inferred trajectory was largely consistent among distinct 
approaches for RAW cells (Rebuttal Fig. 1b). RNA velocity analyses with gene-structure estimate 
parameters revealed the correct transition of ASPCs from a pre- to post-differentiation state (Rebuttal
Fig. 1c); however, other parameters did not. A similar RNA velocity analysis on RAW cells did not 
identify the correct transition of RAW cells responding to LPS stimulation (Rebuttal Fig. 1d). These 
results support our original conclusion and are consistent with our previous discussion (i.e. in the 
Introduction of our original and revised manuscripts) that the accuracy of trajectory inference 
depends on the dataset, methods, and parameter settings. As such, the results of these methods need 
to be interpreted as statistical expectations which may reflect different aspects of biological 
properties, but not necessarily the true transition path taken by the cell. Given i) that our analysis on 
a mixture of cell types makes a similar point, ii) that this mixture mimics natural systems more closely 
and iii) that trajectory analysis is already widely appreciated (and acknowledged) as an inferring rather 
than a direct cell state transition measurement tool, we decided not to include these “single system” 
trajectory analyses in the re-revised manuscript. However, we would be happy to do so if the reviewer 
would deem them nevertheless insightful.



 

Rebuttal Fig. 1. (a) Trajectory prediction of ASPCs before and after differentiation based on 
conventional scRNA-seq data using distinct approaches with default settings as contained in the 
dynverse package. (b) Trajectory analysis of RAW cells before and after LPS stimulation similar to (a). 
(c) Trajectory prediction of ASPC cells using the RNA velocity approach. Different strategies including 
“kNN pooling with gamma fit on extreme quantiles”, “Gene-relative estimate”, and “Gene-structure 
estimate” were used. (d) Similar to (c), but on RAW cells before and after LPS stimulation.

5) Also, please do not mix your data when reporting metrics (e.g., ED Fig 2) - it’s misleading and 
inappropriate.



We now provide the metrics for each cell type separately (ED Fig. 2a, d and l), as requested by the 
reviewer.

6) Also, why do some of the IBA and RAW cells mix in ED Fig 2g?

In ED Fig. 2i (previous ED Fig. 2g), 42 out of 294 cells are misclustered, constituting a clustering 
accuracy of around 86%. It is well recognized that single-cell based transcriptomic data are inherently 
noisy. In a benchmarking study (Mereu et al. Nature Biotech, 2020), the accuracy of different scRNA- 
seq methods on recognizing known cell types has been shown to be variable, e.g. around 90% for
Smart-seq2 and 85% for 10X Chromium. These metrics are in our opinion thus consistent with our
Live-seq data, as well as with our scRNA-seq (Smart-seq2) data (ED Fig. 2n).

“How do assay information content and cell viability depend on sampling volume?

Cell viability as a function of extracted volume is provided in Fig. 3a (former Extended Data Fig. 3a). 
Within the investigated volume range, we could not detect a dependence of the information content 
on the volume.”
7) This does not answer the question. How does extracted volume impact information content (i.e.,
genes detected, counts, etc)? Please provide a plot.

We now provide the plots requested by the reviewer (Rebuttal Fig. 2). We detect a weak correlation 
between the extracted volume and number of detected genes and counts when including all the data. 
This correlation was however weaker or absent when analyzing each cell type individually, likely due 
to the lower cell numbers. Please note that scRNA-seq approaches exhibit variability (to different 
extents), for example, in the number of genes detected on a per assay basis, even for "easy-to-handle 
cells" such as HEK293T cells and using whole cells (e.g. Fig. 2d; Mereu et al., Nature Biotech, 2020). 
This points to technical cDNA generation and sequencing limitations as the primary issue. In his 
respect, our subcellular sampling seems on par with conventional scRNA-seq approaches. We agree 
that an assessment of our data in relation to extracted volume is information that we should provide 
to the reader. To do so, we have now mapped “extracted cytoplasmic volume” as a feature on the 
tSNE plots of the different, sampled cell types (i.e. ASPCs, IBA and RAW cells). This did not reveal any 
obvious pattern or bias, suggesting that cell state (treatment) largely drives the observed clustering. 
We have included a short statement on these observations as well as the new plots themselves in the
re-revised manuscript (lines 255-262 and ED Fig. 3b, c).



 
Rebuttal Fig. 2. The correlation (R2 of linear regression and P value (F test)) between extracted 
cytoplasmic volume and either the number of detected genes (nGene) (a) or total counts (nCount) (b) 
for each indicated category are shown. (c) tSNE plots of distinct cell types colored by extracted 
cytoplasmic volume (upper panels) and cell state (lower panels). NA: not available. 
 
“If multiple independent experiments (likely given numbers), how much of the authors’ observations 
are driven by experiment-to-experiment variability (e.g., differences in stimulation dynamics, cell 
density, etc; see Line 710)? A lot remains opaque. 
While the batch effect is always a source of technical variation in single cell-based approaches, we 
could show that the cell identity rather than the batch is the main driver of variation (Fig. 2b and 
Extended Data Fig. 2f). The seamless integration of scRNA-seq and Live-seq data (Fig. 2e) further 
indicates that the batch effects are minor compared to the observed biological heterogeneity.” 
 
8) We do not find the authors’ response convincing as Fig 2b,e and ED Fig 2f do not address our 
concern. All analyses should be done on a cell-type-by-cell-type basis. Calling variable genes across all 
of the systems at once is inappropriate as it masks critical differences within a system (RAW cells are 
very different than ASPCs) and can easily yield the results shown. NB there appears to be separation 
in ED Fig 2p among RAW cells. Please quantify your sources of variation, and provide appropriate 
statistics.

We have now analyzed the data on a cell type-by-cell type basis for the ASPC and RAW systems given 
that both allow us to compare (and contrast) two conditions (non-treated vs treated)(Rebuttal Figs. 3,



4). First, for both cell types, the clustering analysis matched the cell treatment and no bias due to 
library size, number of features or batch was observed (ED Fig. 2g, h, and Rebuttal Fig. 3; lines 172-
174 of the revised manuscript). Using these normalized data, the mean gene expression levels between
the scRNA-seq and Live-seq data were highly correlated for each cell type and treatment (Pearson r > 
0.95, Rebuttal Fig. 4), as already shown in ED Fig. 2w.

Rebuttal Fig. 3. tSNE colored by the indicated parameters of RAW cells profiled with Live-seq (a) or 
scRNA-seq (b), or of ASPCs profiled with Live-seq (c) or scRNA-seq (d). ASPCs were processed in one 
batch.



Rebuttal Fig. 4. Normalized gene expression averaged across RAW (a) or ASPC (b) cells of scRNA-seq 
versus Live-seq data for the specified conditions.

In sum, these new analyses are consistent with our previous results. Please also see our related 
response to point 10 below and note that ED Fig. 2q (previous ED Fig. 2p) shows the merger of Live- 
seq and scRNA-seq data without any batch correction. The separation of RAW cells is mainly driven by 
sampling methods (the right panel). This effect is largely corrected when Live-seq and scRNA-seq data 
are integrated (Fig. 2f). We hope that we have now adequately addressed the concern.

“Line 150: When and how are ERCC spike-ins added? Are they preloaded into the AFM tip or are they 
added during RT. This is essential to determine their utility.
We add the ERCC during the RT (see Methods for further details). Adding ERCC to the preloaded
sampling buffer provides an opportunity to gage overall sample loss during the sampling process. 
However, as the volume of preloaded sampling buffer is variable, preloading the ERCC into the tip is 
less practical at the current stage.”

9) As the authors acknowledge, ERCC spike-ins at RT likely yield less reliable normalizations. Given the 
volume variability in preloaded sampling buffer, could UMIs be used instead? Contrary to the response 
to Reviewer 3, this does not reduce quality or power. This would get a more accurate estimate of the 
information content extracted. A few simple control experiments could go a long way here.

We use the total library size instead of ERCCs for normalization (see Methods section). Per the 
reviewer’s request, we have now also tested oligos that contain UMIs and cell barcodes. As shown 
below (Rebuttal Fig. 5), the cDNA yield from 5 pg total RNA is lower using UMI-containing oligos and 
even further reduced when both a UMI and barcode are included. This is consistent with common 
knowledge in the field that reverse transcription is less efficient when using oligos featuring longer,
non-pairing nucleotide stretches (e.g. Sasagawa et al., Genome Biology, 2018), which is obviously an
important issue given the very low RNA input that is typically processed with Live-seq. Nevertheless, 
and as acknowledged in our last revision, we agree that it would indeed be desirable to include UMIs 
providing the sensitivity of the RT step can be improved.
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Rebuttal Fig. 5. The cDNA yield using different oligo-dT types (X-axis).

“Line 198: What is DE between Live-seq and standard scRNA-seq? How does variation change? Also, 
how many of the significantly DE genes in ED Fig 2q are part of the LPS response?

We have included additional analyses in the revised manuscript to address these questions. As shown 
in Extended Data Fig. 2q, 72% of the Live-seq DE genes are shared with scRNA- seq and 46% of scRNA- 
seq DE genes are shared with Live-seq. Further analysis showed that the gene expression change 
among Live-seq cell populations is highly correlated with that of scRNA-seq across all sampled cell 
populations (Fig. 2d). For the LPS-treated RAW cells, we show in Extended Data Figs. 2h and 2i that LPS 
treatment-related genes are highly enriched, as expected, with around 40% of the top 100 DE genes of 
both Live-seq and scRNA-seq cells being directly involved (Extended Data Tables 1 and 2). We refer to 
this new analysis in the revised manuscript (Lines 342-345).”

10) Can you explain the discrepancy? The limited degree of overlap is troubling (suggests the 
technique i not representative or not minimally perturbative). Does nuclear vs cytoplasmic localization 
of the RNA help explain the differences? If driven by power, what happens if you downsample and 
bootstrap? A more detailed analysis of what is happening here on a cell-type-by-cell-type basis should 
be done. For example, what’s off diagonal in ED Fig 2r and Fid 2d (also, how is fold change calculated, 
compared to what; please make sure all of your data and legends are well referenced)? What arises 
when you explicitly do a differential expression analysis within group?

We agree with the reviewer that the exploration of a potential bias in Live-seq data is important. We 
have now performed additional analyses to address this point (Rebuttal Fig. 6, 7 and ED Fig. 2s-v).

To more objectively evaluate whether the overlap shown in Fig. 2e (previous Fig. 2d) is limited, we
kindly refer the reviewer to a study that has systematically evaluated different scRNA-seq methods 
(Mereu et al. Nature Biotechnology, 2020). We found that the correlation between our Live-seq and 
scRNA-seq data is comparable, if not better, to those between different scRNA-seq methods. For 
example, the correlation of gene expression levels between Live-seq and Smart-seq2 is > 0.95 
(Rebuttal Fig. 4), whereas the correlations between different state-of-the-art scRNA-seq approaches 
range from 0.6 to 0.95, depending on the comparison and thus approaches. As for the overlap of DEGs 
across batches or methods, the same study (Mereu et al.) showed that the value ranges from 10% to 
70% depending on the cell type and method, which is further supported by our own findings from a



 
 
 
 
 
 

previous study (Schwalie et al., 2018, Nature, Fig. 1f), revealing around 40% overlap when comparing 
Fluidigm C1 and 10X scRNA-seq data aimed at profiling adipose stomal cells. Furthermore, in our 
review on adipose stomal cell heterogeneity (Ferrero et al., Trends in Cell Biology, 2020; Supp. Fig. 1c 
and i), we compared the detected DEGs from our integration of four datasets to the markers of the 
original publications, revealing a similar overlap range. These results support our observations 
regarding the comparison of datasets and approaches, and, in our opinion, show that the observed 
degree of overlap is acceptable.

That said, the reviewer rightfully pointed out that the limited power of Live-seq due to low RNA input 
amounts might explain in part the DEGs that were not detected by Live-seq. Furthermore, the reviewer 
highlighted that the DE analysis should also be performed by cell type. To address these requests, we 
first compared DEG results evaluated per cell type. Specifically, we compared non-treated versus 
treated cells, as performed on Live-seq or scRNA-seq data (ED Fig. 2s and Rebuttal Fig. 6a, b), revealing 
a reasonable logFC correlation that was comparable to that for DEGs of adipose stromal cells when 
comparing two distinct scRNA-seq experiments (Rebuttal Fig. 6g). We then performed the same
comparison, but this time using a down-sampled version of the scRNA-seq datasets (i.e. the scRNA-seq
count matrix was reduced to reach a similar mean number of genes as Live-seq data and then scaled
up to keep the library size similar to that before down-sampling, please see updated Methods, lines
1032-1041). We noted that a large proportion of genes (82% for ASPCs and 78% for RAW cells) that 
had previously been identified as DEGs only in the original scRNA-seq datasets were no longer detected 
as such in the down-sampled data, implying that Live-seq has indeed reduced power compared to 
conventional scRNA-seq to detect DEGs, as expected (Rebuttal Fig. 6c-f). We have acknowledged this 
issue in the Discussion, stating that “With currently around 40% of the samples passing our data quality 
control criteria, an increase in mRNA detection sensitivity may further increase Live-seq’s efficiency”
(lines 483-485). Nevertheless, and also as expected, some genes remained detected as DEGs by one
or the other approach (Live-seq vs scRNA-seq) independent of down-sampling. We performed Gene 
Ontology enrichment on these genes and found a few terms that were shared by both cell types (e.g. 
“integral component of plasma membrane” and “plasma membrane”), but (perhaps surprisingly), only 
for scRNA-seq-specific differentially expressed genes. We therefore conclude that Live-seq does not 
appear to show any bias with respect to specific biological processes or cellular components across the 
distinct analyses (ED Fig. 2v, Rebuttal Fig. 7, lines 217-229).



 
 
 
 
 

Rebuttal Fig. 6. (a-b) Correlation of logFC between non-treated versus treated cells of scRNA-seq data 
vs Live-seq data (a: RAW cells, b: ASPCs). (c-d) Correlation of logFC between non-treated versus treated 
cells of down-sampled scRNA-seq data vs Live-seq data (c: RAW cells, d: ASPCs). (e-f) Barplot showing
the number of genes shared between the different categories: None (not identified as differentially
expressed (DE) genes), Both (identified as DE both in scRNA-seq and Live-seq data), Only Live-seq (only 
identified as DE in Live-seq), Only scRNA-seq (only identified as DE in scRNA-seq). The x-axis shows the 
number of genes belonging to each category derived from the comparison between Live-seq and scRNA-



seq and the colors show how these genes overlap with those derived from the comparison between 
Live-seq and down-sampled scRNA-seq.  (g) Correlation of the logFC between subpopulations of mouse 
adipose stromal populations (Adipose Stem Cells (ASCs) versus Adipogenesis regulatory cells (Aregs), 
ASCs versus PreAdipocytes (PreAs) and PreAs versus Aregs) of two published datasets (Schwalie et al., 
2018, Nature; Merrick et al., 2019, Science). The clustering and subpopulations are described in our 
review on the heterogeneity of adipose stromal cells (Ferrero et al., TCB, 2020).

Rebuttal Fig. 7. Biological process (BP) and Cellular Component (CC) GO enrichment for genes detected 
as DE either using Live-seq or conventional scRNA-seq for both ASPCs and RAW cells. The size of each 
red circle also denotes the significance.



11) Relatedly, in Fig 3e, how variable is the sampling time for each cell given the time it takes to run 
Live-seq - i.e., what does 1h and 4h actually represent? Relatedly, what these data show is recovery, 
not lack of perturbation contrary to the assertions in lines 469-478.

Related to Figure 3e, the cells were extracted during a 1h time-window, before processing for scRNA-
seq 1 or 4h later. 1h and 4h thus represent 1±0.5 and 4±0.5 h after extraction. We have adjusted the 
text in the Methods (lines 860-866) to further clarify.

Whether the obtained data show a “lack of perturbation” or “recovery” is a rather semantic
discussion in our opinion; most importantly, the data show that there are very few expression 
differences between extracted (1h and 4h earlier) and non-extracted cells, indicating that cells do not 
seem to be majorly affected by Live-seq sampling. This is why we prefer to use the term “lack of 
perturbation” over “recovery”.

12) Also, a direct comparison of the Live-seq and single-cell RNA-seq metrics (ED Fig 2j) would be an 
important addition.

We agree and have now added a direct comparison (ED Fig. 2l), as suggested by the reviewer.

“Line 215: How does are cell volume, extracted volume and viability related? Co- dependence isn’t 
plotted. A more quantitative analysis per ED Fig. 3e would be helpful.
The general co-dependence between the extracted volume and the viability is shown in Fig. 3a. In most
cases, while the extracted volume can be reliably measured from microscopy images of the 
microchannel after extraction, the volume of a particular cell undergoing extraction is unknown. 
Adherent cells indeed require dissociation to assume a spherical morphology and enable an estimation 
of their volume, which prevents measuring their volume before and after extraction. In the case of the 
semi-adherent RAW cells however, the measurement became feasible, as shown in former Extended 
Data Fig. 3d, e. We have now extended these data (Fig. 3b, Extended Data Fig. 3a and 3b) to clarify 
these results. We implemented the volume growth profiles of 4 control cells without LPS stimulation, 
4 control cells with LPS stimulation, and 4 additional extracted cells stimulated with LPS (12 profiles of 
extracted cells in total). Such longitudinal volume growth was not measured for dead cells, as those 
did not present a spherical morphology as required for the measurement. Please see also our response 
to reviewer #1, comment 2) and the response to the next comment.”

13) We think a plot showing viability as a function of cell volume and extracted volume would be useful 
to the reader to understand if the these are related.

We have now modified Fig. 3a and the main text (lines 249-255) to improve clarity and show the 
relation between the extracted volume and the cell viability. Specifically, Fig. 3a (and Rebuttal Fig. 8 
below) shows the cell viability as a function of the volume extracted (violin plots instead of former 
distribution plots). Cell viability did not scale with the extracted volume, which itself ranged from 0.2 
to 3.5 pL with an average of 1.1 pL (two-sided Wilcoxon rank-sum test: P = 0.44, 0.20, and 0.18 for 
ASPC, IBA and RAW cells, respectively). ED Fig. 3a (formerly included in Fig. 3a) shows the indicative 
cell volume distribution for the three different cell types (measurements of the volumes of dissociated 
cells, independent of Live-seq sampling experiments). It shows considerable variation in cell volume 
between the three different cell types, as well as within a given cell type. The cell volume before Live- 
seq sampling is generally unknown, at the exception of the few RAW cells for which we measured 
longitudinal volume profiles (Fig. 3b, live RAW cells).



Rebuttal Fig. 8. Cell status (dead or alive) for distinct cell types in function of extracted cytoplasmic 
volume. P = 0.44, 0.20, 0.18 for ASPC, IBA and RAW cells (two-sided Wilcoxon rank-sum test), 
respectively.

“Lines 271-304: First, it is unclear why baseline RNA expression (rather than protein abundance) should 
be predictive (relatedly, how much does gene expression change in the 30 minutes between sampling 
and stimulation (Line 566))? Second, there is no validation. And, third, as highlighted, several of the 
hits are expected. In short, it is unclear how Live-seq uniquely enabled new biological insights here. 
This is the biggest shortcoming of the paper. Ditto Lines 306-325.
We agree with the reviewer that it is unclear whether baseline RNA expression can be predictive of the
downstream phenotype or not. This is a fundamentally unsolved question in many biological systems, 
largely because there is no transcriptome-wide molecular recording method that links the baseline 
RNA profile with downstream phenotypes. We hope that the reviewer will appreciate that this is 
exactly what Live-seq aims for. Furthermore, and as indicated above, we intentionally studied LPS 
macrophage response heterogeneity, since this system has been well described, allowing us to 
benchmark Live-seq. We thus agree and also expected to “rediscover” genes described in the context 
of LPS macrophage response and find this reassuring and important. Regarding new candidate genes, 
we found that RAW cells in S phase respond weaker to LPS. We validated this interesting finding 
experimentally. Our results also point to NFKBIA as the principal baseline determinant of downstream 
heterogeneity. The uniqueness here is that Live-seq allowed us to generate a transcriptome-wide gene 
ranking, which cannot be derived based on targeted approaches. Moreover, even conventional scRNA-
seq does not support such inference, as shown in Fig. 4h, i. To further strengthen the finding that Nfkbia 
is a major determinant, we generated a RAW-G9 line containing a BFP reporter under the control of 
the Nfkbia promotor and were able to confirm that BFP fluorescence is induced by LPS treatment like 
the endogenous Nfkbia expression, synchronously with the induction of the Tnf-mCherry reporter 
(Extended Data Fig. 4j). The use of the reporter line allowed us to demonstrate that, as hypothesized, 
basal Nfkbia-BFP intensity is a negative predictor (R2 = 0.12, P = 0.003, F test) of the rate of Tnf- 
mCherry intensity increase (the slope) (Fig. 4j). We have included this additional validation in the 
revised manuscript (Lines 827-834) and also expanded the Methods section (Nfkbia reporter 
analyses).”

14) Does baseline RNA expression correlate with protein abundance? This would provide support to 
findings of correlation between RNA expression of some genes and response to LPS. The data sets in 
Jovanovic et al, Science 2015 (DOI: 10.1126/science.1259038) should be instructive.

Thank you for this interesting suggestion. We looked into the Jovanovic et al. (Science, 2015) work 
where the authors studied the relationship between protein abundance and mRNA expression, 
translation rates and degradation rates in mouse dendritic cells, both at baseline and after stimulation 
with LPS. The authors found that, at baseline before stimulation with LPS, mRNA explained 66% - 68% 
percent of protein abundance, compared to only 21%-26% of variance explained by translation rates 
and 8%-11% by degradation rates. The authors also provided per-gene model parameters for the 
contribution of individual regulatory mechanisms to the respective protein levels. Although there are 
limitations when comparing these gene-wise parameters at the bulk level to Live-seq single cell data,



we looked into the raw data provided by Jovanovic et al.; however, Nfkbia, which we identified as the 
strongest negative predictor of LPS-induced Tnf expression, was not included in the dataset.

The dominant role of mRNA expression in determining protein levels at steady state and the fact that 
not all functional RNAs encode proteins (e.g. lncRNA, endogenous microRNA sponges) makes it 
plausible, in our opinion, to find a predictive role of gene expression at baseline for response 
heterogeneity upon exposure to LPS. We have included a statement emphasizing this point in the re- 
revised manuscript (discussion) (lines 521-523).

15) Regarding the difference in LPS response by cell cycle phase, this too is expected. Please see Allen 
et al, Science Signaling 2019 (DOI: 10.1126/scisignal.aau1851).

We double-checked this paper. The study revealed that the circadian cycle has an impact on LPS 
macrophage response, yet the cell cycle was not studied.

16) Lines 804-807: Adding the LPS data to this plot and comparing to pre-LPS Live-seq is inappropriate. 
There doesn’t seem to be a positive correlation between Tnf and Nfkbia at baseline (driven by the LPS 
stimulation).

We color-coded the plot (Figure 4i) to provide more information, so that the readers can choose their 
own point-of-view. We have now included an analysis on each condition in ED Fig. 4i, which shows a 
positive correlation between Tnf and Nfkbia expression at baseline (R2 = 0.23, P = 1.4e-07, F test).

17) Regarding the Nfkbia-BFP/Tnf-mCherry validation experiment, the correlation plot would benefit 
from the indication of an R-squared, Spearman correlation coefficient, and associated p-value. Given 
that the association is not strong, it is our impression that the pattern is driven mostly by few 
datapoints with high basal BFP intensity. These results would be more convincing if additional 
datapoints could be obtained, with more points with high intensity.

As per the reviewer’s request, we have now performed another independent experiment that 
included more observed cells. Consistent with our previous results (now in ED Fig. 4l), the basal Nfkbia- 
BFP reporter negatively predicts the rate of Tnf-mCherry intensity increase (Fig. 4j, R2 = 0.11, P = 
0.0008, F-test, Pearson’s r = -0.34, P = 0.0008).

18) Finally, we agree with the authors that the anticorrelation of Nfkbia basal expression and LPS 
response/NFKB upregulation is an expected finding. In short, this is a validation of the method as 
pointed out above, rather than an indication of the full potential of Live-seq. The lack of new biological 
insights remains the biggest shortcoming of the paper.

Please note that we have not claimed that this anticorrelation was expected. There are many genes 
involved in the LPS-induced inflammatory response (a few are highlighted in ED Fig. 4j). Accordingly, 
all would be “expected” to contribute to LPS response variation. Based on our Live-seq data, we are 
now able to show that, except for Nfkbia, none of the other “expected” factors contribute to the
phenotypic outcome, at least to an extent that is comparable to that of Nfkbia (i.e. the latter gene
tops the transcriptome-wide list). Interestingly, the paper referred to by the reviewer above (Allen et 
al. Science Signaling, 2019) aimed to better understand what the historical molecular events are that 
determine downstream LPS response phenotypic heterogeneity. Specifically, as stated in their study, 
the authors “sought to identify heterogeneity in the innate immune response among a phenotypically 
homogeneous population" (i.e. bone marrow-derived macrophages, ed.), implying that this is still an 
unresolved question of interest to the field. Moreover, and importantly, Allen and colleagues did so
in a trial-and-error fashion, whereas Live-seq revealed targets in an unbiased, transcriptome-wide 
manner.



“Sequential Live-seq cell sampling to measure cellular dynamics
Line 327-355: This analysis/section is dramatically underpowered and reads as preliminary. Dynamics 
are highlighted in the introduction and motivation as a key selling point but there are only 2/14 cells 
whose repeated sampling passed filtering. This yield seems like a flag and directly undermines the 
major selling points.
We have substantially restructured the manuscript due to the addition of a new section on cell state
transitions as a consequence of cell differentiation (Fig. 4c-e). While it is correct that we still have 
relatively few cell pairs (four for macrophages (two in the original manuscript) and eight for ASPCs), in 
our opinion, our results with the present throughput indicate that it is often already sufficient to probe 
the cell using Live-seq just once as phenotypes of the very same cell can be observed later. A second 
Live-seq sampling from the same cell is only desirable when further probing of the cell is required (e.g. 
over a longer timeframe) and was included here as a proof of concept. In addition, our sequential Live- 
seq data demonstrate that the probing of relatively few cells can already contribute to resolving 
complex biological processes in ways that snapshot scRNA-seq data cannot. These include the
empirical determination of trajectories through Live-seq and conventional
scRNA-seq data integration as well as the prediction of heterogeneous phenotypic behavior. Thus, we 
deem conventional scRNA-seq and Live-seq to be highly complementary in that scRNA-seq can define 
the manifold in high- dimensional space, while Live-seq provides guidance with respect to the 
information flow within that space. For such a hybrid approach, the monitoring of fewer cells is possible 
and therefore fully aligned with Live-seq’s current throughput. However, we acknowledge that 
technological innovations will still be required to standardize such analyses and perform them at a 
larger scale (Lines 816-819, 878-885, and 967-969).”

19) We understand that sequential sampling of the same cells favorably impacts type 1 and type 2 
error allowing for smaller sample sizes. However, given stochastic, inherent variability in biological 
processes, a sample size of 4 appears small. Statistics should be used to guide the validity of all results 
discussed.

The purpose of these experiments was to demonstrate that Live-seq can be applied over shorter and
longer time periods. We used two cell systems at two different time scales and demonstrate the wide 
applicability of Live-seq for sequential sampling, which resulted in four pairs of RAW cells and eight 
pairs of ASPCs. The cluster analysis validated the approach.

20) A scRNA-seq / Live hybrid approach appears promising. Could it be a way to obtain new biological 
insights with the existing data? We understand the conceptual promise of the approach but are having 
trouble seeing its proof.

We fully agree with the reviewer that a scRNA-seq / Live-seq hybrid approach is promising. In fact, we 
believe that we have demonstrated this with our study on macrophage LPS response heterogeneity. 
We mention this strategy in the Discussion (lines 492-502). We deem this an important strategic route 
going forward to explore uncharacterized systems.

“Minor point 2. It’s unclear from what is provided if the full transcriptome can be sampled. We might 
adjust the title based on a more nuanced analysis of ED Fig. 2q.
While the number of detected genes by Live-seq is lower than that by conventional scRNA-seq, as
expected given the lower RNA input (shown in Fig. 3a), the seamless integration of Live- seq with 
canonical scRNA-seq data supports the conclusion that Live-seq comprehensively samples the 
transcriptome of individual cells (Fig. 2e). Nevertheless, and as the reviewer suggested, we have 
performed additional analyses to directly compare Live-seq and scRNA- seq data in the revised



manuscript (Fig. 2d and Extended Data Fig. 2q-r). Taken together, we believe that these data validate 
the quality of Live-seq data.”
21) These comparisons are instructive. Our comment refers to the potential spatial biases in RNA of
different genes given that biopsies are cytoplasmic. Is the difference between DEG in Live-seq and 
scRNA-seq belong to a certain category of genes (e.g., nuclear vs not nuclear) or are they purely a 
consequence of sampling rate? This would help delineate how Live-seq signal can be interpreted.

For example, what genes are sampled in 1b relative to matched whole cells? How do the metrics 
compare? Ditto 2a. Fig 3 hints at this in one systems for cells at rest.
Similarly, can you show matched comparisons of Live-seq and total cell RNA-seq for ED Fig 2j? For Fig
2d/ED Fig 2r, we’d like to see enrichments of what’s off-diagonal and square axes.

We have now updated ED Fig. 2l (previous ED Fig. 2j) to include a direct metric comparison between 
scRNA-seq and Live-seq. As expected, due to the smaller sampling volume and as shown before, Live- 
seq detects in general less genes compared to scRNA-seq.

With respect to the other questions, we kindly refer the reviewer to our answer to point 10,
as well ED Figs. 2s-v and lines 217-229 in the re-revised manuscript, which revealed no particular biases 
with respect to specific biological processes or cellular components for genes that were detected only 
by Live-seq (ED Fig. 2v, Rebuttal Fig. 7).

Referee #3 (Remarks to the Author):
The authors have addressed many of the comments from the initial round, and the manuscript has 
improved. It is clear that Live-seq can accurately sample cytoplasm from cells, without detrimental 
damage to cells, and that the sampled RNAs can provide a decent transcriptional profile that e.g.
identifies correct cell types (i.e. large biological differences). To this end, it is the first transcriptome-
wide demonstration of multiple scRNA-seq measurement from the same cell (Figure 2 – the strongest 
figure of the manuscript).

We thank the reviewer for the appraisal of our work.

1) However, the biological experiments in this manuscript are still weak. The one insight generated 
from the LPS heterogeneity experiment was the identification of Nfkbia (Fig 4h, non-significant) that 
was validated with borderline significance (dependent on a few outlier observations, Fig 4j), and the
S-phase effect.

We agree with the reviewer that these are new insights on a system that has already been well 
studied, allowing first of all to benchmark the data obtained with Live-seq and secondly to contribute 
to biological advances. Nevertheless, to strengthen the validation of Nfkbia expression in predicting 
the LPS-induced response, we have now conducted another independent experiment that included 
more observed cells. Consistent with our previous results (now in ED Fig. 4l), the basal Nfkbia-BFP
reporter negatively predicts the rate of Tnf-mCherry intensity increase (Fig. 4j, R2 = 0.11, P = 0.0008,
F-test; Pearson’s r = -0.34, P = 0.0008).

2) The new analysis (Fig 3e) that investigated the effect of cytoplasm sampling on the cell is confusing. 
It seems very dangerous to here claim negative results – i.e. that the cells do not separate in tSNE - 
since often proper separation depend on accurate identification of the biologically variable genes 
(tSNE parameters etc). With 18 DE genes, in my experience, the cells would be highly likely to cluster.

The reviewer makes a valuable point and we agree that the data should be interpreted with care. This
is why we now state in our manuscript: “Thus, these experiments suggest that Live-seq does not



induce major, short-term gene expression alterations”. We believe that this is still an accurate 
representation of our data, since, using the most sensitive scRNA-seq method, Smart-seq2, we 
detected only 12 (not 18) genes that exhibited mild differential expression, which did not impose on 
cell clustering. Compared to the vast effects observed upon tissue dissociation (e.g. van den Brink et 
al., Nature Methods, 2017 or Denisenko et al., Genome Biology, 2020), we hope that the reviewer will 
agree that the impact of live cell sampling appears modest, even though it is indeed a surprising result. 
However, the molecular data is consistent with our phenotypic data, which provides further support 
to our claim that Live-seq’s impact is not major. Nevertheless, we agree that the tSNE Figure panel 
might confuse the reader (who might try to find a pattern while there is none) and we therefore moved 
it to the Extended Data section (ED Fig. 3h).

3) The discussion on metabolic labeling still misses the main point – in my opinion – that the real
advantage of Live-seq lies in phenotypically linking cells over larger time intervals (>8 hours to days), 
as metabolic labeling will excel at shorter time points. Thus, the genes detected as differentially 
expressed (Fig 3f) are limited to those initially expressed at low (or no) levels, in order to be detected 
as differentially expressed in Live-seq (whereas metabolic labeling could detect all differentially 
expressed genes).

To briefly clarify, Fig. 3e (previous Fig. 3f) shows differential gene expression as measured by Smart- 
seq2 (not Live-seq) and is intended to show the possible molecular impact of live cell sampling.

We thank the reviewer for the appreciation of the novelty of our approach. As for detecting 
differentially expressed genes across time points, we see no conceptual reason why Live-seq would be 
restricted to genes that are very lowly or not expressed in the original cells, given that we show that 
Live-seq’s transcriptomes act as suitable representations of full cell transcriptomes and would thus be
subject to the same advantages and restrictions. Indeed, supported by new analyses and detailed in
our re-revised manuscript (lines 217-229), we show that the differentially expressed genes derived 
from the Live-seq and scRNA-seq datasets overlap to a large extent (Extended Data Fig. 2r), supported 
by a high correlation in fold changes when comparing each cell state to the rest of all the cells (Fig. 2d) 
and within each cell type (Extended Data Fig. 2s). However, compared to Live-seq, scRNA-seq yielded 
a larger number of differentially expressed genes that were not detected by Live-seq. Down-sampling 
the scRNA-seq data to a library complexity that was similar to that of Live-seq reduced the number of 
differentially expressed genes that were detected by scRNA-seq only (Extended Data Fig. 2t, u). These 
findings suggest that, as expected, scRNA-seq - at present and with current state-of-the-art RNA 
detection capacities - provides greater power than Live-seq. We have acknowledged this issue in the 
Discussion, stating that “With currently around 40% of the samples passing our data quality control 
criteria, an increase in mRNA detection sensitivity may further increase Live-seq’s efficiency” (lines
483-485). Finally, GO analysis on the differentially expressed genes found a few terms that were
shared by both cell types (e.g. “integral component of plasma membrane” and “plasma membrane”), 
but (perhaps surprisingly), only for scRNA-seq-specific differentially expressed genes. We therefore 
conclude that Live-seq does not appear to show any bias with respect to specific biological processes 
or cellular components across the distinct analyses (ED Fig. 2v, Rebuttal Fig. 7, lines 217-229).

We agree with the reviewer that it will help the reader to place Live-seq in the context of the strengths 
and weaknesses of metabolic labeling. As argued earlier, we deem Live-seq truly novel in that it 
preserves cell viability and thus allows cells to be continuously monitored (e.g. for live cell imaging- 
based phenotyping) or even sampled again to profile pre- and post-transition transcriptomes on the 
same cell, both of which we show in our manuscript. This live cell preservation provides unique 
opportunities to link the molecular ground state of a cell to downstream molecular, cellular or 
functional properties, while metabolic labeling approaches are by definition restricted to 
transcriptomic changes.



As the reviewer points out, an unmatched advantage of Live-seq lies in phenotypically linking
cells over larger time intervals. Here, metabolic labelling is not applicable. Regarding the investigation 
of short-term transcriptomic dynamics, both approaches might be perceived as alternative 
approaches. However, we would like to argue that even for short time scales (<8h), Live-seq is superior 
over metabolic labeling in characterizing the original state of the cell. This is because Live-seq provides 
directly measured expression data, whereas metabolic labeling approaches need to infer expression 
levels, given that they all still require cell lysis and can thus probe each cell only once. This results in 
ambiguous, difficult-to-interpret results, even at shorter time scales than 8 hours, in particular given 
the short half-life of many transcripts. In brief, the cells are lysed at one time point and the transcripts 
of an earlier time point need to be approximated because, while mRNA synthesis can be determined 
using metabolic labeling, mRNA degradation cannot. The latter issue is bypassed by assuming constant 
(across time) and homogenous (across cells) degradation rates. This explains why metabolic labeling 
may work for shorter time scales, since over longer ones, it would be very difficult to estimate 
degradation dynamics. However, mRNA degradation is dynamically regulated, even at short time 
scales, and depends on the biological system as well as on the presence of specific mRNA stability-
controlling elements (e.g. AU-rich elements), which can be affected by exogenous stimuli (Schoenberg
and Maquat, Nature Rev. Genet., 2012). For example, in the pioneering study by the Regev lab which 
introduced metabolic labeling for bulk transcriptomics (Rabani et al., Nature Biotech, 2011), the 
authors used an LPS-stimulated mouse dendritic cell model (comparable to some extent to the LPS- 
stimulated RAW cells used in our study) and found that the constant degradation hypothesis needed 
to be rejected for 6% of the genes. Importantly, the latter genes, which do not follow the assumption 
of constant degradation, were enriched for inflammatory and immune signaling functions and NFκB
signaling targets. This suggests that inferring their past expression levels by metabolic labeling is
bound to be error-prone. This concern thus also applies to Nfkbia, which we identified in our study 
and is a direct NFKB target. Thus, using Live-seq, we were able to bypass this issue by directly measuring 
its expression level in the ground state, without the need to infer it. This example provides another 
important conceptual difference between Live-seq and metabolic labeling. In our view, this shows that 
Live-seq offers advantages that are relevant also for shorter time periods (<8 h). We have now updated 
the discussion in lines 471-483.

4) On this topic, the LPS experiment would have much higher power if studied with metabolic labeling 
instead of Live-seq.

We would like to emphasize that we were able to couple a transcriptional read out to a phenotypic 
one. It is doubtful that we would have identified Nfkbia by metabolic labeling for the reasons outlined 
above. Indeed, particularly unstable transcripts might be crucial to drive cells into divergent 
populations. The use of inference rather than direct measurement methods could therefore represent 
a conceptual obstacle for future advances and, in our view, warrants exploration of novel and 
complementary approaches.

However, to avoid making this argument purely hypothetical, we now went one step further and 
investigated how we could use metabolic labeling data to explore how the initial transcriptomic state 
of a cell determines the magnitude of its immune response, as we did with Live-seq for macrophages 
responding to LPS. We first assessed whether this could be possible theoretically, using a set of 
ordinary differential equations that model the dynamics of labelled and unlabeled mRNA, and how 
they are affected by degradation and initial state. Based on that, we observed that it is indeed possible 
to infer either a difference in initial state or in degradation rate between cells, but not both. 
Importantly, these same conceptual limitations emerged when analyzing the data from the scSLAM- 
seq paper (Erhard et al., 2019). This is relevant in the context of our work given that in this paper, 
mouse fibroblasts were infected with mCMV after which new and old mRNA levels were determined 
after 2 hours. In other words, when a change in response is observed, we found that it is not possible



using metabolic labeling data to see whether this is due to differences in degradation or differences
in initial state. Finally, we also explored additional challenges with metabolic labeling data (e.g. the 
requirement to estimate the detection rate of newly labeled mRNA), which, we found, also impact the 
ability of metabolic approaches to make unambiguous and robust gene-level predictions on the 
phenotypic behavior of individual cells.

Taken together, our analyses highlight that metabolic labeling approaches infer rather than directly 
observe the original molecular state, as provided by Live-seq. That said, Live-seq also makes an 
assumption, namely that the extraction of a cell's cytoplasm does not perturb its state or phenotype 
(note that metabolic labeling actually also assumes that the label has no impact on mRNA stability, 
which, especially for transcripts with a high number of “U”’s or short-lived transcripts, may not be the 
case (Schott et al., Nature Methods, 2021)). To address Live-seq’s potential perturbation caveat, we 
directly measured the impact of the sampling itself and found only a few genes being differentially 
expressed after extraction. Furthermore, and importantly, this assumption can be validated by a user 
of Live-seq when probing different cell types or systems. Please note that we have briefly summarized 
the results of our analyses and thus our responses to points 3 and 4 by the reviewer in our revised 
Discussion (lines 471-483).

Altogether, I applaud the authors efforts to establish this technology, but I am worried that at its 
current power and cellular throughput, there will be limited interest to establish this technology in 
other labs. Nevertheless, I could see increased interest in Live-seq if the method could be scaled to 
hundreds of cells (within a reasonable time frame), although I completely understand this is currently 
not achievable. The rather weak biological insights provided in the manuscript makes it still less 
compelling for Nature.

Please note that in our study, we chose to investigate several cell types to demonstrate broad 
applicability, since, contrary to metabolic labeling, live cell transcriptomic profiling had not been 
performed before on any cell type. It is evident that the throughput can be substantially increased 
when focusing on one cell type/system, as the set-up of automated protocols is readily feasible in 
future studies. We thus agree that there is room for higher throughput and we state this openly in the 
discussion. Furthermore, we benchmarked our study with the scSLAM-seq paper, which was published 
in Nature (2019). We and many others certainly consider this study groundbreaking, since the authors 
demonstrate that their metabolic labeling approach for bulk RNA-seq, “SLAM-seq” (Herzog et al., 
Nature Methods, 2017), can also be used to analyze single cells. To demonstrate this, the authors 
profiled 107 (compared to 294 Live-seq transcriptomes) single mouse fibroblast cells (of which 94 
were functional) infected with mouse cytomegalovirus to study the onset of infection with lytic virus. 
Both in number of profiled cells and scope, our manuscript seems therefore at least at the same level, 
if not larger and broader. Moreover, the scSLAM-seq paper remained at the level of processes in terms 
of infection response modulation and did not explore individual gene determinants. We can only 
speculate that, as argued above (points 3 and 4), this might be due to technical limitations including 
sensitivity, throughput and general issues with correctly inferring the “past” transcriptome of cells 
prior to infection. Why this nevertheless was compelling to Nature is (in our opinion), because it 
provided a clear proof-of-concept for a novel, powerful approach with, providing further technological 
and analytical improvements, clear downstream applications. We hope that the reviewer will 
appreciate that our Live-seq study is in this regard highly complementary to the scSLAM-seq paper 
and we therefore hope that it will be evaluated accordingly.

Minor issues:

I think certain analysis in the manuscript are rather biased towards promoting Live-seq. For example, 
the comparisons with RNA-velocity like trajectory inferences all use inference tools that will connect



all cell types, although the experiment performed is using two different experimental model 
systems. Proper use of inference tools on each experiment alone would likely provide the correct 
flow.

The reviewer points out a fundamental issue of trajectory inference methods: they explicitly look for 
connections between any cell type that is provided to them, without necessarily reflecting true 
biological dynamics or relevance. Many natural systems consist of several different cell types with 
different lineages/origins. We therefore believe that the analysis, as shown, correctly conveys the 
limitation of trajectory inference compared to the type of data that Live-seq can provide. As the 
reviewer also points out, inference tools need prior information before they can be applied. In 
contrast, Live-seq’s measurements are direct and thus are, we are convinced, complementary.

To address the concern more directly, we have now also performed trajectory analyses on each cell 
type (and transition) individually. For differentiating ASPCs, the pseudotime-based trajectories varied 
between approaches (Rebuttal Fig. 1a), while the inferred trajectory was largely consistent among 
distinct approaches for RAW cells (Rebuttal Fig. 1b). RNA velocity analyses with gene-structure 
estimate parameters revealed the correct transition of ASPCs from a pre- to post-differentiation state 
(Rebuttal Fig. 1c); however, other parameters did not. A similar RNA velocity analysis on RAW cells
did not identify the correct transition of RAW cells responding to LPS stimulation (Rebuttal Fig. 1d).
These results support our original conclusion and are consistent with our previous discussion (i.e. in 
the Introduction of our original and revised manuscripts) that the accuracy of trajectory inference 
depends on the dataset, methods, and parameter settings. As such, the results of these methods need
to be interpreted as statistical expectations which may reflect different aspects of biological
properties, but not necessarily the true transition path taken by the cell. Given i) that our analysis on 
a mixture of cell types makes a similar point (lines 354-358 (linked to ED Fig. 4c,d)), ii) that this mixture 
mimics natural systems more closely and iii) that trajectory analysis is already widely appreciated (and 
acknowledged) as an inferring rather than a direct cell state transition measurement tool, we decided 
not to include these “single system” trajectory analyses in the re-revised manuscript. However, we 
would be happy to do so if the reviewer would deem them nevertheless insightful for the reader.

Figure 1b. The authors describe these QC as stringent, although they seem lenient?

Please note that the metrics on all cells were shown without any filter in Figure 1b. We thus speculate 
that the reviewer is referring to our statement in line 720 of the previous manuscript where we 
mention “stringent” QC filtering. We feel that the definition of “stringent” versus “lenient” in the 
scRNA-seq field is ambiguous, depending on the used systems, scores etc. To avoid any preconception, 
we decided to remove the term “stringent” and refer directly to the Methods section which contains 
all the details on how the QC was performed (lines 948-952).

Ext Data Figure 2q: The number of differentially expressed genes are more than the number of genes 
identified in the cell types? Must be a typo somewhere, or erroneous gene set summation.

The provided number referred to all the five cell types together. We agree that this would have 
confused the reader and we now provide the numbers for each cell type separately (ED Fig. 2r, 
previous ED Fig. 2q).

Ext Data Figure 1b,g: show increased cDNA yields without RNA input after optimization? In fact, same 
cDNA yields were obtained from 0 as with 1 pg of RNA? In general, optimizations were done with very 
few cells per condition (2 to 3 cells per condition, that does not sound very robust).



We have specifically addressed this issue in ED Fig. 1j, k. Specifically, we observed that the reads from 
the negative control (without input RNA) are overrepresented by poly A and TSO sequence stretches 
(ED Fig. 1j) and that they map to only few genes (ED Fig. 1k). While three cells per condition in one 
experiment were shown, we performed between two to five distinct experiments per assay, yielding 
consistent results. We kindly refer the reader to the legend of ED Fig. 1.

Details on how the short time-period experiments are performed is still lacking. For 1-2 hour 
treatment experiments, are individual cells sampled and treated alone? And the experimental setup 
repeated n times (every time stimulating one sampled cell?).

We have amended the Methods section to improve clarity. The details for Live-seq experiments with 
4 hours LPS treatment are described in the Methods section lines 637-640 and 697-704; details for 
scRNA-seq experiments of cells that underwent Live-seq sampling 1 hour and 4 hours earlier are 
described in the Methods section lines 862-866.

All figures still look preliminary and I agree with reviewer 1 that the organization of results in main 
and extended data figures could be much improved.

We have added, polished and re-arranged the Figures to better reflect the main messages of our study. 
For example, we have added new figures in ED Fig. 2g, 2h, 2t, 2u, 2v, 3a, 3b, 4i, 4l, re-arranged Fig. 3a 
into Fig. 3a and ED fig. 3a, moved Fig. 3e to ED Fig. 3g, and updated Fig. 4h, 4i, 4j, 4k and ED Fig. 2a, 
2d, 2l, 2m, 2s, 4h,4m. Please note that reviewer 1’s comment was on the original manuscript, not on 
the revised version, which was already significantly modified.



Reviewer Reports on the Second Revision: 

Referees' comments: 

Referee #2 (Remarks to the Author): 

In this new version of the manuscript, the authors include modifications to their analyses, addition 

of statistics, an expanded TNF-mCherry experiment, and some clarifications in the text. While 

some of our concerns are addressed, the lack of novel biological insight remains a significant 

shortcoming of the manuscript. We suggest, once again, that the authors add an entirely new final 

section to their paper, answering one of the multitudes of impactful biological questions that could 

benefit from their technology. As pointed out by reviewer 3, this should perhaps involve sequential 

sampling over longer periods of time (days) to make full use of the technology over metabolic 

labeling. Short of this, could a different journal be a better fit, for example Nature Methods or 

Nature Biotechnology? 

We respond to specific comments below: 

Regarding Point 1. As pointed out in the manuscript (line 405), NFKBIA is a known inhibitor of 

NFKB, and NFKB is linked to TNF expression. Therefore, it appears to us that the anticorrelation of 

the baseline NFKBIA and the TNF response is not a surprising finding but rather a confirmation of 

the expected finding and a validation of the method (which the authors acknowledge in their 

comments). Indeed it is interesting that the inhibitory effect of NFKBIA on NFKB can be observed 

unbiasedly at a single-cell level, but we believe our understanding of the NFKB signaling pathway 

or its heterogeneity in cells has not changed. 

Regarding Point 2. Given that longitudinal sampling is live-seq’s biggest innovation, paired cells 

should perhaps be at the crux of the manuscript. From that lens, the few cells that have paired 

measurements are essentially the only cells that were fully assessed by live-seq; this limits the 

conclusions that can be drawn from the biology that is observed. From this point of view, this 

further highlights the secondary role of biological observations in this manuscript. 

Regarding Point 3. While we appreciate the potential of the method and the comparison to 

scSLAM-seq (Erhard et al., Nature, 2019), we maintain that a conclusive example of how it can 

answer an outstanding biological question is missing for publication in this journal, especially given 

the authors’ previous Cell paper. 

Regarding Point 4. Analyses performed separately by system should be the ones included in the 

manuscript. Also, for RNA velocity analyses, the genes chosen as input have a large impact on the 

results. Only genes relevant for a given system and its process of interest should be chosen – 

consider describing how this is done. Combining all systems together for gene selection and 

beyond has a strong potential for bias. 

Regarding Point 6. Clustering accuracy depends on cell types measured. For example, in Mereu et 

al (Nat Biotech 2020), HEK cells clustered separately from immune cells more readily than did 

different types of immune cells to each other. We would expect RAW and IBA to readily cluster 

separately given their drastic difference in transcriptome. Could a comparison to the clustering 

obtained from the scRNAseq be done? 

Regarding Point 9. We suggest the authors look to SMART-Seq3 

(https://www.nature.com/articles/s41587-020-0497-0) for guidance. 

Regarding Point 10. How does downsampling improve the overlap between scRNAseq and Live-



seq? Could the authors quantify this? 

Regarding Point 19. Consider specifying this is the manuscript – it was not clear to us that the goal 

of sequential sampling here was purely demonstrative given that this is one of the promises of the 

technique. 

Referee #3 (Remarks to the Author): 

The authors have improved the Nfkbia validation experiment with a second experiment that show 

more convincing significance. I would advise the authors, however, to tone down the language 

around this observation. Currently, the abstract list Nfkbia as a “major phenotypic determinant” 

and the main text says “principal driver” and “negative predictor”. Yet, the R2 of 0.1 is a very 

weak, although significant, interaction. 

Metabolic labeling vs. Live-seq 

I will spell out my point here – take it or leave it – I still think the current discussion (and rebuttal 

text) is highly misleading and should be corrected. 

If a researcher would like to study the effect of a perturbation on the transcriptome, say the direct 

effects of LPS on gene expression. A Live-seq user would then sample a part of the cytoplasm 

before the perturbation (timepoint t0) and then collect the cell or cytoplasm after 1 hour exposure 

to the perturbation (timepoint t1). The problem here is that the 1 hour timepoint would be highly 

confounded by RNAs present before the perturbation. In fact, in a typical in vitro grown cell only 

5% of the transcriptome is transcribed within the last 1hr, making 95% of the RNA profiled at 

timepoint t1 being actually the remaining pre-existing RNA at timepoint t0 that was not sampled in 

the first Live-seq experiment. Therefore, the power to detect a change at 1hr relative to t0 will be 

highly limited. Most power would lie in identifying genes that were not expressed/present at t0 as 

they would have expression at t1 that is clearly detectable and different from t0. However, if a 

gene was abundant at t0 and say 2-fold induced at t1, that signal would be lost due to fact that a 

2-fold change occurring in only 5% of the RNA would be diluted away. Therefore, I withhold that 

Live-seq will have limited power to detect shorter-timescales direct effects of perturbations onto 

gene expression. 

A metabolic labeling user would provide the cells 4sU/EdU at t0 together with the perturbation, 

and collect the cells at t1 for analysis. Comparing separate cells that were exposed to perturbation 

or not, the analysis can focus on the RNAs transcribed only since the perturbation therefore 

avoiding the dilution pitfalls of the Live-seq scenario above. Therefore, differential expression can 

be detected even for genes that were highly expressed at t0 in contrast to Live-seq. Therefore, 

metabolic labeling will have drastically improved power for any short-term experiment that aim to 

identify the direct effects of a perturbation on transcription. Here, Live-seq (like a standard total 

RNA comparison on unmatched samples) will have low power to find any difference) – as shown in 

the manuscript :) . 

The parts about degradation can be removed as degradation has a minimal role compared to 

transcription, in particular within a 1-hour window, which is the conclusion of the Rabani paper. 

I am just trying to help the authors from grossly over-stating what can be achieved with Live-seq 

over metabolic labelling. Having the ability with Live-seq to sample the same cell twice is unique 

and offers new experimental strategies but it will not have any impact on studying direct effects of 

perturbations on transcription – there metabolic labelling is drastically better – yet reading this 

manuscript gives the complete opposite impression. Like I said in the first comments, Live-seq is 

better at longer timescales – which is great.



Rebuttal for Manuscript #2021-03-04452D

Chen*, Guillaume-Gentil* et al.
Author Rebuttals to Second Revision:

Reviewer 2

Regarding Point 1. As pointed out in the manuscript (line 405), NFKBIA is a known 
inhibitor of NFKB, and NFKB is linked to TNF expression. Therefore, it appears to us 
that the anticorrelation of the baseline NFKBIA and the TNF response is not a 
surprising finding but rather a confirmation of the expected finding and a validation of 
the method (which the authors acknowledge in their comments). Indeed it is interesting 
that the inhibitory effect of NFKBIA on NFKB can be observed unbiasedly at a single- 
cell level, but we believe our understanding of the NFKB signaling pathway or its 
heterogeneity in cells has not changed.

As Point 1 is highly related to Point 3, we kindly refer the reviewer to our response to 
Point 3 below.

Regarding Point 2. Given that longitudinal sampling is live-seq’s biggest innovation, 
paired cells should perhaps be at the crux of the manuscript. From that lens, the few 
cells that have paired measurements are essentially the only cells that were fully 
assessed by live-seq; this limits the conclusions that can be drawn from the biology 
that is observed. From this point of view, this further highlights the secondary role of 
biological observations in this manuscript.

We thank the reviewer for this feedback. In our view, the biggest innovation of Live- 
seq is the profiling of the transcriptome of a cell without killing it, which then allows us 
to use this same cell for further phenotypic or molecular (such as with sequential 
sampling) profiling. Sequential sampling is thus a direct application of this innovation.

To avoid a misunderstanding and to make sure the main achievement is conveyed 
more clearly, we have now edited the abstract and restructured and rewritten parts of
our introduction and discussion. We now explicitly define the main innovation (as
described above), and then delineate the different downstream profiling strategies that 
can be followed, with the caveat that sequential profiling is currently still a proof-of- 
concept given its lack of scale (and thus power) (and as explicitly stated in the original 
and revised manuscript: “we sought to establish a proof-of-principle, sequential Live- 
seq sampling approach…”, lines 321-322). Finally, revising the introduction and 
discussion also allowed us to better contrast Live-seq with other single cell 
transcriptomics methods, aiming to guide the reader when to use one over the other, 
depending on the desired application.

Regarding Point 3. While we appreciate the potential of the method and the 
comparison to scSLAM-seq (Erhard et al., Nature, 2019), we maintain that a conclusive

1



example of how it can answer an outstanding biological question is missing for 
publication in this journal, especially given the authors’ previous Cell paper.

We maintain that we have provided such an example, showing how low Nfkbia primes 
the macrophage cell line to respond stronger to LPS. It is of course true that a regulator 
of the NF-kB pathway is not too unexpected in this process. However, as far as we 
know, it has never been described that especially heterogeneity of expression of this 
gene in steady state (as compared to the many other genes involved in the NFkB 
pathway / LPS response) can affect the rate by which this cell responds. This is exactly 
why we believe that this finding showcases Live-seq very well: it is not too exotic, so it 
can be understood by a broad audience, while at the same time demonstrating that 
differences in gene expression - not visible as a separate cluster upon dimensionality
reduction - can have a functional effect, and can be detected by Live-seq. In addition,
we not only uncovered that Nfkbia affects the macrophage LPS response, but also 
demonstrated that it is the most important modulator of this response, at least on an 
individual gene basis, since we were able to use Live-seq to generate a genome-wide 
ranking of the extent to which each detected gene contributes to this phenotype, which 
is also a novel achievement.

Regarding Point 4. Analyses performed separately by system should be the ones 
included in the manuscript. Also, for RNA velocity analyses, the genes chosen as input 
have a large impact on the results. Only genes relevant for a given system and its 
process of interest should be chosen – consider describing how this is done. 
Combining all systems together for gene selection and beyond has a strong potential 
for bias.

We now include both the “per cell type” and “all combined” analyses in the manuscript 
(Extended Data Fig. 4e, f and lines 361-362). For the RNA velocity analyses, we 
provide additional detail in the Methods (lines 1053-1066).

Regarding Point 6. Clustering accuracy depends on cell types measured. For example, 
in Mereu et al (Nat Biotech 2020), HEK cells clustered separately from immune cells 
more readily than did different types of immune cells to each other. We would expect 
RAW and IBA to readily cluster separately given their drastic difference in 
transcriptome. Could a comparison to the clustering obtained from the scRNAseq be 
done?
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Legend:
•  (A) Clustering tree of the Seurat-based clustering results of the scRNA-seq or Live-seq 

data. It visualizes the relationship between clustering at increasing resolutions (top to 
bottom). The size of the circles represents the number of cells in that cluster, while the 
opacity of the arrows shows the proportion of cells from one cluster to another at different 
resolutions. (B) tSNE plots of the scRNA-seq or Live-seq data showing the final clustering 
(left) and the ground truth (right). The Adjusted Rand Index (ARI) comparing the two is each 
time specified. (C) Barplots showing the overlap in number of cells between the clustering
(x-axis) and the ground truth (colors).

We found that cell types, including RAW and IBA, clustered separately both in Live- 
seq and scRNA-seq, even for low resolutions of the graph-based clustering 
implemented in Seurat (Rebuttal Fig. A and Extended Data Fig. 2g, 2p) and with 
very high accuracy (99.8% and 99.0% of the cells were assigned to the correct cell 
types for scRNA-seq and Live-seq respectively). We note that ASPCs were probed 
two days post-adipogenic cocktail induction to minimize sampling interference by lipid 
droplets, meaning that the cells were still early in their differentiation trajectory. Due to 
this molecular similarity between ASPC_Pre and ASPC_Post compared to the other 
probed cell types/states, it is only at high resolution that the ASPCs split. We therefore 
decided to use low-resolution clustering and independently adapted the clustering for 
the clustered ASPCs to correctly capture their state difference. We calculated the 
Adjusted Rand Index comparing our final clustering and the ground truth and obtained 
good clustering accuracy for both techniques (Rebuttal Fig. B and Extended Data
Fig. 2f, 2o). Both for Live-seq and scRNA-seq, a few cells were misassigned to the
correct treatment (Rebuttal Fig. C and Extended Data Fig. 2h, 2q). For combined 
ASPCs and RAW cells, these represented 7.6% and 2% of the cells for Live-seq and 
scRNA-seq, respectively. Thus, the misassignment was slightly higher for Live-seq, 
potentially due to its lower sensitivity compared to scRNA-seq.
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Please note that the comment of the reviewer on clustering accuracy made us revise 
the differential expression analysis. Indeed, it was previously based on the cell type/
state assignment and, to be more unsupervised, it is now based on the clustering 
results. While the general message / conclusion does not change, some plots were
added/modified accordingly, explaining subtle changes (Fig. 2e and ED Fig. 2f, 2k-m,
2r-t, 2v).

Regarding Point 9. We suggest the authors look to SMART-Seq3
(https://www.nature.com/articles/s41587-020-0497-0) for guidance.

Thank you for the suggestion. We had already previously referred to this paper in our 
discussion, but now also explicitly mention the name of the method.

Regarding Point 10. How does downsampling improve the overlap between scRNAseq 
and Live-seq? Could the authors quantify this?

This is an expected result in our opinion. Given that down-sampling will lower the 
power of scRNA-seq to the same level as that of Live-seq, only the highest expressed 
genes, or those with the highest effect size, will remain differentially expressed after
down-sampling. The consequence is that the relative overlap increased (from 20.3%
to 28.5% overlap for the ASPCs and from 14.6% to 19% overlap for RAW cells), but 
the absolute number of genes decreased (from 270 to 183 genes for the ASPCs and 
from 410 to 256 genes for the RAW cells).

Regarding Point 19. Consider specifying this is the manuscript – it was not clear to us 
that the goal of sequential sampling here was purely demonstrative given that this is 
one of the promises of the technique.

We kindly refer the reviewer to our response to point 2. We aimed to make this clearer 
now in the abstract, introduction, and discussion.

Reviewer 3

The authors have improved the Nfkbia validation experiment with a second experiment 
that show more convincing significance. I would advise the authors, however, to tone 
down the language around this observation. Currently, the abstract list Nfkbia as a 
“major phenotypic determinant” and the main text says “principal driver” and “negative 
predictor”. Yet, the R2 of 0.1 is a very weak, although significant, interaction.

We thank the reviewer for acknowledging the improvement of the Nfkbia validation 
experiment. In our Live-seq data, Nfkbia is the top hit to predict the heterogeneity of 
the LPS response. Nevertheless, it is possible that there are other factors that 
contribute little to the heterogeneity but collectively do. We therefore followed the

4



reviewer’s instruction and modified the abstract (line 48) and main text (line 92, 402,
420, 424) accordingly.

Metabolic labeling vs. Live-seq
I will spell out my point here – take it or leave it – I still think the current discussion (and 
rebuttal text) is highly misleading and should be corrected.

If a researcher would like to study the effect of a perturbation on the transcriptome, say 
the direct effects of LPS on gene expression. A Live-seq user would then sample a 
part of the cytoplasm before the perturbation (timepoint t0) and then collect the cell or 
cytoplasm after 1 hour exposure to the perturbation (timepoint t1). The problem here 
is that the 1 hour timepoint would be highly confounded by RNAs present before the 
perturbation. In fact, in a typical in vitro grown cell only 5% of the transcriptome is 
transcribed within the last 1hr, making 95% of the RNA profiled at timepoint t1 being 
actually the remaining pre-existing RNA at timepoint t0 that was not sampled in the 
first Live-seq experiment. Therefore, the power to detect a change at 1hr relative to t0 
will be highly limited. Most power would lie in identifying genes that were not 
expressed/present at t0 as they would have expression at t1 that is clearly detectable
and different from t0. However, if a gene was abundant at t0 and say 2-fold induced at
t1, that signal would be lost due to fact that a 2-fold change occurring in only 5% of the 
RNA would be diluted away. Therefore, I withhold that Live-seq will have limited power 
to detect shorter-timescales direct effects of perturbations onto gene expression.

A metabolic labeling user would provide the cells 4sU/EdU at t0 together with the 
perturbation, and collect the cells at t1 for analysis. Comparing separate cells that were 
exposed to perturbation or not, the analysis can focus on the RNAs transcribed only 
since the perturbation therefore avoiding the dilution pitfalls of the Live-seq scenario 
above. Therefore, differential expression can be detected even for genes that were 
highly expressed at t0 in contrast to Live-seq. Therefore, metabolic labeling will have 
drastically improved power for any short-term experiment that aim to identify the direct 
effects of a perturbation on transcription. Here, Live-seq (like a standard total RNA 
comparison on unmatched samples) will have low power to find any difference) – as 
shown in the manuscript :) .

The parts about degradation can be removed as degradation has a minimal role 
compared to transcription, in particular within a 1-hour window, which is the conclusion 
of the Rabani paper.

I am just trying to help the authors from grossly over-stating what can be achieved with 
Live-seq over metabolic labelling. Having the ability with Live-seq to sample the same 
cell twice is unique and offers new experimental strategies but it will not have any 
impact on studying direct effects of perturbations on transcription – there metabolic 
labelling is drastically better – yet reading this manuscript gives the complete opposite
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impression. Like I said in the first comments, Live-seq is better at longer timescales – 
which is great.

We thank the reviewer for the advice and for explicitly making this argument. The latter
made us aware that there might be a misunderstanding. For studying short-term gene 
expression dynamics after a perturbation, we fully agree that metabolic labeling or 
similar technologies are more powerful than Live-seq. However, we would like to 
highlight that we did not develop Live-seq to study perturbation-related expression 
changes. Rather, we engineered Live-seq to study the expression differences among 
individual cells at their initial state, which may explain the magnitude and/or rate by 
which a perturbation affects the cell. There, Live-seq does excel as we can directly 
observe the full transcriptome before a perturbation, without having to infer it or make 
strong assumptions to do so, as acknowledged for metabolic labeling-based tools (e.g. 
Cao et al., Nature Biotechnology, 2020).

To avoid confusing the reader with this, we had a fresh look at our abstract, introduction 
and discussion, and substantially revised it:

•  In the introduction, we now more explicitly mention the problem that Live-seq 
tries to solve, namely the profiling of an initial transcriptome before a
perturbation.

•  In the second and third paragraphs of the discussion, we now explicitly mention 
the use cases where Live-seq excels, and those where alternative approaches 
are potentially better, while considering the practical challenges and biological
assumptions made by all technologies.

Still, we do want to respond to some of the claims made by the reviewer for the sake 
of scientific discussion:

•  The 5% argument only holds for the “whole transcriptome”, and so includes all 
housekeeping genes. Many genes of interest have much lower half-lives
though, including Nfkbia, which, according to the scSLAM-seq paper, has a
half-life of half an hour. In this case, 75% of the mRNA will be turned over every 
hour.

•  With respect to degradation, we do not agree that this has a minimal role. In
fact, Rabani et al. (Nature Biotechnology, 2011) notes that still over 500 genes 
have dynamic degradation, and these genes are enriched for e.g. NF-kB 
signaling. While this is indeed a relatively small fraction of all 20k genes, this 
ignores the fact that most of these 20k genes are not relevant in the cell type 
anyway.
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Reviewer Reports on the Third Revision: 

Referees' comments: 

Referee #2 (Remarks to the Author): 

The authors have adequately address several of the issues we raised in this revision, but a few 

clarifications are still needed. Overall, while we applaud the authors for demonstrating the 

potential to make transcriptomic measurements from live cells, we maintain that the biological 

insight afforded by this manuscript is small – especially considering the multitude of very 

interesting questions that could be answered with this approach; as such, we strongly encourage 

the authors to appropriately position their work (e.g.,). 

Regarding Point 2. Thank you for clarifying the innovation of the technique. We urge you to make 

further modification to the abstract to decrease the emphasis on sequential sampling and more 

clearly state when elements are validatory. As written, it appears that your longitudinal sampling 

was used to give insight into the macrophage LPS-response. This is misleading given your 

statement that this is but a proof-of-concept. Relatedly, a more nuanced discussion of how 

sampling might impact cellular response dynamics would be a welcome addition as the positioning 

in the conclusion is too strong given what’s shown. 

Regarding Point 3. We agree with the authors that the NFKBIA evidence is a good proof-of-concept 

but maintain that the biological insight provided is small (also see point 2 above re: some of the 

claims made in the rebuttal). We look forward to seeing Live-seq’s true potential in the future. 

Regarding Point 4. Thank you for clarifying the methods. Please also include information on how 

genes were chosen to represent the system of interest. This highlights the necessity of doing this 

analysis on a per system basis, since different genes will be important to describe dynamics of 

different systems. 

Regarding Point 10. It is more appropriate to report the downsampled numbers given the 

difference in coverage between the two techniques, which creates a bias. 

Referee #3 (Remarks to the Author): 

The revised manuscript has takes my last comments into consideration satisfactorily.
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Referees' comments: 

Referee #2 (Remarks to the Author): 
 

The authors have adequately address several of the issues we raised in this revision, but a few 
clarifications are still needed. Overall, while we applaud the authors for demonstrating the 
potential to make transcriptomic measurements from live cells, we maintain that the biological 
insight afforded by this manuscript is small – especially considering the multitude of very 
interesting questions that could be answered with this approach; as such, we strongly encourage 
the authors to appropriately position their work (e.g.,). 

>We thank the reviewer for appreciating the novelty of our work and the many questions 
that can now be addressed using Live-seq. We believe that in our last revision, we have 
adequately highlighted the main advances that our technology offers, whilst also 
discussing current limitations and future opportunities.  

Regarding Point 2. Thank you for clarifying the innovation of the technique. We urge you to make 
further modification to the abstract to decrease the emphasis on sequential sampling and more 
clearly state when elements are validatory. As written, it appears that your longitudinal sampling 
was used to give insight into the macrophage LPS-response. This is misleading given your 
statement that this is but a proof-of-concept. Relatedly, a more nuanced discussion of how 
sampling might impact cellular response dynamics would be a welcome addition as the 
positioning in the conclusion is too strong given what’s shown. 

>Regarding the abstract, we have now replaced “most importantly” with “In addition” to 
emphasize that the “sequential Live-seq” and “transcriptomic recorder” experiments are 
not directly connected. In the main text, we have emphasized the desire to further lower 
the cytoplasmic extraction volumes, aiming to reduce any cellular impact that this 
extraction may have to a minimum, which is obviously highly relevant for studying cellular 
dynamics, especially in smaller cells such as T cells and stem cells (Lines 485-488). 

Regarding Point 3. We agree with the authors that the NFKBIA evidence is a good proof-of-
concept but maintain that the biological insight provided is small (also see point 2 above re: some 
of the claims made in the rebuttal). We look forward to seeing Live-seq’s true potential in the 
future. 

> We agree with the reviewer that Live-seq opens up new methodological avenues to 
address outstanding biological questions.  

Regarding Point 4. Thank you for clarifying the methods. Please also include information on how 
genes were chosen to represent the system of interest. This highlights the necessity of doing this 
analysis on a per system basis, since different genes will be important to describe dynamics of 
different systems.  

Author Rebuttals to Third Revision:
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> The information about the selection of genes was already included in the Methods 
section (Line 1138-1140). 

Regarding Point 10. It is more appropriate to report the downsampled numbers given the 
difference in coverage between the two techniques, which creates a bias. 

> The scRNA-seq data is down-sampled per cell to have the same density distribution of 
the number of features as the corresponding Live-seq data, rather than an absolute 
number. This information was indicated in the Methods section (Line 1098-1106). 
 
 
Referee #3 (Remarks to the Author): 
 
The revised manuscript has takes my last comments into consideration satisfactorily. 
 
>Thank you. 


