

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

## COVID-19 vaccination effectiveness rates by week and sources of bias

| Journal:                         | BMJ Open                                                                                                                                                                                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2022-061126                                                                                                                                                                                                             |
| Article Type:                    | Original research                                                                                                                                                                                                               |
| Date Submitted by the<br>Author: | 17-Jan-2022                                                                                                                                                                                                                     |
| Complete List of Authors:        | Ostropolets, Anna; Columbia University Medical Center, Department of<br>Biomedical Informatics<br>Hripcsak, George; Columbia University Medical Center, Department of<br>Biomedical Informatics; New York-Presbyterian Hospital |
| Keywords:                        | COVID-19, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS,<br>EPIDEMIOLOGY                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                 |

SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

## COVID-19 vaccination effectiveness rates by week and sources of bias

Anna Ostropolets, MD1, George Hripcsak, MD1,2

<sup>1</sup>Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA <sup>2</sup>Medical Informatics Services, New York-Presbyterian Hospital, New York, NY, USA;

Corresponding author: George Hripcsak, <u>gh13@cumc.columbia.edu</u>, Columbia University Irving Medical Center, 622 West 168th Street, PH-20, New York, NY, USA

ore to ice only

#### ABSTRACT

#### Objective

To examine granular weekly COVID-19 vaccine effectiveness and assess the feasibility of using observational data for vaccine effectiveness studies.

#### **Design and setting**

Retrospective cohort study using Columbia University Medical Center data linked to State and City Immunization Registries.

#### Outcomes and measures

We used propensity score matching with up to 54,987 covariates and fitted Cox proportional hazards models to estimate hazard ratios and constructed Kaplan-Meier plots for two main outcomes (COVID-19 infection and COVID-19-associated hospitalization). We conducted manual chart review of cases in week one in both groups along with a set of sensitivity analyses for Pfizer- BioNTech, Moderna and Janssen vaccines.

#### Results

The study included 179,666 patients. We observed increasing effectiveness after the first dose of mRNA vaccines with week six effectiveness approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-associated hospitalization. When analyzing unexpectedly high effectiveness in week one, chart review revealed that vaccinated patients are less likely to seek care after vaccination and are more likely to be diagnosed with COVID-19 during the encounters for other conditions. Sensitivity analyses highlighted potential outcome misclassification for ICD10-CM diagnosis, the influence of excluding patients with prior COVID-19 infection and anchoring in the unexposed group. Overall vaccine effectiveness in fully vaccinated patients matched the results of the randomized trials.

#### Conclusions

Observational data can be used to ascertain vaccine effectiveness if potential biases are accounted for. The data need to be scrutinized to ensure compared groups exhibit similar health seeking behavior and are equally likely to be captured in the data. Given the difference in temporal trends of vaccine exposure and baseline characteristics, indirect comparison of vaccines may produce biased results.

#### Strengths and limitations of this study

- This study thoroughly investigates weekly COVID-19 vaccine effectiveness using methods to reduce potential confounding (large-scale propensity score matching, negative control calibration) and accompanied by manual chart review of the cases in week one

- The study includes a range of sensitivity analyses for different patient populations, anchoring strategies and outcome definitions.

- The study was carried out using routinely collected clinical practice data, which represents real-world patients, but also implies a risk of misclassification.

Word count: 3179

Keywords: COVID-19, Epidemiology, Health Informatics

#### BACKGROUND

Randomized clinical phase-3 trials have demonstrated high efficacy for the three US-authorized COVID-19 vaccines against symptomatic COVID-19 infection, ranging from 66.9% for Ad26.COV2.S (Johnson & Johnson–Janssen) to 94.1% and 94.6% for BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna) vaccines (1–3). Their fast approval and widespread use require robust post-marketing studies that leverage large sample size, heterogeneous populations, and longer follow-up available in observational data.

There have been several recent observational studies, which have shown effectiveness similar to the randomized clinical trials (RCTs). Thompson et al. used a test-negative design to examine the effectiveness of Pfizer–BioNTech and Moderna vaccines with respect to COVID-19 hospitalization across a network of institutions (4). The cohort study by Tartof et al. examined the effectiveness of Pfizer–BioNTech against COVID-19 infection and hospitalization in fully vaccinated patients, reporting the limitations of matching the vaccinated and unvaccinated populations (5). Another cohort study by Polinski et al. used a large population to assess the effectiveness of Ad26.COV2.S and obtained similar results despite the fact that the data source did not allow to ascertain vaccination status for all patients (6). There were several non-US studies showing similar overall effectiveness, which nevertheless may not be generalizable to the US population due to differences in patient populations, COVID-19 variants spread and baseline COVID-19 prevalence (7–11).

While the existing observational studies matched randomized clinical trial results, there is a growing number of pressing questions related to COVID-19 vaccine effectiveness such as effectiveness against new variants and vaccine durability, for which trials may not be readily available (12). Moreover, the challenges associated with the use of observational data such as incomplete data capture, outcome misclassification and appropriate comparator sampling can undermine the results of the studies if such biases are not accounted for (13). Such biases are illustrated in the estimates of vaccine effectiveness during the first two weeks following the first dose. Studies have shown contradicting results for Pfizer–BioNTech vaccine with effectiveness ranging from moderate effectiveness of 52% (3) to very high effectiveness of 92.6% (14). Similarly, a recent study showed an unexplained high effectiveness of Janssen vaccine during week one (15). While week one lack of effectiveness has been suggested as a metric for lack of confounding in the long-term vaccine effectiveness studies, the reasons for high

effectiveness and its impact on the validity of the conclusions regarding the overall effectiveness remain unclear (10).

The goal of this study was to examine granular weekly effectiveness estimates and uncover underlying biases and challenges associated with the use of observational data for vaccine effectiveness studies. We employed large-scale propensity score matching and many negative controls to reduce and assess bias, and leveraged a range of sensitivity analyses as well as manual review of the COVID-19 infection cases during the first week after vaccination.

#### METHODS

#### Main design

For this retrospective observational cohort study, we used electronic health records from the Columbia University Irving Medical Center (CUIMC) database (Appendix 1), which has an ongoing automated connection to New York City and State public health department vaccine registries and includes all within-state vaccinations for our population. The data were translated to the OMOP Common Data Model version 5 and was previously used in multiple studies (16).

We studied the three main US COVID-19 vaccines separately. Three target cohorts included patients indexed on the first dose of one of the corresponding vaccines with no prior COVID-19 infection and no previous exposure to other COVID-19 vaccines. Our comparator group was unvaccinated patients who were indexed on a date selected from the unvaccinated patient's history (not necessarily with any medical event) such that it matched the index date of one of the target group participants. Both the target and comparator groups had at least 365 days of prior observation and primarily resided in New York.

Outcomes of interest included a) COVID-19 infection defined as a positive COVID-19 test (e.g., reversetranscriptase–polymerase-chain-reaction assays) or a diagnostic code of COVID-19 and b) COVID-19 hospitalization defined as an inpatient visit associated with a COVID-19 positive test or diagnosis within 30 days prior or during the visit. Upon further examination of the results, we added two other outcomes: a) COVID-19 positive test only and b) COVID-19 hospitalization associated with a positive COVID-19 test. Design overview is provided in Appendix 2; code lists and links to phenotype definitions are provided in Appendix 3.

#### **BMJ** Open

For the time-at-risk, we selected six consecutive 7-day intervals after the first dose until an outcome, end of observation period or death, whichever came earlier. Additionally, given the results for vaccine effectiveness during week 1 following the first dose, we conducted chart review for patients with a COVID-19 positive test recorded in the abovementioned period. We reviewed all cases for the vaccinated population as well a random sample of the cases in the unvaccinated population.

#### Sensitivity analyses

Along with studying granular weekly intervals, we assessed overall absolute vaccine effectiveness in patients with at least one dose of a COVID-19 vaccine and in fully vaccinated patients. The latter was defined as 14 days after the second dose of Pfizer-BioNTech or Moderna vaccines or first dose of Janssen vaccine. For each comparison we estimated hazard ratios (HRs) and constructed Kaplan-Meier plots as described below.

Given that the published studies focused on patients without prior COVID-19 infection, our second sensitivity analysis included all eligible patients regardless of their previous COVID-19 status. Finally, as the strategy for unvaccinated group index date selection (anchoring) has been reported to influence incidence of outcomes (17), we additionally tested an unvaccinated comparator indexed on a healthcare encounter matching the index date of one of the target group participants within 3 days corridor, with at least 365 days of prior observation located at New York.

#### Statistical methods

For each analysis, we fitted a lasso regression model to calculate propensity score and match patients in each target and comparator group with 1:1 ratio. For propensity model we used all demographic information, index year and month, as well as the number of visits, condition and drug groups, procedures, device exposures, laboratory and instrumental tests and other observations over long (prior year) and short-term period (prior month).

For each outcome, we fitted a Cox proportional hazards models to estimate HRs and constructed Kaplan-Meier plots. Empirical calibration based on the negative control outcomes was used to identify and minimize any potential residual confounding by calibrating HRs and 95% confidence intervals (CIs) (18,19). Vaccine effectiveness was calculated as  $100\% \times (1-hazard ratio)$ . All analyses were supported by the OHDSI Infrastructure (CohortMethod package, available at https://ohdsi.github.io/CohortMethod/, FeatureExtraction available at https://ohdsi.github.io/FeatureExtraction/ and the Cyclops package for large-scale regularized regression (20) available at https://ohdsi.github.io/Cyclops).

#### **Diagnostics**

We used multiple sources of diagnostics to estimate potential bias and confounding following best practices for evidence generation (21). First, we examined covariate and propensity score balance prior to proceeding with outcome modelling and effect estimation to ensure that we have enough sample size and to control for potential observed confounding (21). We plotted propensity scores to investigate the overlap in patient populations at the baseline and examined the balance of all baseline characteristics to determine if the target and comparator cohorts were imbalanced at the baseline and after propensity score matching. Target and comparator cohorts were said to be balanced if the standardized difference of means of all covariates after propensity score matching was less than 0.1 (22).

For negative control calibration, we used 93 negative controls (Appendix 4) with no known causal relationship with the COVID-19 vaccines. Negative controls were selected based on a review of existing literature, product labels and spontaneous reports and were reviewed by clinicians (23). We assessed residual bias from the negative control estimates.

#### Patient and public involvement

No patient involved

#### RESULTS

#### **Patient characteristics**

In total, we identified 179,666 patients with at least one dose of COVID-19 vaccine: 121,771 patients for Pfizer-BioNTech, 52,728 for Moderna and 5,167 for Janssen (Table 1).

Among vaccinated patients, 68% received Pfizer-BioNTech vaccine, 29% received Moderna and 3% received Janssen vaccine. When investigating the vaccination pathways, we discovered that 112,963

patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.

Within our database, Moderna was administered early on with a peak in January 2021 (Figure 1), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.

We observed that unvaccinated comparator patients (Table 1) were on average younger and had fewer comorbidities and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates (up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching. Figure 2 presents the covariate balance and propensity score balance plots showing that anchoring unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a visit.

Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more co-morbidities such as diabetes mellitus or hypertensive disorder (Table 1).

#### Main week-by-week absolute effectiveness analysis

Figure 3, A shows week-by-week estimates for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna. Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen. While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-associated hospitalization.

We then looked at the week one COVID-19 infection cases to explain high effectiveness. A chart review of week one positive COVID-19 tests revealed a high proportion of unvaccinated patients seeking care

related to COVID-19 symptoms or COVID-19 exposure (85% in total) compared to only 69% of vaccinated patients. Initial healthcare encounters in vaccinated population were oftentimes related to other medical reasons such as co-morbid conditions or surgeries (39% compared to 21% in unvaccinated population, Appendix 5). Moreover, an observed gap between symptom onset and an initial healthcare encounter was more pronounced in the vaccinated cohort as the patients attributed their symptoms to temporal vaccine side effects as opposed to COVID-19 infection.

When looking at the severity of COVID-19 symptoms at the initial encounter during week one after the index date, we observed that the unvaccinated cohort had a higher proportion of asymptomatic cases (39% compared to 11%) while the vaccinated population had more severe or mild cases (34% and 48% respectively).

#### Sensitivity analysis

#### **Overall effectiveness**

As cohort analysis allows us to construct Kaplan-Meier curves to assess effectiveness over time, we also looked at the effectiveness during the year after the first dose (Figure 4). We observed similar trends with all three vaccines being less effective during the first month after the first dose. After that, Pfizer-BioNTech and Moderna were highly effective against both COVID-19 infection and COVID-19 associated hospitalization, while Janssen vaccine exhibited a wide range of effectiveness (Appendix 6).

The results for fully vaccinated patients with time-at-risk starting at the full vaccination matched the results of the clinical trials for corresponding vaccines (detailed estimates are provided in Appendix 7 and 8).

Our initial design included a positive COVID-19 test or a diagnostic code as an outcome. Upon further case examination, we discovered that COVID-19 diagnostic codes in the CUIMC data were partially assigned to the patients with negative COVID-19 tests on or immediately following the date of diagnosis. In that case, ICD10CM code U07.1 "Disease caused by Severe acute respiratory syndrome coronavirus 2" was entered in the system for billing purposes (COVID-19 molecular or antibody tests) or for COVID-19 sequelae. We, therefore, focused on positive COVID-19 test only for our primary outcome, which led to higher effectiveness for all vaccines compared to using both positive test and diagnosis (Appendix 6).

#### **BMJ** Open

Finally, exclusion of patients with prior COVID-19 infection in our main analysis resulted in higher absolute effectiveness. Inclusion of patients regardless of their prior COVID-19 status led to a small decrease in observed effectiveness (Appendix 9) for both COVID-19 infection and hospitalization in patients vaccinated with Moderna or Janssen.

#### DISCUSSION

In this retrospective cohort study, we examined the weekly effectiveness of COVID-19 mRNA vaccines as well as the overall effectiveness of three COVID-19 vaccines commonly used in the US. COVID-19 mRNA vaccines were highly effective against both COVID-19 infection and COVID-19 associated hospitalization. Our findings support the RCTs and previously published post-marketing studies for all three vaccines. Larger sample size for patients vaccinated with COVID-19 mRNA vaccines allowed us to have more power, which resulted in overlapping yet narrower confidence intervals compared to the RCTs. On the other hand, our study had fewer patients with the Janssen vaccine, which resulted in wider yet overlapping intervals compared to the Janssen's vaccine RCT (1,2,7).

Our study complemented previous studies by examining and comparing disparate design choices such as studying both COVID-19-associated hospitalization and COVID-19 infection, different outcome definitions and broad age group (4,5). We scrutinized the effectiveness of the mRNA vaccines following the first dose and confirmed the findings of moderate vaccine effectiveness during the first two weeks. For week one following the first dose we discovered previously uncaptured differential biases in vaccinated and unvaccinated populations. Vaccination directly influenced the attitude of patients towards their symptoms, causing a delay in seeking care and a higher symptom severity threshold needed to seek care. In unvaccinated patients, mild COVID-19 related symptoms were the reason to seek care; in vaccinated patients such cases were mainly captured upon seeking outpatient and inpatient care for other conditions. Such a difference may affect any observational vaccine study that uses hospitalization as a surrogate for COVID-19 severity.

Previous research suggested that vaccinated patients do not have an increase in the number of cases immediately following vaccination as they are unlikely to get vaccinated if sick (10). Our review of the cases in week one supplements this assumption by showing that vaccinated patients are more likely to attribute their symptoms to common vaccine side effects and, therefore, are less likely to seek care. Nevertheless, even when this differential bias is present, the estimates of the COVID-19 vaccine effectiveness in subsequent weeks still match the results of the RCTs. This indicates that high

effectiveness during week one following vaccination does not necessarily undermine the estimates of subsequent vaccine effectiveness.

Our sensitivity analyses discovered several challenges and potential biases that must be accounted for when conducting vaccine effectiveness studies on observational data. First, we observed that outcome definitions are prone to measurement error, which has not been studied thoroughly. The specifics of data capture and billing processes were associated with some patients having assigned COVID-19 diagnosis codes for billing for tests rather than as an indicator of active disease. Another reason for assigning the code was COVID-19 sequela, where the actual date of COVID-19 infection could have been anywhere from 6 months to a couple of weeks in the past. Such index date misclassification can be present in other healthcare institutions and therefore should be scrutinized to make valid inferences.

Second, inclusion or exclusion of patients with prior COVID-infection influenced estimated effectiveness. We observed that inclusion of patients with prior COVID-19 leads to lower effectiveness for all vaccines regardless of the outcome definition.

If absolute effectiveness is studied, an appropriate index event (anchor) for the unvaccinated cohort must be chosen. In our study, we observed that an arbitrary date represents a better counterfactual than a medical visit for COVID-19 vaccination, which is reflected in propensity score balance and covariate balance. Nevertheless, other institutions may have different vaccination pathways such as vaccination on discharge, which can make a visit a better counterfactual for vaccination. More generally, completeness of vaccination data capture is a crucial feature that influences the robustness of the study. While CUIMC data ensures complete exposure capture by linking EHR to the City and State Registries, the researchers should exhibit caution with conducting studies on the data sources with unknown vaccination capture.

We obtained similar results to RCTs, which strengthens the conclusions about the high effectiveness of vaccines against COVID-19 infection in the broad age group. While these RCTs allowed us to make such comparisons for absolute effectiveness, there are other research questions for which RCTs may not be feasible or readily available. The US and international booster campaigns raise the question of vaccine comparative effectiveness to prioritize vaccination. An indirect comparison may not be accurate due to the differences in the populations we observed in our study. First, patients vaccinated with Janssen were substantially different from mRNA patients: on average, they were older, had a higher proportion of patients with race recorded as Black and had more comorbidities. Therefore, comparative effectiveness studies of Janssen and mRNA vaccines require robust techniques such as large-scale propensity matching

#### **BMJ** Open

to ensure valid comparison. Second, while Modena and Pfizer patients had similar baseline characteristics, the temporal distribution of vaccinations in CUIMC data differ. Moderna vaccine was administered early on in 2021 with the peak in January, while Pfizer vaccination peaked in April. Given the varying baseline COVID-19 prevalence, a comparison of mRNA vaccines requires matching patients on calendar month to account for this potential bias. These vaccines also had different administration pathways in our system. As opposed to Pfizer vaccine, which was administered at Columbia University Irving Medical Center/New York-Presbyterian sites to all patients over a prolonged period, Moderna vaccination was performed elsewhere and recorded for actively observed patients. Such patients were more likely to get tested or receive care outside of our healthcare system.

## LIMITATIONS

Due to observational nature of the study, the data sources may not have complete capture of patient conditions, which was mitigated by having free and available COVID-19 testing in Columbia University Irving Medical Center/New York-Presbyterian sites as well as by having data capture from New York City and State Immunization Registries. Along with availability of testing, COVID-19 baseline infection rate difference was mitigated by matching the target and comparator groups on the index date and using the index month as a covariate in propensity score model. While our outcome phenotype algorithms may be subject to measurement error, we provided additional sensitivity analyses with alternative outcome definitions.

#### CONCLUSIONS

Observational data can be used to ascertain vaccine effectiveness if potential biases such as exposure and outcome misclassification are accounted for, and appropriate anchoring event is selected. When analyzing granular vaccine effectiveness researchers need to scrutinize the data to ensure that compared groups exhibit similar health seeking behavior and are equally likely to be captured in the data. Given the difference in temporal trends of vaccine exposure and baseline characteristics, there is a need for large-scale direct comparison of vaccines to examine comparative effectiveness.

#### DECLARATION

#### **Author contributions**

GH designed and supervised the study. All co-authors contributed to interpretation of the results and writing the manuscript, approved the final version and had final responsibility for the decision to submit for publication.

#### Funding

US National Library of Medicine (R01 LM006910), US Food and Drug Administration CBER BEST Initiative (75F40120D00039).

## Declaration of interests

All authors have completed the ICMJE disclosure form (available on request from the corresponding author). GH and AO receive funding from the US National Institutes of Health (NIH) and the US Food and Drug Administration.

#### **Ethical approval**

The protocol for this research was approved by the Columbia University Institutional Review Board (AAAO7805).

#### **Data sharing**

Patient-level data cannot be shared without approval from data custodians due to local information governance and data protection regulations.

#### **Transparency declaration**

The lead authors affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

#### Acknowledgment

We would like to acknowledge Patrick Ryan, an employee of Janssen Research and Development, Titusville, New Jersey, for his thoughtful feedback on the study.

## REFERENCES

- Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–201.
- Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403–16.
- Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.
- Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021 Sep 8;NEJMoa2110362.
- Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet. 2021 Oct;398(10309):1407–16.
- Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine [Internet]. Infectious Diseases (except HIV/AIDS); 2021 Sep [cited 2021 Sep 23]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.09.10.21263385
- Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. The Lancet. 2021 May;397(10287):1819–29.

- Kissling E, Hooiveld M, Sandonis Martín V, Martínez-Baz I, William N, Vilcu A-M, et al. Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021. Eurosurveillance [Internet]. 2021 Jul 22 [cited 2021 Sep 23];26(29). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.29.2100670
- Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021 Aug 12;385(7):585– 94.
- Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021 Apr 15;384(15):1412–23.
- Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med. 2021 Sep;27(9):1614–21.
- Juno JA, Wheatley AK. Boosting immunity to COVID-19 vaccines. Nat Med. 2021 Nov;27(11):1874–5.
- Dean NE, Hogan JW, Schnitzer ME. Covid-19 Vaccine Effectiveness and the Test-Negative Design. N Engl J Med. 2021 Oct 7;385(15):1431–3.
- 14. Skowronski D. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine: a letter to the Editor. N Engl J Med. 2021 Feb 17;384(16):1576-.
- Tabak YP, Sun X, Brennan TA, Chaguturu SK. Incidence and Estimated Vaccine Effectiveness Against Symptomatic SARS-CoV-2 Infection Among Persons Tested in US Retail Locations, May 1 to August 7, 2021. JAMA Netw Open. 2021 Dec 22;4(12):e2143346.
- OMOP Common Data Model [Internet]. GitHub. [cited 2020 Feb 11]. Available from: https://github.com/OHDSI/CommonDataModel
- Ostropolets A, Ryan PB, Schuemie MJ, Hripcsak G. Differential anchoring effects of vaccination comparator selection: characterizing a potential bias due to healthcare utilization in COVID-19 versus influenza [Internet]. Epidemiology; 2021 Oct [cited 2021 Nov 7]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.10.07.21264711

| 1                                                                                                  |     |                                |
|----------------------------------------------------------------------------------------------------|-----|--------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7                                                                         | 18. | Schue<br>high-<br>13;37        |
| 8<br>9<br>10<br>11<br>12<br>13                                                                     | 19. | Schue<br>studie<br>30;33       |
| 14<br>15<br>16<br>17<br>18<br>19                                                                   | 20. | Sucha<br>Infere<br>and C       |
| 20<br>21<br>22<br>23<br>24                                                                         | 21. | Schue<br>Evide<br>Amer         |
| 25<br>26<br>27<br>28<br>29<br>30                                                                   | 22. | Austi<br>Betwo<br>Comp         |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47 | 23. | The k<br>(OHI<br>(LAE<br>data. |
| 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58                               | _   | <b>ire 1.</b> E<br>dent CC     |

59

60

- Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving reproducibility by using high-throughput observational studies with empirical calibration. Phil Trans R Soc A. 2018 Sep 13;376(2128):20170356.
- Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct *p* -values. Statistics in Medicine. 2014 Jan 30;33(2):209–18.
- Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D. Massive Parallelization of Serial Inference Algorithms for a Complex Generalized Linear Model. ACM Transactions on Modeling and Computer Simulation. 2013 Jan;23(1):1–17.
- Schuemie MJ, Ryan PB, Pratt N, Chen R, You SC, Krumholz HM, et al. Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND). Journal of the American Medical Informatics Association. 2020 Aug 1;27(8):1331–7.
- 22. Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Communications in Statistics Simulation and Computation. 2009 May 14;38(6):1228–34.
- 23. The Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative. Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data. J Biomed Semant. 2017 Dec;8(1):11.

**Figure 1.** Distribution of vaccination month for COVID-19 vaccines. Black dots represent the number of incident COVID-19 cases (defined as a positive test) in each month.

**Figure 2.** Diagnostics for the absolute effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and (C) effect of negative control calibration displaying effect estimate and standard error. In (A), each dot represents the standardized difference of the means for a single covariate before and after stratification on the propensity score.

In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05 and the orange area indicates estimates with calibrated p<0.05.

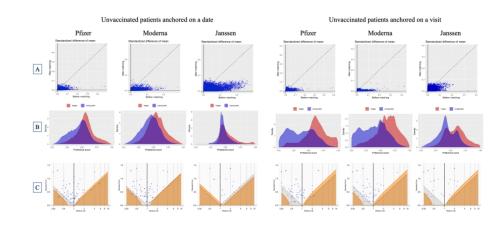
**Figure 3.** Week-by-week estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna after 1<sup>st</sup> dose, % and 95% CI for COVID-19 infection (A) and COVID-19 hospitalization (B). Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week 1, vaccinated and unvaccinated patients (C).

Figure 4. Kaplan-Meier curves for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.

 BMJ Open

**Table 1.** Patient baseline characteristics for patients with at least one dose of a COVID-19 vaccine and the comparator unvaccinated patients, before and after propensity score matching.

|                                  |                                                                  |                     |                  | Befo                                 | ore matc            | hing             |                           |                    |                  |                                 |                     |                  | Aft                                  | er matcl             | ning             |                           |                    |                  |
|----------------------------------|------------------------------------------------------------------|---------------------|------------------|--------------------------------------|---------------------|------------------|---------------------------|--------------------|------------------|---------------------------------|---------------------|------------------|--------------------------------------|----------------------|------------------|---------------------------|--------------------|------------------|
|                                  |                                                                  | Pfizer              |                  |                                      | Modern              | a                |                           | Jansser            | ı                |                                 | Pfizer              |                  |                                      | Modern               | a                |                           | Janssen            | l                |
| Characteristic                   | Ta<br>rge<br>t                                                   | Com<br>parat<br>or  | St<br>d.<br>diff | Ta<br>rg<br>et                       | Com<br>parat<br>or  | St<br>d.<br>diff | Ta<br>rg<br>et            | Com<br>parat<br>or | St<br>d.<br>diff | Ta<br>rge<br>t                  | Com<br>parat<br>or  | St<br>d.<br>diff | Ta<br>rg<br>et                       | Com<br>parat<br>or   | St<br>d.<br>diff | Ta<br>rg<br>et            | Com<br>parat<br>or | St<br>d.<br>diff |
| Patients, n                      | 12<br>1,7<br>71                                                  | 164,9<br>97         |                  | 52,<br>72<br>8                       | 148,7<br>95         |                  | 5,1<br>67                 | 52,64<br>3         |                  | 10<br>1,1<br>09                 | 101,1<br>11         |                  | 50,<br>51<br>7                       | 50,51<br>7           |                  | 5,0<br>31                 | 5,031              |                  |
| Follow-up, days.<br>Median (IQR) | $ \begin{array}{c} 10 \\ 7 \\ (80 \\ - \\ 13 \\ 7) \end{array} $ | 104<br>(71-<br>137) |                  | 12<br>7<br>(1<br>02<br>-<br>15<br>3) | 123<br>(99-<br>153) | 2                | 79<br>(7<br>2-<br>95<br>) | 79<br>(72-<br>95)  | 76               | 10<br>7<br>(78<br>-<br>14<br>9) | 107<br>(79-<br>140) |                  | 12<br>6<br>(1<br>01<br>-<br>15<br>3) | 126<br>(102-<br>153) |                  | 79<br>(7<br>2-<br>95<br>) | 79<br>(72-<br>95)  |                  |
| Age group, %                     |                                                                  |                     |                  |                                      |                     |                  |                           |                    |                  |                                 |                     |                  |                                      |                      |                  |                           |                    |                  |
| 10-19                            | 4.2                                                              | 10.8                | 0.2              | 0.5                                  | 1.7                 | -<br>0.1<br>2    | 0.8                       | 0.8                | 0.0              | 4.8                             | 4.3                 | 0.0<br>2         | 0.5                                  | 0.4                  | 0.0<br>1         | 0.8                       | 0.8                | 0.0<br>0         |
| 20-49                            | 37.<br>2                                                         | 42.6                | -<br>0.1<br>1    | 35.<br>7                             | 45.7                | -<br>0.2<br>0    | 43.<br>9                  | 43                 | 0.0              | 40.<br>3                        | 40.1                | 0                | 36.<br>9                             | 37.4                 | -<br>0.0<br>1    | 44.                       | 43.9               | 0.0              |
| 50-64                            | 23.<br>9                                                         | 20.3                | 0.0<br>9         | 21.<br>2                             | 23.3                | -<br>0.0<br>5    | 31.<br>7                  | 31.7               | 0.0              | 23.<br>6                        | 23.7                | 0                | 21.<br>7                             | 21.4                 | 0.0              | 31.<br>8                  | 31.3               | 0.0              |
| 65-74                            | 18.<br>8                                                         | 12.6                | 0.1<br>7         | 21.<br>3                             | 14.4                | 0.1              | 11.<br>6                  | 12.2               | -<br>0.0<br>2    | 15.<br>8                        | 16.6                | -<br>0.0<br>2    | 20.<br>6                             | 20.5                 | 0.0              | 11.<br>5                  | 12                 | -<br>0.0<br>2    |


| Page | 20 of | 34 |
|------|-------|----|
|------|-------|----|

| 75-84                                  | 11.<br>3 | 8.9  | 0.0<br>8      | 15.<br>4 | 10   | 0.1<br>6 | 7.6      | 7.9  | 0.0<br>1 | 10.<br>6 | 10.7 | 0             | 14.<br>6 | 14.6 | 0.0<br>0      | 7.2      | 7.9  | 0.0 |
|----------------------------------------|----------|------|---------------|----------|------|----------|----------|------|----------|----------|------|---------------|----------|------|---------------|----------|------|-----|
| >84                                    | 4.1      | 3.8  | 0.0 2         | 5.8      | 4.8  | 0.0      | 4.3      | 4.3  | 0.0<br>0 | 4.2      | 4.1  | 0.0           | 5.6      | 5.6  | 0.0<br>0      | 4.2      | 4    | 0.  |
| Gender, %                              |          |      |               |          |      |          |          |      |          |          |      |               |          |      |               |          |      |     |
| Female                                 | 63.<br>7 | 57.8 | 0.1           | 64.<br>4 | 58.7 | 0.1      | 63.<br>4 | 63.2 | 0.0      | 61.<br>4 | 62   | -<br>0.0<br>1 | 64.<br>2 | 64.7 | -<br>0.0<br>1 | 63.<br>5 | 61.1 | 0.  |
| Race, %                                | 11       |      |               |          |      |          |          |      |          |          |      |               |          |      |               |          |      | 1   |
| race = Asian                           | 3.8      | 2.6  | 0.0<br>7      | 4.2      | 2.8  | 0.0<br>7 | 3.6      | 1.7  | 0.1<br>2 | 3.5      | 3.4  | 0.0<br>1      | 4.2      | 4.4  | -<br>0.0<br>1 | 3.7      | 3.6  | 0.  |
| race = Black or<br>African American    | 12.<br>4 | 14.2 | -<br>0.0<br>5 | 8.7      | 14.2 | 0.1<br>7 | 15.<br>9 | 15.5 | 0.0<br>1 | 12.<br>6 | 12.2 | 0.0<br>1      | 9        | 8.4  | 0.0<br>2      | 15.<br>7 | 15.5 |     |
| race = White                           | 40.<br>5 | 35.1 | 0.1<br>1      | 48.<br>3 | 34.4 | 0.2<br>9 | 37.<br>4 | 35.7 | 0.0<br>3 | 39.<br>3 | 39.5 | 0             | 46.<br>9 | 47.9 | 0.0<br>2      | 37.<br>4 | 37.5 |     |
| Medical history, %                     |          |      |               |          |      |          |          |      | 16       | ),       |      |               |          |      |               |          |      |     |
| Chronic liver disease                  | 0.6      | 0.6  | 0             | 0.5      | 0.6  | 0.0<br>2 | 1.1      | 0.7  | 0.0<br>5 | 0.5      | 0.5  | 0             | 0.5      | 0.5  | 0             | 1        | 1.2  | 0   |
| Chronic<br>obstructive lung<br>disease | 1.3      | 1    | 0.0 2         | 1.4      | 1.1  | 0.0<br>2 | 2.4      | 1.3  | 0.0<br>9 | 1        | 1    | 0.0<br>1      | 1.2      | 1.2  | 0             | 2        | 2.2  | 0   |
| Dementia                               | 1.2      | 1.1  | 0             | 1        | 1.2  | 0.0      | 2.6      | 1.1  | 0.1      | 1.1      | 1    | 0.0<br>1      | 1        | 0.9  | 0.0           | 2.2      | 2.2  |     |
| Depressive<br>disorder                 | 5.3      | 4    | 0.0<br>6      | 4.7      | 3.9  | 0.0<br>4 | 8        | 4.8  | 0.1<br>3 | 4        | 3.7  | 0.0<br>2      | 4.2      | 4    | 0.0<br>1      | 7.1      | 8    | 0   |
| Diabetes mellitus                      | 7.1      | 5.2  | 0.0<br>8      | 6.6      | 5.6  | 0.0<br>4 | 10.<br>3 | 6.2  | 0.1<br>5 | 5.7      | 5.4  | 0.0<br>1      | 6.2      | 5.8  | 0.0<br>2      | 9.5      | 10.2 | 0   |

| Page | 21 | of | 34 |
|------|----|----|----|
|------|----|----|----|

| Human<br>immunodeficiency<br>virus infection | 1.4      | 1.1  | 0.0      | 0.9      | 1.2  | 0.0           | 1.7      | 1.4  | 0.0<br>2 | 1.1      | 1    | 0        | 0.8      | 0.8  | 0        | 1.6      | 1.8  | 0. |
|----------------------------------------------|----------|------|----------|----------|------|---------------|----------|------|----------|----------|------|----------|----------|------|----------|----------|------|----|
| Hyperlipidemia                               | 12.<br>9 | 8.1  | 0.1<br>6 | 14.<br>9 | 8.9  | 0.1<br>9      | 14.<br>3 | 10.2 | 0.1<br>3 | 10.<br>2 | 9.5  | 0.0<br>2 | 13       | 12.6 | 0.0<br>1 | 13.<br>4 | 14.3 | 0  |
| Hypertensive<br>disorder                     | 16       | 11.3 | 0.1<br>4 | 16       | 12.4 | 0.1           | 21.      | 13.8 | 0.2      | 13.<br>1 | 12.2 | 0.0<br>3 | 14.<br>7 | 13.9 | 0.0<br>2 | 20.<br>1 | 21.7 | 0  |
| Obesity                                      | 5.1      | 4.9  | 0.0<br>1 | 4        | 4.4  | -<br>0.0<br>2 | 7.3      | 5.9  | 0.0<br>6 | 4.4      | 4.1  | 0.0<br>2 | 3.8      | 3.6  | 0.0<br>1 | 6.8      | 7.8  | 0  |
| Osteoarthritis                               | 7.3      | 4.7  | 0.1<br>1 | 7.7      | 5.3  | 0.1           | 8.4      | 6.2  | 0.0<br>8 | 5.8      | 5.3  | 0.0<br>2 | 6.8      | 6.5  | 0.0<br>1 | 7.8      | 8.8  | 0  |
| Renal impairment                             | 3.7      | 3    | 0.0<br>4 | 3.5      | 3.3  | 0.0<br>1      | 6.6      | 3.3  | 0.1      | 2.9      | 2.7  | 0.0<br>1 | 3.3      | 3    | 0.0      | 5.3      | 5.9  | 0  |
| Cerebrovascular<br>disease                   | 1.7      | 1.4  | 0.0<br>2 | 2.2      | 1.6  | 0.0           | 2.7      | 1.7  | 0.0      | 1.5      | 1.4  | 0.0<br>1 | 2        | 1.8  | 0.0      | 2.3      | 2.4  | 0  |
| Heart disease                                | 8.6      | 7.1  | 0.0<br>6 | 10.<br>1 | 7.6  | 0.0<br>9      | 11.<br>8 | 8    | 0.1      | 7.5      | 7.1  | 0.0<br>2 | 9.2      | 8.7  | 0.0      | 10.<br>3 | 11.7 | C  |
| Malignant<br>neoplastic disease              | 5.3      | 4.5  | 0.0<br>4 | 6.5      | 5    | 0.0<br>7      | 5        | 4.9  | 0        | 4.7      | 4.3  | 0.0<br>2 | 5.9      | 5.5  | 0.0      | 4.8      | 5.2  | 0  |

| 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|---------------|-------------------|----------------|
| 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 3<br>4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | _            |               |                   |                |
| 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 9<br>10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 11       | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |              |               | COVID-19 vaccine  |                |
| 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               | Moderna<br>Pfizer |                |
| 13       | Number of patients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |              |               | T NEON            |                |
| 14       | ed 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |              |               |                   |                |
| 15<br>16 | ad multiple and a second |                                           |              |               |                   |                |
| 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 18       | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |              |               |                   |                |
| 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 20<br>21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 22       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |              |               |                   |                |
| 23       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2                                       | 3<br>Month   | 4             | 5 6               |                |
| 24       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 25<br>26 | Distribution of vaccination m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onth for COVID-19<br>-19 cases (defined a | vaccines. Bl | ack dots rep  | resent the numbe  | er of incident |
| 20       | COVID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |              |               | i montin.         |                |
| 28       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 338x190mm                                 | n (144 x 144 | 1 DPI)        |                   |                |
| 29       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 30       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 31<br>32 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 33       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 34       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 35       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 36<br>37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 38       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 39       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 41<br>42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 43       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 45       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 46<br>47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 47 48    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 49       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 52<br>53 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 54       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 56       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 57<br>58 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 59       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |
| 60       | For peer reviev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v only - http://bmjop                     | en.bmj.com   | /site/about/g | guidelines.xhtml  |                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |              |               |                   |                |



Diagnostics for the absolute effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and (C) effect of negative control calibration displaying effect estimate and standard error.

In (A), each dot represents the standardized difference of the means for a single covariate before and after stratification on the propensity score.

In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05and the orange area indicates estimates with calibrated p<0.05.

625x313mm (78 x 78 DPI)

Week-by-week vaccine effectiveness

estimates, COVID-19 hospitalization

Week 5

**COVID-19** symptoms

Week 6

Unvaccinated

39%

Asymptomatic

21%

39%

COVID-19 hospitalizat

Week 2 Week 3 Week 4

Vaccinated

349

Mild

15%

48%

Severe

Week-by-week vaccine effectiveness B

COVID-19 test+

estimates, COVID-19 infection

Α

effectiveness in % and 95% CI

Vaccine

Week 1

Week 2

Vaccinated

41%

39%

209

Week 3

Week 4

Reason for coming for initial healthcare encounter

COVID-19 symptoms COVID-19 exposure

Other reasons (co-morbidities, pregnancy, pre-op)

Week 5

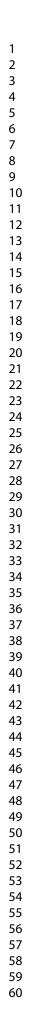
C Chart review of COVID-19 infection cases during week 1 after the index date

64%

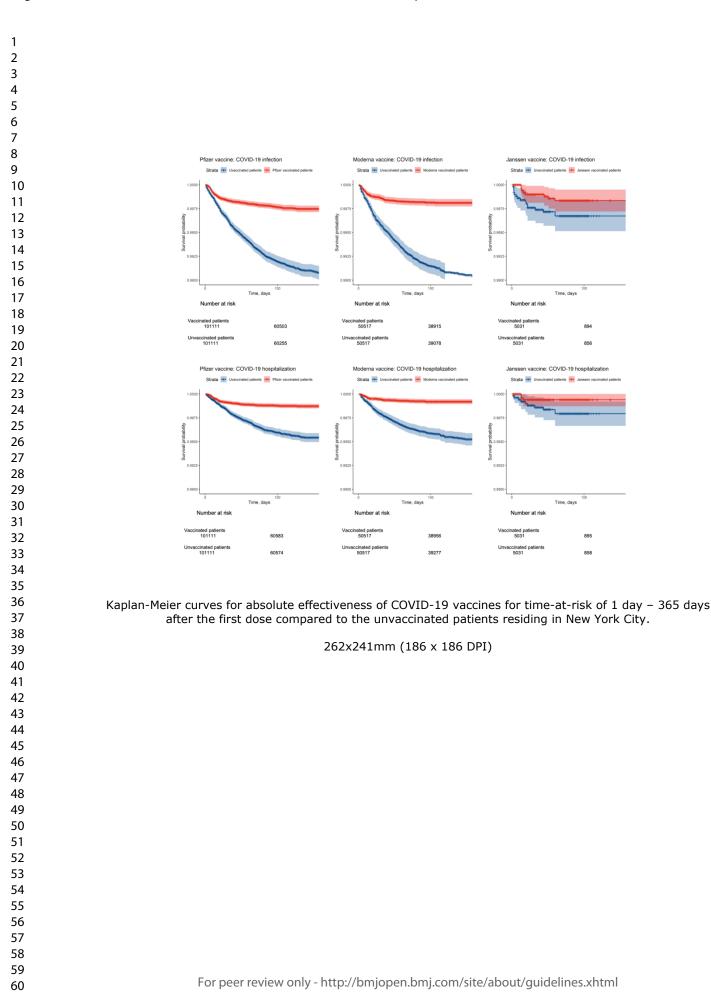
Week-by-week estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna after 1st dose, % and

95% CI for COVID-19 infection (A) and COVID-19 hospitalization (B). Chart review of COVID-19 cases

(defined as a positive COVID-19 test) during week 1, vaccinated and unvaccinated patients (C).


262x241mm (186 x 186 DPI)


Unvaccinated

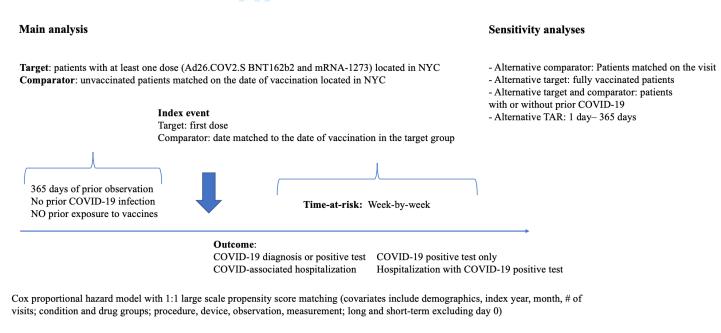

21%

15%

Week








## Supplementary materials

## Appendix 1. Data source description

The Columbia University Irving Medical Center (CUIMC) database comprises electronic health records on more than 6 million patients, with data collection starting in 1985. CUIMC is a Northeast US quaternary care center with primary care practices in northern Manhattan and surrounding areas, and the database includes inpatient and outpatient care. The database currently holds information about the person (demographics), visits (inpatient and outpatient), conditions (billing diagnoses and problem lists), drugs (outpatient prescriptions and inpatient orders and administrations), devices, measurements (laboratory tests and vital signs), and other observations (symptoms). The data sources include current and previous electronic health record systems (homegrown Clinical Information System, homegrown WebCIS, Allscripts Sunrise Clinical Manager, Allscripts TouchWorks, Epic Systems), and ancillary systems (homegrown LIS, Sunquest, Cerner Laboratory). Additionally, it contains the information on vaccination from New York City and State immunization registries.

Appendix 2. Retrospective cohort COVID-19 vaccine effectiveness study design overview.



**Appendix 3.** Cohort definitions and codes for the absolute COVID-19 vaccine effectiveness study

**3.1** Cohort definitions for target comparator and outcome cohorts for studying absolute effectiveness of COVID-19 vaccines.

|                | Definition and link to the public repository                                             |
|----------------|------------------------------------------------------------------------------------------|
| Target cohorts | Target cohorts were defined as patients with at least one dose of the                    |
|                | corresponding vaccine (Pfizer, Moderna, Janssen)                                         |
|                | Index event: first exposure to the corresponding vaccine                                 |
|                | Inclusion and exclusion criteria:                                                        |
|                | - 365 days of prior observation                                                          |
|                | - no other COVID-19 vaccine exposure in 120 days prior and 120 days after the index date |
|                | - no prior COVID-19 infection (diagnosis code of COVID-19 or positive test)              |
|                | - residence in New York City determined by the zip code recorded                         |
|                | For the analysis on fully vaccinated patients, we applied the same criteria              |
|                | and required patients to have a) the second dose of Pfizer or Moderna                    |
|                | vaccine (if applicable) within 14 to 56 days after the first dose b) at least            |
|                | 14 days of observation after the second dose (one dose of Janssen).                      |
|                | Links:                                                                                   |
|                | https://atlas.ohdsi.org/#/cohortdefinition/498                                           |
|                | https://atlas.ohdsi.org/#/cohortdefinition/494                                           |
|                | https://atlas.ohdsi.org/#/cohortdefinition/497                                           |
|                |                                                                                          |
|                | https://atlas.ohdsi.org/#/cohortdefinition/418                                           |
|                | https://atlas.ohdsi.org/#/cohortdefinition/417                                           |
|                | https://atlas.ohdsi.org/#/cohortdefinition/420                                           |
| Comparator     | Comparator cohorts were created separately for each target cohort by                     |
| cohorts        | selecting patients with no COVID-19 vaccination in their record (any                     |
|                | vaccine), 365 days of prior observation and New York City residence. The                 |
|                | patients were matched on the index date of one of the target group                       |
|                | participants for the comparator anchored on a date and on the date of a                  |
|                | healthcare encounter within 3-day corridor for the comparator anchored or                |
|                | a visit.                                                                                 |

| Outcome cohorts | For the main analysis COVID-19 infection was defined as a COVID-19      |
|-----------------|-------------------------------------------------------------------------|
|                 | test with the result 'Positive' or 'Detected'.                          |
|                 | COVID-19 associated hospitalization was defined as an inpatient,        |
|                 | emergency department or intensive care unit admission with a positive   |
|                 | COVID-19 test recorded within 30 days prior or during hospitalization.  |
|                 | For a sensitivity analysis we applied the abovementioned criteria with  |
|                 | adding COVID-19 diagnosis as an alternative for positive COVID-19 test. |
|                 |                                                                         |
|                 | Links:                                                                  |
|                 |                                                                         |
|                 | https://atlas.ohdsi.org/#/cohortdefinition/425                          |
|                 | https://atlas.ohdsi.org/#/cohortdefinition/422                          |
|                 | Links:<br>https://atlas.ohdsi.org/#/cohortdefinition/425                |

**3.2** Codes used in the study.

## 1. Pfizer vaccine:

RxNorm 2468235 SARS-CoV-2 (COVID-19) vaccine, mRNA-BNT162b2 0.1 MG/ML Injectable Suspension

## 2. Moderna vaccine:

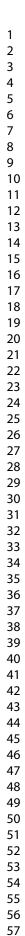
RxNorm 2470234 SARS-CoV-2 (COVID-19) vaccine, mRNA-1273 0.2 MG/ML Injectable Suspension

## 3. Janssen vaccine:

CVX 212 SARS-COV-2 (COVID-19) vaccine, vector non-replicating, recombinant spike protein-Ad26, preservative free, 0.5 mL

## 4. COVID-19 diagnosis:

ICD10-CM U07.1 Emergency use of U07.1 | COVID-19


## 5. COVID-19 test:

LOINC 94500-6 SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with probe detection

LOINC 94558-4 SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid immunoassay

| SNOMED concept id | SNOMED concept name                                       |
|-------------------|-----------------------------------------------------------|
| 438945            | Accidental poisoning by benzodiazepine-based tranquilizer |
| 434455            | Acquired claw toes                                        |
| 316211            | Acquired spondylolisthesis                                |
| 201612            | Alcoholic liver damage                                    |
| 438730            | Alkalosis                                                 |
| 441258            | Anemia in neoplastic disease                              |
| 432513            | Animal bite wound                                         |
| 4171556           | Ankle ulcer                                               |
| 4098292           | Antiphospholipid syndrome                                 |
| 77650             | Aseptic necrosis of bone                                  |
| 4239873           | Benign neoplasm of ciliary body                           |
| 23731             | Benign neoplasm of larynx                                 |
| 199764            | Benign neoplasm of ovary                                  |
| 195500            | Benign neoplasm of uterus                                 |
| 4145627           | Biliary calculus                                          |
| 4108471           | Burn of digit of hand                                     |
| 75121             | Burn of lower leg                                         |
| 4284982           | Calculus of bile duct without obstruction                 |
| 434327            | Cannabis abuse                                            |
| 78497             | Cellulitis and abscess of toe                             |
| 4001454           | Cervical spine ankylosis                                  |
| 4068241           | Chronic instability of knee                               |
| 195596            | Chronic pancreatitis                                      |
| 4206338           | Chronic salpingitis                                       |
| 4058397           | Claustrophobia                                            |
| 74816             | Contusion of toe                                          |
| 73302             | Curvature of spine                                        |
| 4151134           | Cyst of pancreas                                          |
| 77638             | Displacement of intervertebral disc without myelopathy    |
| 195864            | Diverticulum of bladder                                   |
| 201346            | Edema of penis                                            |
| 200461            | Endometriosis of uterus                                   |
| 377877            | Esotropia                                                 |
| 193530            | Follicular cyst of ovary                                  |
| 4094822           | Foreign body in respiratory tract                         |
| 443421            | Gallbladder and bile duct calculi                         |

| 4299408  | Gouty tophus                                    |
|----------|-------------------------------------------------|
| 135215   | Hashimoto thyroiditis                           |
| 442190   | Hemorrhage of colon                             |
| 43020475 | High risk heterosexual behavior                 |
| 194149   | Hirschsprung's disease                          |
| 443204   | Human ehrlichiosis                              |
| 4226238  | Hyperosmolar coma due to diabetes mellitus      |
| 4032787  | Hyperosmolarity                                 |
| 197032   | Hyperplasia of prostate                         |
| 140362   | Hypoparathyroidism                              |
| 435371   | Hypothermia                                     |
| 138690   | Infestation by Pediculus                        |
| 4152376  | Intentional self poisoning                      |
| 192953   | Intestinal adhesions with obstruction           |
| 196347   | Intestinal parasitism                           |
| 137977   | Jaundice                                        |
| 317510   | Leukemia                                        |
| 765053   | Lump in right breast                            |
| 378165   | Nystagmus                                       |
| 434085   | Obstruction of duodenum                         |
| 4147016  | Open wound of buttock                           |
| 4129404  | Open wound of upper arm                         |
| 438120   | Opioid dependence                               |
| 75924    | Osteodystrophy                                  |
| 432594   | Osteomalacia                                    |
| 30365    | Panhypopituitarism                              |
| 4108371  | Peripheral gangrene                             |
| 440367   | Plasmacytosis                                   |
| 439233   | Poisoning by antidiabetic agent                 |
| 442149   | Poisoning by bee sting                          |
| 4314086  | Poisoning due to sting of ant                   |
| 4147660  | Postural kyphosis                               |
| 434319   | Premature ejaculation                           |
| 199754   | Primary malignant neoplasm of pancreas          |
| 4311499  | Primary malignant neoplasm of respiratory tract |
| 436635   | Primary malignant neoplasm of sigmoid colon     |
| 196044   | Primary malignant neoplasm of stomach           |
| 433716   | Primary malignant neoplasm of testis            |
| 133424   | Primary malignant neoplasm of thyroid gland     |



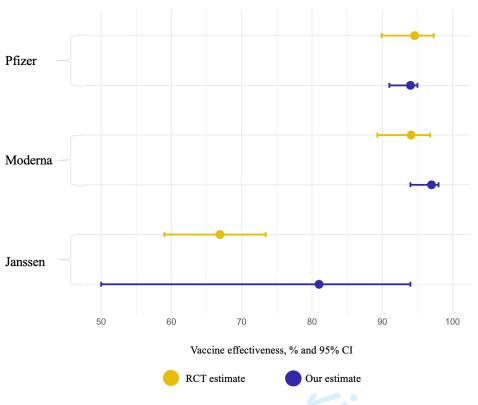
| 194997   | Prostatitis                                         |
|----------|-----------------------------------------------------|
| 80286    | Prosthetic joint loosening                          |
| 443274   | Psychostimulant dependence                          |
| 314962   | Raynaud's disease                                   |
| 37018294 | Residual osteitis                                   |
| 4288241  | Salmonella enterica subspecies arizonae infection   |
| 45757269 | Sclerosing mesenteritis                             |
| 74722    | Secondary localized osteoarthrosis of pelvic region |
| 200348   | Secondary malignant neoplasm of large intestine     |
| 43020446 | Sedative withdrawal                                 |
| 74194    | Sprain of spinal ligament                           |
| 4194207  | Tailor's bunion                                     |
| 193521   | Tropical sprue                                      |
| 40482801 | Type II diabetes mellitus uncontrolled              |
| 74719    | Ulcer of foot                                       |
| 196625   | Viral hepatitis A without hepatic coma              |
| 197494   | Viral hepatitis C                                   |
| 4284533  | Vitamin D-dependent rickets                         |

Link to the original list of negative controls used in EUMAEUS study: <u>https://ohdsi-studies.github.io/Eumaeus/Protocol.html#8\_Research\_Methods</u>

**Appendix 5.** Summary of manual chart review of COVID-19 infection cases during week 1 after the index date, patients vaccinated with mRNA vaccines and unvaccinated patients.

|                  | Pfizer-<br>BioNTech | Moderna          | Pfizer-<br>BioNTech and<br>Moderna | Unvaccinated patients |
|------------------|---------------------|------------------|------------------------------------|-----------------------|
| Total            | 36                  | 25               | 61                                 | 28                    |
| Average age      | 65                  | 67.8             | 65.8                               | 58                    |
| COVID-19 sympt   | oms                 |                  |                                    |                       |
| Severe           | 14 (39%)            | 7 (28%)          | 21 (34%)                           | 6 (21%)               |
| Mild             | 18 (50%)            | 11 (44%)         | 29 (48%)                           | 11 (39%)              |
| Asymptomatic     | 2 (6%)              | 7 (28%)          | 9 (15%)                            | 11 (39%)              |
| Reason for comin | g for initial heal  | thcare encounter |                                    |                       |
| COVID-19         | 17 (47%)            | 8 (32%)          | 25 (41%)                           | 18 (64%)              |
| symptoms         |                     |                  |                                    |                       |
| Exposure to      | 3 (8%)              | 4 (16%)          | 7 (11%)                            | 5 (18%)               |
| COVID-19         |                     |                  |                                    |                       |
| For other reason | 13 (36%)            | 11 (44%)         | 24 (39%)                           | 6 (21%)               |
| (co-morbidities, |                     |                  |                                    |                       |
| procedures etc.) |                     |                  |                                    |                       |

| Type of initial healthcare encounter |          |          |          |          |  |  |  |
|--------------------------------------|----------|----------|----------|----------|--|--|--|
| Telehealth/phone                     | 5 (14%)  | 6 (24%)  | 11 (18%) | 3 (11%)  |  |  |  |
| Test only                            | 3 (8%)   | 2 (8%)   | 5 (8%)   | 6 (21%)  |  |  |  |
| OP                                   | 4 (11%)  | 3 (12%)  | 7 (11%)  | 1 (4%)   |  |  |  |
| ED or IP                             | 24 (67%) | 14 (56%) | 38 (62%) | 18 (64%) |  |  |  |


**Appendix 6.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

|          | COVID-19  |        | COVID-19        |        | COVID-19           |        | COVID-19           |        |
|----------|-----------|--------|-----------------|--------|--------------------|--------|--------------------|--------|
|          | infection |        | hospitalization |        | positive test only |        | positive test only |        |
|          |           |        |                 |        |                    |        | hospitalization    |        |
|          | VE (95%   | P-     | VE (95%         | P-     | VE (95%            | P-     | VE (95%            | P-     |
|          | CI), %    | value  | CI), %          | value  | CI), %             | value  | CI), %             | value  |
| Pfizer-  | 42 (37 –  | < 0.01 | 63 (56-         | < 0.01 | 71 (66 -           | < 0.01 | 69 (62 - 75)       | < 0.01 |
| BioNTech | 47)       |        | 70)             |        | 75)                |        |                    |        |
| Moderna  | 54 (48 –  | < 0.01 | 76 (69 –        | < 0.01 | 78 (73 –           | < 0.01 | 81 (74 –           | < 0.01 |
|          | 60)       |        | 82)             |        | 83)                |        | 87)                |        |
| Janssen  | 24 (0-55) | 0.31   | 64 (0.1 –       | 0.09   | 53 (0 –            | 0.1    | 70 (2 - 93)        | 0.08   |
|          |           |        | 1.06)           | 1L     | 82)                |        |                    |        |

**Appendix 7.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after full vaccination in fully vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

|          | COVID-19      |        | COVID-19           |        | COVID-19  |        | COVID-19        |        |
|----------|---------------|--------|--------------------|--------|-----------|--------|-----------------|--------|
|          | positive test |        | positive test only |        | infection |        | hospitalization |        |
|          | only          |        | hospitalization    |        |           |        |                 |        |
|          | VE (95%       | P-     | VE (95%            | P-     | VE (95%   | P-     | VE (95%         | P-     |
|          | CI), %        | value  | CI), %             | value  | CI), %    | value  | CI), %          | value  |
| Pfizer-  | 94 (91-       | < 0.01 | 95 (92-            | < 0.01 | 70 (66-   | < 0.01 | 88 (84-92)      | < 0.01 |
| BioNTech | 95)           |        | 97)                |        | 74)       |        |                 |        |
| Moderna  | 97 (94-       | < 0.01 | 96 (92-            | < 0.01 | 72 (66 –  | < 0.01 | 92 (87-95)      | < 0.01 |
|          | 98)           |        | 99)                |        | 77)       |        |                 |        |
| Janssen  | 81 (50-       | < 0.01 | 92 (58-            | 0.03   | 55 (23 –  | 0.01   | 87 (56-98)      | 0.01   |
|          | 94)           |        | 100)               |        | 75)       |        |                 |        |

**Appendix 8.** Comparison of the absolute effectiveness estimates in fully vaccinated patients obtained in our study and those from the randomized clinical trials of the corresponding vaccines.



**Appendix 9.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the vaccinated patients with or without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

|          | COVID-19  |        | COVID-19        |        | COVID-19           |        | COVID-19           |        |
|----------|-----------|--------|-----------------|--------|--------------------|--------|--------------------|--------|
|          | infection |        | hospitalization |        | positive test only |        | positive test only |        |
|          |           |        |                 |        |                    |        | hospitalization    |        |
|          | VE        | P-     | VE (95%         | Р-     | VE (95%            | P-     | VE (95%            | P-     |
|          | (95%      | value  | CI), %          | value  | CI), %             | value  | CI), %             | value  |
|          | CI), %    |        |                 |        |                    |        |                    |        |
| Pfizer-  | 43 (38-   |        | 64 (57-         |        | 71 (66-            |        |                    |        |
| BioNTech | 48)       | < 0.01 | 70)             | < 0.01 | 75)                | < 0.01 | 71(64-76)          | < 0.01 |
|          | 51 (45-   |        | 71 (63-         |        | 76 (71-            |        |                    |        |
| Moderna  | 57)       | < 0.01 | 78)             | < 0.01 | 81)                | < 0.01 | 81 (73-86)         | < 0.01 |
|          | 15 (0-    |        |                 |        |                    |        |                    |        |
| Janssen  | 49)       | 0.52   | 60 (2-86)       | 0.06   | 45 (0-75)          | 0.12   | 63 (0-90)          | 0.09   |

## STROBE Statement—Checklist of items that should be included in reports of cohort studies

|                        | Item<br>No | Recommendation                                                                       | Page<br>No |
|------------------------|------------|--------------------------------------------------------------------------------------|------------|
| Title and abstract     | 1          | (a) Indicate the study's design with a commonly used term in the title or the        | 2          |
|                        |            | abstract                                                                             |            |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what was          | 2          |
|                        |            | done and what was found                                                              |            |
| Introduction           |            |                                                                                      |            |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported | 4          |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                     | 5          |
| Methods                |            |                                                                                      | ·          |
| Study design           | 4          | Present key elements of study design early in the paper                              | 5          |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of            | 5,6        |
| C                      |            | recruitment, exposure, follow-up, and data collection                                |            |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection of       | 5          |
| 1                      |            | participants. Describe methods of follow-up                                          |            |
|                        |            | (b) For matched studies, give matching criteria and number of exposed and            |            |
|                        |            | unexposed                                                                            |            |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential confounders, and       | 5-7        |
|                        |            | effect modifiers. Give diagnostic criteria, if applicable                            |            |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods of        | 5          |
| measurement            |            | assessment (measurement). Describe comparability of assessment methods if            |            |
|                        |            | there is more than one group                                                         |            |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                            | 6-7        |
| Study size             | 10         | Explain how the study size was arrived at                                            | 5          |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If applicable,      | 6-7        |
|                        |            | describe which groupings were chosen and why                                         |            |
| Statistical methods    | 12         | (a) Describe all statistical methods, including those used to control for            | 6-7        |
|                        |            | confounding                                                                          |            |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                  | 6-7        |
|                        |            | (c) Explain how missing data were addressed                                          | -          |
|                        |            | (d) If applicable, explain how loss to follow-up was addressed                       | NA         |
|                        |            | ( <u>e</u> ) Describe any sensitivity analyses                                       | 6-7        |
| Results                |            |                                                                                      |            |
| Participants           | 13*        | (a) Report numbers of individuals at each stage of study—eg numbers potentially      | 7          |
| 1 articipants          | 15         | eligible, examined for eligibility, confirmed eligible, included in the study,       |            |
|                        |            | completing follow-up, and analysed                                                   |            |
|                        |            | (b) Give reasons for non-participation at each stage                                 |            |
|                        |            | (c) Consider use of a flow diagram                                                   |            |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical, social)    | 8,         |
| Descriptive data       | 14.        | and information on exposures and potential confounders                               | 18-        |
|                        |            |                                                                                      | 20         |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest  | 0.10       |
|                        |            | (c) Summarise follow-up time (eg, average and total amount)                          | 8, 18      |
| Outcome data           | 15*        | Report numbers of outcome events or summary measures over time                       | 8          |

| Main results     |     |                                                                                                                                                                                                                       |                                 |
|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                  | 16  | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | 8,<br>supplementar<br>materials |
|                  |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                                             |                                 |
|                  |     | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                             |                                 |
| Other analyses   | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                        | 9                               |
| Discussion       |     |                                                                                                                                                                                                                       |                                 |
| Key results      | 18  | Summarise key results with reference to study objectives                                                                                                                                                              | 10                              |
| Limitations      | 19  | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias                                                            | 12                              |
| Interpretation   | 20  | Give a cautious overall interpretation of results considering objectives, limitations,<br>multiplicity of analyses, results from similar studies, and other relevant evidence                                         | 10-12                           |
| Generalisability | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                 | 11-12                           |
| Other informati  | ion |                                                                                                                                                                                                                       | •                               |
| Funding          | 22  | Give the source of funding and the role of the funders for the present study and, if                                                                                                                                  | 13                              |

\*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

# **BMJ Open**

## **COVID-19** vaccination effectiveness rates by week and sources of bias: a retrospective cohort study

| Journal:                             | BMJ Open                                                                                                                                                                                                                        |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-061126.R1                                                                                                                                                                                                          |
| Article Type:                        | Original research                                                                                                                                                                                                               |
| Date Submitted by the Author:        | 03-Jun-2022                                                                                                                                                                                                                     |
| Complete List of Authors:            | Ostropolets, Anna; Columbia University Medical Center, Department of<br>Biomedical Informatics<br>Hripcsak, George; Columbia University Medical Center, Department of<br>Biomedical Informatics; New York-Presbyterian Hospital |
| <b>Primary Subject<br/>Heading</b> : | Health informatics                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Epidemiology, Infectious diseases, Public health                                                                                                                                                                                |
| Keywords:                            | COVID-19, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS,<br>EPIDEMIOLOGY                                                                                                                                                  |
|                                      |                                                                                                                                                                                                                                 |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2        |        |                                                                                                           |
|----------|--------|-----------------------------------------------------------------------------------------------------------|
| 3        | 1      |                                                                                                           |
| 4<br>5   | 2      |                                                                                                           |
| 6        | 3      | COVID-19 vaccination effectiveness rates by week and sources of bias: a retrospective cohort study        |
| 7<br>8   | 4      |                                                                                                           |
| 9        | 5      | Anna Ostropolets, MD <sup>1</sup> , George Hripcsak, MD <sup>1,2</sup>                                    |
| 10<br>11 | 6      | Timme Obliciporens, The , George Thispean, The                                                            |
| 12       | 7      | <sup>1</sup> Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA  |
| 13<br>14 | 8      | <sup>2</sup> Medical Informatics Services, New York-Presbyterian Hospital, New York, NY, USA;             |
| 15       | 8<br>9 | Medical molimates services, new Tork-Presbyterian Hospital, New Tork, NT, OSA,                            |
| 16<br>17 |        | Commenting of the Commentation of Colombia University India Madical                                       |
| 18       | 10     | Corresponding author: George Hripcsak, <u>gh13@cumc.columbia.edu</u> , Columbia University Irving Medical |
| 19<br>20 | 11     | Center, 622 West 168th Street, PH-20, New York, NY, USA                                                   |
| 21<br>22 | 12     |                                                                                                           |
| 22<br>23 | 13     |                                                                                                           |
| 24<br>25 | 14     |                                                                                                           |
| 26       | 15     |                                                                                                           |
| 27<br>28 | 16     |                                                                                                           |
| 28<br>29 | 17     |                                                                                                           |
| 30<br>31 | 18     | Center, 622 West 168th Street, PH-20, New York, NY, USA                                                   |
| 32       | 19     |                                                                                                           |
| 33<br>34 | 20     |                                                                                                           |
| 35       |        |                                                                                                           |
| 36<br>37 | 21     |                                                                                                           |
| 38       | 22     |                                                                                                           |
| 39<br>40 | 23     |                                                                                                           |
| 41       | 24     |                                                                                                           |
| 42<br>43 | 25     |                                                                                                           |
| 44       | 26     |                                                                                                           |
| 45<br>46 | 27     |                                                                                                           |
| 47<br>49 | 28     |                                                                                                           |
| 48<br>49 | 29     |                                                                                                           |
| 50<br>51 | 30     |                                                                                                           |
| 52       | 31     |                                                                                                           |
| 53<br>54 | 32     |                                                                                                           |
| 55       | 33     |                                                                                                           |
| 56<br>57 |        |                                                                                                           |
| 58       |        |                                                                                                           |
| 59<br>60 |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |
|          |        |                                                                                                           |

BMJ Open

| 1                                      |    |                                                                                                              |
|----------------------------------------|----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3                                 | 34 | ABSTRACT                                                                                                     |
| 4<br>5                                 | 35 |                                                                                                              |
| 6                                      | 36 | Objective                                                                                                    |
| 7<br>8                                 | 37 | To examine COVID-19 vaccine effectiveness over six 7-day intervals after the first dose and assess           |
| 9<br>10<br>11                          | 38 | underlying bias in observational data.                                                                       |
|                                        | 39 |                                                                                                              |
| 12<br>13                               | 40 | Design and setting                                                                                           |
| 14                                     | 41 | Retrospective cohort study using Columbia University Medical Center data linked to State and City            |
| 15<br>16                               | 42 | Immunization Registries.                                                                                     |
| 17<br>18                               | 43 |                                                                                                              |
| 19                                     | 44 | Outcomes and measures                                                                                        |
| 20<br>21                               | 45 | We used large-scale propensity score matching with up to 54,987 covariates and fitted Cox proportional       |
| 22                                     | 46 | hazards models to estimate hazard ratios and constructed Kaplan-Meier plots for two main outcomes            |
| 23<br>24                               | 47 | (COVID-19 infection and COVID-19-associated hospitalization). We conducted manual chart review of            |
| 25<br>26                               | 48 | cases in week one in both groups along with a set of secondary analyses for other index date, outcome and    |
| 27                                     | 49 | population choices.                                                                                          |
| 28<br>29<br>30<br>31<br>32<br>33<br>34 | 50 |                                                                                                              |
|                                        | 51 | Results                                                                                                      |
|                                        | 52 | The study included 179,666 patients. We observed increasing effectiveness after the first dose of mRNA       |
|                                        | 53 | vaccines with week six effectiveness approximating 84% (95% CI 72-91%) for COVID-19 infection and            |
| 35                                     | 54 | 86% (95% CI 69-95) for COVID-19-associated hospitalization. When analyzing unexpectedly high                 |
| 36<br>37                               | 55 | effectiveness in week one, chart review revealed that vaccinated patients are less likely to seek care after |
| 38                                     | 56 | vaccination and are more likely to be diagnosed with COVID-19 during the encounters for other                |
| 39<br>40                               | 57 | conditions. Sensitivity analyses highlighted potential outcome misclassification for ICD10-CM diagnosis      |
| 41<br>42                               | 58 | the influence of excluding patients with prior COVID-19 infection and anchoring in the unexposed group       |
| 43                                     | 59 | Overall vaccine effectiveness in fully vaccinated patients matched the results of the randomized trials.     |
| 44<br>45                               | 60 |                                                                                                              |
| 46                                     | 61 | Conclusions                                                                                                  |
| 47<br>48                               | 62 | For vaccine effectiveness studies, observational data need to be scrutinized to ensure compared groups       |
| 49<br>50<br>51                         | 63 | exhibit similar health seeking behavior and are equally likely to be captured in the data. Effectiveness in  |
|                                        | 64 | the first week(s) after the vaccination should be reported even though low or high effectiveness             |
| 52<br>53                               | 65 | immediately after the vaccination may not invalidate study findings. Given the difference in temporal        |
| 54                                     | 66 | trends of vaccine exposure and baseline characteristics, indirect comparison of vaccines may produce         |
| 55<br>56                               | 67 | biased results.                                                                                              |
| 57                                     |    |                                                                                                              |
| 58<br>59                               |    |                                                                                                              |

| 1        |    |                                                                                                              |
|----------|----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 68 | Steen aths and limitations of this study                                                                     |
| 4        | 08 | Strengths and limitations of this study                                                                      |
| 5<br>6   | 69 | - This study thoroughly investigates weekly COVID-19 vaccine effectiveness using methods to reduce           |
| 7<br>8   | 70 | potential confounding (large-scale propensity score matching, negative control calibration) and              |
| 9<br>10  | 71 | accompanied by manual chart review of the cases in week one                                                  |
| 11<br>12 | 72 | - The study includes a range of sensitivity analyses for different patient populations, anchoring strategies |
| 13<br>14 | 73 | and outcome definitions.                                                                                     |
| 15<br>16 | 74 | - The study was carried out using routinely collected clinical practice data, which represents real-world    |
| 17<br>18 | 75 | patients, but also implies a risk of misclassification.                                                      |
| 19<br>20 |    |                                                                                                              |
| 20<br>21 | 76 | Word count: 3179                                                                                             |
| 22       | 77 | Keywords: COVID-19, Epidemiology, Health Informatics, Bias                                                   |
| 23<br>24 | 78 |                                                                                                              |
| 25       | 79 |                                                                                                              |
| 26<br>27 | 80 |                                                                                                              |
| 28<br>29 | 81 |                                                                                                              |
| 30       | 82 |                                                                                                              |
| 31<br>32 | 83 | Keywords: COVID-19, Epidemiology, Health Informatics, Bias                                                   |
| 33       | 84 |                                                                                                              |
| 34<br>35 | 85 |                                                                                                              |
| 36<br>37 | 86 |                                                                                                              |
| 38       | 87 |                                                                                                              |
| 39<br>40 | 88 |                                                                                                              |
| 41       | 89 |                                                                                                              |
| 42<br>43 | 90 |                                                                                                              |
| 44<br>45 | 91 |                                                                                                              |
| 46       | 92 |                                                                                                              |
| 47<br>48 | 93 |                                                                                                              |
| 49       | 94 |                                                                                                              |
| 50<br>51 | 95 |                                                                                                              |
| 52<br>53 | 96 |                                                                                                              |
| 54       | 97 |                                                                                                              |
| 55<br>56 | 98 |                                                                                                              |
| 57<br>58 |    |                                                                                                              |
| 59       |    | 3                                                                                                            |
| 60       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |

#### **BMJ** Open

| 2<br>3                                          | 00  |                                                                                                             |
|-------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------|
| 4                                               | 99  | BACKGROUND                                                                                                  |
| 5<br>6                                          | 100 |                                                                                                             |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 101 | Randomized clinical phase-3 trials have demonstrated high efficacy for the four most commonly used          |
|                                                 | 102 | COVID-19 vaccines against symptomatic COVID-19 infection, ranging from 66.9% and 70.4% for                  |
|                                                 | 103 | Ad26.COV2.S (Johnson & Johnson–Janssen) and ChAdOx1 (Astrazeneca) to 94.1% and 94.6% for                    |
|                                                 | 104 | BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines (1-4). Their rapid approval and                 |
|                                                 | 105 | widespread use require robust post-marketing studies that leverage large sample size, heterogeneous         |
|                                                 | 106 | populations, and longer follow-up available in observational data.                                          |
| 16                                              | 107 |                                                                                                             |
| 17<br>18                                        | 108 | There have been recent observational studies, which have shown effectiveness similar to the randomized      |
| 19                                              | 109 | clinical trials (RCTs) across the globe, both test-negative and cohort (5-12), followed by studies across   |
| 20<br>21                                        | 110 | different patient populations, variants and number of doses (13-17).                                        |
| 22                                              | 111 |                                                                                                             |
| 23<br>24                                        | 112 | Nevertheless, the challenges associated with the use of observational data such as incomplete data          |
| 25<br>26                                        | 113 | capture, outcome misclassification and appropriate comparator sampling can undermine the results of the     |
| 20<br>27                                        | 114 | studies if such biases are not accounted for (18). For COVID-19 vaccines, questions associated with         |
| 28<br>29                                        | 115 | vaccine status misclassification (19), matching vaccinated and unvaccinated populations (6), addressing     |
| 30                                              | 116 | disease risk factor confounding and ascertainment bias (20,21) and others were raised.                      |
| 31<br>32<br>33<br>34<br>35                      | 117 |                                                                                                             |
|                                                 | 118 | One of such questions is COVID-19 vaccine effectiveness during the first two weeks following the first      |
|                                                 | 119 | dose. Studies have shown contradicting results for Pfizer–BioNTech vaccine with effectiveness ranging       |
| 36                                              | 120 | from moderate effectiveness of 52% (3) to very high effectiveness of 92.6% (22). Similarly, a recent        |
| 37<br>38                                        | 121 | study showed an unexplained high effectiveness of Janssen vaccine during week one (23). Other studies       |
| 39                                              | 122 | simply excluded the first week(s) from the time-at-risk (9,13,24–26). While week one lack of                |
| 40<br>41                                        | 123 | effectiveness has been suggested as a metric for lack of confounding in the long-term vaccine               |
| 42<br>43                                        | 124 | effectiveness studies, the reasons for high effectiveness and its impact on the validity of the conclusions |
| 44                                              | 125 | regarding the overall effectiveness remain unclear (9).                                                     |
| 45<br>46                                        | 126 |                                                                                                             |
| 47                                              | 127 | The goal of this study was to examine COVID-19 vaccine effectiveness over six 7-day intervals after the     |
| 48<br>49<br>50<br>51<br>52<br>53                | 127 | first dose to assess underlying bias associated with the use of observational data for short-term vaccine   |
|                                                 | 120 | effectiveness and its impact on long-term vaccine effectiveness estimates . We employed large-scale         |
|                                                 | 130 | propensity score matching and many negative controls to reduce and assess bias and leveraged a range of     |
|                                                 | 130 | sensitivity analyses as well as manual review of the COVID-19 infection cases in week one to examine        |
| 54<br>55                                        |     |                                                                                                             |
| 56                                              | 132 | health-seeking behavior of vaccinated and unvaccinated patients.                                            |
| 57<br>58                                        |     |                                                                                                             |
| 59<br>60                                        |     | 4<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                              |
| 00                                              |     |                                                                                                             |

| 1        |     |                                                                                                              |
|----------|-----|--------------------------------------------------------------------------------------------------------------|
| 2        |     |                                                                                                              |
| 3<br>4   | 133 |                                                                                                              |
| 5        | 134 | METHODS                                                                                                      |
| 6<br>7   | 135 |                                                                                                              |
| 8<br>9   | 136 | Main design                                                                                                  |
| 10       | 137 |                                                                                                              |
| 11<br>12 | 138 | For this retrospective observational cohort study, we used electronic health records from the Columbia       |
| 13       | 139 | University Irving Medical Center (CUIMC) database (Appendix 1), which has an ongoing automated               |
| 14<br>15 | 140 | connection to New York City and State public health department vaccine registries and includes all           |
| 16       | 141 | within-state vaccinations for our population. The data were translated to the OMOP Common Data Model         |
| 17<br>18 | 142 | version 5 and was previously used in multiple studies (27).                                                  |
| 19       | 143 |                                                                                                              |
| 20<br>21 | 144 | For our main analysis, we studied two mRNA vaccines (Pfizer-BioNTech or Moderna). The exposed                |
| 22       | 145 | group included patients indexed on the first dose of one of the corresponding vaccines with no prior         |
| 23<br>24 | 146 | COVID-19 infection and no previous exposure to other COVID-19 vaccines. For the unexposed group,             |
| 25<br>26 | 147 | we selected unvaccinated patients and set their index date to a date (not necessarily with any medical       |
| 20<br>27 | 148 | event) that matched the index date of one of the exposed group participants. Both the exposed and            |
| 28<br>29 | 149 | unexposed groups had at least 365 days of prior observation and primarily resided in New York City           |
| 30       | 150 | according to their zip code. Patients who did not reside in New York were excluded from the study to         |
| 31<br>32 | 151 | ensure reliable vaccination data capture.                                                                    |
| 33       | 152 |                                                                                                              |
| 34<br>35 | 153 | Outcomes of interest included a) COVID-19 infection defined as a positive COVID-19 test (reverse-            |
| 36       | 154 | transcriptase–polymerase-chain-reaction assay) or a diagnostic code of COVID-19 and b) COVID-19              |
| 37<br>38 | 155 | hospitalization defined as an inpatient visit associated with a COVID-19 positive test or diagnosis within   |
| 39<br>40 | 156 | 30 days prior or during the visit. Upon further examination of the results, we added two other outcomes:     |
| 41       | 157 | a) COVID-19 positive test only and b) COVID-19 hospitalization associated with a positive COVID-19           |
| 42<br>43 | 158 | test. Design overview is provided in Appendix 2; code lists and links to phenotype definitions are           |
| 44       | 159 | provided in Appendix 3.                                                                                      |
| 45<br>46 | 160 |                                                                                                              |
| 47       | 161 | We calculated vaccine effectiveness during six consecutive 7-day intervals after the first dose. Within      |
| 48<br>49 | 162 | each interval, patients were followed-up until an outcome, end of the period or death, whichever came        |
| 50       | 162 | earlier. Additionally, given the results for vaccine effectiveness during week one following the first dose, |
| 51<br>52 | 164 | we conducted chart review for patients with a COVID-19 positive test recorded in the abovementioned          |
| 53       | 165 | period. We reviewed all cases for the vaccinated population as well a random sample of the cases in the      |
| 54<br>55 | 166 | unvaccinated population and extracted main complaint, COVID-19 history, including symptoms (fever,           |
| 56<br>57 | 100 | unvacemated population and extracted main complaint, CO v ID-19 history, including symptoms (level,          |
| 58       |     |                                                                                                              |
| 59<br>60 |     | 5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                  |
|          |     |                                                                                                              |

BMJ Open

| 1<br>2                           |       |                                                                                                            |
|----------------------------------|-------|------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5                 | 167   | shortness of breath, sore throat, cough etc.), severity, time from the first symptom to encounter and      |
|                                  | 168   | COVID-19 exposure.                                                                                         |
| 6                                | 169   |                                                                                                            |
| 7<br>8                           | 170   | Secondary analyses                                                                                         |
| 9<br>10                          | 171   |                                                                                                            |
| 10<br>11<br>12<br>13             | 172   | We also conducted a set of secondary analyses. First, given that the published studies focused on patients |
|                                  | 173   | without prior COVID-19 infection, we studied all eligible patients regardless of their previous COVID-19   |
| 14                               | 174   | status.                                                                                                    |
| 15<br>16                         | 175   |                                                                                                            |
| 17<br>18                         | 176   | As the strategy for unvaccinated group index date selection (anchoring) has been reported to influence     |
| 19                               | 177   | incidence of outcomes and baseline characteristics (28,29), we additionally tested unexposed patients      |
| 20<br>21                         | 178   | indexed on a healthcare encounter matching the index date of one of the exposed group participants         |
| 22                               | 179   | within 3 days corridor, with at least 365 days of prior observation located at New York.                   |
| 23<br>24                         | 180   |                                                                                                            |
| 25                               | 181   | Finally, we assessed vaccine effectiveness in patients with at least one dose of a COVID-19 vaccine and    |
| 26<br>27                         | 182   | in fully vaccinated patients over all available follow-up to compare the estimates to the results of the   |
| 28<br>29                         | 183   | RCTs. The latter was defined as 14 days after the second dose of Pfizer-BioNTech or Moderna vaccines       |
| 30<br>31<br>32<br>33             | 184   | or first dose of Janssen vaccine. For each comparison we estimated hazard ratios (HRs) and constructed     |
|                                  | 185   | Kaplan-Meier plots as described below.                                                                     |
|                                  | 186   |                                                                                                            |
| 34<br>35                         |       |                                                                                                            |
| 36<br>37                         | 187   | Statistical methods                                                                                        |
| 38                               | 100   |                                                                                                            |
| 39<br>40                         | 188   | For each analysis, we fitted a lasso regression model to calculate propensity score and match patients in  |
| 41                               | 189   | each exposed and unexposed group with 1:1 ratio. For large-scale propensity score model we used all        |
| 42<br>43                         | 190   | demographic information, index year and month, as well as the number of visits, condition and drug         |
| 44<br>45                         | 191   | groups, procedures, device exposures, laboratory and instrumental tests and other observations over long   |
| 46                               | 192   | (prior year) and short-term period (prior month) (30,31).                                                  |
| 47<br>48<br>49<br>50<br>51<br>52 | 193   | For each outcome, we fitted a Cox proportional hazards models to estimate HRs and constructed Kaplan-      |
|                                  | 194   | Meier plots. Empirical calibration based on the negative control outcomes was used to identify and         |
|                                  | 195   | minimize any potential residual confounding by calibrating HRs and 95% confidence intervals (CIs)          |
|                                  | 196   | (32,33). Vaccine effectiveness was calculated as $100\% \times (1-hazard ratio)$ .                         |
| 53<br>54<br>55                   | - / 0 |                                                                                                            |
| 56                               |       |                                                                                                            |
| 57<br>58                         |       |                                                                                                            |

| 2        |     |
|----------|-----|
| 3        | 197 |
| 4<br>5   | 198 |
| 6        | 199 |
| 7<br>8   | 200 |
| 9        | 200 |
| 10       | 201 |
| 11<br>12 | 201 |
| 13       | 202 |
| 14<br>15 | 203 |
| 16       | 204 |
| 17<br>18 | 204 |
| 19       |     |
| 20<br>21 | 206 |
| 22       | 207 |
| 23       | 208 |
| 24<br>25 | 209 |
| 26       |     |
| 27<br>28 | 210 |
| 29       | 211 |
| 30<br>31 | 212 |
| 32       | 213 |
| 33<br>34 |     |
| 34<br>35 | 214 |
| 36       | 215 |
| 37<br>38 | 216 |
| 39       | 217 |
| 40<br>41 | 217 |
| 42       |     |
| 43<br>44 | 219 |
| 44<br>45 | 220 |
| 46       | 221 |
| 47<br>48 | 222 |
| 49       | 223 |
| 50<br>51 | 224 |
| 52       | 225 |
| 53<br>54 | 226 |
| 54<br>55 |     |
| 56       |     |
| 57<br>58 |     |

1

| 197 | All analyses were supported by the OHDSI Infrastructure (CohortMethod package, a | available |
|-----|----------------------------------------------------------------------------------|-----------|
|-----|----------------------------------------------------------------------------------|-----------|

- 98 at https://ohdsi.github.io/CohortMethod/, FeatureExtraction available at
- 99 https://ohdsi.github.io/FeatureExtraction/ and the Cyclops package for large-scale regularized regression
- 00 (34) available at https://ohdsi.github.io/Cyclops).

#### 01 **Diagnostics**

202 We used multiple sources of diagnostics to estimate potential bias and confounding following best 03 practices for evidence generation (35). First, we examined covariate and propensity score balance prior to 04 proceeding with outcome modelling and effect estimation to ensure that we have enough sample size and 05 to control for potential observed confounding (35). We plotted propensity scores to investigate the 06 overlap in patient populations at the baseline and examined the balance of all baseline characteristics to 07 determine if the exposed and unexposed cohorts were imbalanced at the baseline and after propensity 80 score matching. Exposed and unexposed cohorts were said to be balanced if the standardized difference of .09 means of all covariates after propensity score matching was less than 0.1 (36).

- 10 For negative control calibration, we used 93 negative controls (Appendix 4) with no known causal 11 relationship with the COVID-19 vaccines. Negative controls were selected based on a review of existing 12 literature, product labels and spontaneous reports and were reviewed by clinicians (37). We assessed 13 residual bias from the negative control estimates.
  - 14 Patient and public involvement
    - 16 No patient involved
  - 19 RESULTS
- 20

59

60

21 **Patient characteristics** 

23 In total, we identified 179,666 patients with at least one dose of COVID-19 vaccine in January-May 2021: 24 121,771 patients for Pfizer-BioNTech, 52,728 for Moderna and 5,167 for Janssen (Table 1). The sample

25 included patients from all age groups, with or without co-morbidities captured in inpatient and outpatient 26 settings.

Page 9 of 40

## BMJ Open

| <ul> <li>We observed that unexposed patients (Table 1) were on average younger and had fewer co-morbidities<br/>and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates<br/>(up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.</li> <li>Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring<br/>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a<br/>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared<br/>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On<br/>average, the latter group was older, had more patients with race recorded as Black, and had more co-<br/>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients had 2<br/>does of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440<br/>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while<br/>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with<br/>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of<br/>post-observation.</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one<br/>dose of Pfizer-BioNTech or Moderna (16, 114 patients) compared to unvaccinated patients (115,689).<br/>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against<br/>COVID-19 infection and 72%, 95% CI 57-5</li></ul> | 1                                                                    |     |                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------|
| 228       and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates         229       (up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.         230       Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring         231       unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a         232       visit.         233       Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         234       Patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         235       to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         236       average, the latter group was older, had more patients with race recorded as Black, and had more co-         236       mortidities such as diabetes mellitus or hypertensive disorder (Table 1).         237       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients had 2         240       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         241       doses of Moderna. We found 344 and 291 patients with a peak in January 2021 (Figure 2), while         245       Prizer-BioNTech and Janssen vaccination pathways in dinferent combinations.         248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | 227 | We observed that unexposed patients (Table 1) were on average younger and had fewer co-morbidities       |
| 229       (up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.         230       Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring         231       unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a         232       visit.         233       Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         234       to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         235       average, the latter group was older, had more patients with race recorded as Black, and had more co-         236       morthiditics such as diabetes mellitus or hypertensive disorder (Table 1).         237       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients main mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         237       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         238       Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         239       Within our database, Moderna was andinistered early on with some individuals having up to 5.8 months of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>6<br>7                                                          |     |                                                                                                          |
| <ul> <li>Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring</li> <li>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a</li> <li>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared</li> <li>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On</li> <li>average, the latter group was older, had more patients with race recorded as Black, and had more co-</li> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with</li> <li>at least one dose of Pfizer-BioNTech) had 2 bases of Pfizer-BioNTech and 42,384 (80%) patients had 2</li> <li>doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440</li> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li>Main week-by-week effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 wi</li></ul>                                 |                                                                      |     |                                                                                                          |
| <ul> <li>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Figure 3 shows vaccine effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                            |                                                                      |     |                                                                                                          |
| <ul> <li>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Hain week-by-week effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-43% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                      | 9                                                                    |     |                                                                                                          |
| Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         average, the latter group was older, had more patients with race recorded as Black, and had more co-         morbidities such as diabetes mellitus or hypertensive disorder (Table 1).         When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with         at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         post-observation.         right week-by-week effectiveness over six 7-day intervals for patients with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |     |                                                                                                          |
| <ul> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Figure 3 shows vaccine effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                                 | 13<br>14<br>15<br>16                                                 |     | V1510.                                                                                                   |
| <ul> <li>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On</li> <li>average, the latter group was older, had more patients with race recorded as Black, and had more co-</li> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with</li> <li>at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2</li> <li>doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440</li> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating &amp;4% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                   |                                                                      |     | Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared |
| 236       average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).         239       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         240       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         251       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         253       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256 <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |     |                                                                                                          |
| <ul> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |     |                                                                                                          |
| 238         239       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         247       post-observation.         248       Main week-by-week effectiveness analysis         250       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         251       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       but to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         257       observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |     |                                                                                                          |
| <ul> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                   |     | norbidities such as diabetes mentas of hypertensive disorder (Table 1).                                  |
| 240       at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         346       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         347       post-observation.         348       249         349       Main week-by-week effectiveness over six 7-day intervals for patients vaccinated with at least one         342       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         345       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         345       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         346       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         347       observed plausible increasing effectiveness beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                   |     | When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with   |
| 241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         247       post-observation.         248       Main week-by-week effectiveness analysis         250       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         253       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         257       observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6         258       approximatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                   |     |                                                                                                          |
| <ul> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                   |     |                                                                                                          |
| <ul> <li>243</li> <li>244 Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>245 Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>246 Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>247 post-observation.</li> <li>248</li> <li>249 Main week-by-week effectiveness analysis</li> <li>250</li> <li>251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |     |                                                                                                          |
| <ul> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 |     | patients having mixed i lizer biolyreen, woderna and sanssen vacemes in arrefert combinations.           |
| 211213Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with2245Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with2246Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of237post-observation.248249248Main week-by-week effectiveness analysis250250251Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one252dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).253Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.254Vhile week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against255COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we256cOVID-19 infection and 72%, 95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-258approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-259associated hospitalization.260260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |     | Within our database Moderna was administered early on with a peak in January 2021 (Figure 2) while       |
| 33       246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         34       247       post-observation.         35       248         38       249       Main week-by-week effectiveness analysis         39       250         41       251         42       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         42       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         43       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         44       254         47       255         48       256         49       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         51       257         52       dose of Pizer-Sing effectiveness beginning week 2 with the effectiveness on week 6         52       approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-         53       260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |     |                                                                                                          |
| <ul> <li>247 post-observation.</li> <li>248</li> <li>249 Main week-by-week effectiveness analysis</li> <li>250</li> <li>251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |     |                                                                                                          |
| <ul> <li><sup>36</sup> 248</li> <li><sup>37</sup> 248</li> <li><sup>38</sup> 249</li> <li><sup>39</sup> Aain week-by-week effectiveness analysis</li> <li><sup>39</sup> 250</li> <li><sup>41</sup> 251</li> <li><sup>41</sup> Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li><sup>42</sup> 252</li> <li><sup>43</sup> dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li><sup>44</sup> 253</li> <li><sup>44</sup> Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li><sup>45</sup> 254</li> <li><sup>47</sup> 255</li> <li><sup>48</sup> While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li><sup>49</sup> 256</li> <li><sup>50</sup> COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li><sup>51</sup> observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>55</sup> associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |     |                                                                                                          |
| <ul> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>Understand State Covidence of the state of</li></ul>                             |                                                                      |     |                                                                                                          |
| <ul> <li><sup>39</sup> 250</li> <li><sup>41</sup> 251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li><sup>42</sup> 252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li><sup>44</sup> 253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li><sup>45</sup> 254</li> <li><sup>47</sup> 255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li><sup>48</sup> 256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li><sup>50</sup> observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>53</sup> associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |     | Main week-by-week effectiveness analysis                                                                 |
| <ul> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |     |                                                                                                          |
| <ul> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>Uhile week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |     | Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one  |
| <ul> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |     |                                                                                                          |
| <ul> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>255</li> <li>47</li> <li>255</li> <li>48</li> <li>256</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>50</li> <li>257</li> <li>58</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                                                                   |     |                                                                                                          |
| <ul> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |     |                                                                                                          |
| <ul> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47                                                                   |     | While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against          |
| <ul> <li><sup>50</sup> 257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> 258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>53</sup> 259 associated hospitalization.</li> <li><sup>55</sup> 260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |     |                                                                                                          |
| <ul> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> <li>260</li> <li>260</li> <li>57</li> <li>58</li> <li>59</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |     |                                                                                                          |
| <ul> <li>53 11 55 160</li> <li>54 259 associated hospitalization.</li> <li>55 260</li> <li>56 57 58 59</li> <li>59 50 50 50 50 50 50 50 50 50 50 50 50 50</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                                                                   |     |                                                                                                          |
| 55 260<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |     |                                                                                                          |
| 56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55                                                                   |     | 1                                                                                                        |
| 58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |     |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                                                                   |     |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

We then looked at the week one COVID-19 infection cases to explain high effectiveness (Figure 4). A chart review of week one positive COVID-19 tests revealed a high proportion of unvaccinated patients seeking care related to COVID-19 symptoms or COVID-19 exposure (85% in total) compared to only 69% of vaccinated patients. Initial healthcare encounters in vaccinated population were oftentimes related to other medical reasons such as co-morbid conditions or surgeries (39% compared to 21% in unvaccinated population, Appendix 5). Moreover, an observed gap between symptom onset and an initial healthcare encounter was more pronounced in the vaccinated cohort as the patients attributed their symptoms to temporal vaccine side effects as opposed to COVID-19 infection.

When looking at the severity of COVID-19 symptoms at the initial encounter during week one after the index date, we observed that the unvaccinated cohort had a higher proportion of asymptomatic cases (39% compared to 11%) while the vaccinated population had more severe or mild cases (34% and 48% respectively).

#### Secondary analysis

As cohort analysis allows us to construct Kaplan-Meier curves to assess effectiveness over time, we also looked at the effectiveness during the year after the first dose (Appendix 6-8). We observed similar trends with all three vaccines being less effective during the first month after the first dose. After that, Pfizer-BioNTech and Moderna were highly effective against both COVID-19 infection and COVID-19 associated hospitalization, while Janssen vaccine exhibited a wide range of effectiveness (Appendix 9). The results for fully vaccinated patients with time-at-risk starting at the full vaccination matched the

results of the clinical trials for corresponding vaccines (detailed estimates are provided in Appendix 10 and 11).

Our initial design included a positive COVID-19 test or a diagnostic code as an outcome. Upon further case examination, we discovered that COVID-19 diagnostic codes in the CUIMC data were partially assigned to the patients with negative COVID-19 tests on or immediately following the date of diagnosis. In that case, ICD10CM code U07.1 "Disease caused by Severe acute respiratory syndrome coronavirus 2" was entered in the system for billing purposes (COVID-19 molecular or antibody tests) or for COVID-19 sequelae. We, therefore, focused on positive COVID-19 test only for our primary outcome, which led to higher effectiveness for all vaccines compared to using both positive test and diagnosis (Appendix 9). 

Page 11 of 40

#### BMJ Open

Finally, exclusion of patients with prior COVID-19 infection in our main analysis resulted in higher

observed effectiveness (Appendix 12) for both COVID-19 infection and hospitalization in patients

vaccinated with Moderna or Janssen.

number of covariates including those above.

hospitalization in structured data.

DISCUSSION

effectiveness. Inclusion of patients regardless of their prior COVID-19 status led to a small decrease in

In this retrospective cohort study, we examined the effectiveness of COVID-19 mRNA vaccines over six 7-day intervals after the first dose. We scrutinized the effectiveness of the mRNA vaccines following the first dose and confirmed the findings of moderate vaccine effectiveness during the first two weeks. For week one following the first dose we discovered previously uncaptured differential biases in vaccinated and unvaccinated populations resulting in high vaccine effectiveness. Other researchers suggested that the

difference between vaccinated and unvaccinated groups can be mitigated by adjusting for previous healthcare utilization such as number of visits before baseline, co-morbidities or prior vaccination

Vaccination directly influenced the attitude of patients towards their symptoms, causing a delay in seeking care and a higher symptom severity threshold needed to seek care or get tested. On contrary, vaccinated patients in other studies had higher rates of testing compared to unvaccinated (20,38). This indicates that patients' attitude toward risk of infection and testing may vary geographically and over

In unvaccinated patients, mild COVID-19 related symptoms were the reason to seek care; in vaccinated patients such cases were mainly captured upon seeking outpatient and inpatient care for other conditions.

positive for COVID-19 on the day of admission or later on. Differential symptom severity was previously

For example, vaccinated patients could be hospitalized for elective surgery or delivery and be tested

reported for other vaccines (39) and may affect any observational study that uses hospitalization as a

Previous research suggested that vaccinated patients do not have an increase in the number of cases

immediately following vaccination as they are unlikely to get vaccinated if sick (9,40). Our review of the

surrogate for COVID-19 severity as it can be hard to accurately identify the main reason for

time. Similarly, frequency of testing may depend on local policies and practices.

behavior (6,13,24). Nevertheless, the confounding we observed remains even upon controlling for a large

| 1<br>2   |            |
|----------|------------|
| 3        | 295        |
| 4<br>5   | 296        |
| 6        | 297        |
| 7<br>8   | 298        |
| 9<br>10  | 299        |
| 10<br>11 | 300        |
| 12<br>13 | 301        |
| 14       | 302        |
| 15<br>16 | 303        |
| 17       | 304        |
| 18<br>19 | 305        |
| 20       | 306        |
| 21<br>22 | 307        |
| 23<br>24 | 308        |
| 25       | 309        |
| 26<br>27 | 310        |
| 28       | 311        |
| 29<br>30 | 312        |
| 31       | 313        |
| 32<br>33 | 314        |
| 34<br>35 | 315        |
| 36       | 316        |
| 37<br>38 | 317        |
| 39       | 318        |
| 40<br>41 | 319        |
| 42       | 320        |
| 43<br>44 | 320        |
| 45       | 321        |
| 46<br>47 | 323        |
| 48<br>49 |            |
| 50       | 324<br>325 |
| 51<br>52 |            |
| 53       | 326        |
| 54<br>55 | 327        |
| 56       |            |
| 57<br>58 |            |
| 59       |            |

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

| 2                    |     |                                                                                                              |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 328 | cases in week one adds to 'healthy vaccinee' effect by showing that vaccinated patients are more likely to   |
| 5                    | 329 | attribute their symptoms to common vaccine side effects and, therefore, are less likely to seek care.        |
| 6<br>7               | 330 |                                                                                                              |
| 8                    | 331 | Nevertheless, even when this differential bias is present, the estimates of the COVID-19 vaccine             |
| 9<br>10              | 332 | effectiveness in subsequent weeks still match the results of the RCTs. This indicates that high              |
| 11                   | 333 | effectiveness during week one following vaccination does not necessarily undermine the estimates of          |
| 12<br>13             | 334 | subsequent vaccine effectiveness. On the other hand, we argue against using estimates of vaccine             |
| 14<br>15             | 335 | effectiveness within a short period after the vaccination as a negative control as the differences between   |
| 15<br>16             | 336 | the groups observed in this study are likely to be time-variant and may diminish over time (41).             |
| 17<br>18             | 337 |                                                                                                              |
| 19                   | 338 | Our secondary analyses discovered several challenges and potential biases that must be accounted for         |
| 20<br>21             | 339 | when conducting vaccine effectiveness studies on observational data. First, we observed that outcome         |
| 22                   | 340 | definitions are prone to measurement error, which has not been studied thoroughly. Some of the published     |
| 23<br>24             | 341 | studies used ICD-10 or ICD-10(CM) codes to identify COVID-19 outcomes (42–44). We found that the             |
| 25                   | 342 | specifics of data capture and billing processes were associated with some patients having assigned           |
| 26<br>27             | 343 | COVID-19 diagnosis codes for billing for tests rather than as an indicator of active disease. Another        |
| 28<br>20             | 344 | reason for assigning the code was COVID-19 sequela, where the actual date of COVID-19 infection could        |
| 30                   | 345 | have been anywhere from 6 months to a couple of weeks in the past. Some researchers have previously          |
| 31<br>32<br>33<br>34 | 346 | reported high positive predictive value of ICD-10 diagnostic codes for COVID-19, which points out that       |
|                      | 347 | index date misclassification should be scrutinized in each institution participating in the analysis to make |
| 34<br>35             | 348 | valid inferences (45,46).                                                                                    |
| 36<br>37             | 349 |                                                                                                              |
| 37<br>38             | 350 | Second, inclusion or exclusion of patients with prior COVID-infection influenced estimated effectiveness.    |
| 39<br>40             | 351 | We observed that inclusion of patients with prior COVID-19 leads to lower effectiveness for all vaccines     |
| 41                   | 352 | regardless of the outcome definition.                                                                        |
| 42<br>43             | 353 |                                                                                                              |
| 44                   | 354 | Third, an appropriate index event (anchor) for the unvaccinated cohort must be chosen to represent a         |
| 45<br>46             | 355 | counterfactual for vaccination (29,47). In our study, we confirmed that an arbitrary date represents a       |
| 47<br>48<br>49       | 356 | better counterfactual than a medical visit for COVID-19 vaccination, which is reflected in propensity        |
|                      | 357 | score balance and covariate balance. Nevertheless, other institutions may have different vaccination         |
| 50<br>51             | 358 | pathways such as vaccination on discharge, which can make a visit a better counterfactual for vaccination.   |
| 52                   | 359 | More generally, completeness of vaccination data capture is a crucial feature that influences the            |
| 53<br>54             | 360 | robustness of the study. While CUIMC data ensures complete exposure capture by linking EHR to the            |
| 55                   |     |                                                                                                              |
| 56<br>57             |     |                                                                                                              |
| 58                   |     |                                                                                                              |
| 59                   |     |                                                                                                              |

#### **BMJ** Open

City and State Registries, the researchers should exhibit caution with conducting studies on the data sources with unknown vaccination capture.

In general, our findings support the RCTs and previously published post-marketing studies for all three vaccines. Larger sample size for patients vaccinated with COVID-19 mRNA vaccines allowed us to have more power, which resulted in overlapping yet narrower confidence intervals compared to the RCTs. On the other hand, our study had fewer patients with the Janssen vaccine, which resulted in wider yet overlapping intervals compared to the Janssen's vaccine RCT (1,2,7). Nevertheless, an indirect comparison of these vaccines may not be accurate due to the differences in the populations we observed in our study. First, patients vaccinated with Janssen were substantially different from mRNA patients: on average, they were older, had a higher proportion of patients with race recorded as Black and had more comorbidities. Therefore, comparative effectiveness studies of Janssen and mRNA vaccines require robust techniques such as large-scale propensity matching to ensure valid comparison. Second, while Modena and Pfizer patients had similar baseline characteristics, the temporal distribution of vaccinations in CUIMC data differ. Moderna vaccine was administered early on in 2021 with the peak in January, while Pfizer vaccination peaked in April. Given the varying baseline COVID-19 prevalence, a comparison of mRNA vaccines requires matching patients on calendar month to account for this potential bias. These vaccines also had different administration pathways in our system. As opposed to Pfizer vaccine, which was administered at Columbia University Irving Medical Center/New York-Presbyterian sites to all patients over a prolonged period, Moderna vaccination was performed elsewhere and recorded for actively observed patients. Such patients were more likely to get tested or receive care outside of our healthcare system.

#### LIMITATIONS

Due to observational nature of the study, the data sources may not have complete capture of patient conditions as the patients could seek care outside of the hospital system. While our outcome phenotype algorithms may be subject to measurement error, we provided additional analyses with alternative outcome definitions. Exposure misclassification was mitigated by having free and available COVID-19 testing and COVID-19 vaccination in Columbia University Irving Medical Center/New York-Presbyterian sites as well as by having data capture from New York City and State Immunization Registries. Along with availability of testing, COVID-19 baseline infection rate difference was mitigated by matching the exposed and unexposed groups on the index date and using the index month as a covariate in propensity score model. We attempted to address potential differences between exposed and

| 1<br>2                           |     |                                                                                                              |
|----------------------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 3                                | 395 | unexposed groups by selecting a large number of covariates in our propensity score model such as             |
| 4<br>5                           | 396 | number of visits, procedure and drug utilization, prior vaccine behavior, race and others. Nevertheless, we  |
| 6                                | 397 | did not have data for social interactions, adherence to preventive measures and policies, which could        |
| 7<br>8                           | 398 | affect likelihood of COVID-19 infection and testing.                                                         |
| 9                                | 399 |                                                                                                              |
| 10<br>11                         | 400 | The results of the study may not be generalizable to other countries or settings with different vaccine      |
| 12<br>13<br>14                   | 401 | administration practices and policies. Finally, the study period did not allow us to stratify the results by |
|                                  | 402 | COVID-19 variants, which limits generalizability of findings to other variants.                              |
| 15<br>16                         | 403 | COVID-17 variants, which mints generalizability of midnings to other variants.                               |
| 16<br>17                         | 404 |                                                                                                              |
| 18<br>19                         | 404 | CONCLUSIONS                                                                                                  |
| 20                               |     | CONCLUSIONS                                                                                                  |
| 20<br>21<br>22<br>23<br>24<br>25 | 406 |                                                                                                              |
|                                  | 407 | Observational data can be used to ascertain vaccine effectiveness if potential biases such as exposure and   |
|                                  | 408 | outcome misclassification are accounted for, and appropriate anchoring event is selected. When analyzing     |
| 26                               | 409 | vaccine effectiveness researchers need to scrutinize the data to ensure that compared groups exhibit         |
| 27<br>28<br>29<br>30<br>31<br>32 | 410 | similar health seeking behavior and are equally likely to be captured in the data and report their findings. |
|                                  | 411 | Specifically for COVID-19 vaccines, an arbitrary date for the index date in unvaccinated patients            |
|                                  | 412 | represents a better counterfactual for vaccination than a healthcare encounter. Effectiveness over the first |
|                                  | 413 | week(s) after the vaccination should be reported even though low or high effectiveness immediately after     |
| 33<br>34                         | 414 | the vaccination may not invalidate study findings. Given the difference in temporal trends of vaccine        |
| 35                               | 415 | exposure and baseline characteristics, there is a need for large-scale direct comparison of vaccines to      |
| 36<br>37                         | 416 | examine comparative effectiveness.                                                                           |
| 38                               | 417 |                                                                                                              |
| 39<br>40                         | 418 | DECLARATION                                                                                                  |
| 41<br>42                         | 419 |                                                                                                              |
| 42<br>43                         | 420 | Author contributions                                                                                         |
| 44<br>45                         | 421 |                                                                                                              |
| 46                               | 422 | GH designed and supervised the study. AO executed the study, interpreted the results, and drafted the        |
| 47<br>48                         | 423 | manuscript. GH and AO reviewed the manuscript, approved the final version and had final responsibility       |
| 49                               | 424 | for the decision to submit for publication.                                                                  |
| 50<br>51                         | 425 |                                                                                                              |
| 52                               | 426 | Funding                                                                                                      |
| 53<br>54                         | 427 |                                                                                                              |
| 55                               |     |                                                                                                              |
| 56<br>57                         |     |                                                                                                              |
| 58                               |     |                                                                                                              |
| 59<br>60                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                                |
|                                  |     |                                                                                                              |

#### BMJ Open

| 2        |     |                                                                                                            |
|----------|-----|------------------------------------------------------------------------------------------------------------|
| 3<br>4   | 428 | US National Library of Medicine (R01 LM006910), US Food and Drug Administration CBER BEST                  |
| 5        | 429 | Initiative (75F40120D00039).                                                                               |
| 6<br>7   | 430 |                                                                                                            |
| 8        | 431 | Declaration of interests                                                                                   |
| 9<br>10  | 432 |                                                                                                            |
| 11<br>12 | 433 | All authors have completed the ICMJE disclosure form (available on request from the corresponding          |
| 12<br>13 | 434 | author). GH and AO receive funding from the US National Institutes of Health (NIH) and the US Food and     |
| 14<br>15 | 435 | Drug Administration.                                                                                       |
| 16       | 436 |                                                                                                            |
| 17<br>18 | 437 | Ethical approval                                                                                           |
| 19       | 438 |                                                                                                            |
| 20<br>21 | 439 | The protocol for this research was approved by the Columbia University Institutional Review Board          |
| 22       | 440 | (AAAO7805).                                                                                                |
| 23<br>24 | 441 |                                                                                                            |
| 25       | 442 | Data sharing                                                                                               |
| 26<br>27 | 443 |                                                                                                            |
| 28<br>29 | 444 | Patient-level data cannot be shared without approval from data custodians due to local information         |
| 30       | 445 | governance and data protection regulations.                                                                |
| 31<br>32 | 446 |                                                                                                            |
| 33       | 447 | Transparency declaration                                                                                   |
| 34<br>35 | 448 |                                                                                                            |
| 36<br>37 | 449 | The lead authors affirms that this manuscript is an honest, accurate, and transparent account of the study |
| 37<br>38 | 450 | being reported; that no important aspects of the study have been omitted; and that any discrepancies from  |
| 39<br>40 | 451 | the study as planned (and, if relevant, registered) have been explained.                                   |
| 41       | 452 |                                                                                                            |
| 42<br>43 | 453 | Acknowledgment                                                                                             |
| 44       | 454 | We would like to acknowledge Patrick Ryan, an employee of Janssen Research and Development,                |
| 45<br>46 | 455 | Titusville, New Jersey, for his thoughtful feedback on the study.                                          |
| 47<br>49 | 456 |                                                                                                            |
| 48<br>49 | 457 |                                                                                                            |
| 50<br>51 | 458 |                                                                                                            |
| 52       | 459 |                                                                                                            |
| 53<br>54 | 460 |                                                                                                            |
| 55       | 461 |                                                                                                            |
| 56<br>57 |     |                                                                                                            |
| 58       |     |                                                                                                            |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                              |

| 2                                |                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|---------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                | 462                             | REF | ERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4<br>5                           | 463                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6<br>7<br>8<br>9                 | 464<br>465<br>466               | 1.  | Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–201.                                                                                                                                                                                                                                          |
| 10<br>11<br>12                   | 467<br>468                      | 2.  | Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403–16.                                                                                                                                                                                                                                                                       |
| 13<br>14<br>15                   | 469<br>470                      | 3.  | Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.                                                                                                                                                                                                                                                            |
| 16<br>17<br>18<br>19<br>20       | 471<br>472<br>473<br>474        | 4.  | Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021 Jan;397(10269):99–111.                                                                                                                                            |
| 21<br>22<br>23<br>24<br>25       | 475<br>476<br>477               | 5.  | Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021 Sep 8;NEJMoa2110362.                                                                                                                                                                                                                                             |
| 23<br>26<br>27<br>28<br>29       | 478<br>479<br>480               | 6.  | Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet. 2021 Oct;398(10309):1407–16.                                                                                                                                                                          |
| 30<br>31<br>32<br>33<br>34       | 481<br>482<br>483<br>484        | 7.  | Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. The Lancet. 2021 May;397(10287):1819–29.                                                                             |
| 35<br>36<br>37<br>38<br>39<br>40 | 485<br>486<br>487<br>488<br>489 | 8.  | Kissling E, Hooiveld M, Sandonis Martín V, Martínez-Baz I, William N, Vilcu AM, et al. Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021. Eurosurveillance [Internet]. 2021 Jul 22 [cited 2021 Sep 23];26(29). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.29.2100670 |
| 41<br>42<br>43                   | 490<br>491                      | 9.  | Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19<br>Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021 Apr 15;384(15):1412–23.                                                                                                                                                                                                                                                     |
| 44<br>45<br>46<br>47<br>48       | 492<br>493<br>494               | 10. | Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-<br>1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-<br>19 disease in Qatar. Nat Med. 2021 Sep;27(9):1614–21.                                                                                                                                                                                          |
| 49<br>50<br>51<br>52             | 495<br>496<br>497               | 11. | Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021 Aug 12;385(7):585–94.                                                                                                                                                                                                                                          |
| 53<br>54<br>55<br>56<br>57       | 498<br>499<br>500               | 12. | Bedston S, Akbari A, Jarvis CI, Lowthian E, Torabi F, North L, et al. COVID-19 vaccine uptake, effectiveness, and waning in 82,959 health care workers: A national prospective cohort study in Wales. Vaccine. 2022 Feb;40(8):1180–9.                                                                                                                                                                                                      |
| 57<br>58<br>59<br>60             |                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                                                                                                                                                                                                                                                                                                                                                              |

| 2                                |                          |     |                                                                                                                                                                                                                                                                                                          |
|----------------------------------|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6                 | 501<br>502<br>503        | 13. | Waxman JG, Makov-Assif M, Reis BY, Netzer D, Balicer RD, Dagan N, et al. Comparing COVID-<br>19-related hospitalization rates among individuals with infection-induced and vaccine-induced<br>immunity in Israel. Nat Commun. 2022 Dec;13(1):2202.                                                       |
| 7<br>8<br>9<br>10<br>11          | 504<br>505<br>506<br>507 | 14. | Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, et al. The Incidence of SARS-CoV-2 Reinfection in Persons With Naturally Acquired Immunity With and Without Subsequent Receipt of a Single Dose of BNT162b2 Vaccine: A Retrospective Cohort Study. Ann Intern Med. 2022 May;175(5):674–81. |
| 12<br>13<br>14<br>15             | 508<br>509<br>510        | 15. | Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. The Lancet. 2022 Mar;399(10328):924–44.                                         |
| 16<br>17<br>18<br>19             | 511<br>512<br>513        | 16. | Tartof SY, Slezak JM, Puzniak L, Hong V, Frankland TB, Ackerson BK, et al. Effectiveness of a third dose of BNT162b2 mRNA COVID-19 vaccine in a large US health system: A retrospective cohort study. The Lancet Regional Health - Americas. 2022 May;9:100198.                                          |
| 20<br>21<br>22<br>23             | 514<br>515<br>516        | 17. | Price AM, Olson SM, Newhams MM, Halasa NB, Boom JA, Sahni LC, et al. BNT162b2 Protection against the Omicron Variant in Children and Adolescents. N Engl J Med. 2022 May 19;386(20):1899–909.                                                                                                            |
| 24<br>25<br>26<br>27             | 517<br>518               | 18. | Dean NE, Hogan JW, Schnitzer ME. Covid-19 Vaccine Effectiveness and the Test-Negative Design. N Engl J Med. 2021 Oct 7;385(15):1431–3.                                                                                                                                                                   |
| 28<br>29<br>30<br>31<br>32       | 519<br>520<br>521<br>522 | 19. | Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine [Internet]. Infectious Diseases (except HIV/AIDS); 2021 Sep [cited 2021 Sep 23]. Available from:<br>http://medrxiv.org/lookup/doi/10.1101/2021.09.10.21263385      |
| 33<br>34<br>35                   | 523<br>524               | 20. | Ioannidis JPA. Factors influencing estimated effectiveness of COVID-19 vaccines in non-<br>randomised studies. BMJ EBM. 2022 Mar 25;bmjebm-2021-111901.                                                                                                                                                  |
| 36<br>37<br>38<br>39             | 525<br>526<br>527        | 21. | Fell DB, Dimitris MC, Hutcheon JA, Ortiz JR, Platt RW, Regan AK, et al. Guidance for design and analysis of observational studies of fetal and newborn outcomes following COVID-19 vaccination during pregnancy. Vaccine. 2021 Apr;39(14):1882–6.                                                        |
| 40<br>41<br>42                   | 528<br>529               | 22. | Skowronski D. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine: a letter to the Editor. N Engl J Med. 2021 Feb 17;384(16):1576                                                                                                                                                                  |
| 43<br>44<br>45<br>46<br>47       | 530<br>531<br>532        | 23. | Tabak YP, Sun X, Brennan TA, Chaguturu SK. Incidence and Estimated Vaccine Effectiveness<br>Against Symptomatic SARS-CoV-2 Infection Among Persons Tested in US Retail Locations, May<br>1 to August 7, 2021. JAMA Netw Open. 2021 Dec 22;4(12):e2143346.                                                |
| 47<br>48<br>49<br>50<br>51       | 533<br>534<br>535        | 24. | Barda N, Dagan N, Cohen C, Hernán MA, Lipsitch M, Kohane IS, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. The Lancet. 2021 Dec;398(10316):2093–100.                                                      |
| 52<br>53<br>54<br>55<br>56<br>57 | 536<br>537<br>538        | 25. | Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. The Lancet. 2021 May;397(10286):1725–35.                  |
| 57<br>58<br>59<br>60             |                          |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1^{\circ}$                                                                                                                                                                                                                    |

| 2                                |                          |     |                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|--------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6                 | 539<br>540<br>541        | 26. | Pilishvili T, Gierke R, Fleming-Dutra KE, Farrar JL, Mohr NM, Talan DA, et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl J Med. 2021 Dec 16;385(25):e90.                                                                                                                                                                               |
| 7<br>8<br>9                      | 542<br>543               | 27. | OMOP Common Data Model [Internet]. GitHub. [cited 2020 Feb 11]. Available from: https://github.com/OHDSI/CommonDataModel                                                                                                                                                                                                                                                     |
| 10<br>11<br>12<br>13<br>14       | 544<br>545<br>546<br>547 | 28. | Ostropolets A, Ryan P, Schuemie M, Hripcsak G. Differential anchoring effects of vaccination comparator selection: characterizing a potential bias due to healthcare utilization in COVID-19 versus influenza (Preprint). JMIR Public Health and Surveillance [Internet]. 2021 Aug 24 [cited 2022 May 30]; Available from: http://preprints.jmir.org/preprint/33099/accepted |
| 15<br>16<br>17<br>18             | 548<br>549<br>550        | 29. | Ostropolets A, Li X, Makadia R, Rao G, Rijnbeek PR, Duarte-Salles T, et al. Factors Influencing<br>Background Incidence Rate Calculation: Systematic Empirical Evaluation Across an International<br>Network of Observational Databases. Front Pharmacol. 2022 Apr 26;13:814198.                                                                                             |
| 19<br>20<br>21<br>22<br>23       | 551<br>552<br>553        | 30. | Tian Y, Schuemie MJ, Suchard MA. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. International Journal of Epidemiology. 2018 Dec 1;47(6):2005–14.                                                                                                                                                                     |
| 23<br>24<br>25<br>26<br>27       | 554<br>555<br>556        | 31. | Fortin SP, Johnston SS, Schuemie MJ. Applied comparison of large-scale propensity score matching and cardinality matching for causal inference in observational research. BMC Med Res Methodol. 2021 Dec;21(1):174.                                                                                                                                                          |
| 28<br>29<br>30<br>31             | 557<br>558<br>559        | 32. | Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving reproducibility by using high-throughput observational studies with empirical calibration. Phil Trans R Soc A. 2018 Sep 13;376(2128):20170356.                                                                                                                                                            |
| 32<br>33<br>34<br>35             | 560<br>561<br>562        | 33. | Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct $p$ -values. Statistics in Medicine. 2014 Jan 30;33(2):209–18.                                                                                                                                                                  |
| 36<br>37<br>38<br>39             | 563<br>564<br>565        | 34. | Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D. Massive Parallelization of Serial<br>Inference Algorithms for a Complex Generalized Linear Model. ACM Transactions on Modeling<br>and Computer Simulation. 2013 Jan;23(1):1–17.                                                                                                                                         |
| 40<br>41<br>42<br>43             | 566<br>567<br>568        | 35. | Schuemie MJ, Ryan PB, Pratt N, Chen R, You SC, Krumholz HM, et al. Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND). Journal of the American Medical Informatics Association. 2020 Aug 1;27(8):1331–7.                                                                                                                    |
| 44<br>45<br>46<br>47             | 569<br>570<br>571        | 36. | Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Communications in Statistics - Simulation and Computation. 2009 May 14;38(6):1228–34.                                                                                                                                              |
| 48<br>49<br>50<br>51<br>52<br>53 | 572<br>573<br>574<br>575 | 37. | The Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative. Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data. J Biomed Semant. 2017 Dec;8(1):11.                                             |
| 55<br>54<br>55<br>56<br>57<br>58 | 576<br>577               | 38. | Glasziou P, McCaffery K, Cvejic E, Batcup C, Ayre J, Pickles K, et al. Testing behaviour may bias observational studies of vaccine effectiveness [Internet]. Infectious Diseases (except HIV/AIDS);                                                                                                                                                                          |
| 59<br>60                         |                          |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1^\circ$                                                                                                                                                                                                                                                                                          |

| 2                                      |                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|----------------------------------------|---------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3<br>4<br>5                            | 578<br>579                      |     | 2022 Jan [cited 2022 May 26]. Available from:<br>http://medrxiv.org/lookup/doi/10.1101/2022.01.17.22269450                                                                                                                                                                                                                                                                                                                                                 |   |
| 6<br>7<br>8                            | 580<br>581                      | 39. | Lewnard JA, Tedijanto C, Cowling BJ, Lipsitch M. Measurement of Vaccine Direct Effects Under the Test-Negative Design. American Journal of Epidemiology. 2018 Dec 1;187(12):2686–97.                                                                                                                                                                                                                                                                       |   |
| 9<br>10<br>11<br>12                    | 582<br>583<br>584               | 40. | Remschmidt C, Wichmann O, Harder T. Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review. BMC Infect Dis. 2015 Dec;15(1):429.                                                                                                                                                                                                               |   |
| 13<br>14<br>15<br>16<br>17             | 585<br>586<br>587<br>588        | 41. | Hitchings MDT, Lewnard JA, Dean NE, Ko AI, Ranzani OT, Andrews JR, et al. Use of recently vaccinated individuals to detect bias in test-negative case–control studies of COVID-19 vaccine effectiveness. Epidemiology [Internet]. 2022 Apr 1 [cited 2022 May 27];Publish Ahead of Print. Available from: https://journals.lww.com/10.1097/EDE.000000000001484                                                                                              |   |
| 18<br>19<br>20<br>21<br>22<br>23       | 589<br>590<br>591<br>592        | 42. | Hadi YB, Thakkar S, Shah-Khan SM, Hutson W, Sarwari A, Singh S. COVID-19 Vaccination Is<br>Safe and Effective in Patients With Inflammatory Bowel Disease: Analysis of a Large Multi-<br>institutional Research Network in the United States. Gastroenterology. 2021 Oct;161(4):1336-<br>1339.e3.                                                                                                                                                          |   |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 | 593<br>594<br>595<br>596<br>597 | 43. | Nunes B, Rodrigues AP, Kislaya I, Cruz C, Peralta-Santos A, Lima J, et al. mRNA vaccine effectiveness against COVID-19-related hospitalisations and deaths in older adults: a cohort study based on data linkage of national health registries in Portugal, February to August 2021. Eurosurveillance [Internet]. 2021 Sep 23 [cited 2022 May 25];26(38). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.38.2100833 |   |
| 30<br>31<br>32<br>33                   | 598<br>599<br>600               | 44. | Wright BJ, Tideman S, Diaz GA, French T, Parsons GT, Robicsek A. Comparative vaccine effectiveness against severe COVID-19 over time in US hospital administrative data: a case-control study. The Lancet Respiratory Medicine. 2022 Feb;S221326002200042X.                                                                                                                                                                                                | 1 |
| 34<br>35<br>36                         | 601<br>602                      | 45. | Bodilsen J, Leth S, Nielsen SL, Holler JG, Benfield T, Omland LH. Positive Predictive Value of ICD-10 Diagnosis Codes for COVID-19. CLEP. 2021 May;Volume 13:367–72.                                                                                                                                                                                                                                                                                       |   |
| 37<br>38<br>39<br>40                   | 603<br>604<br>605               | 46. | Lynch KE, Viernes B, Gatsby E, DuVall SL, Jones BE, Box TL, et al. Positive Predictive Value of COVID-19 ICD-10 Diagnosis Codes Across Calendar Time and Clinical Setting. CLEP. 2021 Oct;Volume 13:1011–8.                                                                                                                                                                                                                                                | • |
| 41<br>42<br>43<br>44<br>45<br>46       | 606<br>607<br>608<br>609        | 47. | Ostropolets A, Ryan PB, Schuemie MJ, Hripcsak G. Differential anchoring effects of vaccination comparator selection: characterizing a potential bias due to healthcare utilization in COVID-19 versus influenza [Internet]. Epidemiology; 2021 Oct [cited 2021 Nov 7]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.10.07.21264711                                                                                                           |   |
| 47                                     | 610                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 48<br>49                               | 611                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 50                                     | 612                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 51<br>52                               | 613                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 53                                     | 614                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 54<br>55                               | 615                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 56<br>57<br>58                         |                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 59<br>60                               |                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                  | 1 |

| 1        |     |                                                                                                                             |
|----------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 616 |                                                                                                                             |
| 4        |     |                                                                                                                             |
| 5<br>6   | 617 | <b>Figure 1.</b> Distribution of vaccination month for COVID-19 vaccines. Black dots represent the number of                |
| 7        | 618 | incident COVID-19 cases (defined as a positive test) in each month.                                                         |
| 8<br>9   | 619 |                                                                                                                             |
| 10       | 620 | Figure 2. Diagnostics for the effectiveness study comparing the cohort vaccinated with at least one dose                    |
| 11<br>12 | 621 | of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a                          |
| 13       | 622 | visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and                   |
| 14<br>15 | 623 | (C) effect of negative control calibration displaying effect estimate and standard error.                                   |
| 16       | 624 | In (A), each dot represents the standardized difference of the means for a single covariate before and after                |
| 17<br>18 | 625 | stratification on the propensity score.                                                                                     |
| 19       | 626 | In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05                 |
| 20<br>21 | 627 | and the orange area indicates estimates with calibrated $p < 0.05$ .                                                        |
| 22       | 628 |                                                                                                                             |
| 23<br>24 | 629 | <b>Figure 3.</b> Effectiveness of Pfizer-BioNTech and Moderna vaccines over six 7-day intervals after 1 <sup>st</sup> dose, |
| 25       | 630 | % and 95% CI for COVID-19 infection (A) and COVID-19 hospitalization (B).                                                   |
| 26<br>27 | 631 |                                                                                                                             |
| 28       | 632 | Figure 4. Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week one,                             |
| 29<br>30 | 633 |                                                                                                                             |
| 31       | 634 | vacemated and unvacemated patients.                                                                                         |
| 32<br>33 |     | vaccinated and unvaccinated patients.                                                                                       |
| 34       | 635 |                                                                                                                             |
| 35<br>36 |     |                                                                                                                             |
| 37       |     |                                                                                                                             |
| 38<br>39 |     |                                                                                                                             |
| 40       |     |                                                                                                                             |
| 41<br>42 |     |                                                                                                                             |
| 43       |     |                                                                                                                             |
| 44<br>45 |     |                                                                                                                             |
| 46       |     |                                                                                                                             |
| 47<br>48 |     |                                                                                                                             |
| 49       |     |                                                                                                                             |
| 50<br>51 |     |                                                                                                                             |
| 52       |     |                                                                                                                             |
| 53<br>54 |     |                                                                                                                             |
| 55       |     |                                                                                                                             |
| 56<br>57 |     |                                                                                                                             |
| 58       |     |                                                                                                                             |
| 59       |     | 11                                                                                                                          |

# **Table 1.** Patient baseline characteristics for patients with at least one dose of a COVID-19 vaccine and the unexposed patients, before and after propensity score matching.

|                                                     | Bef            | ore matching |              |              | After matching |           |
|-----------------------------------------------------|----------------|--------------|--------------|--------------|----------------|-----------|
| Characteristic                                      | Target         | Comparator   | Std.<br>diff | Target       | Comparator     | Std. diff |
| Pfizer-BioNTech COVID-19 vaccine                    |                |              |              |              |                |           |
| Patients, n                                         | 121,771        | 164,997      |              | 101,109      | 101,111        |           |
| Follow-up, days. Median (IQR)                       | 107 (80 – 137) | 104 (71-137) |              | 107 (78-149) | 107 (79-140)   |           |
| COVID-19 diagnosis or positive COVID-<br>19 test, n | 6              |              |              | 822          | 1355           |           |
| Positive COVID-19 test, n                           | No             |              |              | 231          | 786            |           |
| Age group, %                                        |                |              |              | ·            |                |           |
| 10-19                                               | 4.2            | 10.8         | -0.25        | 4.8          | 4.3            | 0.02      |
| 20-49                                               | 37.2           | 42.6         | -0.11        | 40.3         | 40.1           | 0         |
| 50-64                                               | 23.9           | 20.3         | 0.09         | 23.6         | 23.7           | 0         |
| 65-74                                               | 18.8           | 12.6         | 0.17         | 15.8         | 16.6           | -0.02     |
| 75-84                                               | 11.3           | 8.9          | 0.08         | 10.6         | 10.7           | 0         |
| >84                                                 | 4.1            | 3.8          | 0.02         | 4.2          | 4.1            | 0.01      |
| Gender, %                                           |                |              | -            |              |                |           |
| Female                                              | 63.7           | 57.8         | 0.12         | 61.4         | 62             | -0.01     |
| Race, %                                             |                |              |              |              | •              |           |
| race = Asian                                        | 3.8            | 2.6          | 0.07         | 3.5          | 3.4            | 0.01      |
| race = Black or African American                    | 12.4           | 14.2         | -0.05        | 12.6         | 12.2           | 0.01      |
| race = White                                        | 40.5           | 35.1         | 0.11         | 39.3         | 39.5           | 0         |
| Medical history, %                                  |                |              |              |              |                |           |
| Chronic liver disease                               | 0.6            | 0.6          | 0            | 0.5          | 0.5            | 0         |
| Chronic obstructive lung disease                    | 1.3            | 1            | 0.02         | 1            | 1              | 0.01      |
| Dementia                                            | 1.2            | 1.1          | 0            | 1.1          | 1              | 0.01      |

| Page | 22 | of | 40  |
|------|----|----|-----|
| ruge | ~~ | 01 | -10 |

| Depressive disorder                                 | 5.3             | 4            | 0.06           | 4              | 3.7           | 0.02 |
|-----------------------------------------------------|-----------------|--------------|----------------|----------------|---------------|------|
| Diabetes mellitus                                   | 7.1             | 5.2          | 0.08           | 5.7            | 5.4           | 0.01 |
| Human immunodeficiency virus infection              | 1.4             | 1.1          | 0.03           | 1.1            | 1             | (    |
| Hyperlipidemia                                      | 12.9            | 8.1          | 0.16           | 10.2           | 9.5           | 0.02 |
| Hypertensive disorder*                              | 16              | 11.3         | 0.14           | 13.1           | 12.2          | 0.03 |
| Obesity                                             | 5.1             | 4.9          | 0.01           | 4.4            | 4.1           | 0.02 |
| Osteoarthritis                                      | 7.3             | 4.7          | 0.11           | 5.8            | 5.3           | 0.02 |
| Renal impairment**                                  | 3.7             | 3            | 0.04           | 2.9            | 2.7           | 0.0  |
| Cerebrovascular disease                             | 1.7             | 1.4          | 0.02           | 1.5            | 1.4           | 0.0  |
| Heart disease***                                    | 8.6             | 7.1          | 0.06           | 7.5            | 7.1           | 0.0  |
| Malignant neoplastic disease                        | 5.3             | 4.5          | 0.04           | 4.7            | 4.3           | 0.0  |
| Charlson comorbidity index, mean (SD)               | 1.75 (3.18)     | 1.69 (3.09)  | -0.01          | 1.70 (3.11)    | 1.63 (3.03)   | -0.0 |
| Influenza vaccination within a year prior           | 10.9            | 7.9          | 0.10           | 7.5            | 6.9           | 0.0  |
| Moderna COVID-19 vaccine                            |                 | 0.           |                |                |               |      |
| Patients, n                                         | 52,728          | 148,795      |                | 50,517         | 50,517        |      |
| Follow-up, days. Median (IQR)                       | 127 (102 – 153) | 123 (99-153) | $\mathbf{O}$ . | 126 (101- 153) | 126 (102-153) |      |
| COVID-19 diagnosis or positive COVID-<br>19 test, n |                 |              | 5              | 382            | 786           |      |
| Positive COVID-19 test, n                           |                 |              |                | 94             | 447           |      |
| Age group, %                                        |                 |              |                |                |               |      |
| 10-19                                               | 0.5             | 1.7          | -0.12          | 0.5            | 0.4           | 0.0  |
| 20-49                                               | 35.7            | 45.7         | -0.20          | 36.9           | 37.4          | -0.0 |
| 50-64                                               | 21.2            | 23.3         | -0.05          | 21.7           | 21.4          | 0.0  |
| 65-74                                               | 21.3            | 14.4         | 0.18           | 20.6           | 20.5          | 0.0  |
| 75-84                                               | 15.4            | 10           | 0.16           | 14.6           | 14.6          | 0.0  |
| >84                                                 | 5.8             | 4.8          | 0.04           | 5.6            | 5.6           | 0.0  |
| Gender, %                                           |                 |              |                | t              | I             |      |
| Female                                              | 64.4            | 58.7         | 0.12           | 64.2           | 64.7          | -0.0 |

| race = Asian                                        | 4.2         | 2.8         | 0.07  | 4.2         | 4.4         | -( |
|-----------------------------------------------------|-------------|-------------|-------|-------------|-------------|----|
| race = Black or African American                    | 8.7         | 14.2        | -0.17 | 9           | 8.4         | (  |
| race = White                                        | 48.3        | 34.4        | 0.29  | 46.9        | 47.9        | -( |
| Medical history, %                                  |             |             |       |             |             |    |
| Chronic liver disease                               | 0.5         | 0.6         | -0.02 | 0.5         | 0.5         |    |
| Chronic obstructive lung disease                    | 1.4         | 1.1         | 0.02  | 1.2         | 1.2         |    |
| Dementia                                            | 1           | 1.2         | -0.02 | 1           | 0.9         | (  |
| Depressive disorder                                 | 4.7         | 3.9         | 0.04  | 4.2         | 4           | (  |
| Diabetes mellitus                                   | 6.6         | 5.6         | 0.04  | 6.2         | 5.8         | (  |
| Human immunodeficiency virus infection              | 0.9         | 1.2         | -0.03 | 0.8         | 0.8         |    |
| Hyperlipidemia                                      | 14.9        | 8.9         | 0.19  | 13          | 12.6        | (  |
| Hypertensive disorder                               | 16          | 12.4        | 0.1   | 14.7        | 13.9        | (  |
| Obesity                                             | 4           | 4.4         | -0.02 | 3.8         | 3.6         | (  |
| Osteoarthritis                                      | 7.7         | 5.3         | 0.1   | 6.8         | 6.5         | (  |
| Renal impairment                                    | 3.5         | 3.3         | 0.01  | 3.3         | 3           | (  |
| Cerebrovascular disease                             | 2.2         | 1.6         | 0.05  | 2           | 1.8         | (  |
| Heart disease                                       | 10.1        | 7.6         | 0.09  | 9.2         | 8.7         | (  |
| Malignant neoplastic disease                        | 6.5         | 5           | 0.07  | 5.9         | 5.5         | (  |
| Charlson comorbidity index, mean (SD)               | 1.62 (2.81) | 1.62 (3.00) | 0.00  | 1.59 (2.80) | 1.59 (2.99) | (  |
| Influenza vaccination within a year prior           | 8.4         | 6.3         | 0.08  | 7.2         | 6.8         | (  |
| Janssen COVID-19 vaccine                            |             |             |       |             |             |    |
| Patients, n                                         | 5,167       | 52,643      |       | 5,031       | 5,031       |    |
| Follow-up, days. Median (IQR)                       | 79 (72-95)  | 79 (72-95)  |       | 79 (72-95)  | 79 (72-95)  |    |
| COVID-19 diagnosis or positive COVID-<br>19 test, n |             |             |       | 31          | 37          |    |
| Positive COVID-19 test, n                           |             |             |       | 8           | 16          |    |

| Page | 24 | of | 40 |
|------|----|----|----|
|------|----|----|----|

| 10-19                                  | 0.8         | 0.8         | 0.00  | 0.8         | 0.8         | 0.0  |
|----------------------------------------|-------------|-------------|-------|-------------|-------------|------|
| 20-49                                  | 43.9        | 43          | 0.00  | 44.2        | 43.9        | 0.0  |
| 50-64                                  | 31.7        | 31.7        | 0.02  | 31.8        | 31.3        | 0.0  |
| 65-74                                  | 11.6        | 12.2        | -0.02 | 11.5        | 12          | -0.0 |
| 75-84                                  | 7.6         | 7.9         | -0.02 | 7.2         | 7.9         | -0.0 |
| >84                                    | 4.3         | 4.3         | 0.00  | 4.2         | 4           | 0.0  |
| Gender, %                              | 1.5         | 1.5         | 0.00  | 1.2         | • ]         | 0.0  |
| Female                                 | 63.4        | 63.2        | 0.01  | 63.5        | 61.1        | 0.0  |
| Race, %                                |             |             |       | 1           |             |      |
| race = Asian                           | 3.6         | 1.7         | 0.12  | 3.7         | 3.6         | 0.0  |
| race = Black or African American       | 15.9        | 15.5        | 0.01  | 15.7        | 15.5        |      |
| race = White                           | 37.4        | 35.7        | 0.03  | 37.4        | 37.5        |      |
| Medical history, %                     |             | 6           |       |             |             |      |
| Chronic liver disease                  | 1.1         | 0.7         | 0.05  | 1           | 1.2         | -0.0 |
| Chronic obstructive lung disease       | 2.4         | 1.3         | 0.09  | 2           | 2.2         | -0.0 |
| Dementia                               | 2.6         | 1.1         | 0.11  | 2.2         | 2.2         |      |
| Depressive disorder                    | 8           | 4.8         | 0.13  | 7.1         | 8           | -0.0 |
| Diabetes mellitus                      | 10.3        | 6.2         | 0.15  | 9.5         | 10.2        | -0.0 |
| Human immunodeficiency virus infection | 1.7         | 1.4         | 0.02  | 1.6         | 1.8         | -0.0 |
| Hyperlipidemia                         | 14.3        | 10.2        | 0.13  | 13.4        | 14.3        | -0.0 |
| Hypertensive disorder                  | 21.4        | 13.8        | 0.2   | 20.1        | 21.7        | -0.0 |
| Obesity                                | 7.3         | 5.9         | 0.06  | 6.8         | 7.8         | -0.0 |
| Osteoarthritis                         | 8.4         | 6.2         | 0.08  | 7.8         | 8.8         | -0.0 |
| Renal impairment                       | 6.6         | 3.3         | 0.15  | 5.3         | 5.9         | -0.0 |
| Cerebrovascular disease                | 2.7         | 1.7         | 0.07  | 2.3         | 2.4         | -0.0 |
| Heart disease                          | 11.8        | 8           | 0.13  | 10.3        | 11.7        | -0.0 |
| Malignant neoplastic disease           | 5           | 4.9         | 0     | 4.8         | 5.2         | -0.0 |
| Charlson comorbidity index, mean (SD)  | 1.84 (3.34) | 1.55 (2.96) | -0.07 | 1.56 (3.04) | 1.43 (2.79) | -0.0 |

Page 25 of 40

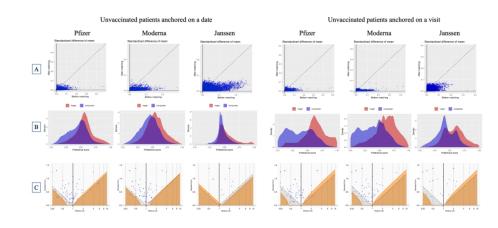
1

**BMJ** Open

| ว                          |  |
|----------------------------|--|
| 2                          |  |
| 3                          |  |
| 4                          |  |
| 5                          |  |
| 6                          |  |
| 5<br>6<br>7                |  |
| /                          |  |
| 8                          |  |
| 9                          |  |
| 9<br>10                    |  |
| 11                         |  |
| 11                         |  |
| 12                         |  |
| 13                         |  |
| 14                         |  |
| 15                         |  |
| 10                         |  |
| 16                         |  |
| 13<br>14<br>15<br>16<br>17 |  |
| 18                         |  |
| 19                         |  |
|                            |  |
| 20                         |  |
| 21                         |  |
| 21<br>22<br>23<br>24       |  |
| 23                         |  |
| 24                         |  |
| 25                         |  |
| 25                         |  |
| 26                         |  |
| 27                         |  |
| 28                         |  |
| 29                         |  |
| 20                         |  |
| 30                         |  |
| 31                         |  |
| 32                         |  |
| 33                         |  |
| 30<br>31<br>32<br>33<br>34 |  |
| 35                         |  |
| 22                         |  |
| 36                         |  |
| 37                         |  |
| 38                         |  |
| 39                         |  |
|                            |  |
| 40                         |  |
| 41                         |  |
| 42                         |  |
| 43                         |  |
| 44                         |  |
|                            |  |
| 45                         |  |
| 46                         |  |
| 17                         |  |

47

| Influenza vaccination within a year prior | 12.5 | 8.0 | 0.15 | 10.1 | 11.4 | -0.04 |
|-------------------------------------------|------|-----|------|------|------|-------|
|-------------------------------------------|------|-----|------|------|------|-------|


\* Hypertensive disorder includes primary and secondary hypertension

\*\* Renal impairment includes acute and chronic renal failure (prerenal and renal);

\*\*\* Heart disease includes cardiac arrythmias, heart valve disorders, coronary arteriosclerosis, heart failure, cardiomyopathies, etc.

.ic rena .

| 1                          |                                                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------|
| 2                          |                                                                                                    |
| 3                          |                                                                                                    |
| 4                          |                                                                                                    |
| 5<br>6                     |                                                                                                    |
|                            |                                                                                                    |
| 7                          |                                                                                                    |
| 8                          |                                                                                                    |
| 9                          |                                                                                                    |
| 10                         | 30000 COVID-19 vaccine                                                                             |
| 11                         | Janssen                                                                                            |
| 12                         | Moderna Pfizer                                                                                     |
| 13                         |                                                                                                    |
| 14                         |                                                                                                    |
| 15                         | e e e e e e e e e e e e e e e e e e e                                                              |
| 16                         |                                                                                                    |
| 17                         |                                                                                                    |
| 18                         |                                                                                                    |
| 19<br>20                   |                                                                                                    |
| 20<br>21                   |                                                                                                    |
| 21                         |                                                                                                    |
| 22                         | 12 1 2 3 4 5 6<br>Month                                                                            |
| 23<br>24                   |                                                                                                    |
| 24                         | Distribution of vaccination month for COVID-19 vaccines. Black dots represent the number of incide |
| 26                         | COVID-19 cases (defined as a positive test) in each month.                                         |
|                            |                                                                                                    |
| <u>28</u>                  | 338x190mm (144 x 144 DPI)                                                                          |
| 29                         |                                                                                                    |
| 30                         |                                                                                                    |
| 31                         |                                                                                                    |
| 32                         |                                                                                                    |
| 33                         |                                                                                                    |
| 34                         |                                                                                                    |
| 35                         |                                                                                                    |
| 36                         |                                                                                                    |
| 37                         |                                                                                                    |
| 38                         |                                                                                                    |
| 39                         |                                                                                                    |
| 40<br>41                   |                                                                                                    |
| + I<br>12                  |                                                                                                    |
| +2<br>13                   |                                                                                                    |
| +5<br>14                   |                                                                                                    |
| 14<br>15                   |                                                                                                    |
| 45<br>16                   |                                                                                                    |
| 47                         |                                                                                                    |
| 48                         |                                                                                                    |
| 19                         |                                                                                                    |
| 50                         |                                                                                                    |
| 51                         |                                                                                                    |
| 52                         |                                                                                                    |
| 2                          |                                                                                                    |
| 53                         |                                                                                                    |
| 53                         |                                                                                                    |
| 53<br>54<br>55             |                                                                                                    |
| 53<br>54<br>55             |                                                                                                    |
| 53<br>54<br>55<br>56       |                                                                                                    |
| 53<br>54<br>55<br>56<br>57 |                                                                                                    |
| 53<br>54                   | For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml                          |



Diagnostics for the absolute effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and (C) effect of negative control calibration displaying effect estimate and standard error.

In (A), each dot represents the standardized difference of the means for a single covariate before and after stratification on the propensity score.

In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05and the orange area indicates estimates with calibrated p<0.05.

625x313mm (78 x 78 DPI)

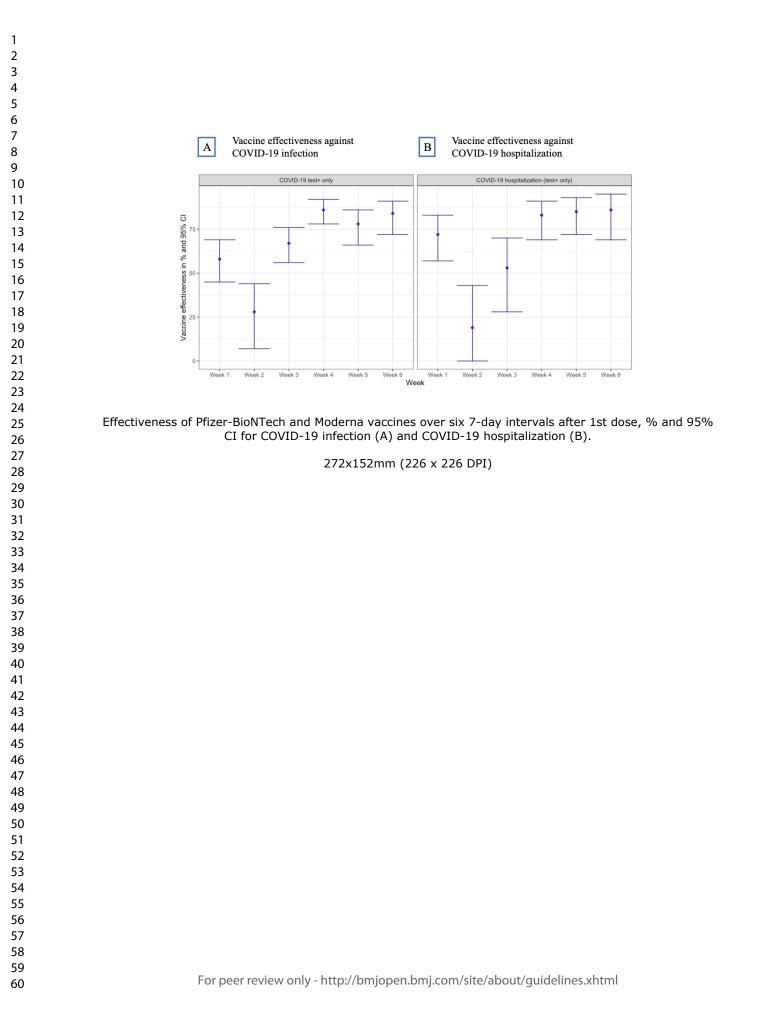
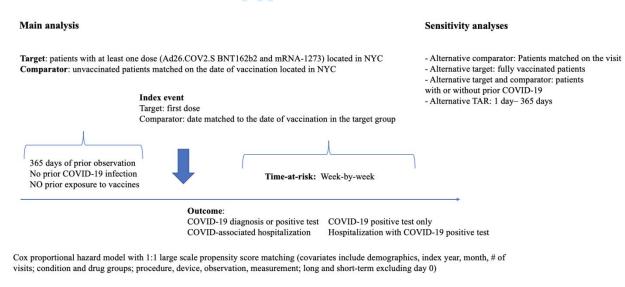





Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week one, vaccinated and unvaccinated patients.


272x152mm (226 x 226 DPI)

## Supplementary materials

## Appendix 1. Data source description

The Columbia University Irving Medical Center (CUIMC) database comprises electronic health records on more than 6 million patients, with data collection starting in 1985. CUIMC is a Northeast US quaternary care center with primary care practices in northern Manhattan and surrounding areas, and the database includes inpatient and outpatient care. The database currently holds information about the person (demographics), visits (inpatient and outpatient), conditions (billing diagnoses and problem lists), drugs (outpatient prescriptions and inpatient orders and administrations), devices, measurements (laboratory tests and vital signs), and other observations (symptoms). The data sources include current and previous electronic health record systems (homegrown Clinical Information System, homegrown WebCIS, Allscripts Sunrise Clinical Manager, Allscripts TouchWorks, Epic Systems), and ancillary systems (homegrown LIS, Sunquest, Cerner Laboratory). Additionally, it contains the information on vaccination from New York City and State immunization registries.

## Appendix 2. Retrospective cohort COVID-19 vaccine effectiveness study design overview.



**Appendix 3.** Cohort definitions and codes for the absolute COVID-19 vaccine effectiveness study

**3.1** Cohort definitions for target comparator and outcome cohorts for studying absolute effectiveness of COVID-19 vaccines.

|                | Definition and link to the public repository                                                                                                         |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Target cohorts | Target cohorts were defined as patients with at least one dose of the                                                                                |  |  |
|                | corresponding vaccine (Pfizer BioNTech, Moderna, Janssen)                                                                                            |  |  |
|                | Index event: first exposure to the corresponding vaccine                                                                                             |  |  |
|                | Inclusion and exclusion criteria:                                                                                                                    |  |  |
|                | - 365 days of prior observation                                                                                                                      |  |  |
|                | - no other COVID-19 vaccine exposure in 120 days prior and 120 days after the index date                                                             |  |  |
|                | - no prior COVID-19 infection (diagnosis code of COVID-19 or positive                                                                                |  |  |
|                | test)<br>- residence in New York City determined by the zip code recorded                                                                            |  |  |
|                | - residence in New Tork City determined by the zip code recorded                                                                                     |  |  |
|                | For the analysis on fully vaccinated patients, we applied the same criteria<br>and required patients to have a) the second dose of Pfizer or Moderna |  |  |
|                | vaccine (if applicable) within 14 to 56 days after the first dose b) at least                                                                        |  |  |
|                | 14 days of observation after the second dose (one dose of Janssen).                                                                                  |  |  |
|                | 14 days of observation after the second dose (one dose of sanssen).                                                                                  |  |  |
|                | Links:                                                                                                                                               |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/498                                                                                                       |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/494                                                                                                       |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/497                                                                                                       |  |  |
|                |                                                                                                                                                      |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/418                                                                                                       |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/417                                                                                                       |  |  |
|                | https://atlas.ohdsi.org/#/cohortdefinition/420                                                                                                       |  |  |
| Comparator     | Comparator cohorts were created separately for each target cohort by                                                                                 |  |  |
| cohorts        | selecting patients with no COVID-19 vaccination in their record (any                                                                                 |  |  |
|                | vaccine), 365 days of prior observation and New York City residence. The                                                                             |  |  |
|                | patients were matched on the index date of one of the target group                                                                                   |  |  |
|                | participants for the comparator anchored on a date and on the date of a                                                                              |  |  |
|                | healthcare encounter within 3-day corridor for the comparator anchored of a visit.                                                                   |  |  |

| Outcome cohorts | For the main analysis COVID-19 infection was defined as a COVID-19<br>test with the result 'Positive' or 'Detected'.<br>COVID-19 associated hospitalization was defined as an inpatient,<br>emergency department or intensive care unit admission with a positive<br>COVID-19 test recorded within 30 days prior or during hospitalization.<br>For a sensitivity analysis we applied the abovementioned criteria with<br>adding COVID-19 diagnosis as an alternative for positive COVID-19 test. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Links:<br><u>https://atlas.ohdsi.org/#/cohortdefinition/425</u><br><u>https://atlas.ohdsi.org/#/cohortdefinition/422</u>                                                                                                                                                                                                                                                                                                                                                                         |

**3.2** Codes used in the study.

#### 1. Pfizer vaccine:

RxNorm 2468235 SARS-CoV-2 (COVID-19) vaccine, mRNA-BNT162b2 0.1 MG/ML Injectable Suspension

#### 2. Moderna vaccine:

RxNorm 2470234 SARS-CoV-2 (COVID-19) vaccine, mRNA-1273 0.2 MG/ML Injectable Suspension

#### 3. Janssen vaccine:

CVX 212 SARS-COV-2 (COVID-19) vaccine, vector non-replicating, recombinant spike protein-Ad26, preservative free, 0.5 mL

### 4. COVID-19 diagnosis:

ICD10-CM U07.1 Emergency use of U07.1 | COVID-19

### 5. COVID-19 test:

LOINC 94500-6 SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with probe detection

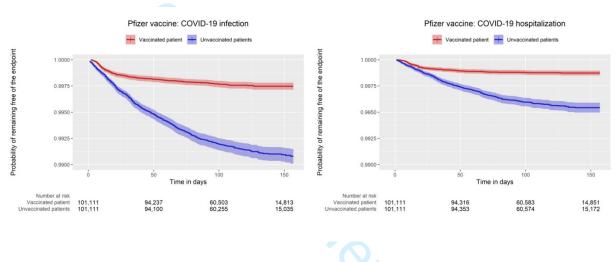
LOINC 94558-4 SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid immunoassay

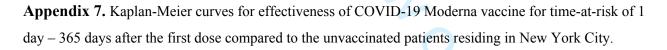
| SNOMED concept id | SNOMED concept name                                       |
|-------------------|-----------------------------------------------------------|
| 438945            | Accidental poisoning by benzodiazepine-based tranquilizer |
| 434455            | Acquired claw toes                                        |
| 316211            | Acquired spondylolisthesis                                |
| 201612            | Alcoholic liver damage                                    |
| 438730            | Alkalosis                                                 |
| 441258            | Anemia in neoplastic disease                              |
| 432513            | Animal bite wound                                         |
| 4171556           | Ankle ulcer                                               |
| 4098292           | Antiphospholipid syndrome                                 |
| 77650             | Aseptic necrosis of bone                                  |
| 4239873           | Benign neoplasm of ciliary body                           |
| 23731             | Benign neoplasm of larynx                                 |
| 199764            | Benign neoplasm of ovary                                  |
| 195500            | Benign neoplasm of uterus                                 |
| 4145627           | Biliary calculus                                          |
| 4108471           | Burn of digit of hand                                     |
| 75121             | Burn of lower leg                                         |
| 4284982           | Calculus of bile duct without obstruction                 |
| 434327            | Cannabis abuse                                            |
| 78497             | Cellulitis and abscess of toe                             |
| 4001454           | Cervical spine ankylosis                                  |
| 4068241           | Chronic instability of knee                               |
| 195596            | Chronic pancreatitis                                      |
| 4206338           | Chronic salpingitis                                       |
| 4058397           | Claustrophobia                                            |
| 74816             | Contusion of toe                                          |
| 73302             | Curvature of spine                                        |
| 4151134           | Cyst of pancreas                                          |
| 77638             | Displacement of intervertebral disc without myelopathy    |
| 195864            | Diverticulum of bladder                                   |
| 201346            | Edema of penis                                            |
| 200461            | Endometriosis of uterus                                   |
| 377877            | Esotropia                                                 |
| 193530            | Follicular cyst of ovary                                  |
| 4094822           | Foreign body in respiratory tract                         |
| 443421            | Gallbladder and bile duct calculi                         |

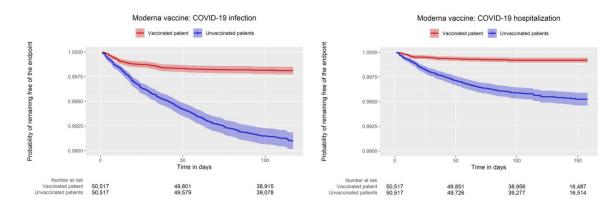
| 4299408  | Gouty tophus                                    |
|----------|-------------------------------------------------|
| 135215   | Hashimoto thyroiditis                           |
| 442190   | Hemorrhage of colon                             |
| 43020475 | High risk heterosexual behavior                 |
| 194149   | Hirschsprung's disease                          |
| 443204   | Human ehrlichiosis                              |
| 4226238  | Hyperosmolar coma due to diabetes mellitus      |
| 4032787  | Hyperosmolarity                                 |
| 197032   | Hyperplasia of prostate                         |
| 140362   | Hypoparathyroidism                              |
| 435371   | Hypothermia                                     |
| 138690   | Infestation by Pediculus                        |
| 4152376  | Intentional self poisoning                      |
| 192953   | Intestinal adhesions with obstruction           |
| 196347   | Intestinal parasitism                           |
| 137977   | Jaundice                                        |
| 317510   | Leukemia                                        |
| 765053   | Lump in right breast                            |
| 378165   | Nystagmus                                       |
| 434085   | Obstruction of duodenum                         |
| 4147016  | Open wound of buttock                           |
| 4129404  | Open wound of upper arm                         |
| 438120   | Opioid dependence                               |
| 75924    | Osteodystrophy                                  |
| 432594   | Osteomalacia                                    |
| 30365    | Panhypopituitarism                              |
| 4108371  | Peripheral gangrene                             |
| 440367   | Plasmacytosis                                   |
| 439233   | Poisoning by antidiabetic agent                 |
| 442149   | Poisoning by bee sting                          |
| 4314086  | Poisoning due to sting of ant                   |
| 4147660  | Postural kyphosis                               |
| 434319   | Premature ejaculation                           |
| 199754   | Primary malignant neoplasm of pancreas          |
| 4311499  | Primary malignant neoplasm of respiratory tract |
| 436635   | Primary malignant neoplasm of sigmoid colon     |
| 196044   | Primary malignant neoplasm of stomach           |
| 433716   | Primary malignant neoplasm of testis            |
| 133424   | Primary malignant neoplasm of thyroid gland     |

| 1<br>2<br>3          |  |
|----------------------|--|
| 4<br>5<br>6          |  |
| 7<br>8<br>9<br>10    |  |
| 10<br>11<br>12<br>13 |  |
| 14<br>15<br>16<br>17 |  |
| 17<br>18<br>19<br>20 |  |
| 21<br>22<br>23       |  |
| 24<br>25<br>26<br>27 |  |
| 28<br>29<br>30       |  |
| 31<br>32<br>33<br>34 |  |
| 35<br>36<br>37       |  |
| 38<br>39<br>40<br>41 |  |
| 42<br>43<br>44       |  |
| 45<br>46<br>47<br>48 |  |
| 49<br>50<br>51       |  |
| 52<br>53<br>54<br>55 |  |
| 56<br>57<br>58       |  |
| 59<br>60             |  |

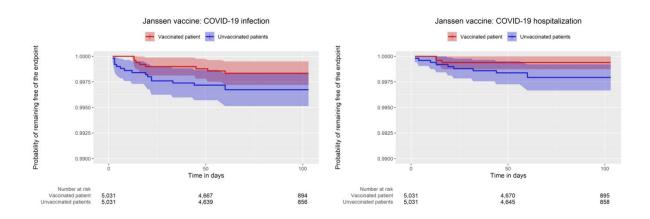
| 194997   | Prostatitis                                         |
|----------|-----------------------------------------------------|
| 80286    | Prosthetic joint loosening                          |
| 443274   | Psychostimulant dependence                          |
| 314962   | Raynaud's disease                                   |
| 37018294 | Residual osteitis                                   |
| 4288241  | Salmonella enterica subspecies arizonae infection   |
| 45757269 | Sclerosing mesenteritis                             |
| 74722    | Secondary localized osteoarthrosis of pelvic region |
| 200348   | Secondary malignant neoplasm of large intestine     |
| 43020446 | Sedative withdrawal                                 |
| 74194    | Sprain of spinal ligament                           |
| 4194207  | Tailor's bunion                                     |
| 193521   | Tropical sprue                                      |
| 40482801 | Type II diabetes mellitus uncontrolled              |
| 74719    | Ulcer of foot                                       |
| 196625   | Viral hepatitis A without hepatic coma              |
| 197494   | Viral hepatitis C                                   |
| 4284533  | Vitamin D-dependent rickets                         |


Link to the original list of negative controls used in EUMAEUS study: <u>https://ohdsi-studies.github.io/Eumaeus/Protocol.html#8\_Research\_Methods</u>


**Appendix 5.** Summary of manual chart review of COVID-19 infection cases during week 1 after the index date, patients vaccinated with mRNA vaccines and unvaccinated patients.


|                                                          | Pfizer-<br>BioNTech | Moderna          | Pfizer-<br>BioNTech and<br>Moderna | Unvaccinated patients |
|----------------------------------------------------------|---------------------|------------------|------------------------------------|-----------------------|
| Total                                                    | 36                  | 25               | 61                                 | 28                    |
| Average age                                              | 65                  | 67.8             | 65.8                               | 58                    |
| COVID-19 symptom                                         | oms                 |                  |                                    |                       |
| Severe                                                   | 14 (39%)            | 7 (28%)          | 21 (34%)                           | 6 (21%)               |
| Mild                                                     | 18 (50%)            | 11 (44%)         | 29 (48%)                           | 11 (39%)              |
| Asymptomatic                                             | 2 (6%)              | 7 (28%)          | 9 (15%)                            | 11 (39%)              |
| <b>Reason</b> for comin                                  | g for initial heal  | thcare encounter |                                    | · · · ·               |
| COVID-19<br>symptoms                                     | 17 (47%)            | 8 (32%)          | 25 (41%)                           | 18 (64%)              |
| Exposure to<br>COVID-19                                  | 3 (8%)              | 4 (16%)          | 7 (11%)                            | 5 (18%)               |
| For other reason<br>(co-morbidities,<br>procedures etc.) | 13 (36%)            | 11 (44%)         | 24 (39%)                           | 6 (21%)               |

| Type of initial healthcare encounter |          |          |          |          |  |  |  |
|--------------------------------------|----------|----------|----------|----------|--|--|--|
| Telehealth/phone                     | 5 (14%)  | 6 (24%)  | 11 (18%) | 3 (11%)  |  |  |  |
| Test only                            | 3 (8%)   | 2 (8%)   | 5 (8%)   | 6 (21%)  |  |  |  |
| OP                                   | 4 (11%)  | 3 (12%)  | 7 (11%)  | 1 (4%)   |  |  |  |
| ED or IP                             | 24 (67%) | 14 (56%) | 38 (62%) | 18 (64%) |  |  |  |


**Appendix 6.** Kaplan-Meier curves for effectiveness of COVID-19 Pfizer-BioNTech vaccine for time-atrisk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.



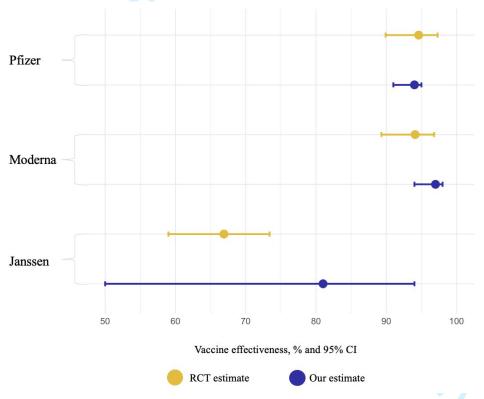




**Appendix 8.** Kaplan-Meier curves for effectiveness of COVID-19 Janssen vaccine for time-at-risk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.



**Appendix 9.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.


|          | COVID-1   | 9      | COVID-19    |        | COVID-19     | )                          | COVID-19      |        |
|----------|-----------|--------|-------------|--------|--------------|----------------------------|---------------|--------|
|          | infection |        | hospitaliza | tion   | positive tes | st only positive test only |               | only   |
|          |           |        |             |        | •            |                            | hospitalizati | on     |
|          | VE (95%   | P-     | VE (95%     | P-     | VE (95%      | P-                         | VE (95%       | P-     |
|          | CI), %    | value  | CI), %      | value  | CI), %       | value                      | CI), %        | value  |
| Pfizer-  | 42 (37 –  | < 0.01 | 63 (56-     | < 0.01 | 71 (66 -     | < 0.01                     | 69 (62 - 75)  | < 0.01 |
| BioNTech | 47)       |        | 70)         |        | 75)          |                            |               |        |
| Moderna  | 54 (48 –  | < 0.01 | 76 (69 –    | < 0.01 | 78 (73 –     | < 0.01                     | 81 (74 –      | < 0.01 |
|          | 60)       |        | 82)         |        | 83)          | 6.                         | 87)           |        |
| Janssen  | 24 (0-55) | 0.31   | 64 (0.1 –   | 0.09   | 53 (0 –      | 0.1                        | 70 (2 - 93)   | 0.08   |
|          |           |        | 1.06)       |        | 82)          |                            |               |        |

**Appendix 10.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after full vaccination in fully vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

| COVID-1<br>positive te<br>only |       | COVID-19<br>positive tes<br>hospitaliza | st only | COVID-19<br>infection | )     | COVID-19<br>hospitalizati | on    |
|--------------------------------|-------|-----------------------------------------|---------|-----------------------|-------|---------------------------|-------|
| VE (95%                        | Р-    | VE (95%                                 | Р-      | VE (95%               | Р-    | VE (95%                   | P-    |
| CI), %                         | value | CI), %                                  | value   | CI), %                | value | CI), %                    | value |

| Pfizer-  | 94 (91- | < 0.01 | 95 (92- | < 0.01 | 70 (66-  | < 0.01 | 88 (84-92) | < 0.01 |
|----------|---------|--------|---------|--------|----------|--------|------------|--------|
| BioNTech | 95)     |        | 97)     |        | 74)      |        |            |        |
| Moderna  | 97 (94- | < 0.01 | 96 (92- | < 0.01 | 72 (66 – | < 0.01 | 92 (87-95) | < 0.01 |
|          | 98)     |        | 99)     |        | 77)      |        |            |        |
| Janssen  | 81 (50- | < 0.01 | 92 (58- | 0.03   | 55 (23 – | 0.01   | 87 (56-98) | 0.01   |
|          | 94)     |        | 100)    |        | 75)      |        |            |        |

**Appendix 11.** Comparison of the absolute effectiveness estimates in fully vaccinated patients obtained in our study and those from the randomized clinical trials of the corresponding vaccines.



**Appendix 12.** Estimates for absolute effectiveness of COVID-19 vaccines for time-at-risk of 1 day - 365 days after the first dose in the vaccinated patients with or without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

| COVID-1<br>infection | 9  | COVID-19<br>hospitaliza |       | COVID-19<br>positive te |       | COVID-19<br>positive test<br>hospitalizat | •     |
|----------------------|----|-------------------------|-------|-------------------------|-------|-------------------------------------------|-------|
| VE                   | P- | VE (95%                 | P-    | VE (95%                 | P-    | VE (95%                                   | P-    |
| (95% value           |    | CI), %                  | value | CI), %                  | value | CI), %                                    | value |
| CI), %               |    |                         |       |                         |       |                                           |       |

| Pfizer-  | 43 (38- |        | 64 (57-   |        | 71 (66-   |        |            |        |
|----------|---------|--------|-----------|--------|-----------|--------|------------|--------|
| BioNTech | 48)     | < 0.01 | 70)       | < 0.01 | 75)       | < 0.01 | 71(64-76)  | < 0.01 |
|          | 51 (45- |        | 71 (63-   |        | 76 (71-   |        |            |        |
| Moderna  | 57)     | < 0.01 | 78)       | < 0.01 | 81)       | < 0.01 | 81 (73-86) | < 0.01 |
|          | 15 (0-  |        |           |        |           |        |            |        |
| Janssen  | 49)     | 0.52   | 60 (2-86) | 0.06   | 45 (0-75) | 0.12   | 63 (0-90)  | 0.09   |

|          |         |        | E         | 3MJ Open |           |        |            |       |
|----------|---------|--------|-----------|----------|-----------|--------|------------|-------|
|          |         |        |           |          |           |        |            |       |
| Pfizer-  | 43 (38- |        | 64 (57-   |          | 71 (66-   |        |            |       |
| BioNTech | 48)     | < 0.01 | 70)       | < 0.01   | 75)       | < 0.01 | 71(64-76)  | <0.0  |
|          | 51 (45- |        | 71 (63-   |          | 76 (71-   |        |            |       |
| Moderna  | 57)     | < 0.01 | 78)       | < 0.01   | 81)       | < 0.01 | 81 (73-86) | < 0.0 |
|          | 15 (0-  |        |           |          |           |        |            |       |
| Janssen  | 49)     | 0.52   | 60 (2-86) | 0.06     | 45 (0-75) | 0.12   | 63 (0-90)  | 0.09  |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |
|          |         |        |           |          |           |        |            |       |

### STROBE Statement—Checklist of items that should be included in reports of cohort studies

|                        | Item<br>No | Recommendation                                                                       | Page<br>No |
|------------------------|------------|--------------------------------------------------------------------------------------|------------|
| Title and abstract     | 1          | (a) Indicate the study's design with a commonly used term in the title or the        | 2          |
|                        |            | abstract                                                                             |            |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what was          | 2          |
|                        |            | done and what was found                                                              |            |
| Introduction           |            |                                                                                      |            |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported | 4          |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                     | 5          |
| Methods                |            |                                                                                      | ·          |
| Study design           | 4          | Present key elements of study design early in the paper                              | 5          |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of            | 5,6        |
| 6                      | ľ C        | recruitment, exposure, follow-up, and data collection                                |            |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection of       | 5          |
|                        |            | participants. Describe methods of follow-up                                          |            |
|                        |            | (b) For matched studies, give matching criteria and number of exposed and            |            |
|                        |            | unexposed                                                                            |            |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential confounders, and       | 5-7        |
|                        | ,          | effect modifiers. Give diagnostic criteria, if applicable                            |            |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods of        | 5          |
| measurement            | 0          | assessment (measurement). Describe comparability of assessment methods if            |            |
|                        |            | there is more than one group                                                         |            |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                            | 6-7        |
| Study size             | 10         | Explain how the study size was arrived at                                            | 5          |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If applicable,      | 6-7        |
|                        |            | describe which groupings were chosen and why                                         |            |
| Statistical methods    | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for   | 6-7        |
|                        |            | confounding                                                                          |            |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                  | 6-7        |
|                        |            | (c) Explain how missing data were addressed                                          | -          |
|                        |            | (d) If applicable, explain how loss to follow-up was addressed                       | NA         |
|                        |            | ( <i>e</i> ) Describe any sensitivity analyses                                       | 6-7        |
| D                      |            | (E) Describe any sensitivity analyses                                                |            |
| Results                | 12*        | (a) Report numbers of individuals at each stage of study—eg numbers potentially      | 7          |
| Participants           | 13*        |                                                                                      | ĺ ′        |
|                        |            | eligible, examined for eligibility, confirmed eligible, included in the study,       |            |
|                        |            | completing follow-up, and analysed                                                   |            |
|                        |            | (b) Give reasons for non-participation at each stage                                 |            |
|                        | 1 4 4      | (c) Consider use of a flow diagram                                                   | 8,         |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical, social)    | 8,<br>18-  |
|                        |            | and information on exposures and potential confounders                               | 20         |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest  |            |
|                        |            | (c) Summarise follow-up time (eg, average and total amount)                          | 8, 18      |
| Outcome data           | 15*        | Report numbers of outcome events or summary measures over time                       | 8          |

| Main results      | 16 | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates<br>and their precision (eg, 95% confidence interval). Make clear which confounders<br>were adjusted for and why they were included | 8,<br>supplementar<br>materials |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                   |    | (b) Report category boundaries when continuous variables were categorized                                                                                                                                                   |                                 |
|                   |    | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                                   |                                 |
| Other analyses    | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                              | 9                               |
| Discussion        |    |                                                                                                                                                                                                                             |                                 |
| Key results       | 18 | Summarise key results with reference to study objectives                                                                                                                                                                    | 10                              |
| Limitations       | 19 | Discuss limitations of the study, taking into account sources of potential bias or                                                                                                                                          | 12                              |
|                   |    | imprecision. Discuss both direction and magnitude of any potential bias                                                                                                                                                     |                                 |
| Interpretation    | 20 | Give a cautious overall interpretation of results considering objectives, limitations,                                                                                                                                      | 10-12                           |
|                   |    | multiplicity of analyses, results from similar studies, and other relevant evidence                                                                                                                                         | 11.10                           |
| Generalisability  | 21 | Discuss the generalisability (external validity) of the study results                                                                                                                                                       | 11-12                           |
| Other information | on |                                                                                                                                                                                                                             |                                 |
| Funding           | 22 | Give the source of funding and the role of the funders for the present study and, if                                                                                                                                        | 13                              |
|                   |    |                                                                                                                                                                                                                             | 1                               |

\*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# **BMJ Open**

## **COVID-19** vaccination effectiveness rates by week and sources of bias: a retrospective cohort study

| Journal:                             | BMJ Open                                                                                                                                                                                                                        |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-061126.R2                                                                                                                                                                                                          |
| Article Type:                        | Original research                                                                                                                                                                                                               |
| Date Submitted by the Author:        | 27-Jun-2022                                                                                                                                                                                                                     |
| Complete List of Authors:            | Ostropolets, Anna; Columbia University Medical Center, Department of<br>Biomedical Informatics<br>Hripcsak, George; Columbia University Medical Center, Department of<br>Biomedical Informatics; New York-Presbyterian Hospital |
| <b>Primary Subject<br/>Heading</b> : | Health informatics                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Epidemiology, Infectious diseases, Public health                                                                                                                                                                                |
| Keywords:                            | COVID-19, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS,<br>EPIDEMIOLOGY                                                                                                                                                  |
|                                      |                                                                                                                                                                                                                                 |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2        |        |                                                                                                           |
|----------|--------|-----------------------------------------------------------------------------------------------------------|
| 3        | 1      |                                                                                                           |
| 4<br>5   | 2      |                                                                                                           |
| 6        | 3      | COVID-19 vaccination effectiveness rates by week and sources of bias: a retrospective cohort study        |
| 7<br>8   | 4      |                                                                                                           |
| 9        | 5      | Anna Ostropolets, MD <sup>1</sup> , George Hripcsak, MD <sup>1,2</sup>                                    |
| 10<br>11 | 6      | Timme Obliciporens, The , George Thilpeoun, The                                                           |
| 12       | 7      | <sup>1</sup> Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA  |
| 13<br>14 | 8      | <sup>2</sup> Medical Informatics Services, New York-Presbyterian Hospital, New York, NY, USA;             |
| 15       | 8<br>9 | Medical molimates services, new Tork-Presbyterian Hospital, New Tork, NT, OSA,                            |
| 16<br>17 |        | Commenting of the Commentation of Colombia University India Madical                                       |
| 18       | 10     | Corresponding author: George Hripcsak, <u>gh13@cumc.columbia.edu</u> , Columbia University Irving Medical |
| 19<br>20 | 11     | Center, 622 West 168th Street, PH-20, New York, NY, USA                                                   |
| 21<br>22 | 12     |                                                                                                           |
| 22<br>23 | 13     |                                                                                                           |
| 24<br>25 | 14     |                                                                                                           |
| 26       | 15     |                                                                                                           |
| 27<br>28 | 16     |                                                                                                           |
| 28<br>29 | 17     |                                                                                                           |
| 30<br>31 | 18     | Center, 622 West 168th Street, PH-20, New York, NY, USA                                                   |
| 32       | 19     |                                                                                                           |
| 33<br>34 | 20     |                                                                                                           |
| 35       |        |                                                                                                           |
| 36<br>37 | 21     |                                                                                                           |
| 38       | 22     |                                                                                                           |
| 39<br>40 | 23     |                                                                                                           |
| 41       | 24     |                                                                                                           |
| 42<br>43 | 25     |                                                                                                           |
| 44       | 26     |                                                                                                           |
| 45<br>46 | 27     |                                                                                                           |
| 47<br>49 | 28     |                                                                                                           |
| 48<br>49 | 29     |                                                                                                           |
| 50<br>51 | 30     |                                                                                                           |
| 52       | 31     |                                                                                                           |
| 53<br>54 | 32     |                                                                                                           |
| 55       | 33     |                                                                                                           |
| 56<br>57 |        |                                                                                                           |
| 58       |        |                                                                                                           |
| 59<br>60 |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |
|          |        |                                                                                                           |

60

BMJ Open

| 2        |    |                                                                                                              |     |
|----------|----|--------------------------------------------------------------------------------------------------------------|-----|
| 3        | 34 | ABSTRACT                                                                                                     |     |
| 4<br>5   | 35 |                                                                                                              |     |
| 6<br>7   | 36 | Objective                                                                                                    |     |
| 8        | 37 | To examine COVID-19 vaccine effectiveness over six 7-day intervals after the first dose and assess           |     |
| 9<br>10  | 38 | underlying bias in observational data.                                                                       |     |
| 11       | 39 |                                                                                                              |     |
| 12<br>13 | 40 | Design and setting                                                                                           |     |
| 14<br>15 | 41 | Retrospective cohort study using Columbia University Medical Center data linked to State and City            |     |
| 16       | 42 | Immunization Registries.                                                                                     |     |
| 17<br>18 | 43 |                                                                                                              |     |
| 19       | 44 | Outcomes and measures                                                                                        |     |
| 20<br>21 | 45 | We used large-scale propensity score matching with up to 54,987 covariates, fitted Cox proportional          |     |
| 22       | 46 | hazards models and constructed Kaplan-Meier plots for two main outcomes (COVID-19 infection and              |     |
| 23<br>24 | 47 | COVID-19-associated hospitalization). We conducted manual chart review of cases in week one in both          | 1   |
| 25<br>26 | 48 | groups along with a set of secondary analyses for other index date, outcome and population choices.          |     |
| 20<br>27 | 49 |                                                                                                              |     |
| 28<br>29 | 50 | Results                                                                                                      |     |
| 30       | 51 | The study included 179,666 patients. We observed increasing effectiveness after the first dose of mRNA       | ł   |
| 31<br>32 | 52 | vaccines with week six effectiveness approximating 84% (95% CI 72-91%) for COVID-19 infection an             | d   |
| 33       | 53 | 86% (95% CI 69-95) for COVID-19-associated hospitalization. When analyzing unexpectedly high                 |     |
| 34<br>35 | 54 | effectiveness in week one, chart review revealed that vaccinated patients are less likely to seek care after | r   |
| 36<br>37 | 55 | vaccination and are more likely to be diagnosed with COVID-19 during the encounters for other                |     |
| 38       | 56 | conditions. Secondary analyses highlighted potential outcome misclassification for ICD10-CM diagnos          | is, |
| 39<br>40 | 57 | the influence of excluding patients with prior COVID-19 infection and anchoring in the unexposed grou        | ıp. |
| 41       | 58 | Overall vaccine effectiveness in fully vaccinated patients matched the results of the randomized trials.     |     |
| 42<br>43 | 59 |                                                                                                              |     |
| 44<br>45 | 60 | Conclusions                                                                                                  |     |
| 45<br>46 | 61 | For vaccine effectiveness studies, observational data need to be scrutinized to ensure compared groups       |     |
| 47<br>48 | 62 | exhibit similar health seeking behavior and are equally likely to be captured in the data. While we found    | 1   |
| 49       | 63 | that studies may be capable of accurately estimating long-term effectiveness despite bias in early weeks     | ,   |
| 50<br>51 | 64 | the early week results should be reported in every study so that we may gain a better understanding of t     | ne  |
| 52       | 65 | biases. Given the difference in temporal trends of vaccine exposure and baseline characteristics, indirec    | t   |
| 53<br>54 | 66 | comparison of vaccines may produce biased results.                                                           |     |
| 55<br>56 | 67 |                                                                                                              |     |
| 57       |    |                                                                                                              |     |
| 58<br>59 |    |                                                                                                              | 2   |

| 1                                                                                                                                                                                |                                                                                                                        |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                           | 68                                                                                                                     | Strengths and limitations of this study                                                                    |
| 4                                                                                                                                                                                | 00                                                                                                                     | Strengths and minitations of this study                                                                    |
| 5<br>6                                                                                                                                                                           | 69                                                                                                                     | - This study thoroughly investigates weekly COVID-19 vaccine effectiveness using methods to reduce         |
| 7<br>8                                                                                                                                                                           | 70                                                                                                                     | potential confounding (large-scale propensity score matching, negative control calibration) and            |
| 9<br>10                                                                                                                                                                          | 71                                                                                                                     | accompanied by manual chart review of the cases in week one                                                |
| 11<br>12                                                                                                                                                                         | 72                                                                                                                     | - The study includes a range of secondary analyses for different patient populations, anchoring strategies |
| 13<br>14                                                                                                                                                                         | 73                                                                                                                     | and outcome definitions.                                                                                   |
| 15<br>16                                                                                                                                                                         |                                                                                                                        |                                                                                                            |
| 16<br>17                                                                                                                                                                         | 74                                                                                                                     | - The study was carried out using routinely collected clinical practice data, which represents real-world  |
| 18<br>19                                                                                                                                                                         | 75                                                                                                                     | patients, but also implies a risk of misclassification.                                                    |
| 20                                                                                                                                                                               | 76                                                                                                                     | Word count: 3483                                                                                           |
| 21<br>22                                                                                                                                                                         | 77                                                                                                                     |                                                                                                            |
| 23                                                                                                                                                                               | 78                                                                                                                     | Keywords. COVID-19, Epidemiology, Health Informatics, Blas                                                 |
| 24<br>25                                                                                                                                                                         | 78<br>79                                                                                                               |                                                                                                            |
| 26                                                                                                                                                                               |                                                                                                                        |                                                                                                            |
| 27<br>28                                                                                                                                                                         | 80                                                                                                                     |                                                                                                            |
| 29                                                                                                                                                                               |                                                                                                                        |                                                                                                            |
|                                                                                                                                                                                  |                                                                                                                        |                                                                                                            |
| 32                                                                                                                                                                               |                                                                                                                        |                                                                                                            |
|                                                                                                                                                                                  | 84                                                                                                                     |                                                                                                            |
| 35                                                                                                                                                                               | 85                                                                                                                     |                                                                                                            |
|                                                                                                                                                                                  | 86                                                                                                                     |                                                                                                            |
| 38                                                                                                                                                                               | 87                                                                                                                     |                                                                                                            |
|                                                                                                                                                                                  | 88                                                                                                                     |                                                                                                            |
| 41                                                                                                                                                                               | 89                                                                                                                     |                                                                                                            |
|                                                                                                                                                                                  | 90                                                                                                                     |                                                                                                            |
| 44                                                                                                                                                                               | 91                                                                                                                     |                                                                                                            |
| 45<br>46                                                                                                                                                                         | 92                                                                                                                     |                                                                                                            |
| 47                                                                                                                                                                               | 93                                                                                                                     |                                                                                                            |
| 48<br>49                                                                                                                                                                         | 94                                                                                                                     |                                                                                                            |
| 50<br>51                                                                                                                                                                         | 95                                                                                                                     |                                                                                                            |
| 52                                                                                                                                                                               |                                                                                                                        |                                                                                                            |
| 53                                                                                                                                                                               |                                                                                                                        |                                                                                                            |
| 54<br>55                                                                                                                                                                         |                                                                                                                        |                                                                                                            |
| 56<br>57                                                                                                                                                                         | 70                                                                                                                     |                                                                                                            |
| 57<br>58                                                                                                                                                                         |                                                                                                                        |                                                                                                            |
| 59<br>60                                                                                                                                                                         |                                                                                                                        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                  |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | <ul> <li>85</li> <li>86</li> <li>87</li> <li>88</li> <li>89</li> <li>90</li> <li>91</li> <li>92</li> <li>93</li> </ul> | Keywords: COVID-19, Epidemiology, Health Informatics, Bias                                                 |

#### **BMJ** Open

| 2<br>3                           | 99  | BACKGROUND                                                                                                  |
|----------------------------------|-----|-------------------------------------------------------------------------------------------------------------|
| 4<br>5                           | 100 |                                                                                                             |
| 6                                | 101 | Randomized clinical phase-3 trials have demonstrated high efficacy for the four most commonly used          |
| 7<br>8<br>9<br>10<br>11          | 102 | COVID-19 vaccines against symptomatic COVID-19 infection, ranging from 66.9% and 70.4% for                  |
|                                  | 103 | Ad26.COV2.S (Johnson & Johnson–Janssen) and ChAdOx1 (Astrazeneca) to 94.1% and 94.6% for                    |
|                                  | 104 | BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines (1-4). Their rapid approval and                 |
| 12<br>13                         | 105 | widespread use require robust post-marketing studies that leverage large sample size, heterogeneous         |
| 14<br>15                         | 106 | populations, and longer follow-up available in observational data.                                          |
| 15<br>16                         | 107 |                                                                                                             |
| 17<br>18                         | 108 | There have been recent observational studies, which have shown effectiveness similar to the randomized      |
| 19                               | 109 | clinical trials (RCTs) across the globe, both test-negative and cohort (5–12), followed by studies across   |
| 20<br>21                         | 110 | different patient populations, variants and number of doses (13-17).                                        |
| 22                               | 111 |                                                                                                             |
| 23<br>24                         | 112 | Nevertheless, the challenges associated with the use of observational data such as incomplete data          |
| 25<br>26                         | 113 | capture, outcome misclassification and appropriate comparator sampling can undermine the results of the     |
| 27                               | 114 | studies if such biases are not accounted for (18). For COVID-19 vaccines, questions associated with         |
| 28<br>29                         | 115 | vaccine status misclassification (19), matching vaccinated and unvaccinated populations (6), addressing     |
| 30                               | 116 | disease risk factor confounding and ascertainment bias (20,21) and others were raised.                      |
| 31<br>32                         | 117 |                                                                                                             |
| 33<br>34                         | 118 | One of such questions is COVID-19 vaccine effectiveness during the first two weeks following the first      |
| 35                               | 119 | dose. Studies have shown contradicting results for Pfizer-BioNTech vaccine with effectiveness ranging       |
| 36<br>37                         | 120 | from moderate effectiveness of 52% (3) to very high effectiveness of 92.6% (22). Similarly, a recent        |
| 38                               | 121 | study showed an unexplained high effectiveness of Janssen vaccine during week one (23). Other studies       |
| 39<br>40                         | 122 | simply excluded the first week(s) from the time-at-risk (9,13,24–26). While week one lack of                |
| 41<br>42                         | 123 | effectiveness has been suggested as a metric for lack of confounding in the long-term vaccine               |
| 43                               | 124 | effectiveness studies, the reasons for high effectiveness and its impact on the validity of the conclusions |
| 44<br>45                         | 125 | regarding the overall effectiveness remain unclear (9).                                                     |
| 46                               | 126 |                                                                                                             |
| 47<br>48                         | 127 | The goal of this study was to examine COVID-19 vaccine effectiveness over six 7-day intervals after the     |
| 49<br>50<br>51<br>52<br>53<br>54 | 128 | first dose to assess underlying bias associated with the use of observational data for short-term vaccine   |
|                                  | 129 | effectiveness and its impact on long-term vaccine effectiveness estimates . We employed large-scale         |
|                                  | 130 | propensity score matching and many negative controls to reduce and assess bias and leveraged a range of     |
|                                  | 131 | secondary analyses as well as manual review of the COVID-19 infection cases in week one to examine          |
| 55<br>56<br>57<br>58             | 132 | health-seeking behavior of vaccinated and unvaccinated patients.                                            |
| 59<br>60                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |

| 1        |     |                                                                                                              |
|----------|-----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 100 |                                                                                                              |
| 4        | 133 |                                                                                                              |
| 5<br>6   | 134 | METHODS                                                                                                      |
| 7        | 135 |                                                                                                              |
| 8<br>9   | 136 | Main design                                                                                                  |
| 10       | 137 |                                                                                                              |
| 11<br>12 | 138 | For this retrospective observational cohort study, we used electronic health records from the Columbia       |
| 13       | 139 | University Irving Medical Center (CUIMC) database (Appendix 1), which has an ongoing automated               |
| 14<br>15 | 140 | connection to New York City and State public health department vaccine registries and includes all           |
| 16       | 141 | within-state vaccinations for our population. The data were translated to the OMOP Common Data Model         |
| 17<br>18 | 142 | version 5 as was used in multiple studies (27).                                                              |
| 19       | 143 |                                                                                                              |
| 20<br>21 | 144 | For our main analysis, we studied two mRNA vaccines (Pfizer-BioNTech or Moderna). The exposed                |
| 22       | 145 | group included patients indexed on the first dose of one of the corresponding vaccines with no prior         |
| 23<br>24 | 146 | COVID-19 infection and no previous exposure to other COVID-19 vaccines. For the unexposed group,             |
| 25<br>26 | 147 | we selected unvaccinated patients and set their index date to a date (not necessarily with any medical       |
| 27       | 148 | event) that matched the index date of one of the exposed group participants. Both the exposed and            |
| 28<br>29 | 149 | unexposed groups had at least 365 days of prior observation and primarily resided in New York City           |
| 30       | 150 | according to their zip code. Patients who did not reside in New York were excluded from the study to         |
| 31<br>32 | 151 | ensure reliable vaccination data capture.                                                                    |
| 33       | 152 |                                                                                                              |
| 34<br>35 | 153 | Outcomes of interest included a) COVID-19 infection defined as a positive COVID-19 test (reverse-            |
| 36       | 154 | transcriptase–polymerase-chain-reaction assay) or a diagnostic code of COVID-19 and b) COVID-19              |
| 37<br>38 | 155 | hospitalization defined as an inpatient visit associated with a COVID-19 positive test or diagnosis within   |
| 39<br>40 | 156 | 30 days prior or during the visit. Upon further examination of the results, we added two other outcomes:     |
| 41       | 157 | a) COVID-19 positive test only and b) COVID-19 hospitalization associated with a positive COVID-19           |
| 42<br>43 | 158 | test. Design overview is provided in Appendix 2; code lists and links to phenotype definitions are           |
| 44       | 159 | provided in Appendix 3.                                                                                      |
| 45<br>46 | 160 |                                                                                                              |
| 47       | 161 | We calculated vaccine effectiveness during six consecutive 7-day intervals after the first dose. Within      |
| 48<br>49 | 162 | each interval, patients were followed-up until an outcome, end of the period or death, whichever came        |
| 50       | 163 | earlier. Additionally, given the results for vaccine effectiveness during week one following the first dose, |
| 51<br>52 | 164 | we conducted chart review for patients with a COVID-19 positive test recorded in the abovementioned          |
| 53<br>54 | 165 | period. We reviewed all cases for the vaccinated population as well a random sample of the cases in the      |
| 55       | 166 | unvaccinated population and extracted main complaint, COVID-19 history, including symptoms (fever,           |
| 56<br>57 | 100 | an vacentated population and extracted main complaint, covid-17 instory, including symptoms (level,          |
| 58       |     |                                                                                                              |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 5                                  |
|          |     |                                                                                                              |

BMJ Open

| 1<br>2                     |       |                                                                                                            |
|----------------------------|-------|------------------------------------------------------------------------------------------------------------|
| 3                          | 167   | shortness of breath, sore throat, cough etc.), severity, time from the first symptom to encounter and      |
| 4<br>5                     | 168   | COVID-19 exposure.                                                                                         |
| 6                          | 169   |                                                                                                            |
| 7<br>8                     | 170   | Secondary analyses                                                                                         |
| 9<br>10                    | 171   |                                                                                                            |
| 10<br>11<br>12<br>13       | 172   | We also conducted a set of secondary analyses. First, given that the published studies focused on patients |
|                            | 173   | without prior COVID-19 infection, we studied all eligible patients regardless of their previous COVID-19   |
| 14                         | 174   | status.                                                                                                    |
| 15<br>16                   | 175   |                                                                                                            |
| 17<br>18                   | 176   | As the strategy for unvaccinated group index date selection (anchoring) has been reported to influence     |
| 19                         | 177   | incidence of outcomes and baseline characteristics (28,29), we additionally tested unexposed patients      |
| 20<br>21                   | 178   | indexed on a healthcare encounter matching the index date of one of the exposed group participants         |
| 22                         | 179   | within 3 days corridor, with at least 365 days of prior observation located at New York.                   |
| 23<br>24                   | 180   |                                                                                                            |
| 25                         | 181   | Finally, we assessed vaccine effectiveness in patients with at least one dose of a COVID-19 vaccine and    |
| 26<br>27                   | 182   | in fully vaccinated patients over all available follow-up to compare the estimates to the results of the   |
| 28<br>29                   | 183   | RCTs. The latter was defined as 14 days after the second dose of Pfizer-BioNTech or Moderna vaccines       |
| 30                         | 184   | or first dose of Janssen vaccine. For each comparison we estimated hazard ratios (HRs) and constructed     |
| 31<br>32<br>33             | 185   | Kaplan-Meier plots as described below.                                                                     |
|                            | 186   |                                                                                                            |
| 34<br>35                   |       |                                                                                                            |
| 36<br>37                   | 187   | Statistical methods                                                                                        |
| 38                         | 100   |                                                                                                            |
| 39<br>40                   | 188   | For each analysis, we fitted a lasso regression model to calculate propensity score and match patients in  |
| 41                         | 189   | each exposed and unexposed group with 1:1 ratio. For large-scale propensity score model we used all        |
| 42<br>43<br>44<br>45<br>46 | 190   | demographic information, index year and month, as well as the number of visits, condition and drug         |
|                            | 191   | groups, procedures, device exposures, laboratory and instrumental tests and other observations over long   |
|                            | 192   | (prior year) and short-term period (prior month) (30,31).                                                  |
| 47<br>48                   | 193   | For each outcome, we fitted a Cox proportional hazards models to estimate HRs and constructed Kaplan-      |
| 49<br>50<br>51<br>52       | 194   | Meier plots. Empirical calibration based on the negative control outcomes was used to identify and         |
|                            | 195   | minimize any potential residual confounding by calibrating HRs and 95% confidence intervals (CIs)          |
|                            | 196   | (32,33). Vaccine effectiveness was calculated as $100\% \times (1-hazard ratio)$ .                         |
| 53<br>54<br>55             | - / 0 |                                                                                                            |
| 56                         |       |                                                                                                            |
| 57<br>58                   |       |                                                                                                            |

| 2        |     |
|----------|-----|
| 3        | 197 |
| 4<br>5   | 198 |
| 6        | 199 |
| 7<br>8   | 200 |
| 9        | 200 |
| 10       | 201 |
| 11<br>12 | 201 |
| 13       | 202 |
| 14<br>15 | 203 |
| 16       | 204 |
| 17<br>18 | 204 |
| 19       |     |
| 20<br>21 | 206 |
| 22       | 207 |
| 23       | 208 |
| 24<br>25 | 209 |
| 26       |     |
| 27<br>28 | 210 |
| 29       | 211 |
| 30<br>31 | 212 |
| 32       | 213 |
| 33<br>34 |     |
| 34<br>35 | 214 |
| 36       | 215 |
| 37<br>38 | 216 |
| 39       | 217 |
| 40<br>41 | 217 |
| 42       |     |
| 43<br>44 | 219 |
| 44<br>45 | 220 |
| 46       | 221 |
| 47<br>48 | 222 |
| 49       | 223 |
| 50<br>51 | 224 |
| 52       | 225 |
| 53<br>54 | 226 |
| 54<br>55 |     |
| 56       |     |
| 57<br>58 |     |

1

| 197 | All analyses were supported by the OHDSI Infrastructure (CohortMethod package, a | available |
|-----|----------------------------------------------------------------------------------|-----------|
|-----|----------------------------------------------------------------------------------|-----------|

- 98 at https://ohdsi.github.io/CohortMethod/, FeatureExtraction available at
- 99 https://ohdsi.github.io/FeatureExtraction/ and the Cyclops package for large-scale regularized regression
- 00 (34) available at https://ohdsi.github.io/Cyclops).

#### 01 **Diagnostics**

202 We used multiple sources of diagnostics to estimate potential bias and confounding following best 03 practices for evidence generation (35). First, we examined covariate and propensity score balance prior to 04 proceeding with outcome modelling and effect estimation to ensure that we have enough sample size and 05 to control for potential observed confounding (35). We plotted propensity scores to investigate the 06 overlap in patient populations at the baseline and examined the balance of all baseline characteristics to 07 determine if the exposed and unexposed cohorts were imbalanced at the baseline and after propensity 80 score matching. Exposed and unexposed cohorts were said to be balanced if the standardized difference of .09 means of all covariates after propensity score matching was less than 0.1 (36).

- 10 For negative control calibration, we used 93 negative controls (Appendix 4) with no known causal 11 relationship with the COVID-19 vaccines. Negative controls were selected based on a review of existing 12 literature, product labels and spontaneous reports and were reviewed by clinicians (37). We assessed 13 residual bias from the negative control estimates.
  - 14 Patient and public involvement
    - 16 No patient involved
  - 19 RESULTS
- 20

59

60

21 **Patient characteristics** 

23 In total, we identified 179,666 patients with at least one dose of COVID-19 vaccine in January-May 2021: 24 121,771 patients for Pfizer-BioNTech, 52,728 for Moderna and 5,167 for Janssen (Table 1). The sample

25 included patients from all age groups, with or without co-morbidities captured in inpatient and outpatient 26 settings.

Page 9 of 40

#### BMJ Open

| <ul> <li>We observed that unexposed patients (Table 1) were on average younger and had fewer co-morbidities<br/>and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates<br/>(up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.</li> <li>Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring<br/>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a<br/>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared<br/>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On<br/>average, the latter group was older, had more patients with race recorded as Black, and had more co-<br/>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients had 2<br/>does of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440<br/>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while<br/>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with<br/>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of<br/>post-observation.</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one<br/>dose of Pfizer-BioNTech or Moderna (16, 114 patients) compared to unvaccinated patients (115,689).<br/>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against<br/>COVID-19 infection and 72%, 95% CI 57-5</li></ul> | 1                               |     |                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|----------------------------------------------------------------------------------------------------------|
| 228       and less exposure to various drugs prior to matching. We were able to achieve balance on all covariates         229       (up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.         230       Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring         231       unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a         232       visit.         233       Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         234       Patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         235       to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         236       average, the latter group was older, had more patients with race recorded as Black, and had more co-         236       mortidities such as diabetes mellitus or hypertensive disorder (Table 1).         237       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients had 2         240       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         241       doses of Moderna. We found 344 and 291 patients with a peak in January 2021 (Figure 2), while         245       Prizer-BioNTech and Janssen vaccination pathways in dinferent combinations.         248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 227 | We observed that unexposed patients (Table 1) were on average younger and had fewer co-morbidities       |
| 229       (up to 54,987 covariates, standardized difference of means less than 0.1) with propensity score matching.         230       Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring         231       unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a         232       visit.         233       Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         234       to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         235       average, the latter group was older, had more patients with race recorded as Black, and had more co-         236       morthiditics such as diabetes mellitus or hypertensive disorder (Table 1).         237       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients main mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         237       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         238       Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         239       Within our database, Moderna was andinistered early on with some individuals having up to 5.8 months of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                               |     |                                                                                                          |
| <ul> <li>Figure 1 presents the covariate balance and propensity score balance plots showing that anchoring</li> <li>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a</li> <li>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared</li> <li>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On</li> <li>average, the latter group was older, had more patients with race recorded as Black, and had more co-</li> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with</li> <li>at least one dose of Pfizer-BioNTech) had 2 bases of Pfizer-BioNTech and 42,384 (80%) patients had 2</li> <li>doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440</li> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li>Main week-by-week effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 wi</li></ul>                                 | 6                               |     |                                                                                                          |
| <ul> <li>unvaccinated patients on a date allowed us to achieve better balance compared to anchoring patients on a visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Figure 3 shows vaccine effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                            |                                 |     |                                                                                                          |
| <ul> <li>visit.</li> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Hain week-by-week effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-43% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                      | 9<br>10<br>11<br>12<br>13<br>14 |     |                                                                                                          |
| Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared         to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On         average, the latter group was older, had more patients with race recorded as Black, and had more co-         morbidities such as diabetes mellitus or hypertensive disorder (Table 1).         When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with         at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         post-observation.         right week-by-week effectiveness over six 7-day intervals for patients with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated with at least one         dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |     |                                                                                                          |
| <ul> <li>Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li>Figure 3 shows vaccine effectiveness analysis</li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                                 |                                 |     | V1510.                                                                                                   |
| <ul> <li>to the patients vaccinated with Moderna but differed from the patients vaccinated with Janssen. On</li> <li>average, the latter group was older, had more patients with race recorded as Black, and had more co-</li> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with</li> <li>at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2</li> <li>doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440</li> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating &amp;4% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                   |                                 |     | Patients vaccinated with Pfizer-BioNTech had a similar distribution of baseline characteristics compared |
| 236       average, the latter group was older, had more patients with race recorded as Black, and had more comorbidities such as diabetes mellitus or hypertensive disorder (Table 1).         239       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         240       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         251       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         253       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |     |                                                                                                          |
| <ul> <li>morbidities such as diabetes mellitus or hypertensive disorder (Table 1).</li> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689). Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                              |     |                                                                                                          |
| 238         239       When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         247       post-observation.         248       Main week-by-week effectiveness analysis         250       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         251       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       but to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         257       observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |     |                                                                                                          |
| <ul> <li>When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2 doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440 patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                              |     | norbidities such as diabetes mentas of hypertensive disorder (Table 1).                                  |
| 240       at least one dose of Pfizer-BioNTech) had 2 doses of Pfizer-BioNTech and 42,384 (80%) patients had 2         241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         346       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         347       post-observation.         348       249         349       Main week-by-week effectiveness over six 7-day intervals for patients vaccinated with at least one         342       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         345       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         345       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         346       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         347       observed plausible increasing effectiveness beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     | When investigating the vaccination pathways, we discovered that 112,963 patients (93% of patients with   |
| 241       doses of Moderna. We found 344 and 291 patients with 3 doses of the corresponding vaccines and 440         242       patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.         243       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         244       Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while         245       Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with         246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         247       post-observation.         248       Main week-by-week effectiveness analysis         250       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         252       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         253       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         254       While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against         256       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         257       observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6         258       approximatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                              |     |                                                                                                          |
| <ul> <li>patients having mixed Pfizer-BioNTech, Moderna and Janssen vaccines in different combinations.</li> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                              |     |                                                                                                          |
| <ul> <li>243</li> <li>244 Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>245 Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>246 Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>247 post-observation.</li> <li>248</li> <li>249 Main week-by-week effectiveness analysis</li> <li>250</li> <li>251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |     |                                                                                                          |
| <ul> <li>Within our database, Moderna was administered early on with a peak in January 2021 (Figure 2), while</li> <li>Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with</li> <li>Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of</li> <li>post-observation.</li> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                              |     | patients having mixed i lizer biolyreen, woderna and sanssen vacemes in arrefert combinations.           |
| 211213Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with2245Pfizer-BioNTech and Janssen vaccinations peaked in April. It was reflected in the follow-up time with2246Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of237post-observation.248249248Main week-by-week effectiveness analysis250250251Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one252dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).253Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.254Vhile week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against255COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we256cOVID-19 infection and 72%, 95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-258approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-259associated hospitalization.260260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     | Within our database Moderna was administered early on with a peak in January 2021 (Figure 2) while       |
| 33       246       Moderna patients having on average longer follow-up with some individuals having up to 5.8 months of         34       247       post-observation.         35       248         38       249       Main week-by-week effectiveness analysis         39       250         41       251         42       Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one         42       dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).         43       Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.         44       254         47       255         48       256         49       COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we         51       257         52       dose of Pizer-Sing effectiveness beginning week 2 with the effectiveness on week 6         52       approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-         53       260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                              |     |                                                                                                          |
| <ul> <li>247 post-observation.</li> <li>248</li> <li>249 Main week-by-week effectiveness analysis</li> <li>250</li> <li>251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |     |                                                                                                          |
| <ul> <li><sup>36</sup> 248</li> <li><sup>37</sup> 248</li> <li><sup>38</sup> 249</li> <li><sup>39</sup> Aain week-by-week effectiveness analysis</li> <li><sup>39</sup> 250</li> <li><sup>41</sup> 251</li> <li><sup>41</sup> Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li><sup>42</sup> 252</li> <li><sup>43</sup> dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li><sup>44</sup> 253</li> <li><sup>44</sup> Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li><sup>45</sup> 254</li> <li><sup>47</sup> 255</li> <li><sup>48</sup> While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li><sup>49</sup> 256</li> <li><sup>50</sup> COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li><sup>51</sup> observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>55</sup> associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |     |                                                                                                          |
| <ul> <li><i>Main week-by-week effectiveness analysis</i></li> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>Understand State Covidence of the state of</li></ul>                             | 36                              |     | Post coost function                                                                                      |
| <ul> <li><sup>39</sup> 250</li> <li><sup>41</sup> 251 Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li><sup>42</sup> 252 dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li><sup>44</sup> 253 Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li><sup>45</sup> 254</li> <li><sup>47</sup> 255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li><sup>48</sup> 256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li><sup>50</sup> observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>53</sup> associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |     | Main week-by-week effectiveness analysis                                                                 |
| <ul> <li>Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one</li> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                              |     |                                                                                                          |
| <ul> <li>dose of Pfizer-BioNTech or Moderna (160,114 patients) compared to unvaccinated patients (115,689).</li> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>Uhile week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     | Figure 3 shows vaccine effectiveness over six 7-day intervals for patients vaccinated with at least one  |
| <ul> <li>Due to the small sample size, we were not able to obtain stable week-by-week estimates for Janssen.</li> <li>254</li> <li>255 While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>256 COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     |                                                                                                          |
| <ul> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>255</li> <li>47</li> <li>255</li> <li>48</li> <li>256</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>50</li> <li>257</li> <li>58</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                              |     |                                                                                                          |
| <ul> <li>While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against</li> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     |                                                                                                          |
| <ul> <li>COVID-19 infection and 72%, 95% CI 57-83% against COVID-19 associated hospitalization), we</li> <li>observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li>approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>associated hospitalization.</li> <li>260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47                              |     | While week one was characterized by unexpectedly high effectiveness (58%, 95% CI 45-69% against          |
| <ul> <li><sup>50</sup> 257 observed plausible increasing effectiveness beginning week 2 with the effectiveness on week 6</li> <li><sup>52</sup> 258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li><sup>53</sup> 259 associated hospitalization.</li> <li><sup>55</sup> 260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |     |                                                                                                          |
| <ul> <li>258 approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-</li> <li>259 associated hospitalization.</li> <li>260</li> <li>260</li> <li>57</li> <li>58</li> <li>59</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     |                                                                                                          |
| <ul> <li>53 11 55 160</li> <li>54 259 associated hospitalization.</li> <li>55 260</li> <li>56 57 58 59</li> <li>59 50 50 50 50 50 50 50 50 50 50 50 50 50</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                              |     |                                                                                                          |
| 55 260<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     |                                                                                                          |
| 56<br>57<br>58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55                              |     | 1                                                                                                        |
| 58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                              |     |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

We then looked at the week one COVID-19 infection cases to explain high effectiveness (Figure 4). A chart review of week one positive COVID-19 tests revealed a high proportion of unvaccinated patients seeking care related to COVID-19 symptoms or COVID-19 exposure (85% in total) compared to only 69% of vaccinated patients. Initial healthcare encounters in vaccinated population were oftentimes related to other medical reasons such as co-morbid conditions or surgeries (39% compared to 21% in unvaccinated population, Appendix 5). Moreover, an observed gap between symptom onset and an initial healthcare encounter was more pronounced in the vaccinated cohort as the patients attributed their symptoms to temporal vaccine side effects as opposed to COVID-19 infection.

When looking at the severity of COVID-19 symptoms at the initial encounter during week one after the index date, we observed that the unvaccinated cohort had a higher proportion of asymptomatic cases (39% compared to 11%) while the vaccinated population had more severe or mild cases (34% and 48% respectively).

#### Secondary analysis

As cohort analysis allows us to construct Kaplan-Meier curves to assess effectiveness over time, we also looked at the effectiveness during the year after the first dose (Appendix 6-8). We observed similar trends with all three vaccines being less effective during the first month after the first dose. After that, Pfizer-BioNTech and Moderna were highly effective against both COVID-19 infection and COVID-19 associated hospitalization, while Janssen vaccine exhibited a wide range of effectiveness (Appendix 9). The results for fully vaccinated patients with time-at-risk starting at the full vaccination matched the

results of the clinical trials for corresponding vaccines (detailed estimates are provided in Appendix 10 and 11).

Our initial design included a positive COVID-19 test or a diagnostic code as an outcome. Upon further case examination, we discovered that COVID-19 diagnostic codes in the CUIMC data were partially assigned to the patients with negative COVID-19 tests on or immediately following the date of diagnosis. In that case, ICD10CM code U07.1 "Disease caused by Severe acute respiratory syndrome coronavirus 2" was entered in the system for billing purposes (COVID-19 molecular or antibody tests) or for COVID-19 sequelae. We, therefore, focused on positive COVID-19 test only for our primary outcome, which led to higher effectiveness for all vaccines compared to using both positive test and diagnosis (Appendix 9). 

Page 11 of 40

#### BMJ Open

Finally, exclusion of patients with prior COVID-19 infection in our main analysis resulted in higher

observed effectiveness (Appendix 12) for both COVID-19 infection and hospitalization in patients

vaccinated with Moderna or Janssen.

number of covariates including those above.

hospitalization in structured data.

DISCUSSION

effectiveness. Inclusion of patients regardless of their prior COVID-19 status led to a small decrease in

In this retrospective cohort study, we examined the effectiveness of COVID-19 mRNA vaccines over six 7-day intervals after the first dose. We scrutinized the effectiveness of the mRNA vaccines following the first dose and confirmed the findings of moderate vaccine effectiveness during the first two weeks. For week one following the first dose we discovered previously uncaptured differential biases in vaccinated and unvaccinated populations resulting in high vaccine effectiveness. Other researchers suggested that the

difference between vaccinated and unvaccinated groups can be mitigated by adjusting for previous healthcare utilization such as number of visits before baseline, co-morbidities or prior vaccination

Vaccination directly influenced the attitude of patients towards their symptoms, causing a delay in seeking care and a higher symptom severity threshold needed to seek care or get tested. On contrary, vaccinated patients in other studies had higher rates of testing compared to unvaccinated (20,38). This indicates that patients' attitude toward risk of infection and testing may vary geographically and over

In unvaccinated patients, mild COVID-19 related symptoms were the reason to seek care; in vaccinated patients such cases were mainly captured upon seeking outpatient and inpatient care for other conditions.

positive for COVID-19 on the day of admission or later on. Differential symptom severity was previously

For example, vaccinated patients could be hospitalized for elective surgery or delivery and be tested

reported for other vaccines (39) and may affect any observational study that uses hospitalization as a

Previous research suggested that vaccinated patients do not have an increase in the number of cases

immediately following vaccination as they are unlikely to get vaccinated if sick (9,40). Our review of the

surrogate for COVID-19 severity as it can be hard to accurately identify the main reason for

time. Similarly, frequency of testing may depend on local policies and practices.

behavior (6,13,24). Nevertheless, the confounding we observed remains even upon controlling for a large

| 1<br>2   |            |
|----------|------------|
| 3        | 295        |
| 4<br>5   | 296        |
| 6        | 297        |
| 7<br>8   | 298        |
| 9<br>10  | 299        |
| 10<br>11 | 300        |
| 12<br>13 | 301        |
| 14       | 302        |
| 15<br>16 | 303        |
| 17       | 304        |
| 18<br>19 | 305        |
| 20       | 306        |
| 21<br>22 | 307        |
| 23<br>24 | 308        |
| 25       | 309        |
| 26<br>27 | 310        |
| 28       | 311        |
| 29<br>30 | 312        |
| 31       | 313        |
| 32<br>33 | 314        |
| 34<br>35 | 315        |
| 36       | 316        |
| 37<br>38 | 317        |
| 39       | 318        |
| 40<br>41 | 319        |
| 42       | 320        |
| 43<br>44 | 320        |
| 45       | 321        |
| 46<br>47 | 323        |
| 48<br>49 |            |
| 50       | 324<br>325 |
| 51<br>52 |            |
| 53       | 326        |
| 54<br>55 | 327        |
| 56       |            |
| 57<br>58 |            |
| 59       |            |

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

| 2                    |     |                                                                                                              |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 3<br>4               | 328 | cases in week one adds to 'healthy vaccinee' effect by showing that vaccinated patients are more likely to   |
| 5                    | 329 | attribute their symptoms to common vaccine side effects and, therefore, are less likely to seek care.        |
| 6<br>7               | 330 |                                                                                                              |
| 8                    | 331 | Nevertheless, even when this differential bias is present, the estimates of the COVID-19 vaccine             |
| 9<br>10              | 332 | effectiveness in subsequent weeks still match the results of the RCTs. This indicates that high              |
| 11                   | 333 | effectiveness during week one following vaccination does not necessarily undermine the estimates of          |
| 12<br>13             | 334 | subsequent vaccine effectiveness. On the other hand, we argue against using estimates of vaccine             |
| 14<br>15             | 335 | effectiveness within a short period after the vaccination as a negative control as the differences between   |
| 15<br>16             | 336 | the groups observed in this study are likely to be time-variant and may diminish over time (41).             |
| 17<br>18             | 337 |                                                                                                              |
| 19                   | 338 | Our secondary analyses discovered several challenges and potential biases that must be accounted for         |
| 20<br>21             | 339 | when conducting vaccine effectiveness studies on observational data. First, we observed that outcome         |
| 22                   | 340 | definitions are prone to measurement error, which has not been studied thoroughly. Some of the published     |
| 23<br>24             | 341 | studies used ICD-10 or ICD-10(CM) codes to identify COVID-19 outcomes (42–44). We found that the             |
| 25                   | 342 | specifics of data capture and billing processes were associated with some patients having assigned           |
| 26<br>27             | 343 | COVID-19 diagnosis codes for billing for tests rather than as an indicator of active disease. Another        |
| 28<br>29             | 344 | reason for assigning the code was COVID-19 sequela, where the actual date of COVID-19 infection could        |
| 30                   | 345 | have been anywhere from 6 months to a couple of weeks in the past. Some researchers have previously          |
| 31<br>32             | 346 | reported high positive predictive value of ICD-10 diagnostic codes for COVID-19, which points out that       |
| 33                   | 347 | index date misclassification should be scrutinized in each institution participating in the analysis to make |
| 34<br>35             | 348 | valid inferences (45,46).                                                                                    |
| 36<br>37             | 349 |                                                                                                              |
| 37<br>38             | 350 | Second, inclusion or exclusion of patients with prior COVID-infection influenced estimated effectiveness.    |
| 39<br>40             | 351 | We observed that inclusion of patients with prior COVID-19 leads to lower effectiveness for all vaccines     |
| 41                   | 352 | regardless of the outcome definition.                                                                        |
| 42<br>43             | 353 |                                                                                                              |
| 44                   | 354 | Third, an appropriate index event (anchor) for the unvaccinated cohort must be chosen to represent a         |
| 45<br>46             | 355 | counterfactual for vaccination (29,47). In our study, we confirmed that an arbitrary date represents a       |
| 47<br>48             | 356 | better counterfactual than a medical visit for COVID-19 vaccination, which is reflected in propensity        |
| 48<br>49<br>50<br>51 | 357 | score balance and covariate balance. Nevertheless, other institutions may have different vaccination         |
|                      | 358 | pathways such as vaccination on discharge, which can make a visit a better counterfactual for vaccination.   |
| 52                   | 359 | More generally, completeness of vaccination data capture is a crucial feature that influences the            |
| 53<br>54             | 360 | robustness of the study. While CUIMC data ensures complete exposure capture by linking EHR to the            |
| 55                   |     |                                                                                                              |
| 56<br>57             |     |                                                                                                              |
| 58                   |     |                                                                                                              |
| 59                   |     |                                                                                                              |

#### **BMJ** Open

City and State Registries, the researchers should exhibit caution with conducting studies on the data sources with unknown vaccination capture.

In general, our findings support the RCTs and previously published post-marketing studies for all three vaccines. Larger sample size for patients vaccinated with COVID-19 mRNA vaccines allowed us to have more power, which resulted in overlapping yet narrower confidence intervals compared to the RCTs. On the other hand, our study had fewer patients with the Janssen vaccine, which resulted in wider yet overlapping intervals compared to the Janssen's vaccine RCT (1,2,7). Nevertheless, an indirect comparison of these vaccines may not be accurate due to the differences in the populations we observed in our study. First, patients vaccinated with Janssen were substantially different from mRNA patients: on average, they were older, had a higher proportion of patients with race recorded as Black and had more comorbidities. Therefore, comparative effectiveness studies of Janssen and mRNA vaccines require robust techniques such as large-scale propensity matching to ensure valid comparison. Second, while Modena and Pfizer patients had similar baseline characteristics, the temporal distribution of vaccinations in CUIMC data differ. Moderna vaccine was administered early on in 2021 with the peak in January, while Pfizer vaccination peaked in April. Given the varying baseline COVID-19 prevalence, a comparison of mRNA vaccines requires matching patients on calendar month to account for this potential bias. These vaccines also had different administration pathways in our system. As opposed to Pfizer vaccine, which was administered at Columbia University Irving Medical Center/New York-Presbyterian sites to all patients over a prolonged period, Moderna vaccination was performed elsewhere and recorded for actively observed patients. Such patients were more likely to get tested or receive care outside of our healthcare system.

#### LIMITATIONS

Due to observational nature of the study, the data sources may not have complete capture of patient conditions as the patients could seek care outside of the hospital system. While our outcome phenotype algorithms may be subject to measurement error, we provided additional analyses with alternative outcome definitions. Exposure misclassification was mitigated by having free and available COVID-19 testing and COVID-19 vaccination in Columbia University Irving Medical Center/New York-Presbyterian sites as well as by having data capture from New York City and State Immunization Registries. Along with availability of testing, COVID-19 baseline infection rate difference was mitigated by matching the exposed and unexposed groups on the index date and using the index month as a covariate in propensity score model. We attempted to address potential differences between exposed and

| 1<br>2   |     |                                                                                                              |  |  |  |  |  |
|----------|-----|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3        | 395 | unexposed groups by selecting a large number of covariates in our propensity score model such as             |  |  |  |  |  |
| 4<br>5   | 396 | number of visits, procedure and drug utilization, prior vaccine behavior, race and others. Nevertheless, we  |  |  |  |  |  |
| 6        | 397 | did not have data for social interactions, adherence to preventive measures and policies, which could        |  |  |  |  |  |
| 7<br>8   | 398 | affect likelihood of COVID-19 infection and testing.                                                         |  |  |  |  |  |
| 9        | 399 |                                                                                                              |  |  |  |  |  |
| 10<br>11 | 400 | The results of the study may not be generalizable to other countries or settings with different vaccine      |  |  |  |  |  |
| 12       | 401 | administration practices and policies. Finally, the study period did not allow us to stratify the results by |  |  |  |  |  |
| 13<br>14 | 402 | COVID-19 variants, which limits generalizability of findings to other variants.                              |  |  |  |  |  |
| 15<br>16 | 403 | COVID-17 variants, which mints generalizability of midnings to other variants.                               |  |  |  |  |  |
| 16<br>17 | 404 |                                                                                                              |  |  |  |  |  |
| 18<br>19 | 404 | CONCLUSIONS                                                                                                  |  |  |  |  |  |
| 20       |     | CONCLUSIONS                                                                                                  |  |  |  |  |  |
| 21<br>22 | 406 |                                                                                                              |  |  |  |  |  |
| 23       | 407 | Observational data can be used to ascertain vaccine effectiveness if potential biases such as exposure and   |  |  |  |  |  |
| 24<br>25 | 408 | outcome misclassification are accounted for, and appropriate anchoring event is selected. When analyzing     |  |  |  |  |  |
| 26       | 409 | vaccine effectiveness researchers need to scrutinize the data to ensure that compared groups exhibit         |  |  |  |  |  |
| 27<br>28 | 410 | similar health seeking behavior and are equally likely to be captured in the data and report their findings. |  |  |  |  |  |
| 29       | 411 | Specifically for COVID-19 vaccines, an arbitrary date for the index date in unvaccinated patients            |  |  |  |  |  |
| 30<br>31 | 412 | represents a better counterfactual for vaccination than a healthcare encounter. Effectiveness over the first |  |  |  |  |  |
| 32       | 413 | week(s) after the vaccination should be reported even though low or high effectiveness immediately after     |  |  |  |  |  |
| 33<br>34 | 414 | the vaccination may not invalidate study findings. Given the difference in temporal trends of vaccine        |  |  |  |  |  |
| 35       | 415 | exposure and baseline characteristics, there is a need for large-scale direct comparison of vaccines to      |  |  |  |  |  |
| 36<br>37 | 416 | examine comparative effectiveness.                                                                           |  |  |  |  |  |
| 38       | 417 |                                                                                                              |  |  |  |  |  |
| 39<br>40 | 418 | DECLARATION                                                                                                  |  |  |  |  |  |
| 41<br>42 | 419 |                                                                                                              |  |  |  |  |  |
| 42<br>43 | 420 | Author contributions                                                                                         |  |  |  |  |  |
| 44<br>45 | 421 |                                                                                                              |  |  |  |  |  |
| 46       | 422 | GH designed and supervised the study. AO executed the study, interpreted the results, and drafted the        |  |  |  |  |  |
| 47<br>48 | 423 | manuscript. GH and AO reviewed the manuscript, approved the final version and had final responsibility       |  |  |  |  |  |
| 49       | 424 | for the decision to submit for publication.                                                                  |  |  |  |  |  |
| 50<br>51 | 425 |                                                                                                              |  |  |  |  |  |
| 52       | 426 | Funding                                                                                                      |  |  |  |  |  |
| 53<br>54 | 427 |                                                                                                              |  |  |  |  |  |
| 55       |     |                                                                                                              |  |  |  |  |  |
| 56<br>57 |     |                                                                                                              |  |  |  |  |  |
| 58       |     |                                                                                                              |  |  |  |  |  |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                                |  |  |  |  |  |
|          |     |                                                                                                              |  |  |  |  |  |

#### BMJ Open

| 2        |     |                                                                                                            |
|----------|-----|------------------------------------------------------------------------------------------------------------|
| 3<br>4   | 428 | US National Library of Medicine (R01 LM006910), US Food and Drug Administration CBER BEST                  |
| 5        | 429 | Initiative (75F40120D00039).                                                                               |
| 6<br>7   | 430 |                                                                                                            |
| 8        | 431 | Declaration of interests                                                                                   |
| 9<br>10  | 432 |                                                                                                            |
| 11<br>12 | 433 | All authors have completed the ICMJE disclosure form (available on request from the corresponding          |
| 12<br>13 | 434 | author). GH and AO receive funding from the US National Institutes of Health (NIH) and the US Food and     |
| 14<br>15 | 435 | Drug Administration.                                                                                       |
| 16       | 436 |                                                                                                            |
| 17<br>18 | 437 | Ethical approval                                                                                           |
| 19       | 438 |                                                                                                            |
| 20<br>21 | 439 | The protocol for this research was approved by the Columbia University Institutional Review Board          |
| 22       | 440 | (AAAO7805).                                                                                                |
| 23<br>24 | 441 |                                                                                                            |
| 25       | 442 | Data sharing                                                                                               |
| 26<br>27 | 443 |                                                                                                            |
| 28<br>29 | 444 | Patient-level data cannot be shared without approval from data custodians due to local information         |
| 30       | 445 | governance and data protection regulations.                                                                |
| 31<br>32 | 446 |                                                                                                            |
| 33       | 447 | Transparency declaration                                                                                   |
| 34<br>35 | 448 |                                                                                                            |
| 36<br>37 | 449 | The lead authors affirms that this manuscript is an honest, accurate, and transparent account of the study |
| 37<br>38 | 450 | being reported; that no important aspects of the study have been omitted; and that any discrepancies from  |
| 39<br>40 | 451 | the study as planned (and, if relevant, registered) have been explained.                                   |
| 41       | 452 |                                                                                                            |
| 42<br>43 | 453 | Acknowledgment                                                                                             |
| 44       | 454 | We would like to acknowledge Patrick Ryan, an employee of Janssen Research and Development,                |
| 45<br>46 | 455 | Titusville, New Jersey, for his thoughtful feedback on the study.                                          |
| 47<br>49 | 456 |                                                                                                            |
| 48<br>49 | 457 |                                                                                                            |
| 50<br>51 | 458 |                                                                                                            |
| 52       | 459 |                                                                                                            |
| 53<br>54 | 460 |                                                                                                            |
| 55       | 461 |                                                                                                            |
| 56<br>57 |     |                                                                                                            |
| 58       |     |                                                                                                            |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                              |

| 2                                |                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|---------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                | 462                             | REF | ERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4<br>5                           | 463                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6<br>7<br>8<br>9                 | 464<br>465<br>466               | 1.  | Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–201.                                                                                                                                                                                                                                          |
| 10<br>11<br>12                   | 467<br>468                      | 2.  | Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403–16.                                                                                                                                                                                                                                                                       |
| 13<br>14<br>15                   | 469<br>470                      | 3.  | Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.                                                                                                                                                                                                                                                            |
| 16<br>17<br>18<br>19<br>20       | 471<br>472<br>473<br>474        | 4.  | Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021 Jan;397(10269):99–111.                                                                                                                                            |
| 21<br>22<br>23<br>24<br>25       | 475<br>476<br>477               | 5.  | Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021 Sep 8;NEJMoa2110362.                                                                                                                                                                                                                                             |
| 23<br>26<br>27<br>28<br>29       | 478<br>479<br>480               | 6.  | Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet. 2021 Oct;398(10309):1407–16.                                                                                                                                                                          |
| 29<br>30<br>31<br>32<br>33<br>34 | 481<br>482<br>483<br>484        | 7.  | Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. The Lancet. 2021 May;397(10287):1819–29.                                                                             |
| 35<br>36<br>37<br>38<br>39<br>40 | 485<br>486<br>487<br>488<br>489 | 8.  | Kissling E, Hooiveld M, Sandonis Martín V, Martínez-Baz I, William N, Vilcu AM, et al. Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021. Eurosurveillance [Internet]. 2021 Jul 22 [cited 2021 Sep 23];26(29). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.29.2100670 |
| 41<br>42<br>43                   | 490<br>491                      | 9.  | Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19<br>Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021 Apr 15;384(15):1412–23.                                                                                                                                                                                                                                                     |
| 44<br>45<br>46<br>47<br>48       | 492<br>493<br>494               | 10. | Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-<br>1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-<br>19 disease in Qatar. Nat Med. 2021 Sep;27(9):1614–21.                                                                                                                                                                                          |
| 49<br>50<br>51<br>52             | 495<br>496<br>497               | 11. | Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021 Aug 12;385(7):585–94.                                                                                                                                                                                                                                          |
| 53<br>54<br>55<br>56<br>57       | 498<br>499<br>500               | 12. | Bedston S, Akbari A, Jarvis CI, Lowthian E, Torabi F, North L, et al. COVID-19 vaccine uptake, effectiveness, and waning in 82,959 health care workers: A national prospective cohort study in Wales. Vaccine. 2022 Feb;40(8):1180–9.                                                                                                                                                                                                      |
| 57<br>58<br>59<br>60             |                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                                                                                                                                                                                                                                                                                                                                                              |

| 2                                |                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3<br>4<br>5<br>6                 | 501<br>502<br>503                                                                                                                                                              | 13.                                                                                                                                                                                           | Waxman JG, Makov-Assif M, Reis BY, Netzer D, Balicer RD, Dagan N, et al. Comparing COVID-<br>19-related hospitalization rates among individuals with infection-induced and vaccine-induced<br>immunity in Israel. Nat Commun. 2022 Dec;13(1):2202.                                                       |  |  |
| 7<br>8<br>9<br>10<br>11          | 504<br>505<br>506<br>507                                                                                                                                                       | 14.                                                                                                                                                                                           | Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, et al. The Incidence of SARS-CoV-2 Reinfection in Persons With Naturally Acquired Immunity With and Without Subsequent Receipt of a Single Dose of BNT162b2 Vaccine: A Retrospective Cohort Study. Ann Intern Med. 2022 May;175(5):674–81. |  |  |
| 12<br>13<br>14<br>15             | 508<br>509<br>510                                                                                                                                                              | 15.                                                                                                                                                                                           | Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. The Lancet. 2022 Mar;399(10328):924–44.                                         |  |  |
| 16<br>17<br>18<br>19             | 511<br>512<br>513                                                                                                                                                              | 16.                                                                                                                                                                                           | Tartof SY, Slezak JM, Puzniak L, Hong V, Frankland TB, Ackerson BK, et al. Effectiveness of a third dose of BNT162b2 mRNA COVID-19 vaccine in a large US health system: A retrospective cohort study. The Lancet Regional Health - Americas. 2022 May;9:100198.                                          |  |  |
| 20<br>21<br>22<br>23             | 514<br>515<br>516                                                                                                                                                              | Price AM, Olson SM, Newhams MM, Halasa NB, Boom JA, Sahni LC, et al. BNT162b2 Protection against the Omicron Variant in Children and Adolescents. N Engl J Med. 2022 May 19;386(20):1899–909. |                                                                                                                                                                                                                                                                                                          |  |  |
| 24<br>25<br>26<br>27             | <ul> <li>5 517 18. Dean NE, Hogan JW, Schnitzer ME. Covid-19 Vaccine Effectiveness and the Test-Neg</li> <li>5 518 Design. N Engl J Med. 2021 Oct 7;385(15):1431–3.</li> </ul> |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          |  |  |
| 27<br>28<br>29<br>30<br>31<br>32 | 519<br>520<br>521<br>522                                                                                                                                                       | 19.                                                                                                                                                                                           | Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine [Internet]. Infectious Diseases (except HIV/AIDS); 2021 Sep [cited 2021 Sep 23]. Available from:<br>http://medrxiv.org/lookup/doi/10.1101/2021.09.10.21263385      |  |  |
| 33<br>34<br>35                   | 523<br>524                                                                                                                                                                     | 20.                                                                                                                                                                                           | Ioannidis JPA. Factors influencing estimated effectiveness of COVID-19 vaccines in non-<br>randomised studies. BMJ EBM. 2022 Mar 25;bmjebm-2021-111901.                                                                                                                                                  |  |  |
| 36<br>37<br>38<br>39             | 525<br>526<br>527                                                                                                                                                              | 21.                                                                                                                                                                                           | Fell DB, Dimitris MC, Hutcheon JA, Ortiz JR, Platt RW, Regan AK, et al. Guidance for design and analysis of observational studies of fetal and newborn outcomes following COVID-19 vaccination during pregnancy. Vaccine. 2021 Apr;39(14):1882–6.                                                        |  |  |
| 40<br>41<br>42                   | 528<br>529                                                                                                                                                                     | 22.                                                                                                                                                                                           | Skowronski D. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine: a letter to the Editor. N Engl J Med. 2021 Feb 17;384(16):1576                                                                                                                                                                  |  |  |
| 43<br>44<br>45<br>46<br>47       | 530<br>531<br>532                                                                                                                                                              | 23.                                                                                                                                                                                           | Tabak YP, Sun X, Brennan TA, Chaguturu SK. Incidence and Estimated Vaccine Effectiveness<br>Against Symptomatic SARS-CoV-2 Infection Among Persons Tested in US Retail Locations, May<br>1 to August 7, 2021. JAMA Netw Open. 2021 Dec 22;4(12):e2143346.                                                |  |  |
| 47<br>48<br>49<br>50<br>51       | 533<br>534<br>535                                                                                                                                                              | 24.                                                                                                                                                                                           | Barda N, Dagan N, Cohen C, Hernán MA, Lipsitch M, Kohane IS, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. The Lancet. 2021 Dec;398(10316):2093–100.                                                      |  |  |
| 52<br>53<br>54<br>55<br>56<br>57 | 536<br>537<br>538                                                                                                                                                              | 25.                                                                                                                                                                                           | Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. The Lancet. 2021 May;397(10286):1725–35.                  |  |  |
| 57<br>58<br>59<br>60             |                                                                                                                                                                                |                                                                                                                                                                                               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1^{\circ}$                                                                                                                                                                                                                    |  |  |

| 3<br>4<br>5<br>6                 | 539 26.<br>540<br>541    |     | 540 mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl J Med. 2021 Dec                                                                                                                                                                                                                                               |  |  |  |  |  |
|----------------------------------|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7<br>8<br>9                      | 542<br>543               | 27. | OMOP Common Data Model [Internet]. GitHub. [cited 2020 Feb 11]. Available from: https://github.com/OHDSI/CommonDataModel                                                                                                                                                                                                         |  |  |  |  |  |
| 10<br>11<br>12<br>13             | 544<br>545<br>546        | 28. | Ostropolets A, Ryan PB, Schuemie MJ, Hripcsak G. Characterizing Anchoring Bias in Vaccine Comparator Selection Due to Health Care Utilization With COVID-19 and Influenza: Observational Cohort Study. JMIR Public Health Surveill. 2022 Jun 17;8(6):e33099.                                                                     |  |  |  |  |  |
| 14<br>15<br>16<br>17             | 547<br>548<br>549        | 29. | Ostropolets A, Li X, Makadia R, Rao G, Rijnbeek PR, Duarte-Salles T, et al. Factors Influencing<br>Background Incidence Rate Calculation: Systematic Empirical Evaluation Across an International<br>Network of Observational Databases. Front Pharmacol. 2022 Apr 26;13:814198.                                                 |  |  |  |  |  |
| 18<br>19<br>20<br>21<br>22       | 550<br>551<br>552        | 30. | Tian Y, Schuemie MJ, Suchard MA. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. International Journal of Epidemiology. 2018 Dec 1;47(6):2005–14.                                                                                                                         |  |  |  |  |  |
| 23<br>24<br>25<br>26             | 553<br>554<br>555        | 31. | Fortin SP, Johnston SS, Schuemie MJ. Applied comparison of large-scale propensity score matching and cardinality matching for causal inference in observational research. BMC Med Res Methodol. 2021 Dec;21(1):174.                                                                                                              |  |  |  |  |  |
| 27<br>28<br>29<br>30             | 556<br>557<br>558        | 32. | Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving reproducibility by using high-throughput observational studies with empirical calibration. Phil Trans R Soc A. 2018 Sep 13;376(2128):20170356.                                                                                                                |  |  |  |  |  |
| 31<br>32<br>33<br>34             | 559<br>560<br>561        | 33. | Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct $p$ -values. Statistics in Medicine. 2014 Jan 30;33(2):209–18.                                                                                                                      |  |  |  |  |  |
| 35<br>36<br>37<br>38             | 562<br>563<br>564        | 34. | Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D. Massive Parallelization of Serial<br>Inference Algorithms for a Complex Generalized Linear Model. ACM Transactions on Modeling<br>and Computer Simulation. 2013 Jan;23(1):1–17.                                                                                             |  |  |  |  |  |
| 39<br>40<br>41<br>42             | 565<br>566<br>567        | 35. | Schuemie MJ, Ryan PB, Pratt N, Chen R, You SC, Krumholz HM, et al. Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND). Journal of the American Medical Informatics Association. 2020 Aug 1;27(8):1331–7.                                                                        |  |  |  |  |  |
| 43<br>44<br>45<br>46             | 568<br>569<br>570        | 36. | Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Communications in Statistics - Simulation and Computation. 2009 May 14;38(6):1228–34.                                                                                                  |  |  |  |  |  |
| 47<br>48<br>49<br>50<br>51       | 571<br>572<br>573<br>574 | 37. | The Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative. Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data. J Biomed Semant. 2017 Dec;8(1):11. |  |  |  |  |  |
| 52<br>53<br>54<br>55<br>56<br>57 | 575<br>576               | 38. | Glasziou P, McCaffery K, Cvejic E, Batcup C, Ayre J, Pickles K, et al. Testing behaviour may bias observational studies of vaccine effectiveness [Internet]. Infectious Diseases (except HIV/AIDS);                                                                                                                              |  |  |  |  |  |
| 58<br>59<br>60                   |                          |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $1$                                                                                                                                                                                                                                                    |  |  |  |  |  |

| 2<br>3<br>4                            | 577<br>578                      |     | 2022 Jan [cited 2022 May 26]. Available from:<br>http://medrxiv.org/lookup/doi/10.1101/2022.01.17.22269450                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------|---------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 5<br>6<br>7                            | 579<br>580                      | 39. | Lewnard JA, Tedijanto C, Cowling BJ, Lipsitch M. Measurement of Vaccine Direct Effects Under the Test-Negative Design. American Journal of Epidemiology. 2018 Dec 1;187(12):2686–97.                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 8<br>9<br>10<br>11<br>12               | 580<br>581<br>582<br>583        | 40. | Remschmidt C, Wichmann O, Harder T. Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review. BMC Infect Dis. 2015 Dec;15(1):429.                                                                                                                                                                                                               |  |  |  |  |  |
| 13<br>14<br>15<br>16<br>17             | 584<br>585<br>586<br>587        | 41. | Hitchings MDT, Lewnard JA, Dean NE, Ko AI, Ranzani OT, Andrews JR, et al. Use of recently vaccinated individuals to detect bias in test-negative case–control studies of COVID-19 vaccine effectiveness. Epidemiology [Internet]. 2022 Apr 1 [cited 2022 May 27];Publish Ahead of Print. Available from: https://journals.lww.com/10.1097/EDE.000000000001484                                                                                              |  |  |  |  |  |
| 18<br>19<br>20<br>21<br>22             | 588<br>589<br>590<br>591        | 42. | Hadi YB, Thakkar S, Shah-Khan SM, Hutson W, Sarwari A, Singh S. COVID-19 Vaccination Is<br>Safe and Effective in Patients With Inflammatory Bowel Disease: Analysis of a Large Multi-<br>institutional Research Network in the United States. Gastroenterology. 2021 Oct;161(4):1336-<br>1339.e3.                                                                                                                                                          |  |  |  |  |  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 | 592<br>593<br>594<br>595<br>596 | 43. | Nunes B, Rodrigues AP, Kislaya I, Cruz C, Peralta-Santos A, Lima J, et al. mRNA vaccine effectiveness against COVID-19-related hospitalisations and deaths in older adults: a cohort study based on data linkage of national health registries in Portugal, February to August 2021. Eurosurveillance [Internet]. 2021 Sep 23 [cited 2022 May 25];26(38). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.38.2100833 |  |  |  |  |  |
| 30<br>31<br>32<br>33                   | 597<br>598<br>599               | 44. | Wright BJ, Tideman S, Diaz GA, French T, Parsons GT, Robicsek A. Comparative vaccine effectiveness against severe COVID-19 over time in US hospital administrative data: a case-control study. The Lancet Respiratory Medicine. 2022 Feb;S221326002200042X.                                                                                                                                                                                                |  |  |  |  |  |
| 34<br>35<br>36                         | 600<br>601                      | 45. | Bodilsen J, Leth S, Nielsen SL, Holler JG, Benfield T, Omland LH. Positive Predictive Value of ICD-10 Diagnosis Codes for COVID-19. CLEP. 2021 May;Volume 13:367–72.                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 37<br>38<br>39<br>40                   | 602<br>603<br>604               | 46. | Lynch KE, Viernes B, Gatsby E, DuVall SL, Jones BE, Box TL, et al. Positive Predictive Value of COVID-19 ICD-10 Diagnosis Codes Across Calendar Time and Clinical Setting. CLEP. 2021 Oct;Volume 13:1011–8.                                                                                                                                                                                                                                                |  |  |  |  |  |
| 41<br>42<br>43<br>44<br>45             | 605<br>606<br>607<br>608        | 47. | Ostropolets A, Ryan PB, Schuemie MJ, Hripcsak G. Differential anchoring effects of vaccination comparator selection: characterizing a potential bias due to healthcare utilization in COVID-19 versus influenza [Internet]. Epidemiology; 2021 Oct [cited 2021 Nov 7]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.10.07.21264711                                                                                                           |  |  |  |  |  |
| 46<br>47                               | 609                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 48<br>49                               | 610                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 50                                     | 611                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 51<br>52                               | 612                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 53                                     | 613                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 54<br>55                               | 614                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 56<br>57<br>58                         |                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 58<br>59<br>60                         |                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

| 1             |            |                                                                                                                      |  |  |  |  |  |  |  |  |
|---------------|------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2<br>3        | 615        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 4<br>5        | 616        | Figure 1. Distribution of vaccination month for COVID-19 vaccines. Black dots represent the number of                |  |  |  |  |  |  |  |  |
| 6             | 617        | incident COVID-19 cases (defined as a positive test) in each month.                                                  |  |  |  |  |  |  |  |  |
| 7<br>8        | 618        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 9<br>10<br>11 | 619        | Figure 2. Diagnostics for the effectiveness study comparing the cohort vaccinated with at least one dose             |  |  |  |  |  |  |  |  |
|               | 620        | of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a                   |  |  |  |  |  |  |  |  |
| 12            | 621        | visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and            |  |  |  |  |  |  |  |  |
| 13<br>14      | 622        | (C) effect of negative control calibration displaying effect estimate and standard error.                            |  |  |  |  |  |  |  |  |
| 15            | 622<br>623 |                                                                                                                      |  |  |  |  |  |  |  |  |
| 16<br>17      |            | In (A), each dot represents the standardized difference of the means for a single covariate before and after         |  |  |  |  |  |  |  |  |
| 18            | 624        | stratification on the propensity score.                                                                              |  |  |  |  |  |  |  |  |
| 19<br>20      | 625        | In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with $p<0.05$        |  |  |  |  |  |  |  |  |
| 21            | 626        | and the orange area indicates estimates with calibrated $p < 0.05$ .                                                 |  |  |  |  |  |  |  |  |
| 22<br>23      | 627        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 24            | 628        | Figure 3. Effectiveness of Pfizer-BioNTech and Moderna vaccines over six 7-day intervals after 1 <sup>st</sup> dose, |  |  |  |  |  |  |  |  |
| 25<br>26      | 629        | % and 95% CI for COVID-19 infection (A) and COVID-19 hospitalization (B).                                            |  |  |  |  |  |  |  |  |
| 27            | 630        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 28<br>29      | 631        | Figure 4. Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week one,                      |  |  |  |  |  |  |  |  |
| 30<br>31      | 632        | vaccinated and unvaccinated patients.                                                                                |  |  |  |  |  |  |  |  |
| 32            | 633        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 33<br>34      | 634        |                                                                                                                      |  |  |  |  |  |  |  |  |
| 35            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 36<br>37      |            | vaccinated and unvaccinated patients.                                                                                |  |  |  |  |  |  |  |  |
| 38            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 39<br>40      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 41            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 42<br>43      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 44            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 45<br>46      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 47            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 48<br>49      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 50            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 51<br>52      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 53            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 54<br>55      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 56            |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 57<br>58      |            |                                                                                                                      |  |  |  |  |  |  |  |  |
| 50<br>59      |            | 1,                                                                                                                   |  |  |  |  |  |  |  |  |

 **Table 1.** Patient baseline characteristics for patients with at least one dose of a COVID-19 vaccine and the unexposed patients, before and after propensity score matching.

|                                                     | Bef                  | ore matching |           | After matching |              |           |
|-----------------------------------------------------|----------------------|--------------|-----------|----------------|--------------|-----------|
| Characteristic                                      | Vaccinated           | Unvaccinated | Std. diff | Vaccinated     | Unvaccinated | Std. diff |
| Pfizer-BioNTech COVID-19 vaccine                    | 1                    | 1            | 1         | I              | 1            |           |
| Patients, n                                         | 121,771              | 164,997      |           | 101,109        | 101,111      |           |
| Follow-up, days. Median (IQR)                       | 107 (80 - 137)       | 104 (71-137) |           | 107 (78-149)   | 107 (79-140) |           |
| COVID-19 diagnosis or positive COVID-<br>19 test, n | L .                  |              |           | 822            | 1355         |           |
| Positive COVID-19 test, n                           |                      |              |           | 231            | 786          |           |
| Age group, %                                        | <b>1111111111111</b> | 1            | 1         | I              | 1            |           |
| 10-19                                               | 4.2                  | 10.8         | -0.25     | 4.8            | 4.3          | 0.0       |
| 20-49                                               | 37.2                 | 42.6         | -0.11     | 40.3           | 40.1         |           |
| 50-64                                               | 23.9                 | 20.3         | 0.09      | 23.6           | 23.7         |           |
| 65-74                                               | 18.8                 | 12.6         | 0.17      | 15.8           | 16.6         | -0.0      |
| 75-84                                               | 11.3                 | 8.9          | 0.08      | 10.6           | 10.7         |           |
| >84                                                 | 4.1                  | 3.8          | 0.02      | 4.2            | 4.1          | 0.0       |
| Gender, %                                           | 1                    | I            |           |                |              |           |
| Female                                              | 63.7                 | 57.8         | 0.12      | 61.4           | 62           | -0.0      |
| Race, %                                             |                      | l            |           |                |              |           |
| race = Asian                                        | 3.8                  | 2.6          | 0.07      | 3.5            | 3.4          | 0.0       |
| race = Black or African American                    | 12.4                 | 14.2         | -0.05     | 12.6           | 12.2         | 0.0       |
| race = White                                        | 40.5                 | 35.1         | 0.11      | 39.3           | 39.5         |           |
| Medical history, %                                  |                      | l            |           |                |              |           |
| Chronic liver disease                               | 0.6                  | 0.6          | 0         | 0.5            | 0.5          |           |
| Chronic obstructive lung disease                    | 1.3                  | 1            | 0.02      | 1              | 1            | 0.0       |
| Dementia                                            | 1.2                  | 1.1          | 0         | 1.1            | 1            | 0.0       |
| Depressive disorder                                 | 5.3                  | 4            | 0.06      | 4              | 3.7          | 0.0       |

| Diabetes mellitus                                   | 7.1             | 5.2          | 0.08  | 5.7            | 5.4           | 0.01  |
|-----------------------------------------------------|-----------------|--------------|-------|----------------|---------------|-------|
| Human immunodeficiency virus infection              | 1.4             | 1.1          | 0.03  | 1.1            | 1             | 0     |
| Hyperlipidemia                                      | 12.9            | 8.1          | 0.16  | 10.2           | 9.5           | 0.02  |
| Hypertensive disorder*                              | 16              | 11.3         | 0.14  | 13.1           | 12.2          | 0.03  |
| Obesity                                             | 5.1             | 4.9          | 0.01  | 4.4            | 4.1           | 0.02  |
| Osteoarthritis                                      | 7.3             | 4.7          | 0.11  | 5.8            | 5.3           | 0.02  |
| Renal impairment**                                  | 3.7             | 3            | 0.04  | 2.9            | 2.7           | 0.01  |
| Cerebrovascular disease                             | 1.7             | 1.4          | 0.02  | 1.5            | 1.4           | 0.01  |
| Heart disease***                                    | 8.6             | 7.1          | 0.06  | 7.5            | 7.1           | 0.02  |
| Malignant neoplastic disease                        | 5.3             | 4.5          | 0.04  | 4.7            | 4.3           | 0.02  |
| Charlson comorbidity index, mean (SD)               | 1.75 (3.18)     | 1.69 (3.09)  | -0.01 | 1.70 (3.11)    | 1.63 (3.03)   | -0.01 |
| Influenza vaccination within a year prior           | 10.9            | 7.9          | 0.10  | 7.5            | 6.9           | 0.02  |
| Moderna COVID-19 vaccine                            |                 | 6            | 1     | L              |               |       |
| Patients, n                                         | 52,728          | 148,795      |       | 50,517         | 50,517        |       |
| Follow-up, days. Median (IQR)                       | 127 (102 – 153) | 123 (99-153) |       | 126 (101- 153) | 126 (102-153) |       |
| COVID-19 diagnosis or positive COVID-<br>19 test, n |                 |              | 0,    | 382            | 786           |       |
| Positive COVID-19 test, n                           |                 |              |       | 94             | 447           |       |
| Age group, %                                        | 11              |              |       |                |               |       |
| 10-19                                               | 0.5             | 1.7          | -0.12 | 0.5            | 0.4           | 0.01  |
| 20-49                                               | 35.7            | 45.7         | -0.20 | 36.9           | 37.4          | -0.01 |
| 50-64                                               | 21.2            | 23.3         | -0.05 | 21.7           | 21.4          | 0.01  |
| 65-74                                               | 21.3            | 14.4         | 0.18  | 20.6           | 20.5          | 0.00  |
| 75-84                                               | 15.4            | 10           | 0.16  | 14.6           | 14.6          | 0.00  |
| >84                                                 | 5.8             | 4.8          | 0.04  | 5.6            | 5.6           | 0.00  |
| Gender, %                                           | 11              |              |       |                |               |       |
| Female                                              | 64.4            | 58.7         | 0.12  | 64.2           | 64.7          | -0.01 |

| Page 23 of 40 |  |
|---------------|--|
|               |  |
| 1             |  |
| 2             |  |

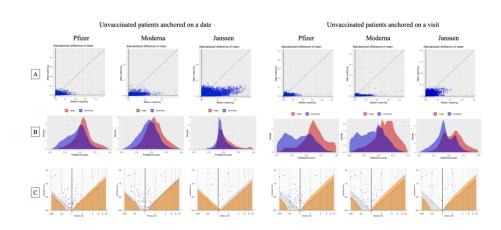
| race = Asian                                        | 4.2         | 2.8         | 0.07  | 4.2         | 4.4         | -0.01 |
|-----------------------------------------------------|-------------|-------------|-------|-------------|-------------|-------|
| race = Black or African American                    | 8.7         | 14.2        | -0.17 | 9           | 8.4         | 0.02  |
| race = White                                        | 48.3        | 34.4        | 0.29  | 46.9        | 47.9        | -0.02 |
| Medical history, %                                  |             |             | I     |             |             |       |
| Chronic liver disease                               | 0.5         | 0.6         | -0.02 | 0.5         | 0.5         | (     |
| Chronic obstructive lung disease                    | 1.4         | 1.1         | 0.02  | 1.2         | 1.2         | (     |
| Dementia                                            | 1           | 1.2         | -0.02 | 1           | 0.9         | 0.0   |
| Depressive disorder                                 | 4.7         | 3.9         | 0.04  | 4.2         | 4           | 0.0   |
| Diabetes mellitus                                   | 6.6         | 5.6         | 0.04  | 6.2         | 5.8         | 0.02  |
| Human immunodeficiency virus infection              | 0.9         | 1.2         | -0.03 | 0.8         | 0.8         | (     |
| Hyperlipidemia                                      | 14.9        | 8.9         | 0.19  | 13          | 12.6        | 0.0   |
| Hypertensive disorder                               | 16          | 12.4        | 0.1   | 14.7        | 13.9        | 0.02  |
| Obesity                                             | 4           | 4.4         | -0.02 | 3.8         | 3.6         | 0.0   |
| Osteoarthritis                                      | 7.7         | 5.3         | 0.1   | 6.8         | 6.5         | 0.0   |
| Renal impairment                                    | 3.5         | 3.3         | 0.01  | 3.3         | 3           | 0.0   |
| Cerebrovascular disease                             | 2.2         | 1.6         | 0.05  | 2           | 1.8         | 0.02  |
| Heart disease                                       | 10.1        | 7.6         | 0.09  | 9.2         | 8.7         | 0.0   |
| Malignant neoplastic disease                        | 6.5         | 5           | 0.07  | 5.9         | 5.5         | 0.02  |
| Charlson comorbidity index, mean (SD)               | 1.62 (2.81) | 1.62 (3.00) | 0.00  | 1.59 (2.80) | 1.59 (2.99) | 0.0   |
| Influenza vaccination within a year prior           | 8.4         | 6.3         | 0.08  | 7.2         | 6.8         | 0.02  |
| Janssen COVID-19 vaccine                            |             |             |       |             | I           |       |
| Patients, n                                         | 5,167       | 52,643      |       | 5,031       | 5,031       |       |
| Follow-up, days. Median (IQR)                       | 79 (72-95)  | 79 (72-95)  |       | 79 (72-95)  | 79 (72-95)  |       |
| COVID-19 diagnosis or positive COVID-<br>19 test, n |             |             |       | 31          | 37          |       |
| Positive COVID-19 test, n                           |             |             |       | 8           | 16          |       |
| Age group, %                                        |             |             | I     |             |             |       |
| 10-19                                               | 0.8         | 0.8         | 0.00  | 0.8         | 0.8         | 0.0   |

**BMJ** Open

| Page  | 24  | of       | 40 |
|-------|-----|----------|----|
| . age | ~ . | <u> </u> |    |

| 20-49                                     | 43.9        | 43          | 0.02  | 44.2        | 43.9        | 0.01  |
|-------------------------------------------|-------------|-------------|-------|-------------|-------------|-------|
| 50-64                                     | 31.7        | 31.7        | 0.00  | 31.8        | 31.3        | 0.01  |
| 65-74                                     | 11.6        | 12.2        | -0.02 | 11.5        | 12          | -0.02 |
| 75-84                                     | 7.6         | 7.9         | -0.01 | 7.2         | 7.9         | -0.03 |
| >84                                       | 4.3         | 4.3         | 0.00  | 4.2         | 4           | 0.01  |
| Gender, %                                 |             |             | 1     | I           | I           |       |
| Female                                    | 63.4        | 63.2        | 0.01  | 63.5        | 61.1        | 0.05  |
| Race, %                                   |             |             | L I   |             |             |       |
| race = Asian                              | 3.6         | 1.7         | 0.12  | 3.7         | 3.6         | 0.01  |
| race = Black or African American          | 15.9        | 15.5        | 0.01  | 15.7        | 15.5        | 0     |
| race = White                              | 37.4        | 35.7        | 0.03  | 37.4        | 37.5        | 0     |
| Medical history, %                        | 2           | 6           | 1     | I           |             |       |
| Chronic liver disease                     | 1.1         | 0.7         | 0.05  | 1           | 1.2         | -0.02 |
| Chronic obstructive lung disease          | 2.4         | 1.3         | 0.09  | 2           | 2.2         | -0.01 |
| Dementia                                  | 2.6         | 1.1         | 0.11  | 2.2         | 2.2         | 0     |
| Depressive disorder                       | 8           | 4.8         | 0.13  | 7.1         | 8           | -0.03 |
| Diabetes mellitus                         | 10.3        | 6.2         | 0.15  | 9.5         | 10.2        | -0.02 |
| Human immunodeficiency virus infection    | 1.7         | 1.4         | 0.02  | 1.6         | 1.8         | -0.01 |
| Hyperlipidemia                            | 14.3        | 10.2        | 0.13  | 13.4        | 14.3        | -0.03 |
| Hypertensive disorder                     | 21.4        | 13.8        | 0.2   | 20.1        | 21.7        | -0.04 |
| Obesity                                   | 7.3         | 5.9         | 0.06  | 6.8         | 7.8         | -0.04 |
| Osteoarthritis                            | 8.4         | 6.2         | 0.08  | 7.8         | 8.8         | -0.04 |
| Renal impairment                          | 6.6         | 3.3         | 0.15  | 5.3         | 5.9         | -0.02 |
| Cerebrovascular disease                   | 2.7         | 1.7         | 0.07  | 2.3         | 2.4         | -0.01 |
| Heart disease                             | 11.8        | 8           | 0.13  | 10.3        | 11.7        | -0.04 |
| Malignant neoplastic disease              | 5           | 4.9         | 0     | 4.8         | 5.2         | -0.02 |
| Charlson comorbidity index, mean (SD)     | 1.84 (3.34) | 1.55 (2.96) | -0.07 | 1.56 (3.04) | 1.43 (2.79) | -0.03 |
| Influenza vaccination within a year prior | 12.5        | 8.0         | 0.15  | 10.1        | 11.4        | -0.04 |

BMJ Open


\* Hypertensive disorder includes primary and secondary hypertension

\*\* Renal impairment includes acute and chronic renal failure (prerenal and renal);

\*\*\* Heart disease includes cardiac arrythmias, heart valve disorders, coronary arteriosclerosis, heart failure, cardiomyopathies, etc.

For beer review only

| 1                                                                                |                    |              |             |            |              |               |                   |            |           |
|----------------------------------------------------------------------------------|--------------------|--------------|-------------|------------|--------------|---------------|-------------------|------------|-----------|
| 2                                                                                |                    |              |             |            |              |               |                   |            |           |
| 3                                                                                |                    |              |             |            |              |               |                   |            |           |
| 4                                                                                |                    |              |             |            |              |               |                   |            |           |
| 5<br>6                                                                           |                    |              |             |            |              |               |                   |            |           |
|                                                                                  |                    |              |             |            |              |               |                   |            |           |
| 7                                                                                |                    |              |             |            |              |               |                   |            |           |
| 8                                                                                |                    |              |             |            |              |               |                   |            |           |
| 9                                                                                |                    |              |             |            |              |               |                   |            |           |
| 10                                                                               | 30000 —            |              |             |            |              |               | COVID-19          | vaccine    |           |
| 11                                                                               |                    |              |             |            |              |               | Janssen           |            |           |
| 12                                                                               |                    |              |             |            |              |               | Moderna<br>Pfizer |            |           |
| 13                                                                               | Number of patients |              |             |            |              |               |                   |            |           |
| 14                                                                               | ad 20000           |              |             |            |              |               |                   |            |           |
| 15                                                                               | mper               |              |             |            |              |               |                   |            |           |
| 16                                                                               | Ż                  |              |             |            |              |               |                   |            |           |
| 17                                                                               | 10000              |              |             |            |              |               |                   |            |           |
| 18                                                                               |                    |              |             |            |              |               |                   |            |           |
| 19<br>20                                                                         |                    |              |             |            |              |               |                   |            |           |
| 20<br>21                                                                         |                    |              | •           |            |              |               |                   | _          |           |
| 21                                                                               | 0 —                |              |             |            |              |               |                   |            |           |
| 22                                                                               |                    | 12           | 1           | 2          | Month        | 4             | 5                 | 6          |           |
| 23<br>24                                                                         |                    |              |             |            |              |               |                   |            |           |
| 25                                                                               | Distribution of va | accination r | month for ( | °0\/ID-19  | vaccines B   | lack dots r   | enresent th       | e numher o | f inciden |
| 26                                                                               |                    | COVID        | 0-19 cases  | (defined a | s a positive | e test) in ea | ach month.        |            | n melaen  |
| 27                                                                               |                    |              |             |            |              |               |                   |            |           |
| 28                                                                               |                    |              | 3.          | 38x190mm   | n (144 x 14  | 4 DPI)        |                   |            |           |
| 29                                                                               |                    |              |             |            |              |               |                   |            |           |
| 30                                                                               |                    |              |             |            |              |               |                   |            |           |
| 31                                                                               |                    |              |             |            |              |               |                   |            |           |
| 32                                                                               |                    |              |             |            |              |               |                   |            |           |
| 33                                                                               |                    |              |             |            |              |               |                   |            |           |
| 34                                                                               |                    |              |             |            |              |               |                   |            |           |
| 35                                                                               |                    |              |             |            |              |               |                   |            |           |
| 36                                                                               |                    |              |             |            |              |               |                   |            |           |
| 37                                                                               |                    |              |             |            |              |               |                   |            |           |
| 38                                                                               |                    |              |             |            |              |               |                   |            |           |
| 39                                                                               |                    |              |             |            |              |               |                   |            |           |
| 10<br>11                                                                         |                    |              |             |            |              |               |                   |            |           |
| 11<br>12                                                                         |                    |              |             |            |              |               |                   |            |           |
| t∠                                                                               |                    |              |             |            |              |               |                   |            |           |
| 13                                                                               |                    |              |             |            |              |               |                   |            |           |
|                                                                                  |                    |              |             |            |              |               |                   |            |           |
| 14                                                                               |                    |              |             |            |              |               |                   |            |           |
| 44<br>45                                                                         |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16                                                                   |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17                                                             |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18                                                       |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19                                                 |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19<br>50                                           |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19<br>50<br>51                                     |                    |              |             |            |              |               |                   |            |           |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52                               |                    |              |             |            |              |               |                   |            |           |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>53             |                    |              |             |            |              |               |                   |            |           |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                   |                    |              |             |            |              |               |                   |            |           |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55             |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19<br>50<br>51<br>52<br>53<br>54<br>55<br>56       |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 |                    |              |             |            |              |               |                   |            |           |
| 14<br>15<br>16<br>17<br>18<br>19<br>50<br>51<br>52<br>53<br>54                   |                    |              |             |            |              |               | t/auidelines      |            |           |



Diagnostics for the effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or Janssen COVID-19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after propensity score matching, (B) preference score balance and (C) effect of negative control calibration displaying effect estimate and standard error.In (A), each dot represents the standardized difference of the means for a single covariate before and after stratification on the propensity score.In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with p<0.05 and the orange area indicates estimates with calibrated p<0.05.

625x313mm (78 x 78 DPI)

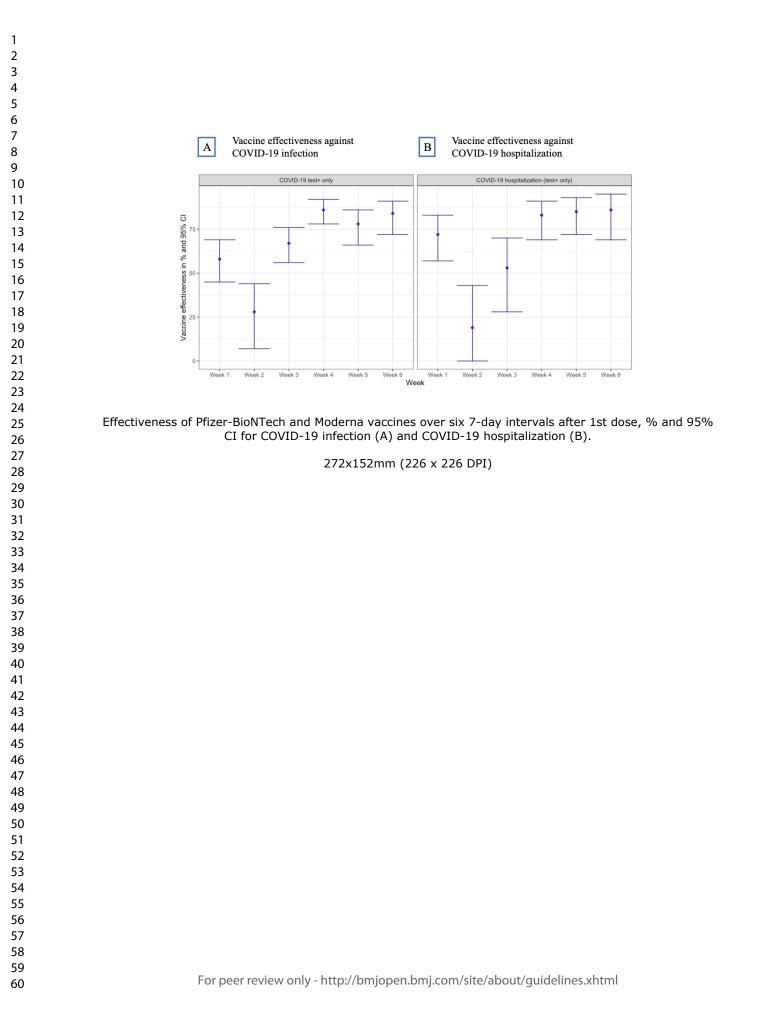
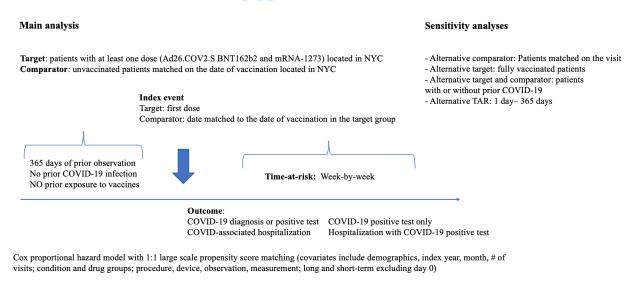





Chart review of COVID-19 cases (defined as a positive COVID-19 test) during week one, vaccinated and unvaccinated patients.


272x152mm (226 x 226 DPI)

## Supplementary materials

# Appendix 1. Data source description

The Columbia University Irving Medical Center (CUIMC) database comprises electronic health records on more than 6 million patients, with data collection starting in 1985. CUIMC is a Northeast US quaternary care center with primary care practices in northern Manhattan and surrounding areas, and the database includes inpatient and outpatient care. The database currently holds information about the person (demographics), visits (inpatient and outpatient), conditions (billing diagnoses and problem lists), drugs (outpatient prescriptions and inpatient orders and administrations), devices, measurements (laboratory tests and vital signs), and other observations (symptoms). The data sources include current and previous electronic health record systems (homegrown Clinical Information System, homegrown WebCIS, Allscripts Sunrise Clinical Manager, Allscripts TouchWorks, Epic Systems), and ancillary systems (homegrown LIS, Sunquest, Cerner Laboratory). Additionally, it contains the information on vaccination from New York City and State immunization registries.

# Appendix 2. Retrospective cohort COVID-19 vaccine effectiveness study design overview.



**Appendix 3.** Cohort definitions and codes for the long-term COVID-19 vaccine effectiveness study

**3.1** Cohort definitions for vaccinated, unvaccinated and outcome cohorts for studying effectiveness of COVID-19 vaccines.

|              | Definition and link to the public repository                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vaccinated   | Vaccinated patients were defined as patients with at least one dose of the                                                                           |
| cohorts      | corresponding vaccine (Pfizer BioNTech, Moderna, Janssen)                                                                                            |
|              | Index event: first exposure to the corresponding vaccine                                                                                             |
|              | Inclusion and exclusion criteria:                                                                                                                    |
|              | - 365 days of prior observation                                                                                                                      |
|              | - no other COVID-19 vaccine exposure in 120 days prior and 120 days after the index date                                                             |
|              | - no prior COVID-19 infection (diagnosis code of COVID-19 or positive test)                                                                          |
|              | - residence in New York City determined by the zip code recorded                                                                                     |
|              | For the analysis on fully vaccinated patients, we applied the same criteria<br>and required patients to have a) the second dose of Pfizer or Moderna |
|              | vaccine (if applicable) within 14 to 56 days after the first dose b) at least 14 days of observation after the second dose (one dose of Janssen).    |
|              | Links:                                                                                                                                               |
|              | https://atlas.ohdsi.org/#/cohortdefinition/498                                                                                                       |
|              | https://atlas.ohdsi.org/#/cohortdefinition/494                                                                                                       |
|              | https://atlas.ohdsi.org/#/cohortdefinition/497                                                                                                       |
|              | · La                                                                                                                                                 |
|              | https://atlas.ohdsi.org/#/cohortdefinition/418                                                                                                       |
|              | https://atlas.ohdsi.org/#/cohortdefinition/417                                                                                                       |
|              | https://atlas.ohdsi.org/#/cohortdefinition/420                                                                                                       |
| Unvaccinated | Unvaccinated cohorts were created separately for each vaccinated cohort                                                                              |
| cohorts      | by selecting patients with no COVID-19 vaccination in their record (any vaccine), 365 days of prior observation and New York City residence. The     |
|              | patients were matched on the index date of one of the vaccinated group                                                                               |
|              | participants for the unvaccinated patients anchored on a date and on the                                                                             |
|              | date of a healthcare encounter within 3-day corridor for the unvaccinated patients anchored on a visit.                                              |

|                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outcome cohorts | For the main analysis COVID-19 infection was defined as a COVID-19<br>test with the result 'Positive' or 'Detected'.<br>COVID-19 associated hospitalization was defined as an inpatient,<br>emergency department or intensive care unit admission with a positive<br>COVID-19 test recorded within 30 days prior or during hospitalization.<br>For a secondary analysis we applied the abovementioned criteria with<br>adding COVID-19 diagnosis as an alternative for positive COVID-19 test. |
|                 | Links:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | https://atlas.ohdsi.org/#/cohortdefinition/425<br>https://atlas.ohdsi.org/#/cohortdefinition/422                                                                                                                                                                                                                                                                                                                                                                                               |

**3.2** Codes used in the study.

#### 1. Pfizer vaccine:

RxNorm 2468235 SARS-CoV-2 (COVID-19) vaccine, mRNA-BNT162b2 0.1 MG/ML Injectable Suspension

### 2. Moderna vaccine:

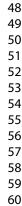
RxNorm 2470234 SARS-CoV-2 (COVID-19) vaccine, mRNA-1273 0.2 MG/ML Injectable Suspension

#### 3. Janssen vaccine:

CVX 212 SARS-COV-2 (COVID-19) vaccine, vector non-replicating, recombinant spike protein-Ad26, preservative free, 0.5 mL

### 4. COVID-19 diagnosis:

ICD10-CM U07.1 Emergency use of U07.1 | COVID-19


### 5. COVID-19 test:

LOINC 94500-6 SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with probe detection

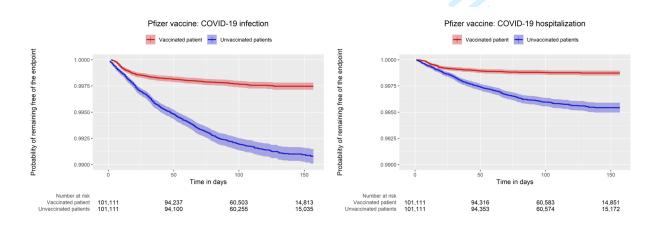
LOINC 94558-4 SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid immunoassay

| SNOMED concept id | SNOMED concept name                                       |
|-------------------|-----------------------------------------------------------|
| 438945            | Accidental poisoning by benzodiazepine-based tranquilizer |
| 434455            | Acquired claw toes                                        |
| 316211            | Acquired spondylolisthesis                                |
| 201612            | Alcoholic liver damage                                    |
| 438730            | Alkalosis                                                 |
| 441258            | Anemia in neoplastic disease                              |
| 432513            | Animal bite wound                                         |
| 4171556           | Ankle ulcer                                               |
| 4098292           | Antiphospholipid syndrome                                 |
| 77650             | Aseptic necrosis of bone                                  |
| 4239873           | Benign neoplasm of ciliary body                           |
| 23731             | Benign neoplasm of larynx                                 |
| 199764            | Benign neoplasm of ovary                                  |
| 195500            | Benign neoplasm of uterus                                 |
| 4145627           | Biliary calculus                                          |
| 4108471           | Burn of digit of hand                                     |
| 75121             | Burn of lower leg                                         |
| 4284982           | Calculus of bile duct without obstruction                 |
| 434327            | Cannabis abuse                                            |
| 78497             | Cellulitis and abscess of toe                             |
| 4001454           | Cervical spine ankylosis                                  |
| 4068241           | Chronic instability of knee                               |
| 195596            | Chronic pancreatitis                                      |
| 4206338           | Chronic salpingitis                                       |
| 4058397           | Claustrophobia                                            |
| 74816             | Contusion of toe                                          |
| 73302             | Curvature of spine                                        |
| 4151134           | Cyst of pancreas                                          |
| 77638             | Displacement of intervertebral disc without myelopathy    |
| 195864            | Diverticulum of bladder                                   |
| 201346            | Edema of penis                                            |
| 200461            | Endometriosis of uterus                                   |
| 377877            | Esotropia                                                 |
| 193530            | Follicular cyst of ovary                                  |
| 4094822           | Foreign body in respiratory tract                         |
| 443421            | Gallbladder and bile duct calculi                         |

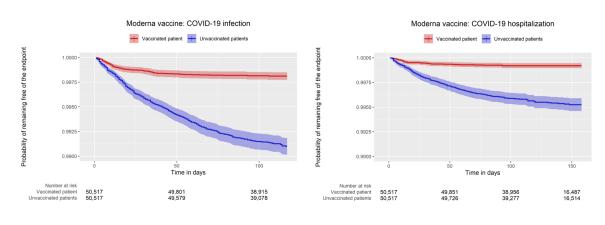
| 4299408  | Gouty tophus                                    |
|----------|-------------------------------------------------|
| 135215   | Hashimoto thyroiditis                           |
| 442190   | Hemorrhage of colon                             |
| 43020475 | High risk heterosexual behavior                 |
| 194149   | Hirschsprung's disease                          |
| 443204   | Human ehrlichiosis                              |
| 4226238  | Hyperosmolar coma due to diabetes mellitus      |
| 4032787  | Hyperosmolarity                                 |
| 197032   | Hyperplasia of prostate                         |
| 140362   | Hypoparathyroidism                              |
| 435371   | Hypothermia                                     |
| 138690   | Infestation by Pediculus                        |
| 4152376  | Intentional self poisoning                      |
| 192953   | Intestinal adhesions with obstruction           |
| 196347   | Intestinal parasitism                           |
| 137977   | Jaundice                                        |
| 317510   | Leukemia                                        |
| 765053   | Lump in right breast                            |
| 378165   | Nystagmus                                       |
| 434085   | Obstruction of duodenum                         |
| 4147016  | Open wound of buttock                           |
| 4129404  | Open wound of upper arm                         |
| 438120   | Opioid dependence                               |
| 75924    | Osteodystrophy                                  |
| 432594   | Osteomalacia                                    |
| 30365    | Panhypopituitarism                              |
| 4108371  | Peripheral gangrene                             |
| 440367   | Plasmacytosis                                   |
| 439233   | Poisoning by antidiabetic agent                 |
| 442149   | Poisoning by bee sting                          |
| 4314086  | Poisoning due to sting of ant                   |
| 4147660  | Postural kyphosis                               |
| 434319   | Premature ejaculation                           |
| 199754   | Primary malignant neoplasm of pancreas          |
| 4311499  | Primary malignant neoplasm of respiratory tract |
| 436635   | Primary malignant neoplasm of sigmoid colon     |
| 196044   | Primary malignant neoplasm of stomach           |
| 433716   | Primary malignant neoplasm of testis            |
| 133424   | Primary malignant neoplasm of thyroid gland     |



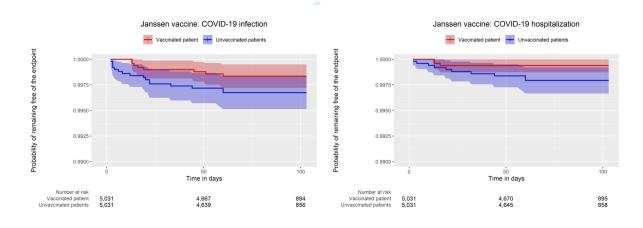
| 194997   | Prostatitis                                         |
|----------|-----------------------------------------------------|
| 80286    | Prosthetic joint loosening                          |
| 443274   | Psychostimulant dependence                          |
| 314962   | Raynaud's disease                                   |
| 37018294 | Residual osteitis                                   |
| 4288241  | Salmonella enterica subspecies arizonae infection   |
| 45757269 | Sclerosing mesenteritis                             |
| 74722    | Secondary localized osteoarthrosis of pelvic region |
| 200348   | Secondary malignant neoplasm of large intestine     |
| 43020446 | Sedative withdrawal                                 |
| 74194    | Sprain of spinal ligament                           |
| 4194207  | Tailor's bunion                                     |
| 193521   | Tropical sprue                                      |
| 40482801 | Type II diabetes mellitus uncontrolled              |
| 74719    | Ulcer of foot                                       |
| 196625   | Viral hepatitis A without hepatic coma              |
| 197494   | Viral hepatitis C                                   |
| 4284533  | Vitamin D-dependent rickets                         |


Link to the original list of negative controls used in EUMAEUS study: <u>https://ohdsi-studies.github.io/Eumaeus/Protocol.html#8\_Research\_Methods</u>

| 1  |  |
|----|--|
| 2  |  |
| 3  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 58 |  |
| 59 |  |
| 60 |  |
|    |  |


**Appendix 5.** Summary of manual chart review of COVID-19 infection cases during week 1 after the index date, patients vaccinated with mRNA vaccines and unvaccinated patients.

|                      | Pfizer-               | Moderna       | Pfizer-             | Unvaccinated |
|----------------------|-----------------------|---------------|---------------------|--------------|
|                      | BioNTech              |               | <b>BioNTech and</b> | patients     |
|                      |                       |               | Moderna             |              |
| Total                | 36                    | 25            | 61                  | 28           |
| Average age          | 65                    | 67.8          | 65.8                | 58           |
| COVID-19 sympto      | oms                   |               |                     |              |
| Severe               | 14 (39%)              | 7 (28%)       | 21 (34%)            | 6 (21%)      |
| Mild                 | 18 (50%)              | 11 (44%)      | 29 (48%)            | 11 (39%)     |
| Asymptomatic         | 2 (6%)                | 7 (28%)       | 9 (15%)             | 11 (39%)     |
| Reason for coming    | g for initial healthc | are encounter | <u> </u>            | · · ·        |
| COVID-19             | 17 (47%)              | 8 (32%)       | 25 (41%)            | 18 (64%)     |
| symptoms             | 2 (90/)               | 4 (160/)      | 7 (110/)            | 5 (100/)     |
| Exposure to COVID-19 | 3 (8%)                | 4 (16%)       | 7 (11%)             | 5 (18%)      |
| For other reason     | 13 (36%)              | 11 (44%)      | 24 (39%)            | 6 (21%)      |
| (co-morbidities,     |                       |               |                     |              |
| procedures etc.)     |                       |               |                     |              |
| Type of initial hea  | lthcare encounter     |               |                     |              |
| Telehealth/phone     | 5 (14%)               | 6 (24%)       | 11 (18%)            | 3 (11%)      |
| Test only            | 3 (8%)                | 2 (8%)        | 5 (8%)              | 6 (21%)      |
| OP                   | 4 (11%)               | 3 (12%)       | 7 (11%)             | 1 (4%)       |
| ED or IP             | 24 (67%)              | 14 (56%)      | 38 (62%)            | 18 (64%)     |

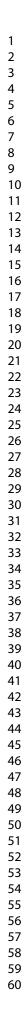

**Appendix 6.** Kaplan-Meier curves for effectiveness of COVID-19 Pfizer-BioNTech vaccine for time-at-risk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.



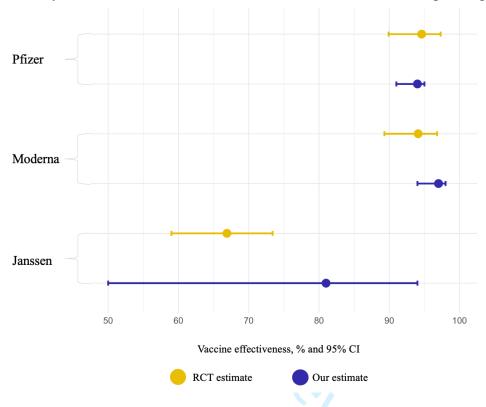
**Appendix 7.** Kaplan-Meier curves for effectiveness of COVID-19 Moderna vaccine for time-atrisk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.



**Appendix 8.** Kaplan-Meier curves for effectiveness of COVID-19 Janssen vaccine for time-atrisk of 1 day – 365 days after the first dose compared to the unvaccinated patients residing in New York City.




**Appendix 9.** Estimates for long-term effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.


|          | COVID-19  |        | COVID-19        |        | COVID-19           |        | COVID-19           |        |
|----------|-----------|--------|-----------------|--------|--------------------|--------|--------------------|--------|
|          | infection |        | hospitalization |        | positive test only |        | positive test only |        |
|          |           |        |                 |        |                    |        | hospitalization    |        |
|          | VE (95%   | P-     | VE (95%         | P-     | VE (95%            | P-     | VE (95%            | P-     |
|          | CI), %    | value  | CI), %          | value  | CI), %             | value  | CI), %             | value  |
| Pfizer-  | 42 (37 –  | < 0.01 | 63 (56-         | < 0.01 | 71 (66 -           | < 0.01 | 69 (62 - 75)       | < 0.01 |
| BioNTech | 47)       |        | 70)             |        | 75)                |        |                    |        |
| Moderna  | 54 (48 –  | < 0.01 | 76 (69 –        | < 0.01 | 78 (73 –           | < 0.01 | 81 (74 –           | < 0.01 |
|          | 60)       | ~      | 82)             |        | 83)                |        | 87)                |        |
| Janssen  | 24 (0-55) | 0.31   | 64 (0.1 –       | 0.09   | 53 (0 -            | 0.1    | 70 (2 – 93)        | 0.08   |
|          |           |        | 1.06)           |        | 82)                |        |                    |        |

**Appendix 10.** Estimates for effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after full vaccination in fully vaccinated patients without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

|          |             |        |                    |        |           |        | COVID 10        |        |
|----------|-------------|--------|--------------------|--------|-----------|--------|-----------------|--------|
|          | COVID-19    |        | COVID-19           |        | COVID-19  |        | COVID-19        |        |
|          | positive te | est    | positive test only |        | infection |        | hospitalization |        |
|          | only        |        | hospitalization    |        |           |        |                 |        |
|          | VE (95%     | P-     | VE (95%            | P-     | VE (95%   | P-     | VE (95%         | Р-     |
|          | CI), %      | value  | CI), %             | value  | CI), %    | value  | CI), %          | value  |
| Pfizer-  | 94 (91-     | < 0.01 | 95 (92-            | < 0.01 | 70 (66-   | < 0.01 | 88 (84-92)      | < 0.01 |
| BioNTech | 95)         |        | 97)                |        | 74)       |        |                 |        |
| Moderna  | 97 (94-     | < 0.01 | 96 (92-            | < 0.01 | 72 (66 –  | < 0.01 | 92 (87-95)      | < 0.01 |
|          | 98)         |        | 99)                |        | 77)       |        |                 |        |
| Janssen  | 81 (50-     | < 0.01 | 92 (58-            | 0.03   | 55 (23 –  | 0.01   | 87 (56-98)      | 0.01   |
|          | 94)         |        | 100)               |        | 75)       |        |                 |        |



**Appendix 11.** Comparison of the effectiveness estimates in fully vaccinated patients obtained in our study and those from the randomized clinical trials of the corresponding vaccines.



**Appendix 12.** Estimates for effectiveness of COVID-19 vaccines for time-at-risk of 1 day – 365 days after the first dose in the vaccinated patients with or without prior COVID-19 infection compared to unvaccinated patients residing in NYC.

|          | COVID-19  |        | COVID-19        |        | COVID-19           |        | COVID-19           |        |
|----------|-----------|--------|-----------------|--------|--------------------|--------|--------------------|--------|
|          | infection |        | hospitalization |        | positive test only |        | positive test only |        |
|          |           |        |                 |        |                    |        | hospitalizat       | tion   |
|          | VE        | Р-     | VE (95%         | P-     | VE (95%            | P-     | VE (95%            | P-     |
|          | (95%      | value  | CI), %          | value  | CI), %             | value  | CI), %             | value  |
|          | CI), %    |        |                 |        |                    |        |                    |        |
| Pfizer-  | 43 (38-   |        | 64 (57-         |        | 71 (66-            |        |                    |        |
| BioNTech | 48)       | < 0.01 | 70)             | < 0.01 | 75)                | < 0.01 | 71(64-76)          | < 0.01 |
|          | 51 (45-   |        | 71 (63-         |        | 76 (71-            |        |                    |        |
| Moderna  | 57)       | < 0.01 | 78)             | < 0.01 | 81)                | < 0.01 | 81 (73-86)         | < 0.01 |
|          | 15 (0-    |        |                 |        |                    |        |                    |        |
| Janssen  | 49)       | 0.52   | 60 (2-86)       | 0.06   | 45 (0-75)          | 0.12   | 63 (0-90)          | 0.09   |

# STROBE Statement—Checklist of items that should be included in reports of cohort studies

|                        | Item<br>No | Recommendation                                                                       | Page<br>No |
|------------------------|------------|--------------------------------------------------------------------------------------|------------|
| Title and abstract     | 1          | (a) Indicate the study's design with a commonly used term in the title or the        | 2          |
|                        |            | abstract                                                                             |            |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what was          | 2          |
|                        |            | done and what was found                                                              |            |
| Introduction           |            |                                                                                      |            |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported | 4          |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                     | 5          |
| Methods                |            |                                                                                      | ·          |
| Study design           | 4          | Present key elements of study design early in the paper                              | 5          |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of            | 5,6        |
| 6                      | ľ C        | recruitment, exposure, follow-up, and data collection                                |            |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection of       | 5          |
|                        |            | participants. Describe methods of follow-up                                          |            |
|                        |            | (b) For matched studies, give matching criteria and number of exposed and            |            |
|                        |            | unexposed                                                                            |            |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential confounders, and       | 5-7        |
|                        | ,          | effect modifiers. Give diagnostic criteria, if applicable                            |            |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods of        | 5          |
| measurement            | 0          | assessment (measurement). Describe comparability of assessment methods if            |            |
|                        |            | there is more than one group                                                         |            |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                            | 6-7        |
| Study size             | 10         | Explain how the study size was arrived at                                            | 5          |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If applicable,      | 6-7        |
|                        |            | describe which groupings were chosen and why                                         |            |
| Statistical methods    | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for   | 6-7        |
|                        |            | confounding                                                                          |            |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                  | 6-7        |
|                        |            | (c) Explain how missing data were addressed                                          | -          |
|                        |            | (d) If applicable, explain how loss to follow-up was addressed                       | NA         |
|                        |            | ( <i>e</i> ) Describe any sensitivity analyses                                       | 6-7        |
| D                      |            | (E) Describe any sensitivity analyses                                                |            |
| Results                | 12*        | (a) Report numbers of individuals at each stage of study—eg numbers potentially      | 7          |
| Participants           | 13*        |                                                                                      | ĺ ′        |
|                        |            | eligible, examined for eligibility, confirmed eligible, included in the study,       |            |
|                        |            | completing follow-up, and analysed                                                   |            |
|                        |            | (b) Give reasons for non-participation at each stage                                 |            |
|                        | 1 4 4      | (c) Consider use of a flow diagram                                                   | 8,         |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical, social)    | 8,<br>18-  |
|                        |            | and information on exposures and potential confounders                               | 20         |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest  |            |
|                        |            | (c) Summarise follow-up time (eg, average and total amount)                          | 8, 18      |
| Outcome data           | 15*        | Report numbers of outcome events or summary measures over time                       | 8          |

| Main results      | 16 | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates<br>and their precision (eg, 95% confidence interval). Make clear which confounders<br>were adjusted for and why they were included | 8,<br>supplementar<br>materials |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                   |    | (b) Report category boundaries when continuous variables were categorized                                                                                                                                                   |                                 |
|                   |    | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                                   |                                 |
| Other analyses    | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                              | 9                               |
| Discussion        |    |                                                                                                                                                                                                                             |                                 |
| Key results       | 18 | Summarise key results with reference to study objectives                                                                                                                                                                    | 10                              |
| Limitations       | 19 | Discuss limitations of the study, taking into account sources of potential bias or                                                                                                                                          | 12                              |
|                   |    | imprecision. Discuss both direction and magnitude of any potential bias                                                                                                                                                     |                                 |
| Interpretation    | 20 | Give a cautious overall interpretation of results considering objectives, limitations,                                                                                                                                      | 10-12                           |
|                   |    | multiplicity of analyses, results from similar studies, and other relevant evidence                                                                                                                                         | 11.10                           |
| Generalisability  | 21 | Discuss the generalisability (external validity) of the study results                                                                                                                                                       | 11-12                           |
| Other information | on |                                                                                                                                                                                                                             |                                 |
| Funding           | 22 | Give the source of funding and the role of the funders for the present study and, if                                                                                                                                        | 13                              |
|                   |    |                                                                                                                                                                                                                             | 1                               |

\*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml