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Figure S1. Distribution of the fraction of explained variance (R2) across 200 repetitions of 

cross-validation for age and each of the eight cognitive metrics. 

Table S1. Prediction accuracies of age and cognitive metrics, and influence of covariates 

 r RMSE Control for age 
Control for 

gender 

Control for 

FD 

Age 0.885±0.0028 8.569±0.0964 NA 0.885±0.0028 0.841±0.0039 

Emotion expression 0.422±0.0060 9.860±0.041 0.205±0.0091 0.417±0.0060 0.373±0.0076 

Face recognition 0.361±0.0066 2.26±0.0093 0.029±0.0097NS 0.359±0.0066 0.281±0.0081 

Fluid intelligence 0.634±0.0029 5.165±0.017 0.253±0.0054 0.634±0.0029 0.528±0.0040 

Force matching 0.333±0.0194 0.040±5.0e-4 0.149±0.0228 0.329±0.0194 0.263±0.0210 

Hotel task 0.250±0.0077 166.55±0.58 0.119±0.0101 0.250±0.0077 0.183±0.0093 

Motor learning 0.441±0.0134 0.035±3.6e-4 0.081±0.0218NS 0.440±0.0134 0.332±0.0164 

Tip-of-tongue 0.254±0.0104 0.240±0.001 0.047±0.0139NS 0.254±0.0104 0.212±0.0117 

VSTM 0.366±0.0080 0.758±1.0e-4 0.026±0.0117NS 0.359±0.0078 0.306±0.0094 

FD, framewise displacement; NA, not applicable; NS, nonsignificant; RMSE, root mean square error; 

VSTM, visual short-term memory. 
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Figure S2. Prediction correlations remain largely unchanged when only including subjects with 

a mean framewise displacement (FD) <0.15 or FD <0.20, suggesting that the predictive models 

are robust to head motion. The network-level representations of weight maps derived from 

models build on subjects with mean FD <0.15, and subjects with mean FD <0.20, were highly 

similar to those based on all subjects. For better comparison, network pairs in the bar plot were 

shown by the same sequence as in Figure 3C. Subplot A shows results for age-predictive models, 

and subplot B shows results for gF-predictive models. 
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Table S2. Top 10 weighted functional nodes in predicting age or fluid intelligence 

Age-predictive model gF-predictive model 

Top 10 nodes with the highest positive weights in predicting age and negative weights in predicting gF 

Rank Weights Region MNI Weights Region MNI 

#1 0.02999 R. hippocampus (22,-12,-20) -0.00450 R. rostral 

parahippocampal 

gyrus 

(28,-8,-33) 

#2 0.02869 L. occipital polar 

cortex 

(-18,-99,2) -0.00418 R. entorhinal cortex (19,-10,-30) 

#3 0.02422 R. dorsolateral 

superior frontal gyrus 

(20,4,64) -0.00378 R. parahippocalpal 

gyrus TI 

(22,1,-36) 

#4 0.02416 R. parahippocampal 

gyrus 

(19,-36,-11) -0.00349 L. entorhinal cortex (-19,-12,-

30) 

#5 0.02382 L. superior temporal 

gyrus 

(-50,-11,1) -0.00308 L. pre-motor thalamus (-18,-13,3) 

#6 0.02189 L. inferior frontal 

gyrus 

(-39,23,4) -0.00305 R. medial precuneus (6,-65,51) 

#7 0.02119 R. precuneus (16,-64,25) -0.00303 L. precuneus (dmPOS) (-12,-67,25) 

#8 0.02049 L. caudoposterior 

superior temporal 

sulcus 

(-52,-50,11) -0.00302 L. parahippocalpal 

gyrus TI 

(-23,2,-32) 

#9 0.01970 L. rostroposterior 

superior temporal 

sulcus 

(-54,-40,4) -0.00297 R. precuneus 

(dmPOS) 

(16,-64,25) 

#10 0.01860 R. middle frontal 

gyrus 

(42,27,39) -0.00297 R. hippocampus (22,-12,-20) 

Top 10 nodes with the highest negative weights in predicting age and positive weights in predicting gF 

#1 -0.03344 R. caudate cingulate 

gyrus 

(6,-20,40) 0.00872 R. caudal temporal 

thalamus 

(10,-14,14) 

#2 -0.03196 R. caudal temporal 

thalamus 

(10,-14,14) 0.00729 R. dorsal caudate (14,5,14) 

#3 -0.02817 R. inferior frontal 

gyrus 

(54,24,12) 0.00656 L. dorsal caudate (-14,2,16) 

#4 -0.02548 R. posterior parietal 

thalamus 

(15,-25,6) 0.00617 L. ventral caudate (-12,14,0) 

#5 -0.02532 L. lingual gyrus (-17,-60,-6) 0.00600 L. caudal temporal 

thalamus 

(-12,-22,13) 

#6 -0.02319 L. precentral gyrus (-32,-9,58) 0.00547 R. posterior parietal 

thalamus 

(15,-25,6) 

#7 -0.02261 L. ventral caudate (-12,14,0) 0.00513 R. superior temporal 

gyrus 

(47,12,-20) 

#8 -0.01976 R. medial orbital gyrus (6,57,-16) 0.00508 R. insular gyrus (39,-2,-9) 

#9 -0.01881 R. dorsal caudate (14,5,14) 0.00486 L. rostroventral 

cingulate gyrus 

(-3,8,25) 

#10 -0.03344 R. insular gyrus (39,-2,-9) 0.00475 R. hypergranular 

insula 

(37,-18,8) 

 

  



  

5 

 

 

Figure S3. Similarity of within-network weight maps between age- and cognition-predictive 

models. To examine whether within-network weight maps between age- and cognition-

predictive models show higher similarities than randomly selected connections, we conducted 

a bootstrap test. Specifically, for each functional network we randomly selected 200 within-

network connections without replacement 1000 times; and then calculated the correlation of 

weight maps from age-predictive and cognition-predictive models for each iteration. Further, 

we randomly selected 200 connections from the whole connectome 1000 times and calculated 

correlations of weight maps from age-predictive and cognition-predictive models for each 

iteration. Differences between the within-network weight maps and randomly selected weight 

maps were compared using a two-sample t-test. Overall, among all eight networks, only DAN 

and LIM have lower similarity in weight patterns than a matched number of randomly selected 

connections. For the VSTM-predictive model, DAN and VIS have lower similarity in weight 

patterns than a matched number of randomly selected connections. 
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Table S3. Predictive weights and 95% confidence interval for each network pair 

 
Age Fluid intelligence 

Mean 95% CI Mean 95% CI 

VIS-VIS -0.0070 [-0.00707, -0.00689] 0.0036 [0.00355, 0.00357] 

VIS-SMN  0.0062 [0.00613, 0.00624] -0.0003 [-0.00026, -0.00024] 

SMN-SMN -0.0127 [-0.01273, -0.01258]  0.0034 [0.00336, 0.00339] 

VIS-DAN -0.0052 [-0.00525, -0.00514]  0.0013 [0.00133, 0.00135] 

SMN-DAN  0.0115 [0.01149, 0.0116] -0.0032 [-0.00323, -0.00321] 

DAN-DAN -0.0002 [-0.00032, -0.00013]  0.0034 [0.00334, 0.00337] 

VIS-VAN -0.0020 [-0.00207, -0.00194] -0.0002 [-0.00016, -0.00014] 

SMN-VAN 0.0097 [0.0096, 0.00973]  0.0010 [0.00099, 0.00101] 

DAN-VAN -0.0043 [-0.00432, -0.00419]  0.0006 [0.00058, 0.0006] 

VAN-VAN -0.0224 [-0.02249, -0.02226]  0.0056 [0.00561, 0.00563] 

VIS-LIM  0.0071 [0.00699, 0.00712] -0.0007 [-0.00073, -0.00071] 

SMN-LIM  0.0072 [0.00717, 0.0073]  0.0006 [0.00057, 0.00059] 

DAN-LIM -0.0007 [-0.00076, -0.00064] -0.0002 [-0.00022, -0.0002] 

VAN-LIM  0.0019 [0.00186, 0.002]  0.0002 [0.00022, 0.00024] 

LIM-LIM  0.0045 [0.00437, 0.00457] -0.0020 [-0.00206, -0.00203] 

VIS-FPN  0.0038 [0.00377, 0.0039] -0.0008 [-0.00085, -0.00083] 

SMN-FPN  0.0072 [0.00713, 0.00725] -0.0024 [-0.0024, -0.00238] 

DAN-FPN  0.0039 [0.00381, 0.00394]  0.0004 [0.00038, 0.00039] 

VAN-FPN -0.0004 [-0.00043, -0.00028] -0.0007 [-0.00069, -0.00067] 

LIM-FPN -0.0076 [-0.00763, -0.00752] -0.0003 [-0.00029, -0.00028] 

FPN-FPN -0.0028 [-0.00293, -0.00275]  0.0018 [0.0018, 0.00182] 

VIS-DMN -0.0018 [-0.00188, -0.00176] -0.0012 [-0.00117, -0.00116] 

SMN-DMN -0.0018 [-0.00182, -0.00172] -0.0001 [-0.00016, -0.00014] 

DAN-DMN  0.0017 [0.00165, 0.00176] -0.0025 [-0.00255, -0.00254] 

VAN-DMN  0.0060 [0.00592, 0.00604] -0.0018 [-0.00185, -0.00183] 

LIM-DMN -0.0078 [-0.00781, -0.0077]  0.0007 [0.00064, 0.00066] 

FPN-DMN -0.0028 [-0.00283, -0.00271]  0.0001 [0.0001, 0.00012] 

DMN-DMN -0.0167 [-0.0168, -0.01664]  0.0047 [0.00468, 0.0047] 

VIS-SUB -0.0013 [-0.00135, -0.00124]  0.0013 [0.00134, 0.00136] 

SMN-SUB  0.0011 [0.00104, 0.00115]  0.0026 [0.00256, 0.00257] 

DAN-SUB -0.0062 [-0.00623, -0.00612]  0.0012 [0.00116, 0.00117] 

VAN-SUB  0.0022 [0.00214, 0.00226]  0.0024 [0.00243, 0.00245] 

LIM-SUB  0.0038 [0.00377, 0.0039] -0.0002 [-0.00023, -0.00021] 

FPN-SUB  0.0008 [0.0007, 0.00081]  0.0007 [0.00072, 0.00074] 

DMN-SUB  0.0006 [0.00052, 0.00062]  0.0012 [0.00115, 0.00117] 

SUB-SUB -0.0132 [-0.01326, -0.0131]  0.0012 [0.00118, 0.0012] 
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Figure S4. Stability of weight maps across 2000 distinct models. The prediction analysis was 

placed within a 10-fold cross-validation with 200 repetitions, generating 2000 predictive 

models in total. Stability of the predictive models was evaluated by calculating the inter-

correlations of weight maps across 2000 models. DAN, dorsal attention network; DMN, default 

mode network; FPN, frontoparietal network; gF, fluid intelligence; LIM, limbic network; SMN, 

somatomotor network; SUB, subcortical network; VAN, ventral attention network; VIS, visual 

network; VSTM, visual short-term memory. 
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Figure S5. Mean weights distribution of within-network and between-network connections 

derived from bootstrap tests. We iteratively generated bootstrap samples by randomly sampling 

participants with replacement (5000 iterations), and then built predictive models using each 

bootstrap sample. Error bars indicate standard deviation. DAN, dorsal attention network; DMN, 

default mode network; FPN, frontoparietal network; gF, fluid intelligence; LIM, limbic network; 

SMN, somatomotor network; SUB, subcortical network; VAN, ventral attention network; VIS, 

visual network; VSTM, visual short-term memory. 
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Figure S6. Predictive results based on connectome-based predictive modeling (CPM) [1-5], 

CPM works by (i) calculating the correlation of each connection to the target measure (e.g., age) 

across training subjects, and retaining the most significantly correlated ones under a predefined 

threshold; (ii) separating the selected features into a positive tail (the positively-correlated 

connections) and a negative tail (the negatively-correlated connections); (iii) separately 

summing the selected connections in the positive and negative tails into a single aggregate 

metric (positive network strength, negative network strength); (iv) submitting the aggregate 

metrics to a linear regression model. Detailed implementation can be found in [1, 2]. Overall, 

results showed that the CPM method achieved slightly lower prediction accuracy than PLSR, 

but the identified predictive patterns were highly similar to those revealed by PLSR. 
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Figure S7. Prediction accuracies based on within- or between-network connections. To 

examine which functional network contributes more to the prediction than others, we reran the 

prediction framework using only within-network or between-network connections to predict 

age. All network pairs achieved a prediction accuracy lower than models based on whole-brain 

features. However, we found that networks having more connections are more likely to better 

predict age. Nevertheless, there are some interesting findings. For example, there are only a 

medium number of connections within DMN. But it achieved a relative higher accuracy in 

predicting age than its size-matched counterparts. 

 
Table S4. Prediction results based on multimodal neuroimaging features 

 Age 
Fluid intelligence 

No control for age Control for age 

Functional connectivity 0.885±0.0028 0.634±0.0029 0.253±0.0054 

Grey matter volume 0.902±0.0021 0.640±0.0059 0.264±0.0058 

FCs+GMV 0.932±0.0017 0.692±0.0034 0.326±0.0078 
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Figure S8. Distributions of age and each of the eight cognitive metrics scores. For most of the 

cognitive tasks, there were a comparable number of subjects, while for force matching and 

motor learning, the number of participants was reduced by half. This is mainly because most of 

the cognitive measures were derived from a paper-and-pencil task or simple computerized 

experiment. However, the motor learning and force matching required specialist equipment. To 

facilitate the efficiency of data acquisition, the cognitive measures were collected from 4 Cam-

Can sessions. Specifically, all participants attended Session 1 and Session 2, and either Session 

3a or Session 3b [6]. Cognitive measures of force matching and motor learning only appeared in 

either Session 3a or Session 3b. Therefore, only half of the participants have available data for 

these two cognitive tasks. Description for each of the eight behavioral tasks were directly copied 

from [7], while more details can be found in [6]. 

1) Fluid intelligence: Fluid intelligence was assessed using the standard form of the Cattell 

Culture Fair, Scale 2 Form A. Participants completed nonverbal puzzles involving series 

completion, classification, matrices, and conditions. Correct responses are given a score of 

1 for a total maximum score of 46. 

2) Motor learning: This task taps into motor adaptation, the process of learning new kinematic 

control in response to deviations in a voluntary action. Time-pressured movement of a 

cursor to a target by moving an (occluded) stylus under veridical, perturbed (30°), and reset 

(veridical again) mappings between visual and real space. 

3) Visual short-term memory: View (1–4) colored discs briefly presented on a computer 
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screen, then after a delay, attempt to remember the color of the disc that was at a cued 

location, with response indicated by selecting the color on a color wheel (touchscreen 

input). 

4) Force matching: Match mechanical force applied to left index finger by using right index 

finger either directly, pressing a lever which transmits force to left index finger, or 

indirectly, by moving a slider which adjusts the force transmitted to the left index finger. 

Accuracy was assessed by average difference between target force and matched force 

applied by participant via (direct, indirect) means. 

5) Face recognition: Given a target image of a face, identify same individual in an array of 6 

face images (with possible changes in head orientation and lighting between target and 

same face in the test array). 

6) Hotel task: This task examines aspects of executive function that are important for complex 

planning and multitasking. Perform tasks in role of hotel manager: write customer bills, 

sort money, proofread advert, sort playing cards, alphabetise list of names. Total time must 

be allocated equally between tasks; there is not enough time to complete any one task. 

7) Emotion expression recognition: View face and label emotion expressed (happy, sad, anger, 

fear, disgust, surprise) where faces are morphs along axes between emotional expressions. 

8) Tip-of-tongue task: View faces of famous people (actors, musicians, politicians, etc.) and 

respond with the person's name, or “don't know” if they do not know the person's name 

(even if familiar), or “TOT” if they know the person's name but are (temporarily) unable 

to retrieve it. 
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Figure S9. Correlations between cognitive metrics and age. As expected, all cognitive domain 

scores were negatively correlated with individual’s age, reflecting a pattern of aging-related 

cognitive decline (p<0.001, Bonferroni corrected). 

MRI data acquisition 

Cam-CAN: Details of fMRI data acquisition can be found in [6, 7]. Briefly, resting-state 

scans were collected while participants rested with their eyes closed. In the movie-watching 

task, participants were scanned while they watched an excerpt of a compelling but unfamiliar 

film: “Bang! You’re Dead”, which is condensed from its original time of about 30 min to 8 min 

with the essential plot preserved. In the sensorimotor task, participants respond to 129 trials 

consisting of an initial practice trial, 120 bimodal audio/visual trials, and eight unimodal trials 

included to discourage strategic responding to one modality. 

Imaging data were acquired using a 3T Siemens TIM Trio scanner with a 32-channel head 

coil. A 3D structural MRI was performed on each participant using a T1-weighted sequence 

with generalized autocalibrating partially parallel acquisition acceleration factor 2; repetition 

time (TR) = 2250 ms; echo time (TE) = 2.99 ms; flip angle = 9°; field-of-view (FOV) = 256 × 

240 × 192 mm; resolution = 1 mm. For resting-state and sensorimotor task fMRI acquisition, 

T2*-weighted gradient echo planar image (EPI) data of 261 volumes were acquired with 32 

slices (descending order) of thickness 3.7 mm and a slice gap of 20% for whole-brain coverage 

(TR = 1970 ms; TE = 30 ms; flip angle = 78°; FOV = 192 × 192 mm; resolution = 3 × 3 × 4.44 

mm). Imaging data during the movie-watching task were acquired using a multi-echo EPI scan 
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with the following parameters: TR = 2470 ms; 5 echoes (TE = 9.4 ms, 21.2 ms, 33 ms, 45 ms, 

57 ms); flip angle = 78°; FOV = 192 × 192 mm; resolution = 3 × 3 × 4.44 mm; slices = 32; 193 

volumes. 

NKI: Imaging data were acquired using a 3T Siemens TIM Trio scanner. Resting fMRI 

data were acquired using an EPI sequence with the following parameters: TR= 2500 ms; TE = 

30 ms; flip angle = 80°; FOV = 216 mm; slice thickness = 3.0 mm, slices = 38, voxel size = 3.0 

× 3.0 × 3.0 mm, acquisition time=5 minutes. High resolution T1 MPRAGE anatomical images 

were acquired with the following parameters: TR = 1900 ms, TE = 2.52 ms, slice thickness = 

1.0 mm, flip angle = 9°, FOV= 256 mm, and voxel size = 1.0 × 1.0 × 1.0 mm. 

Shanxi: MRI data were obtained with a Siemens Trio 3.0 Tesla scanner (Erlangen, 

Germany). Participants were instructed to stay awake with their eyes closed, and not to fall 

asleep or move during scanning. No participants were excluded due to falling asleep or opening 

their eyes. Functional scans were collected using an EPI sequence with the following 

parameters: TR = 2500 ms; TE = 30 ms; flip angle = 90°; FOV = 240 × 240 mm; slice thickness 

= 3 mm, slices=32; voxel size = 3.75 × 3.75 × 4 mm, 212 volumes. 

Preprocessing 

The DiffusionKit (diffusion.brainnetome.org) and in-house code were used for fMRI 

preprocessing, following the general framework in aging studies [8, 9]. We applied similar 

preprocessing strategy to all three datasets, which was the same as our previous publications. 

The BOLD echo planar image data for all three states were unwrapped based on field-map 

images to compensate for magnetic field inhomogeneities, realigned to correct motion effects 

where the motion parameters for each volume image were stored for the following regression, 

and slice-time corrected. The first 10 volumes were discarded to allow for magnetic 

equilibration and then nonlinearly registered to MNI 3-mm space (for validation datasets, we 

did not discard any volumes because they only included a small number of volumes). We further 

scrubbed the frames with excessive head motions based on framewise displacement (FD) >0.5 

mm criterion and corrected the frames by interpolation. We discarded images with less than 40% 

of their original data after scrubbing. Moreover, fMRI scans with a mean FD>0.3 mm were 

excluded from further analysis. We then band-pass filtered the data at 0.009–0.08 Hz to reduce 

low-frequency drift and high-frequency noise. CompCor was used to reduce physiological 

effects as performed in [10, 11]. Specifically, the mean signal and 5 principal components of white 

matter and cerebrospinal fluid and movement parameters and their derivatives were regressed 

out as confounding factors to remove physiological noise. The aforementioned principal 

components were derived separately by decomposing the regional signal masked by the eroded 
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white matter and cerebrospinal fluid. In light of the fact that the location of functional regions 

was more variable in older adults, which can be alleviated by smoothing [11], we smoothed the 

volume images by a Gaussian filter with a kernel size of 6 mm. Considering a controversial 

physiological interpretation, global signal regression was not performed here. As previous 

studies confirmed the advantages of longer scan length, we concatenated fMRI time series from 

all three fMRI conditions [12-14]. Time courses from the task fMRI were calculated based on the 

raw task fMRI data, with no regression of task-evoked activity [15], resulting in a total length of 

685 time points for Cam-CAN data. For validation cohorts, only resting-state fMRI was 

available, therefore, the total length of time points did not change. 

 

Table S5. Network definition of the 246 brain nodes 

 name region Network MNI  name region Network MNI 

1 A8m SFG_L_7_1 6 -5, 15, 54 124 cpSTS pSTS_R_2_2 4 57, -40, 12 

2 A8m SFG_R_7_1 4 7, 16, 54 125 A7r SPL_L_5_1 3 -16, -60, 63 

3 A8dl SFG_L_7_2 7 -18, 24, 53 126 A7r SPL_R_5_1 3 19, -57, 65 

4 A8dl SFG_R_7_2 6 22, 26, 51 127 A7c SPL_L_5_2 3 -15, -71, 52 

5 A9l SFG_L_7_3 7 -11, 49, 40 128 A7c SPL_R_5_2 3 19, -69, 54 

6 A9l SFG_R_7_3 7 13, 48, 40 129 A5l SPL_L_5_3 3 -33, -47, 50 

7 A6dl SFG_L_7_4 3 -18, -1, 65 130 A5l SPL_R_5_3 3 35, -42, 54 

8 A6dl SFG_R_7_4 3 20, 4, 64 131 A7pc SPL_L_5_4 2 -22, -47, 65 

9 A6m SFG_L_7_5 2 -6, -5, 58 132 A7pc SPL_R_5_4 2 23, -43, 67 

10 A6m SFG_R_7_5 2 7, -4, 60 133 A7ip SPL_L_5_5 3 -27, -59, 54 

11 A9m SFG_L_7_6 7 -5, 36, 38 134 A7ip SPL_R_5_5 3 31, -54, 53 

12 A9m SFG_R_7_6 6 6, 38, 35 135 A39c IPL_L_6_1 1 -34, -80, 29 

13 A10m SFG_L_7_7 7 -8, 56, 15 136 A39c IPL_R_6_1 1 45, -71, 20 

14 A10m SFG_R_7_7 7 8, 58, 13 137 A39rd IPL_L_6_2 6 -38, -61, 46 

15 A9/46d MFG_L_7_1 4 -27, 43, 31 138 A39rd IPL_R_6_2 6 39, -65, 44 

16 A9/46d MFG_R_7_1 6 30, 37, 36 139 A40rd IPL_L_6_3 3 -51, -33, 42 

17 IFJ MFG_L_7_2 6 -42, 13, 36 140 A40rd IPL_R_6_3 3 47, -35, 45 

18 IFJ MFG_R_7_2 6 42, 11, 39 141 A40c IPL_L_6_4 7 -56, -49, 38 

19 A46 MFG_L_7_3 6 -28, 56, 12 142 A40c IPL_R_6_4 6 57, -44, 38 

20 A46 MFG_R_7_3 6 28, 55, 17 143 A39rv IPL_L_6_5 3 -47, -65, 26 

21 A9/46v MFG_L_7_4 6 -41, 41, 16 144 A39rv IPL_R_6_5 7 53, -54, 25 

22 A9/46v MFG_R_7_4 6 42, 44, 14 145 A40rv IPL_L_6_6 2 -53, -31, 23 

23 A8vl MFG_L_7_5 7 -33, 23, 45 146 A40rv IPL_R_6_6 2 55, -26, 26 

24 A8vl MFG_R_7_5 6 42, 27, 39 147 A7m PCun_L_4_1 6 -5, -63, 51 

25 A6vl MFG_L_7_6 3 -32, 4, 55 148 A7m PCun_R_4_1 6 6, -65, 51 

26 A6vl MFG_R_7_6 3 34, 8, 54 149 A5m PCun_L_4_2 2 -8, -47, 57 

27 A10l MFG_L_7_7 5 -26, 60, -6 150 A5m PCun_R_4_2 3 7, -47, 58 

28 A10l MFG_R_7_7 6 25, 61, -4 151 dmPOS PCun_L_4_3 1 -12, -67, 25 

29 A44d IFG_L_6_1 6 -46, 13, 24 152 dmPOS PCun_R_4_3 1 16, -64, 25 

30 A44d IFG_R_6_1 3 45, 16, 25 153 A31 PCun_L_4_4 7 -6, -55, 34 

31 IFS IFG_L_6_2 6 -47, 32, 14 154 A31 PCun_R_4_4 7 6, -54, 35 

32 IFS IFG_R_6_2 6 48, 35, 13 155 A1/2/3ulhf PoG_L_4_1 2 -50, -16, 43 

33 A45c IFG_L_6_3 7 -53, 23, 11 156 A1/2/3ulhf PoG_R_4_1 2 50, -14, 44 
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34 A45c IFG_R_6_3 7 54, 24, 12 157 A1/2/3tonI

a 
PoG_L_4_2 2 -56, -14, 16 

35 A45r IFG_L_6_4 7 -49, 36, -3 158 A1/2/3tonI

a 
PoG_R_4_2 2 56, -10, 15 

36 A45r IFG_R_6_4 6 51, 36, -1 159 A2 PoG_L_4_3 3 -46, -30, 50 

37 A44op IFG_L_6_5 4 -39, 23, 4 160 A2 PoG_R_4_3 2 48, -24, 48 

38 A44op IFG_R_6_5 4 42, 22, 3 161 A1/2/3tru PoG_L_4_4 2 -21, -35, 68 

39 A44v IFG_L_6_6 4 -52, 13, 6 162 A1/2/3tru PoG_R_4_4 2 20, -33, 69 

40 A44v IFG_R_6_6 4 54, 14, 11 163 G INS_L_6_1 2 -36, -20, 10 

41 A14m OrG_L_6_1 7 -7, 54, -7 164 G INS_R_6_1 2 37, -18, 8 

42 A14m OrG_R_6_1 7 6, 47, -7 165 vIa INS_L_6_2 8 -32, 14, -13 

43 A12/47o OrG_L_6_2 7 -36, 33, -

16 
166 vIa INS_R_6_2 6 33, 14, -13 

44 A12/47o OrG_R_6_2 7 40, 39, -14 167 dIa INS_L_6_3 4 -34, 18, 1 

45 A11l OrG_L_6_3 5 -23, 38, -

18 
168 dIa INS_R_6_3 4 36, 18, 1 

46 A11l OrG_R_6_3 6 23, 36, -18 169 vId/vIg INS_L_6_4 4 -38, -4, -9 

47 A11m OrG_L_6_4 5 -6, 52, -19 170 vId/vIg INS_R_6_4 4 39, -2, -9 

48 A11m OrG_R_6_4 5 6, 57, -16 171 dIg INS_L_6_5 2 -38, -8, 8 

49 A13 OrG_L_6_5 5 -10, 18, -

19 
172 dIg INS_R_6_5 2 39, -7, 8 

50 A13 OrG_R_6_5 5 9, 20, -19 173 dId INS_L_6_6 4 -38, 5, 5 

51 A12/47l OrG_L_6_6 7 -41, 32, -9 174 dId INS_R_6_6 4 38, 5, 5 

52 A12/47l OrG_R_6_6 7 42, 31, -9 175 A23d CG_L_7_1 7 -4, -39, 31 

53 A4hf PrG_L_6_1 2 -49, -8, 39 176 A23d CG_R_7_1 7 4, -37, 32 

54 A4hf PrG_R_6_1 2 55, -2, 33 177 A24rv CG_L_7_2 8 -3, 8, 25 

55 A6cdl PrG_L_6_2 3 -32, -9, 58 178 A24rv CG_R_7_2 8 5, 22, 12 

56 A6cdl PrG_R_6_2 3 33, -7, 57 179 A32p CG_L_7_3 7 -6, 34, 21 

57 A4ul PrG_L_6_3 2 -26, -25, 

63 
180 A32p CG_R_7_3 4 5, 28, 27 

58 A4ul PrG_R_6_3 2 34, -19, 59 181 A23v CG_L_7_4 7 -8, -47, 10 

59 A4t PrG_L_6_4 2 -13, -20, 

73 
182 A23v CG_R_7_4 1 9, -44, 11 

60 A4t PrG_R_6_4 2 15, -22, 71 183 A24cd CG_L_7_5 4 -5, 7, 37 

61 A4tl PrG_L_6_5 4 -52, 0, 8 184 A24cd CG_R_7_5 4 4, 6, 38 

62 A4tl PrG_R_6_5 4 54, 4, 9 185 A23c CG_L_7_6 4 -7, -23, 41 

63 A6cvl PrG_L_6_6 3 -49, 5, 30 186 A23c CG_R_7_6 4 6, -20, 40 

64 A6cvl PrG_R_6_6 3 51, 7, 30 187 A32sg CG_L_7_7 7 -4, 39, -2 

65 A1/2/3ll PCL_L_2_1 4 -8, -38, 58 188 A32sg CG_R_7_7 7 5, 41, 6 

66 A1/2/3ll PCL_R_2_1 2 10, -34, 54 189 cLinG MVOcC_L_5_

1 
1 -11, -82, -11 

67 A4ll PCL_L_2_2 2 -4, -23, 61 190 cLinG MVOcC_R_5_

1 
1 10, -85, -9 

68 A4ll PCL_R_2_2 2 5, -21, 61 191 rCunG MVOcC_L_5_

2 
1 -5, -81, 10 

69 A38m STG_L_6_1 5 -32, 14, -

34 
192 rCunG MVOcC_R_5_

2 
1 7, -76, 11 

70 A38m STG_R_6_1 5 31, 15, -34 193 cCunG MVOcC_L_5_

3 
1 -6, -94, 1 

71 A41/42 STG_L_6_2 2 -54, -32, 

12 
194 cCunG MVOcC_R_5_

3 
1 8, -90, 12 

72 A41/42 STG_R_6_2 2 54, -24, 11 195 rLinG MVOcC_L_5_

4 
1 -17, -60, -6 

73 TE1.0/T

E1.2 
STG_L_6_3 2 -50, -11, 1 196 rLinG MVOcC_R_5_

4 
1 18, -60, -7 

74 TE1.0/T

E1.2 
STG_R_6_3 2 51, -4, -1 197 vmPOS MVOcC_L_5_

5 
1 -13, -68, 12 

75 A22c STG_L_6_4 2 -62, -33, 7 198 vmPOS MVOcC_R_5_

5 
1 15, -63, 12 

76 A22c STG_R_6_4 2 66, -20, 6 199 mOccG LOcC_L_4_1 1 -31, -89, 11 

77 A38l STG_L_6_5 5 -45, 11, -

20 
200 mOccG LOcC_R_4_1 1 34, -86, 11 

78 A38l STG_R_6_5 5 47, 12, -20 201 V5/MT+ LOcC_L_4_2 3 -46, -74, 3 

79 A22r STG_L_6_6 7 -55, -3, -10 202 V5/MT+ LOcC_R_4_2 1 48, -70, -1 

80 A22r STG_R_6_6 7 56, -12, -5 203 OPC LOcC_L_4_3 1 -18, -99, 2 

81 A21c MTG_L_4_1 7 -65, -30, -

12 
204 OPC LOcC_R_4_3 1 22, -97, 4 

82 A21c MTG_R_4_1 6 65, -29, -

13 
205 iOccG LOcC_L_4_4 1 -30, -88, -12 
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83 A21r MTG_L_4_2 7 -53, 2, -30 206 iOccG LOcC_R_4_4 1 32, -85, -12 

84 A21r MTG_R_4_2 7 51, 6, -32 207 msOccG LOcC_L_2_1 1 -11, -88, 31 

85 A37dl MTG_L_4_3 3 -59, -58, 4 208 msOccG LOcC_R_2_1 1 16, -85, 34 

86 A37dl MTG_R_4_3 3 60, -53, 3 209 lsOccG LOcC_L_2_2 1 -22, -77, 36 

87 aSTS MTG_L_4_4 7 -58, -20, -9 210 lsOccG LOcC_R_2_2 1 29, -75, 36 

88 aSTS MTG_R_4_4 7 58, -16, -

10 
211 mAmyg Amyg_L_2_1 8 -19, -2, -20 

89 A20iv ITG_L_7_1 5 -45, -26, -

27 
212 mAmyg Amyg_R_2_1 8 19, -2, -19 

90 A20iv ITG_R_7_1 5 46, -14, -

33 
213 lAmyg Amyg_L_2_2 8 -27, -4, -20 

91 A37elv ITG_L_7_2 3 -51, -57, -

15 
214 lAmyg Amyg_R_2_2 8 28, -3, -20 

92 A37elv ITG_R_7_2 3 53, -52, -

18 
215 rHipp Hipp_L_2_1 8 -22, -14, -19 

93 A20r ITG_L_7_3 5 -43, -2, -41 216 rHipp Hipp_R_2_1 8 22, -12, -20 

94 A20r ITG_R_7_3 5 40, 0, -43 217 cHipp Hipp_L_2_2 8 -28, -30, -10 

95 A20il ITG_L_7_4 7 -56, -16, -

28 
218 cHipp Hipp_R_2_2 8 29, -27, -10 

96 A20il ITG_R_7_4 5 55, -11, -

32 
219 vCa BG_L_6_1 8 -12, 14, 0 

97 A37vl ITG_L_7_5 3 -55, -60, -6 220 vCa BG_R_6_1 8 15, 14, -2 

98 A37vl ITG_R_7_5 3 54, -57, -8 221 GP BG_L_6_2 8 -22, -2, 4 

99 A20cl ITG_L_7_6 6 -59, -42, -

16 
222 GP BG_R_6_2 8 22, -2, 3 

100 A20cl ITG_R_7_6 6 61, -40, -

17 
223 NAC BG_L_6_3 8 -17, 3, -9 

101 A20cv ITG_L_7_7 5 -55, -31, -

27 
224 NAC BG_R_6_3 8 15, 8, -9 

102 A20cv ITG_R_7_7 5 54, -31, -

26 
225 vmPu BG_L_6_4 8 -23, 7, -4 

103 A20rv FuG_L_3_1 5 -33, -16, -

32 
226 vmPu BG_R_6_4 8 22, 8, -1 

104 A20rv FuG_R_3_1 5 33, -15, -

34 
227 dCa BG_L_6_5 8 -14, 2, 16 

105 A37mv FuG_L_3_2 1 -31, -64, -

14 
228 dCa BG_R_6_5 8 14, 5, 14 

106 A37mv FuG_R_3_2 1 31, -62, -

14 
229 dlPu BG_L_6_6 8 -28, -5, 2 

107 A37lv FuG_L_3_3 3 -42, -51, -

17 
230 dlPu BG_R_6_6 8 29, -3, 1 

108 A37lv FuG_R_3_3 1 43, -49, -

19 
231 mPFtha Tha_L_8_1 8 -7, -12, 5 

109 A35/36r PhG_L_6_1 5 -27, -7, -34 232 mPFtha Tha_R_8_1 8 7, -11, 6 

110 A35/36r PhG_R_6_1 5 28, -8, -33 233 mPMtha Tha_L_8_2 8 -18, -13, 3 

111 A35/36c PhG_L_6_2 5 -25, -25, -

26 
234 mPMtha Tha_R_8_2 8 12, -14, 1 

112 A35/36c PhG_R_6_2 1 26, -23, -

27 
235 Stha Tha_L_8_3 8 -18, -23, 4 

113 TL PhG_L_6_3 1 -28, -32, -

18 
236 Stha Tha_R_8_3 8 18, -22, 3 

114 TL PhG_R_6_3 1 30, -30, -

18 
237 rTtha Tha_L_8_4 8 -7, -14, 7 

115 A28/34 PhG_L_6_4 5 -19, -12, -

30 
238 rTtha Tha_R_8_4 8 3, -13, 5 

116 A28/34 PhG_R_6_4 5 19, -10, -

30 
239 PPtha Tha_L_8_5 8 -16, -24, 6 

117 TI PhG_L_6_5 5 -23, 2, -32 240 PPtha Tha_R_8_5 8 15, -25, 6 

118 TI PhG_R_6_5 5 22, 1, -36 241 Otha Tha_L_8_6 8 -15, -28, 4 

119 TH PhG_L_6_6 1 -17, -39, -

10 
242 Otha Tha_R_8_6 8 13, -27, 8 

120 TH PhG_R_6_6 1 19, -36, -

11 
243 cTtha Tha_L_8_7 8 -12, -22, 13 

121 rpSTS pSTS_L_2_1 7 -54, -40, 4 244 cTtha Tha_R_8_7 8 10, -14, 14 

122 rpSTS pSTS_R_2_1 7 53, -37, 3 245 lPFtha Tha_L_8_8 8 -11, -14, 2 

123 cpSTS pSTS_L_2_2 4 -52, -50, 

11 
246 lPFtha Tha_R_8_8 8 13, -16, 7 

1: Visual network; 2: Somatomotor network; 3: Dorsal attention network; 4: Ventral attention network; 5: Limbic 

network; 6: Frontoparietal network; 7: Default mode network; 8: Subcortical network.  
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