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S1 Photon sensitive path and surface fluence analysis

In this section, we present the details of a simulation to studied the photon sensitive 7 path, 
detected photon number, and scattering distributions of the tissue-like scattering 8 volume 
used in our experiment. These values and photon-sensitive regions are mentioned 9 repeatedly 
in the introduction and method sections to motivate the need of a multi-10 detector, 
parallelized speckle imaging system and provide valuable insight for our system 11 design. The 
study uses a recently developed Monte Carlo light scattering simulator [1]. 12 We use the 
Lorenz–Mie theory to generate the scattering, absorption, and the anistropy 13 function of the 
microsphere solution used in the experiment. To match the experimental 14 setup(see 
parallelized speckle detection setup in the Method section), we put detectors 15 9mm away from 
the illumination. The trajectory of the detected photon are recorded 16 to study the volume 
region most detected photon has travelled through. Figure S1 (A) 17 plots the center slice of the 
photon path that detected by two detectors placed 9mm away 18 from the illumination. 
Although 12 detectors are used in the real setup, a cross section 19 of photon trajectory from 
two detectors are presented here for a better visual illustration 20 propose. Visualizations of 3D 
trajectories of detected photon from all 12 fibers, and 6,4, 21 and 3 fibers are plotted in 
fig.S2(B). As expected, the light travel through banana-shaped 22 paths, with the most 
sensitive region penetrates around 5mm deep. The surface fluence 23 is plotted in fig. S1 (B), 
and a line-plot of the center line is provided. 10 billion photon is 24 pumped into the surface 
center of the tissue phantom. The photon number is re-scaled to 25 the 200mW 670nm 
illumination used in the experiment via the Planck–Einstein relation 26 to give quantitative 
predictions of the photon number per speckle area per µs exposure on 27 the tissue phantom 
surface. On average 9.4 photon per speckle per µs exiting the tissue 28 phantom surface 9mm 
away from the illumination. The emperically measured number of 29 photon using the SPAD 
array within this exposure time is less than 2 photon per pixel 30 per µs, which is lower. This is 
due to the fiber detection and transmission efficiency, and 31 the quantum efficiency of the 
SPAD. Hence, the measured photon number falls into the 32 expected range. Figure S1 (C) 
gives the probabilistic distribution of the number of times 33 photon gets scattered before 
detection, with an average number of scattering above 400 34 times. The distribution has a long 
tail, and no photon scattering less than 80 scattering 35 are detected at 9mm source-detector 
seperation. Therefore, the simulation predicts all 36 the detected light are highly scattered. 
However, in reality, as we used glass material to 37 make both the cuvette and the probe 
surface, capturing leaking photon from the phantom
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Figure S1: Monte carlo simulation of (A) Photon sensitive path of two source-
detector pairs. (B) Left: En face view of the surface photon number distribution.
Right: a center slice of the surface photon distribution. The y-axis is scaled to the
number of backscattered photon on the surface per speckle area per micro-second
when 200mW light is used. (C) The distribution of the number of scattering of
detected photon. (D) The scattering function of the microsphere solution we used.

surface is also anticipated, as discussed in Discussion section in the main text. Figure S1 39 (D) 
shows the phase function for the microsphere solution calculated by the Mie scattering 40 

theory. In addition, we provide 3D trajectory of the detected photon and plot the imaging 41 

sensitivity of the PDCI system using different number of fiber detectors in fig.S2. These 42 

visualizations greatly help understand the imaging space of the system with different 43 number 
of fiber detectors, and explains why employing more detectors can noticeably 44 improve the 
imaging quality, as shown in the Experimental validation section in the main 45 text.

S2 A model-based reconstruction

We compare our learning-based method with a model-based method. We assume the 
perturbation (object present subtract object absent) b ∈ Rm generated by the DMD 49 patterns 
is linearly related to the displayed pattern pixels x ∈ Rn by b = Wx,W ∈ 50 Rm×n, where each 
column of W = [w1, w2, ..] are the perturbations generated by the
decorrelating point source located at pixels [x1; x2, ..] of x; i.e., the perturbation generated 52 by 
displaying both pattern 1 and pattern 2 is equal to the sum of the perturbations 53 generated by 
displaying pattern 1 and 2 individually. While analytical Green’s functions 54 of diffuse 
correlation equation(DCE) exist for simple media geometry, such as infinite or 55 semi-infinite 
geometries, it is not available for most arbitrary tissue shapes. Moreover, 56 as mentioned in the 
text, the diffuse correlation equation is not a good approximation
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Figure S2: (A) PDCI system with different number of fiber detectors. The source-
detector configurations are used to generate Fig.8 in the main article. (B) shows the
imaging space of the PDCI systems with different number of detectors, with 12-fiber
covers the most volume underneath. Images in each row share the same scale bar.

of the transported correlation equation for small source-detector separations used here. 58 

Hence, we measure the perturbation generated from each positions over a 0.67mm-pitch 59 grid 
by turning on a small 1.36mm-radius circular DMD area centered at each grid point 60 in 
sequence, which is smaller than the expected achievable resolution [2]). We apply `1 61 and 
isotropic total variation penalties to regularize the ill-posed reconstruction. Such 62 

regularizations has been successfully applied to diffuse optical tomography to improve 63 

reconstruction quality [3, 4]. The inverse problem can be formulated as

x = arg min
x

1

2
‖Wx− b‖22 + β‖x‖1 + γ‖x‖tv. (1)

To solve this, we use a variable splitting method. We first rewrite the problem as

x,y, z = arg min
x,y,z

1

2
‖Wx− b‖22 + β‖y‖1 + γ‖z‖tv, s.t. x = y,x = z, (2)

which is equivalent to solving the augmented Lagrangian

x,y, z = arg min
x,y,z;u,v

L(x,y, z; u,v), (3)

where

L(x,y, z; u,v) =
1

2
‖Wx− b‖22 + β‖y‖1 + γ‖z‖tv

+ u>(x− y) + v>(x− z) +
ρ1
2
‖x− y‖22 +

ρ2
2
‖x− z‖22. (4)

This can be solved efficiently using the alternating direction method of multipliers(ADMM)
[5] encapsulated in algorithm 1, where the primal variables minimization steps can be sim-71 

plified as

x = arg min
x

1

2
‖Wx− b‖22 +

ρ1
2
‖x− y + u‖22 +

ρ2
2
‖x− z + v‖22, (5)72

S3



y = arg min
y

β‖y‖1 +
ρ1
2
‖x− y + u‖22, (6)

z = arg min
z

ρ2
2
‖x− z + v‖22, (7) β‖z‖tv +

respectively. Equation 5 has a close-form solution

(ρ1(y − u) + ρ2(z− v) + WTb). (8) x = (WTW + ρ1I + ρ2I)−1 
79 Equation 6 also 

has a close-form solution

y = S(y, 2β/ρ1), (9)

where S(·, λ) is the soft-threshold function with a threshold λ. Unfortunately the proximal 82 of 
the TV regularization in equation 7 does not have a close-form solution; however, we 83 can 
solve it efficiently using the method proposed by Beck and Teboulle [6] that converges 84 in 10 
iterations.

S3 Liquid phantom optical and dynamic property

Here we present a way to estimate the scattering, absorption, and decorrelating properties 87 of 
the polystyrene microsphere liquid phantom we use in the experiments. Our phantom 88 is 
made of 1-micronmeter polystyrene microspheres suspension with a concentration of 89 4.55 × 
106#/mm3. Using one of the most popular reported complex refractive index of 90 polystyrene 
(1.584-0.0004i) measured by Ma et.al. [7], the scattering(µ

′
s) and absorption 91 coefficient(µa) of 

the polystyrene microsphere solution can be calculated with the Lorenz-92 Mie theory [8], which 
results in an calculated µ′

s = 0.7mm−1 and µa = 0.02mm−1. How-93 ever, as the extinction 
coefficient of the polystyrene in 670nm wavelength is very small, 94 a tiny variance (on the 
order of 10 × −4) caused by manufacturing process inconsistency 95 or discrepancy can result 
in noticeable difference in the absorption coefficient. Hence, we 96 experimentally measure the 
absorption coefficient using a relation between surface diffuse 97 reflectance and source-detector 
distance derived from the diffusion equation [9]

ln (ρ2Iρ) = −µeff + I0, (10)

Algorithm 1 Proposed ADMM-based reconstruction method

1: Input: initial guess x0, system matrix W, measurement b, number if iteration T .
2: Init: y0 = x0,z0 = x0, u0 = 0, v0 = 0.
3: for t = 1, 2, . . . , T do
4: xt = arg minx L(xt−1,yt−1, zt−1; ut−1,vt−1) . Eq.8
5: yt = arg miny L(xt,yt−1, zt−1; ut−1,vt−1) . Eq.9
6: zt = arg minz L(xt,yt, zt−1; ut−1,vt−1)
7: ut = ut−1 + xt − yt . Dual ascent
8: vt = vt−1 + xt − zt . Dual ascent
9: end for

10: Output: xT
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where ρ is the source-detector distance. µeff =
√

3µ′
sµa is the effective attenuation coeffi-

d

cient. Iρ and I0 are the surface diffuse reflectance at ρ and 0, respectively. ln is the nature 101 

logarithmic function. Fig. S3 plots the experimentally measured ln (ρ2Iρ) as a function 102 of the 
source-detector separation. Fitting the points with a straight line, we can derive 103 the 
absorption coefficent to be µa = 0.01cm−1.

Next, we want to estimate the dynamic property of the media. Since we use a 0.9cm 105 source-
detector separation in the experiment, a Monte Carlo method is used to give 106 more accurate 
result [10]. Consider a photon n experience its ith scattering inside the 107 medium m, resulting a 
momentum transfer qin,m and a traveling path length lin,m, where 108 q = kout − kin with kout and 
kin are wave-vectors scattered from and towards the colli-109 sion, respectively. The total 
dimensionless momentum transfer an photon traveling path

length of photon n inside medium m can be written as Yn,m =
∑

i=1(q
i
n,m)2/(2k2m) and

Ln,m =
∑

i=1 l
i
n,m, respectively, with each individual qin,m and lin,m tracked from the Monte

Carlo simulation. Therefore, the field correlation can be calculated as [10]

G1(τ) =
1

Np

Np∑
n=1

exp(− 1

3

M∑
m=1

Yn,mk
2
m〈∆r2m(τ)〉)exp(

M∑
m=1

−µamLn,m), (11)

where M is the number of different tissue types, and Np is the number of detected photons. 115 

km and µam are the wave-number and absorption coefficient in medium m. Since we are 116 

estimating the property for the background media, which is homogeneous, M = 1 in this 117 

case. Further, we assume the polystyrene bead suspension experience Brownian motion,
which makes 〈∆r2m(τ)〉 = 6Dvτ . From field correlation curves, we can compute the

(12)

normalized intensity correlation using the Siegert relation [11] 120 

g2(τ) = 1 + |g1(τ)|2,

where g1(τ) = G1(τ)/G1(0) is the normalized field correlation. Fitting the experimentally 122 

measured g2(τ) with simulated ones, we derive the diffusion coefficient for the media 123 Dv = 1.5 
× 10−6mm2/s, which is close to the diffusion coefficient in small animals [12].

𝜇𝜇eff = 0.15mm−1

𝜇𝜇𝑎𝑎 = 0.01mm−1

S-d distance 𝜌𝜌 (mm)
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Figure S3: Validation of diffusion model and intensity autocorrelation function (A)
Experimentally measured ln (ρ2Iρ) as a function of source-detector seperation. Fit-
ting measured points gives an estimated µa = 0.01cm−1. (B) Fitting intensity au-
tocorrelation g2(τ) using simulation gives a predicted Brownian diffusion coefficient
Dv = 1.5× 10−6mm2/s.
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Figure S4: Data preprocessing flow for our parallelized speckle detection system.
(A) Photos of fiber bundle probe, showing 12 detectors radially positioned around
light delivery fiber in center. Light collected from each positions in (A) are mapped
to and collected by the SPAD array, as displayed in (C). (B) shows a few frames of
the raw data captured by the 32× 32 SPAD array camera at a 1.5µs exposure. (C)
illustrates the SPAD pixels that records the speckle fluctuations from the detector
fiber p. (D) some representative time-resolved photon counting measurements from
each SPAD pixel. The normalized intensity temperal autocorrelation curve for each
pixel is calculated using the eq.?? as plotted in (E). All the computed correlations
from SPAD pixels that measures the speckle p are averaged to generate a relatively
smooth autocorrelation g2

p for the surface location p = 1, 2, .., 12.
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