

Fig. S1 Effect of IVM and NA on adult worm motility. (A) Concentration-response relationship of IVM in adult male and female worms after 24 hrs of exposure. The estimated IC_{50} , pIC_{50} and n_H values in male worms were 11.6 μ M, 4.9 ± 0.2 and -3.4 ± 12.4. In females, the estimated IC₅₀, pIC_{50} and n_H values were 1.1 μ M, 5.9 ± 0.4 and -0.6 ± 0.3. (B) Sex-dependent effect of 3 μ M IVM in adult worms after 24 hrs of exposure. The mean response (expressed as mean ± SEM, %.) for males and females was 92.0 \pm 7.2 and 34.0 \pm 7.3, respectively. (C) Concentration-response relationship of NA in adult male and female worms after 144 hrs of exposure. In male worms the estimated IC_{50} was 8.5 µM, pIC_{50} was 5.1 ± 0.1 and n_H was -2.1 ± 0.8. In females, the estimated IC_{50} , pIC_{50} and n_H values were 3.3 μ M, 5.5 ± 0.1 and -1.6 ± 0.7. (D) Sex-dependent effect of 10 µM NA in adult worms after 144 hrs of exposure. The mean response (expressed as mean ± SEM, %) for males and females was 38.0 ± 11.0 and 6.9 ± 2.0, respectively. (**** $P \le 0.0001$, ** $P \le 0.0001$, 0.005; significantly different as indicated, Two-tailed unpaired t-test).

Fig. S2. (*A*) Knock down of *avr-14B* and *lacz* transcript in female worms after 120 hrs of incubation was assayed using qPCR. Knock down of the *avr-14B* transcript (expressed as mean \pm SEM, %) was 90 \pm 3.9 and 18 \pm 6.1 in worms treated with *avr-14B* and control *LacZ* dsRNA, respectively. (*B*) Knock down of *avr-14B* transcript in male worms after 24 hrs of incubation was assayed using qPCR. Knock down of the *avr-14B* transcript (expressed as mean \pm SEM, %) was 84 \pm 3.1 and 23 \pm 18.7 in worms treated with *avr-14B* and control *LacZ* dsRNA, respectively. **P* \leq 0.05, ***P* \leq 0.01; significantly different as indicated; Two-tailed paired t-test.

Bma-AVR-14B	MNGCMICWIFTILILVMAKKKLKEQEIIQRTLKDYDWRVRPRGSNLSWPDTGGPVLV 5					
Cel-AVR-14B	MWHYRLTTILLIISIIHSIRAKRKLKEQEIIQRILKDYDWRVRPRGMNATWPDTGGPVLV 60					
	* *::*: : **:**************************					
	G D					
Bma-AVR-14B	SVNIYL <mark>R</mark> SISKIDDVNMEYSAQFTF <mark>R</mark> EEWNDARLAYERLAD-ENTQVPPFVVLAASEQAD	116				
Cel-AVR-14B	TVNIYLRSISKIDDVNMEYSAQFTFREEWTDQRLAYERYEESGDTEVPPFVVLATSENAD					
	:*************************************					
	A E Cys-loop					
Bma-AVR-14B	LTQQIWMPDTFFQNEKEARRHLIDKPNVLIRIHPDGQILYSVRLSLVLSCPMSLEYYPLD	176				
Cel-AVR-14B	QSQQIWMPDTFFQNEKEARRHLIDKPNVLIRIHKNGQILYSVRLSLVLSCPMSLEFYPLD					
	·*************************************					
	B F C					
Bma-AVR-14B	RQTCLIDLASYAYTTDDIKYEWKLKNPIQQKEGLRQSLPSFELQDVLTDYCTSKTNTGEY	236				
Cel-AVR-14B	RQNCLIDLASYAYTTQDIKYEWKEKKPIQQKDGLRQSLPSFELQDVVTDYCTSLTNTGEY 2					
	.**********************************					
	TM1 TM2					
Bma-AVR-14B	SCARVMLLLRREYSYYLIQLYIPCIMLVVVSWVSFWLDKDAVPARVSLGVTTLLTMTTQA	296				
Cel-AVR-14B	SCARVVLRLRREYS <mark>YYLIQLYIPCIMLVVVSWVSFWL</mark> DKDAVPARVSLGVTTLLTMTTQA					
	**** _: * ****** <mark>*****************</mark> ************					
	тмЗ					
Bma-AVR-14B	SGINAK <mark>LPPVSYIK</mark> AVD <mark>IWIGVCLAFIF</mark> GALLEYALVNYYGRQEFLKKEKKKKTEFKGCL	356				
Cel-AVR-14B	SGINSK <mark>LPPVSYIK</mark> AVD <mark>VWIG</mark> VCLAFI <mark>FGALLEYAVVNYY</mark> GRKEFLRKEKKKKTRIDDCV					
	****:**********************************					
	TM4					
Bma-AVR-14B	CPSDHPFNQDLRQSLRLDMNTYRRKRWTKFWLNRYLCGNTEVSKRVDL <mark>ISRFAFPTFF</mark>	414				
Cel-AVR-14B	CPSDRPPLRLDLSAYRSVKRLPIIKRISEILSTNIDISRRVDL <mark>MSRLTFPLTF</mark>	413				
	****:* ****:.:** : : *. * ::*:****:***					
Bma-AVR-14B	ACFLVLYYVNYVN 427					
Cel-AVR-14B	FSFLIFYYVAYVKQSRD 430					
	.**::*** **:					

Fig. S3. Amino acid sequence alignment of *B. malayi* AVR-14B with *C. elegans* AVR-14B. Color code: Green = ligand binding loops A – G and residues that make contacts with bound glutamate are highlighted in maroon within different loops; Orange = Cys-loop characteristic of the Cys-loop ligand-gated ion channel superfamily; Regions highlighted in olive green = transmembrane regions 1 - 4 as predicted using TMHMM Server v. 2.0; Underlined region = PAR motif characteristic of ligand-gated anion channels; S260 in TM2 in the *C. elegans* GluCl alpha (GLC-1) subunit that is critical for ivermectin binding as described by Hibbs and Gouaux, 2011, is substituted by Alanine (A) highlighted in red in the TM2 region of both *Bma*-AVR-14B (A296) and *Cel*-AVR-14B (A300); the corresponding E114, V235 and L256 amino acid residues that confer ivermectin sensitivity in *Cooperia oncophora* AVR-14 are color coded in blue in *Bma*-AVR-14B (Q102, L223 and L244) and in *Cel*-AVR-14B (E106, V227 and R248) (Dent et al., 2000; Hibbs and Gouaux, 2011; Njue et al., 2004; Wolstenholme, 2012). Residues involved in van der Waals interactions with ivermectin *C. elegans* GluCl alpha (GLC-1) are highlighted in grey in the transmembrane regions and between TM2-TM3 loop (Hibbs and Gouaux, 2011).

-400 -

Fig. S4. (*A*) Representative inward current traces for 30 mM, 100 Mm and 300 mM L-glutamate mediated response. (*B*) Desensitization fit for L-glutamate gated currents. Desensitization time constants (τ) obtained over the entire dose-response relationship are plotted as a function of the agonist concentration. (*C*) Current-voltage (I-V) relationship plot for L-glutamate-gated currents. Oocytes were held at membrane potentials ranging from –80 to +20 mV and challenged with 1 mM L-glutamate at each holding potential. The reversal potential (E_{rev}) was equal to –28.9 ± 2.9 mV, n = 5.

Α

Fig. S5. Representative inward current response from oocyte used for studying the positive modulatory effect of NA on L-glutamate (L-glu; 30 μ M) gated current response (n ≥ 5).

Fig. S6. Representative inward current response from oocyte used for studying the modulatory effect 1 pM IVM on NA (0.1µM and 0.3µM) and L-glutamate (L-glu; 30 µM) gated current response ($n \ge 5$).

Organism	GluCl	Subunit	Tissue	Pharmacological properties		
_	gene		distribution	Glutamate	IVM	PTX
C. elegans	avr-14	AVR- 14Α/ GluClα3A	neurons in ring ganglion, ventral cord, and mechanosensory	No response ¹	No response ¹	Not determined
		AVR- 14B/ GluCla3B	neurons in ring ganglion, ventral cord, and mechanosensory neurons ¹	Sensitive to 10 mM glutamate ¹	Sensitive to 10µM IVM ¹	Not determined
H. contortus	avr-14/ gbr-2/ GluClα3	AVR- 14Α/ GluClα3A	amphidial neurons, motor neuron commissures, lateral and ventral nerve cords, and nerve ring ²	No response ³	No response ³	Not determined
		AVR- 14Β/ GluClα3Β	pharyngeal neurons, amphidial neurons, motor neuron commissures, lateral and ventral nerve cords, and nerve ring ²	EC ₅₀ = 27.6 ± 2.7 μM ³	estimated EC ₅₀ =~0.1 ± 1.0 nM ³	Inhibits glutamate and IVM induced currents ³
D. immits	avr-14	AVR- 14A/ GluClɑ3A	Not determined	No response ⁴	Not determined	Not determined
		AVR- 14B/ GluCla3B	Not determined	Sensitive to glutamate (1–100 mM) ⁴	Sensitive to 1µM IVM⁴	Not determined
C. oncophora	IVM sensitive (IVS) and IVM	IVS AVR- 14/ GluCla3	Not determined	EC ₅₀ = 29.7 ± 4 μM ⁵	<i>EC</i> ₅₀ = 0.5 ± 0.12 μM ⁵	Not determined
	resistant (IVR) <i>GluClα3</i>	IVR AVR-14/ GluCla3	Not determined	<i>EC₅</i> ₀ =171.6 ± 20.7 μM⁵	EC ₅₀ = 1.3 ± 0.11 μM ⁵	Not determined
A. suum	gbr-2	GBR-2/ AVR-14	Nerve cords ⁶	Not determined	Not determined	Not determined

Table 1. A summary of AVR-14 GluCls from various nematodes

¹J. A. Dent, M. M. Smith, D. K. Vassilatis, L. Avery, The genetics of ivermectin resistance in Caenorhabditis elegans. *Proceedings of the National Academy of Sciences* **97**, 2674 (2000). ²V. Portillo, S. Jagannathan, A. J. Wolstenholme, Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. *Journal of Comparative Neurology* **462**, 213-222 (2003). ³S. McCavera, A. T. Rogers, D. M. Yates, D. J. Woods, A. J. Wolstenholme, An ivermectinsensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. *Molecular pharmacology* **75**, 1347-1355 (2009).

⁴D. M. Yates, A. J. Wolstenholme, An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. *International Journal for Parasitology* **34**, 1075-1081 (2004). ⁵N. I. Njue, R. K. Prichard, Genetic variability of glutamate-gated chloride channel genes in ivermectin-susceptible and -resistant strains of Cooperia oncophora. *Genetic variability of glutamate-gated chloride channel genes in ivermectin-susceptible and -resistant strains of Cooperia oncophora* **129**, 741-751 (2004).

⁶J S. Jagannathan *et al.*, Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. *Molecular and Biochemical Parasitology* **103**, 129-140 (1999).

Primer name	Description	Sequence 5'-3'
avr-14f	<i>Bma avr-14</i> dsRNA 5'	GATTGGTGTATGCTTGGCA
avr-14r	Bma avr-14 dsRNA 3'	ACGATTGCCTTAGGTCCTG
gapdhf	Bma gapdh dsRNA 5'	GACGCTTCAAGGGAAGTGTTTCTG
gapdhr	Bma gapdh dsRNA 3'	GTTTTGGCCAGCACCACGAC
LacZf	LacZ dsRNA 5'	CGTAATCATGGTCATAGCTGTTTC
LacZr	LacZ dsRNA 3'	CTTTTGCTGGCCTTTTGCTC

Table S2. List of primers used in the study along with the description and nucleotide sequences.