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Supplementary Methods

We set out to infer gene regulation from stochastic transcriptional variation across single
cells at steady-state. To accomplish this, we first modeled the behavior of a pair of
genes—one transcription factor and its target gene—undergoing transcriptional bursting
and following the central dogma, as well as a regulatory link function between the two
genes. In order to build ground truth scenarios, we simulated a population of cells that
followed our underlying model of bursting, the central dogma, and gene regulation,
tracking mRNA and protein abundances over time in order to estimate the regulatory
signal present.

Burst switching function
We modeled a burst switching function for each gene in each cell, which determined
whether transcriptional bursting switched from the OFF to ON state or vice versa,
depending on which state that gene currently occupied in that cell (1-4). We made the
burst switching parameters exponentially distributed to reflect the expected time in
which the state would switch:

(1)𝑃 𝑠𝑡𝑎𝑡𝑒 𝑠𝑤𝑖𝑡𝑐ℎ 𝑎𝑡 𝑡( ) = 𝑝|𝑘
𝑜𝑛

, 𝑘
𝑜𝑓𝑓

=  λ𝑒−(λ𝑥) 𝑖𝑓 𝑥 < 𝑡;  0 𝑖𝑓 𝑥≥𝑡{ }
where is 1/kon or 1/koff depending on whether bursting is switching ON or OFF,λ
respectively, and x represents the time elapsed since in the current state.

Expected mRNA abundance
The expected mRNA abundance for a single gene G in a given cell at any moment in
time (G(RNA)), which, in our model, is a direct result of compounded transcriptional bursts,
can be calculated as below. Specifically, the steady-state distribution of G(RNA) across
cells follows a Beta-Poisson distribution:

𝐸 𝑠
𝑅𝑁𝐴

, 𝑝( ) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠𝑝)

𝑝|𝑘
𝑜𝑛

, 𝑘
𝑜𝑓𝑓

 =  𝐵𝑒𝑡𝑎(𝑘
𝑜𝑛

, 𝑘
𝑜𝑓𝑓

)
such that

(2)𝐸(𝐺(𝑅𝑁𝐴)|𝑠, 𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓) =  𝑠 𝑘𝑜𝑛
𝑘𝑜𝑛 + 𝑘𝑜𝑓𝑓

where G(RNA) is the mRNA abundance for gene G, sRNA is the transcription (i.e. mRNA
synthesis) rate for gene G, and p is the state-switching probability, governed by the
gene-specific parameters kon and koff as in Eqn. 1. We note that E(p) is the fraction of
time spent in the ON state. Further, each of these parameters are in units of mRNA
half-life and thus do not explicitly include mRNA decay in this formulation.

Modeling mRNA and protein decay
We modeled the decay of both mRNA and protein abundances for the two genes as
Poisson processes, with rate parameters corresponding to the degradation rate:
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(3)    𝐺(𝑅𝑁𝐴)(𝑡 + 1) = 𝐺(𝑅𝑁𝐴) 𝑡( ) −  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐺
(𝑅𝑁𝐴)

(𝑡) * δ * 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒)

𝐺(𝑃)(𝑡 + 1) = 𝐺(𝑃) 𝑡( ) −  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐺
 (𝑃)

(𝑡) * γ * 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒)

where is the mRNA degradation rate (ln2/t1/2, RNA), is the protein degradation rateδ γ
(ln2/t1/2, Protein), t is the current time since the initial abundance is measured in minutes,
and step_size is one time-step in minutes. To restrict future abundances such that they
are less than or equal to the current mRNA or protein abundance for each cell, we
update each abundance to be:

𝑚𝑖𝑛 (𝐺(𝑅𝑁𝐴) 𝑡( ),  𝐺(𝑅𝑁𝐴) 𝑡 + 1( ))

or the protein equivalent, depending on the entity of interest.

mRNA variance decomposition
The variance of mRNA for each of the two genes can be calculated based on the key
parameters that dictate mRNA abundance. Given the steady-state distribution of G(RNA)

as in (Fig. 2C), the variance can be calculated as:

𝑉𝑎𝑟 𝐺(𝑅𝑁𝐴)( ) = 𝐸[𝑉𝑎𝑟(𝐺(𝑅𝑁𝐴)|𝑠
𝑅𝑁𝐴

, 𝑝)] + 𝑉𝑎𝑟[𝐸 𝑠
𝑅𝑁𝐴

, 𝑝( )]

Since G(RNA) is Poisson-distributed,

      𝐸 𝐺(𝑅𝑁𝐴)|𝑠
𝑅𝑁𝐴

, 𝑝( ) = 𝑉𝑎𝑟 𝐺(𝑅𝑁𝐴)|𝑠
𝑅𝑁𝐴

, 𝑝( ) =  𝑠
𝑅𝑁𝐴

* 𝑝

Thus,
= 𝐸 𝑠

𝑅𝑁𝐴
* 𝑝( ) + 𝑠

𝑅𝑁𝐴
2 * 𝑉𝑎𝑟(𝑝)

(4)= 𝑏 𝑘𝑜𝑛
𝑘𝑜𝑛 + 𝑘𝑜𝑓𝑓 + 𝑏2 𝑘𝑜𝑛*𝑘𝑜𝑓𝑓

(𝑘𝑜𝑛+𝑘𝑜𝑓𝑓)2(𝑘𝑜𝑛+𝑘𝑜𝑓𝑓+1)
 

where b is the gene’s burst size in transcripts per burst, and kon and koff are
gene-specific parameters. Thus, the burst size for each gene directly scales the mRNA
variance for the gene across the cell population.

Relationship between mRNA and protein abundances in the limit of an infinite
number of cells
To provide intuition for our stochastic simulations, we modeled the flow of information
between TF mRNA to TF protein for the deterministic limit of an infinite number of cells
with an ordinary differential equation that captures mRNA translation and decay of both
mRNA and protein:
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(5)𝑑𝑝
𝑑𝑡 =  α * 𝑚(𝑡) −  γ * 𝑝(𝑡)

𝑑𝑚
𝑑𝑡  =  − δ * 𝑚(𝑡)

where is the translation rate, is the protein degradation rate (ln2/t1/2, prot), is theα γ δ
mRNA degradation rate (ln2/t1/2, RNA), p is the protein abundance for the gene (tracked in
thousands of molecules), and m is the mRNA abundance for the gene (in number of
transcripts), both with respect to time. We note that the complete process of translation
includes mRNA export, translation in the ribosome complex, and re-importation into the
nucleus; however, the first and last steps are much faster, occurring on the order of
minutes, and thus we did not explicitly model them.

The timing when the TF protein abundance best reflects the TF mRNA abundance at
t=0 reflects approximately when the TF has its largest effect on its target genes’
transcription. When solving for the time when = 0, which captures the time point𝑑𝑝

𝑑𝑡
when the protein abundance best reflects the mRNA abundance at t=0, we get:

(6)𝑙𝑜𝑔(γ)−𝑙𝑜𝑔(δ)
γ−δ

Regulatory response function
We modeled the regulatory response function between the TF and its target gene as a
Hill function, as previously experimentally measured and modeled (5-13). Specifically,
by binding to the target gene, the TF(P) directly modulates the Target(kon), or the rate at
which the target gene bursts. We can capture this as follows:

(7)𝑇𝑎𝑟𝑔𝑒𝑡(𝑘𝑜𝑛_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) =  𝑇𝑎𝑟𝑔𝑒𝑡(𝑘𝑜𝑛) *  1

1+( 𝑚𝑒𝑎𝑛(𝑇𝐹(𝑃))

(𝑇𝐹(𝑃))
)𝑛

where kon is the gene-specific burst frequency and n is the Hill coefficient. We calculated
the mean TF(P) across the entirety of simulated cells at one time point.

Simulations setup
To model the behavior above, we wrote a simulation (Python v3.7) based on the widely
accepted two-state stochastic bursting model of gene transcription and simulated two
genes, one TF (regulator) and its target gene, across 20,000 cells. Computational state
transitions involved updating each parameter according to the effect every other
parameter had on it (if any). Each state represented a single minute, and to allow cells
to reach steady-state, we let the simulator run for a burn-in time of 12 days.

The underlying stochastic model (see Eqn. 1-2) relies on the following transcriptional
burst parameters, which we incorporated in a gene-specific manner: kon, koff, and burst
size. Parameter values for each gene are based on TF- and non-TF ranges observed
experimentally (see Table 1). We also incorporated splicing, translation, mRNA
degradation, and protein degradation rates from the literature in a TF- and
non-TF-specific manner (Table 1). Bursting state switches were modeled as exponential
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with the rate parameter equal to kon or koff for turning bursting off or on, respectively
(Eqn. 1). Transcription rate was calculated as the burst size * koff for each gene, and the
rate of mRNA synthesis was the product of whether bursting was on for that gene and
the transcription rate. We used a Poisson decay model to enable discrete removal of
mRNA transcripts (see Eqn. 3).

We modeled the TF(P):Target(kon) response function as a Hill function (see Eqn. 7), where
the Hill coefficient and maximum possible effect were variable inputs. This choice of
response function was grounded in prior modeling of experimental data to map TF
concentration changes to target gene mRNA changes, where either a sigmoidal or
Michaelis-Menten curve was predominantly concluded as best reflecting the
dose-response nature of regulatory interactions (5-13). We only modeled activation in
gene regulation, rather than including transcriptional repression. At each time step, we
tracked TF(∆RNA),TF(RNA), TF(P), Target(∆RNA), and Target(RNA), and Target(kon), to reflect the
abundance changes between each time point, where ∆RNA corresponds to the number
of unspliced RNA transcripts at the time of sampling.

To assess regulatory signal, we calculated the following time-shifted RNA:RNA
Spearman’s rho correlations between: (1) TF0 and TargetT∆ (CT

∆) and (2) TF0 and TargetT
(CT), for each time point ranging from 0 hours after the burn-in time to up to 2 days after.

Gene-specific parameter sensitivity analyses
We measured the sensitivity of CT and CT

∆ to gene-specific parameters for a range of
values from the literature. We varied each parameter to take on either the 25th, 50th, or
75th percentile value, taken from the literature (Table 1). To build confidence intervals
around estimates of regulatory signal, we ran 25 independent simulations of 20,000
cells each. In each run, we estimated the regulatory effect using the interdecile ratio
measure (ratio of the mean abundance of the top decile of cells to the mean of the
bottom decile of cells) as well as Spearman’s rho (CT and CT

∆), as described in the main
text.

We plugged in various values of mRNA and protein half-lives into Eqn. 6 to analytically
model each parameter’s effect on protein production from a baseline mRNA abundance
at t=0.

Simulation of state-based covariation
We simulated two cell “states” with no regulation between the TF and Target to test the
gene pair covariation in the absence of direct regulation but with state-based structure.
We first removed the link function between TF(P) and Target(kon) such that the target
gene’s burst frequency was not changed by TF(P). To simulate the cell states, we
created one state with low mRNA abundances and another with high abundances for
each gene—each state had 10,000 cells. Specifically, we varied the basal burst
frequency for both the TF and Target to be either their first quartile or third quartile
values (the “low” state had both the TF and Target bursting at their first-quartile
frequencies, and the “high” state had the genes bursting at their third-quartile
frequencies). At each time point, we then combined the 10,000 cells from each state to
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yield a total of 20,000 cells that we tracked over time for the key entities described in the
main text.

In order to check for state-based confounding, we tracked both the time-shifted
Spearman’s rho between the gene pair over time CT

∆ and the role reversal
Corr(Target(RNA)

0, TF(∆RNA)
T) Spearman’s rho over time as well, as described in the text.

We compared these values and the shapes of the response curves in each case to
those generated by the simulated cells with regulation and only one cell state present.

Assessing the effect of sample size and sequencing inefficiencies
To mimic the combined effects of capture inefficiencies and read-depth in scRNA-seq
(which we call “UMI detection efficiency”), we varied the sampling density of counts for
each cell by introducing Poisson downsampling: 10-90% downsampling in intervals of
10%. Specifically, we sampled counts for each cell at each time point, with the Poisson
rate parameter equal to the number of counts*capture_efficiency, and we chose the
minimum between the raw and downsampled counts to ensure that we never
overestimated the number of counts per cell.

To determine the effect of either changing the sample size (number of cells) or UMI
detection efficiency on our ability to detect regulation-based covariation, we ran the
simulator 25 times for each pair of capture efficiencies and sample sizes (10-100% in
intervals of 10 for capture efficiencies, and 1e3, 2.5e3, 5e3, 10e3, 25e3, and 50e3 for
number of cells), and we tracked the magnitude and variance in TF:Target Spearman’s
rho values across simulation runs at each time point for each pair of cell number and
capture efficiency values. We also calculated the coefficient of variation (standard
deviation/mean) of (1) CT

∆ and (2) CT
∆ - C0

∆ across simulation runs as we varied the
number of cells sampled, the UMI detection efficiency, and the TF and Target mRNA
half-lives.

Pulse-chase experiment with 4-thiouridine
Low passage K562 erythroleukemia cells (ATCC, CCL-243) were cultured in RMPI 1640
+ L-glutamine, with 10% FBS, 1% Penicillin / Streptomycin and 1% L-glutamine 200mM
at 37ºC in a humidified atmosphere with 5% CO2. For 4-thiouridine (4sU) experiments,
cells were plated in 6-well plates ~12h before the start the experiment at a density of 5x
10^5 – 8 x 10^5 cells/mL in 5mL of fresh media. 1M 4sU stocks were prepared by
dissolving 4sU powder (Sigma, T4509-25MG) in DMSO, and added to culture wells at a
final concentration of 100µM. For the pulse phase, 4sU was added to the media for 24h,
with renewal every 6-8h. Between the pulse and chase phases, the cells were washed
twice with Dulbecco’s Phosphate-Buffered Saline to remove any residual traces of 4sU.
Subsequently, media with saturating concentrations of uridine (Sigma, U6381) at 10mM
(a 100X excess compared to 4sU) was added. Cells were collected at 0h, 2h, 4h, 6h,
8h, and 10h.

Light exposure to the samples was minimized between the addition of 4sU to the media
until the completion of reverse transcription. All the samples from each pulse-chase
experiment were processed the same day to minimize batch effects. To control for
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genes induced by the long exposure to 4sU and to uridine, two control samples with
chase only or DMSO only were included.

Conventional and temporally-resolved single-cell RNA sequencing
The same datasets were used to analyze stochastic transcriptional variation using
correlations between steady-state total counts and gene-specific burst sizes and mRNA
half-lives. Our scNT-seq protocol was adapted from previously published methods
(14-15). This technique relies on the chemical conversion of 4sU into cytosine analogs
that result in apparent T-to-C mutations in the cDNA following reverse transcription of
labelled RNA. Briefly, following completion of the pulse-chase experiment, cells were
collected and washed twice with 0.01% Bovine Serum Albumin (BSA, Sigma-Aldrich,
A8806-5G) in DPBS, filtered through a 40µm cell strainer (Corning, 431750), counted,
diluted to a concentration of 120 cells/uL in DPBS-0.01% BSA (200 cells/uL for the
replicate with lentiviral barcoding for doublet detection –see below–, and 120 cells/uL for
the replicate without lentiviral barcoding), and transferred to a 10mL Luer lock syringe
with a magnet (V&P Scientific, 782N-6-150) for gentle stirring. Barcoded Oligo dT
primer on beads for Drop-seq (26) (ChemGenes, MACOSKO-2011-10(V+)) were
resuspended at a concentration of 130 beads/uL in 10mL of lysis buffer (4mL of RNAse
free water, 3mL of 20% Ficoll® PM 400 (Sigma, 26873-85-8), 100uL of
N-Lauroylsarcosine sodium salt solution 20% (Sigma, 137-16-6), 400uL of 0.5M EDTA
(Invitrogen, 15575-038), 2mL of 1.0M Tris-HCl, pH 7.5, and 500uL of 1.0M DTT
(Caiman Chemical, 700416) and transferred to a 10mL Luer lock syringe (BD, 300912)
(with a magnet (V&P Scientific, VP 772DP-N42-5-2) for gentle stirring. Droplet
generation oil (Biorad, 1863005) was loaded into a 30mL Luer lock syringe (BD,
302832). The experiment was performed using uFluidix Drop-seq chips with
hydrophobic coating, using a Photron Fastcam SA5 camera, KD Scientific Syringe
Pumps (KDS, 78-2910) and micromedical tubing (Scientific Commodities,
BB31695-PE/2). Flow rates were set to 15,000 uL/h for oil, 4,000uL/h for cells and
4,000uL/h for beads, and a new collection was started every 15–20 minutes. Droplet
emulsions were collected in 50mL conicals and kept in ice and protected from light until
breakage. 

Following oil removal, 30mL of 6X SSC (diluted in water from 20X SSC, Life
Technologies, 15557044) and 1mL of 1H,1H,2H,2H-perfluoro-1-octanol 97%
(Sigma-Aldrich, 370533) were added to the tubes, which were then manually shaken to
break droplets. The tubes were spun at 1,000xg for 1 minute and the supernatant was
discarded. 20mL of 6X SSC were added twice to resuspend beads, transferred to new
tubes, and spun at 1,000xg for 2 minutes. Bead pellets were transferred to 2mL Lobind
tubes and washed twice with 1mL of 6X SSC. This and all subsequent centrifugations
were performed in a spinning bucket centrifuge at 1,000xg for 1 minute.

Chemical conversion was performed using TimeLapse-seq chemistry (14), which entails
the oxidative-nucleophilic-aromatic substitution of 4sU into cytidine analogs, that yield
apparent U-to-C mutations upon reverse transcription that can be detected using next
generation sequencing. In preparation for chemical conversion, beads were washed
once in 450uL of 3M sodium acetate pH 5.2. (Thermo Scientific, R1181), 4uL of 0.5M

7



EDTA pH 8.0 and 430 uL of water. For the chemical conversion reaction, beads were
resuspended in a mix containing 8uL of 3M sodium acetate pH 5.2, 2uL of 0.5M EDTA
pH 8.0, 214uL of H2O, 13uL of 2,2,2-Trifluoroethylamine (Sigma-Aldrich, 91692-5ML),
and 13uL of 192mM freshly prepared NaIO4 (Sigma-Aldrich, 311448-5G) in water. The
reaction was conducted at 45ºC for 1hr with rotation. Upon completion of the reaction,
beads were washed once with 1mL of TE (Sigma-Aldrich, 93302-100ML), and
incubated at 37ºC for 30 minutes in 500uL of reducing master mix containing 5uL of 1M
Tris-HCl ph7.5, 5uL of 1M DTT, 10uL of 5M NaCl, 1uL of 0.5M EDTA, 10uL of RiboLock
RNase inhibitor (Thermo Scientific, EO0381) and 469uL of water. Beads were
subsequently washed with 1mL of Tris-HCl buffer (10mM, ph8.0) and 0.3mL of Maxima
H Minus 5X RT buffer (Thermo Scientific, EP0751). For the reverse transcription
reaction, beads were resuspended in 200uL of 80uL of water, 40uL of Maxima H Minus
5X RT buffer, 40uL of 20% Ficoll PM-400, 20ul of 10mM dNTPs (NEB, N0447L), 5uL of
100uM template switch oligo (AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG), 5uL of
RiboLock RNase inhibitor, and 10uL of maxima H minus reverse transcriptase enzyme
(Thermo Scientific, EP0751). Beads were incubated for 30 minutes at room temperature
with rotation, and then for 120 minutes at 42ºC with rotation. Following completion of the
reaction, beads were washed with 1mL of TE-SDS and twice with 1mL of TE-TW, and
stored at 4ºC for 1-2 days. To determine the additional number of cycles for whole
transcriptome amplification, we first performed PCR on an aliquot of 6,000 beads
washed twice in water (by adding to beads 25uL KAPA HiFi HS Readymix (Roche,
07958935001), 0.4uL of 100µM TSO-PCR primer (AAGCAGTGGTATCAACGCAGAGT)
and 24.6µL of water) using the following parameters: 95ºC for 3 min; 4 cycles of (98ºC
for 20s, 65ºC for 45s and 72ºC for 3 min); 9 cycles of (98ºC for 20s, 67ºC for 20s and
72ºC for 3 min); 72ºC for 5min; and hold at 4ºC. The PCR product was then purified
using one round of 0.7X AMPURE XP beads (Beckman Coulter, A63881). The
additional number of cycles required for optimal amplification using qPCR (which we
empirically determined as the number of cycles that coincided with three fourths of the
exponential amplification stage in qPCR) by adding 1uL of purified cDNA with 4.5uL of
KAPA HiFi HS Readymix spiked with SYBR Green Dye (Lonza, 12001-796), 0.07uL of
25µM TSO-PCR primer and 3.53uL of water and using the following parameters: 95ºC
for 3min; 25 cycles of (95ºC for 15s, 63ºC for 30s, 72ºC for 30s). Subsequently,
large-scale PCR amplification was performed on the rest of beads with the same
parameters as below plus the additional number of cycles determined by qPCR. To
ensure high diversity in our libraries, 2–5 tagmentations were performed for each of the
time points’ cDNA pool using the Nextera XT DNA Library Prep Kit (Illumina,
FC-131-1096), using 550pg of purified cDNA as input, and amplified in a second round
of PCR (15uL of Nextera PCR mix, 5uL of 2µM P5-TSO hybrid primer –
AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAA
CGCAGAGT*A*C–, and 5uL of 2µM Nextera N70X oligo from (97) using the following
parameters: 95ºC for 30s; 12 cycles of (95ºC for 10s, 55ºC for 30s and 72ºC for 30s);
72ºC for 5 min; and hold at 4ºC. PCR products were purified using two rounds of 0.6X
AMPURE XP beads and measured using the Agilent 2100 Bioanalyzer High Sensitivity
DNA kit (Agilent Technologies, 5067-4626 and 5067-4627). Pooled libraries were
quantified using the KAPA Library Quantification Kits (07960204001), and sequenced in
an Illumina NovaSeq 6000 System using a S2 flow cell with a 20bp (Read 1), 72bp
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(Read 2) and 8bp (Index 1) configuration with a HPLC-purified custom read 1 primer
(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC).

Raw sequencing data demultiplexing, alignment, and temporal classification of
reads
Sequencing files were demultiplexed using bcl2fastq v2.20 (Illumina). Fastq files from
tagmentations belonging to the same time point were concatenated together. Using
Dynast (https://github.com/aristoteleo/dynast-release), a wrapper around STARsolo
(https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md), cell barcode and
UMI sequencing errors were corrected and reads were aligned to the hg38v91 genome
(16). Dynast count was used to parse the alignment BAM and quantify
labeled/unlabelled/spliced/unspliced RNA and produce anndata h5ad files for each of
the time points. We omitted background SNPs present in K562 by providing the
genomic coordinates of SNPs computed on the non-chemically converted sample
(which were defined as the genomic coordinates in which a mutation was present in
>50% of reads).

To compute background mutation rates, we used two strategies: for the replicate with
0–6h chase time points, we used Dynast to compute the average mutation rate of non-T
bases to any other base; for the replicate with 0–10h chase time points, we calculated
the T-to-C mutation rate in a control sample treated with 4sU but without chemical
conversion.

Lentiviral barcoding for homotypic doublet detection in single-cell RNA
sequencing
Current doublet detection strategies for droplet-based single-cell transcriptomics are
only able to distinguish heterotypic doublets (i.e. two different cell types in the same
droplet), and are not well-suited for homotypic doublets (i.e. two cells from the same cell
type in the same droplet). We devised a strategy that allowed us to increase the number
of cells profiled by unit of time using Drop-seq by detecting doublets in homogeneous
steady-state populations using expressed lentiviral degenerate barcodes. We also
reasoned that removal of doublets would increase our chances of detecting stochastic
differences in expression across single cells. Conceptually, the principle is to discard
cell barcodes which have the top expressed lentiviral barcode and the second top
lentiviral barcode expressed at a similar ratio. Briefly, we performed dial-out PCR on
scRNA-seq libraries to selectively amplify the expressed lentiviral degenerate barcodes.
Libraries were sequenced in an Illumina NextSeq System using a with a 20bp (Read 1)
and a 20bp (Read 2) configuration with a HPLC-purified custom read 1 primer
(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC).

Sequencing files were demultiplexed using bcl2fastq v2.20 (Illumina). We used
UMI-tools to error-correct cell barcodes, which we then linked to the corresponding
expressed lentiviral barcode
(https://genome.cshlp.org/content/early/2017/01/18/gr.209601.116.abstract). To
generate a consensus list of expressed lentiviral barcodes, we used Starcode with
Levenshtein distance of 3. We subsequently determined non-singlets using the ratio of
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the highest expressed to the second highest expressed lentiviral barcode in each cell
(please refer to this paper’s Github
https://github.com/sharigrossman/stochastic-regulation). 

Gene-specific parameter estimation from real data (mRNA half-lives and burst
sizes)
To estimate gene-specific half-lives from real data, the fraction of labeled counts for
each gene at each time point was fitted to an exponential decay model (adapted from
https://gist.github.com/johanvdw/443a820a7f4ffa7e9f8997481d7ca8b3). Genes in which
the fraction of labeled counts increased overtime were removed from the analysis.
Genes with a fitting r2 > 0.6 were plotted for the comparison with half-lives from (14).

To estimate gene-specific burst sizes and frequencies, we used Dynamo’s
compute_bursting_properties function, which computes these parameters after fitting
the distribution of total counts to a negative binomial distribution as previously described
(17). Only genes with positive burst sizes were retained.

Identification of putative regulatory links using simultaneous correlation analysis
All AnnData .h5ad files were loaded into Scanpy to perform basic cell and gene quality
filtering (18). In order to calculate simultaneous correlations, we first filtered out cells
with low UMI and excluded genes expressed in only a small number of cells across
replicates. We then scaled raw counts by total counts per cell to account for differences
in library size. To determine the list of TFs and non-TF genes, we used a
recently-published, curated list of human TFs (19).

Correlated genes for each TF were identified based on significant correlations in their
expression profiles with the TF within the cells of each experimental time point, based
on Spearman’s rank correlation. Spearman’s rho was used to quantify correlations
based on ranked gene expression, computed with the correlatePairs function in scran
(20). We assessed the significance of non-zero correlations using a permutation test,
where the null hypothesis is that the ranking of normalized expression across cells is
independent between genes. This allowed us to construct a null distribution by
randomizing the ranks within each gene. The p-value for each gene pair is defined as
the tail probability of this distribution at the observed correlation. We defined
significantly correlated genes for each TF as the intersection of correlated genes with a
p-value < 0.05 in all sampling time points.

Validation of GATA1 putative targets using Perturb-seq data
To validate the putative targets of GATA1 identified using simultaneous correlation
analysis, we leveraged a recently published dataset that combined CRISPR
interference with a single-cell RNA sequencing readout (21). Processed count matrices
were obtained from GSE132080 and loaded into Seurat v4.0.1 (22). Subsequently, the
expression of each gene for each cell was normalized by the total expression, multiplied
by a 10,000 scale factor, and log-transformed. A guide-cell barcode dictionary with the
identity of the perturbation in each cell was obtained from GSE132080. 
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The GATA1 knock-down (KD) perturbation-specific signature was identified in every cell
using Mixscape (23). This model uses a mixture of two Gaussian distributions (one for
cells in which the KD was effective, and another for cells that remained unperturbed,
either because they received a non-targeting sgRNA or because the perturbation was
not effective). A Wilcoxon Rank Sum test was used to identify differentially expressed
genes between GATA1 KD and non-perturbed cells. The set of differentially expressed
genes upon GATA1 KD was defined as those with Bonferroni-adjusted p-value < 0.001.

ChIP-seq enrichment
We obtained K562 ChIP data from the ENCODE consortium (24). TF targets using
ChIP-seq data were defined as those genes whose promoter or enhancer regions had
high-quality (ENCODE peak calling q-val<0.01) ChIP binding signal for a given TF
(enhancers were linked to genes using the Activity-By-Contact model (25)).

For the enrichment analysis, we only considered TFs that had at least 15 non-TF
putative targets (defined as the intersection of correlated genes with p-value < 0.05 in all
time points), since those with too few putative targets yield noisy enrichment estimates.
We then used Fisher’s Exact Test for count data (R stats package) to test the null of
independence of rows and columns in a contingency table that contained putative
targets from both methods, from only one of them, or for none, and computed odds
ratios and confidence intervals for each TF. An Odds Ratio > 1 indicates that the ratio of
correlated genes with the TF bound to the TF unbound is higher than for uncorrelated
genes.
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Supplementary Figures

Figure S1. Checks for simulated mRNA and protein steady-state distributions. (A) Mean (left) mRNA
abundances of the simulated TF and Target genes and (right) simulated TF protein abundance, in comparison to the
range of mean abundances for 4,309 genes and 5,000 proteins, respectively, measured experimentally by
Schwanhausser et al., Science, 2011. Experimentally measured genes are sorted by their increasing abundances,
which are reported in log2(transcripts) or log2(protein molecules/1000), respectively. (B) Sorted mRNA copy numbers
taken from published experimental data (NANOG, a sample TF taken from smFISH data in Ochiai et al., Scientific
Reports, 2014 and TNFR1, a sample non-TF gene taken from Lin et al., Nat Comm, 2019). Each dot indicates the
copy number for that gene in a single cell. Red line indicates where the ranked cells would fall if they had the same
mRNA copy numbers between simulated and real cells. (C) Abundance distributions of key entities (total TF mRNA,
total TF protein in 1,000 molecules, and total Target mRNA) are shown across a population of 20,000 simulated cells
at steady-state, as each of the intrinsic parameters is varied (separately for TF and non-TF). Parameter quartiles are
derived from literature (see Table 1).
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Figure S2. Time-dependency of TF:Target regulatory effect. (A) Joint distribution of TF(RNA)
0 and TF(P)

6 (in 1K
molecules). (B) Spearman’s ρ of CT (the time-shifted TF(RNA)

0:Target(RNA)
T) and CT

∆ (TF(RNA)
0:Target(∆RNA)

T). Curves for
our simulations for the diploid case with two alleles, as well as Gillespie-based stochastic simulations, are also
included. (C) Effect of varying the Hill coefficient on how Target(kon) changes as TF(P) changes. (D) Effect of varying
mRNA (top) and protein (bottom) half-lives (in hours) on the time when protein abundance best reflects mRNA
abundance at t=0. (E) Effect of varying individual burst parameters (first quartile, median, and third quartile) on the
maximum estimated, time-shifted TF(RNA)

0:Target(∆RNA)
T D10:D1 IR (across all sampling time points over 20 hours).

Twenty five simulations were run for each burst parameter value, each with 20k cells. (F) Effect of varying six TF- and
Target-specific parameter values (first quartile, median, and third quartile) on the shape of the regulatory response
curve, as estimated by the time-shifted Spearman’s rank correlation CT

∆ between TF mRNA and Target nascent RNA
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abundances (across all sampling time points over 24 hours). Twenty five simulations were run for each burst
parameter value, each with 20k cells (mean +/- 1 SD is plotted per time point).
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Figure S3. Effect of downsampling and cell state on detected, time-shifted TF:Target covariation. (A) Two
simulated cell states with varying mRNA abundances for the two genes. (B) We can distinguish cell state-based
covariation from that due to gene regulation by comparing (1) the time-shifted TF(RNA):Target(RNA) Spearman’s rho and
(2) the reverse scenario of time-shifted Target(RNA):TF(RNA) Spearman’s rho. In a situation with cell states, both will be
constant and high over time; in the case of gene regulation, the forward will peak then decrease, and the reverse will
be closer to zero. (C) Spearman’s rho between a TF and its target gene across time as we vary UMI detection
efficiencies (simulated via Poisson downsampling) and sample sizes (number of cells per time point). 25 simulations
were run for each combination of detection efficiency, sample size, and time point. Comparison made at each time
point is CT

∆ (TF(RNA)
0:Target(∆RNA)

T). (D) Coefficient of variation (standard deviation/mean) of the time-shifted
TF(RNA):Target(∆RNA) Spearman’s rho CT

∆ across the 25 simulation runs, as the number of cells sampled changes. (E)
Difference in C7

∆ and C0
∆ (the maximum difference for genes with median gene-specific parameter values) across

simulation runs, as the number of cells sampled values. UMI detection efficiency = 100%. Error bars indicate 95%
CIs. (F) Coefficient of variation (standard deviation/mean) of the time-shifted TF(RNA):Target(∆RNA) Spearman’s rho CT

∆

across the 25 simulation runs, as the UMI detection efficiency changes. We note that the lower threshold of 0.04
indicates the lowest CV possible with 50,000 cells. (G) Same as (S4E), but UMI detection efficiency = 10%. (H) δ
(CT

∆-C0
∆) over time, as the TF and Target mRNA half-lives are doubled and quadrupled, for both 100% and 10% UMI

detection efficiencies. 25 simulations were run, each with 20,000 cells, to obtain these curves (error bars indicate +/-
1 standard deviation).
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Figure S4. Learnings from a time-resolved experiment in K562 cells at steady-state. (A) UMAP of 14,544
unperturbed K562 single cells in one of the replicate experiments, colored by raw total counts. (B) Number of cells
sampled at each time point, and the resulting analytical significance threshold for Spearman’s correlation. (C) 40:1
signal to noise ratio in the T to C mutation rate of the chemically converted samples relative to the non-converted
controls as a result of the addition of 4-thiouridine (4sU) (Materials and Methods). (D) Gene Ontology terms enriched
upon 24h of 4sU induction. (E) Estimated burst sizes from the time-resolved data computed over the integral of gene
∆RNA over the chase phase (i.e. unlabeled counts) (Materials and Methods). (F) Estimated mRNA half-lives (in
hours) in our data (y-axis) and prior estimates using bulk time-resolved RNA-seq (Schofield, Nature Methods, 2018).
The color scale shows the r^2 fitting of the fraction of labeled transcripts for each gene to an exponential decay model
(Materials and Methods). (G) Normalized GATA1 expression in cells with the GATA1 targeting sgRNA and with
non-targeting (NT) sgRNAs from a published Perturb-seq dataset (Replogle et al., 2020). (H) Heatmap of the
expression levels in GATA1 knock-down and non-targeting (NT) cells of the genes with the highest correlation
coefficients from stochastic regulation. The columns in the heatmap display expression levels in 300 individual cells.
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Table S1. Effect of changing gene-intrinsic parameter values on the timing and magnitude of maximum
time-shifted TF:Target Spearman’s rho CT

∆.

Timing of maximum
covariation (hours)

Maximum Spearman’s
rho

Maximum D10:D1
Interdecile Ratio

25th
percentile

75th
percentile

25th
percentile

75th
percentile

25th
percentile

75th
percentile

TF mRNA
half-life

5 9 0.18 0.25 2 2.5

TF protein
half-life

5 9 0.3 0.07 3 1.5

TF burst
frequency

7 7 0.28 0.15 3 1.8

TF burst
duration

7 7 0.16 0.21 2 2.3

Target
burst
frequency

12 4 0.18 0.2 2.2 2.1

Target
burst
duration

7 7 0.19 0.19 2.2 2
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