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SUPPLEMENTARY NOTE 1: EXPERIMENTAL
SETUP

This experiment is implemented on a home-built confo-
cal microscope at room temperature. The diamond sam-
ple (type IIa, Element 6) is grown via chemical vapor de-
position and cut along ⟨100⟩ orientation, with the natural
abundance of 1.1% 13C. The 532 nm diode laser (Coher-
ent Compass 315M) passes through an acoustic optical
modulator (AOM, Isomet 1250C-848) setting in a double-
pass configuration. This configuration can increase the
on-off ratio to 10000:1 and constrain the leakage of the
laser. Then the laser is reflected by a diachronic mir-
ror (DM) into an oil-immersed objective lens (NA=1.49,
Olympus), and the focused spot size is about 300 × 300
nm2 on the diamond. The lens is mounted on a three-
axis closed-loop piezo (Physik Instrumente, E-725) with
a scanning range of 100×100×100 µm3. The photons in
the wavelength ranging from 637 to 800 nm pass through
the same objective lens and DM, then are collected by a
single-mode fiber and detected by a single photon count-
ing module (SPCM, Excelitas, SPCM-AQRH-14-FC). A
permanent magnetic provides the static magnetic field of
472 Gauss, by observing the emitted photon numbers, we
can align the magnetic field parallel to the NV symmetry
axis. The magnitic field removes the degeneracy between
|ms = ±1⟩ states and polarizes the nuclear spin with the
polarization rate typically exceeding 95% [1].

The microwave (MW) is generated by an analog sig-
nal generator (Agilent, N5181B) and modulated by
an IQ mixer (Marki IQ 1545LMP) with two orthogo-
nal 100 MHz carrier signals, which are generated from
the analog output of an arbitrary waveform generator
(AWG,Tektronic 5014C, sample rate 1 GHz). The com-
bined signal then is amplified by a high power ampli-
fier (Mini Circuits, ZHL-16w-43-S+) and delivered into
a gold coplanar waveguide close to the NV center. The
amplitude of the combined signal is in the linear range
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of the amplifier to ensure that the Rabi frequency is pro-
portional to the amplitude of the combined signal.
In our experiment, a single sequence starts with 3 µs

laser excitation for the electron spin polarization and
ends with 3 µs laser pulse for the spin state detection.
The signal photons are collected for 200 ns right after the
detection laser rises and reference photons are collected
for 200 ns after 2 µs. The sequences are programmed and
loaded to the AWG. To enhance collection efficiency, a
solid immersion lens with 6.74 µm diameter is fabricated
by a focused ion beam (FEI company, Helios nanolab
660). The photon number is about 260 kcps under 0.25
mW laser excitation, increasing the signal-noise ratio to
about 100 : 1. The sequence is repeated 7.5× 105 times,
collecting about 3.9× 104 photons.

SUPPLEMENTARY NOTE 2: ADIABATIC
PASSAGE

Consider the electron subspace of |0⟩ and | − 1⟩ states,
in a rotating frame, the effective Hamiltonian with vari-
able time t is

H(t) = Ω(t)(Sx cosφ− Sy sinφ) + ∆ω(t)Sz, (1)

where Ω(t) is the MW amplitude, φ is the MW phase,
and ∆ω(t) = ω0−ωMW, with ω0 and ωMW being the res-
onant frequency and MW frequency, respectively; Sx,y,z

are given as the following (setting ℏ = 1):

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
, Sz =

(
0 0
0 −1

)
. (2)

We apply the adiabatic passage process described as

Ω(t) =

{
2Ωmaxt/T, t ≤ T/2,

2Ωmax(1− t/T ) t > T/2,
(3)

∆ω(t) = ∆ωmax − 2∆ωmax t/T. (4)

The frequency and amplitude are shown in Supplemen-
tary Fig. 1.
Comparing with the Hamiltonian in Supplementary

Eq. (1), we terminate the adiabatic passage process at

time tc to satisfy ∆ω(tc)/Ω(tc) = uz/
√
u2x + u2y. Phase
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Supplementary Figure 1. The MW frequency and am-
plitude in the adiabatic passage.

φ = −arctan(uy/ux) is kept constant during the adia-
batic passage process. To satisfy the adiabatic condition
[2]:

Q ≡ 2(∆ω(t)2 + |Ω2(t)|2)3/2

||Ω̇(t)|∆ω(t)− |Ω(t)|∆̇ω(t)|
≫ 1, (5)

in our experiment, we use Ωmax = 2π × 7.81 MHz and
∆ωmax = 2π × 10 MHz. During the adiabatic passage
process, we keep Q > 25 in our experiment.

SUPPLEMENTARY NOTE 3:. QUANTUM STATE
TOMOGRAPHY

We perform a full quantum state tomography to mea-
sure the eigenstates of the topological Hamiltonian at
each momentum k. The photon numbers in the basis {Z}
is directly measured and in bases {+X,+Y,−X}, a π/2
pulse with phase {0,−π/2, π} will be inserted before the
detection. In a single-qubit system, to ensure the non-
negative definite, Hermitian, and trace-one properties of
a density matrix, the density matrix ρ̂ can be written as
ρ̂t = T †(t)T (t)/Tr{T †(t)T (t)}, where T reads:

T (t) =

(
t1 0

t2 + it3 t4

)
. (6)

The measurement consists of a set of four coincidence
photon numbers. In our experiment the expected photon
number for the ν-th measurement is

n̄ν(t1, t2, t3, t4) = N0p0,ν +N−1(1− p0,ν), (7)

where N0 and N−1 are the photon numbers of states |0⟩
and | − 1⟩ measured by fast Rabi oscillation, and p0 de-
notes the probability for the spin at |0⟩. Assuming the
noise on this coincidence measurements has a Gaussian
probability distribution, the probability P (n1, n2, n3, n4)

of photon numbers {n1, n2, n3, n4} produced by the den-
sity matrix ρ̂p(t1, t2, t3, t4) reads:

P (n1, n2, n3, n4) =

4∏
ν=1

exp

[
− (nν − n̄ν)

2

2σ2
ν

]
, (8)

where σν is the standard deviation of photon numbers
for the ν-th measurement (approximated to be

√
n̄ν) and

nν is photon numbers measured in different tomography
bases. The optimization problem reduces to finding the
minimum of the following function [3]:

L(t1, t2, t3, t4) =
4∑

ν=1

[n̄ν(t1, t2, t3, t4)− nν ]
2

2n̄ν(t1, t2, t3, t4)
. (9)

Error bars are calculated through Monte Carlo simula-
tions by assuming a Poissonian distribution of the pho-
ton numbers. Supplementary Fig. 2 and Supplementary
Fig. 3a show the average fidelity for different Hopf index
for legitimate samples and adversarial examples, respec-
tively. For legitimate samples, the average fidelity for
h = 3.2, h = 2 and h = 0.5 are 99.77(41) %, 99.78(41) %,
and 99.77(45) %, respectively. Similarly, for adversarial
examples, the average fidelity for h = 3.2, h = 2 and
h = 0.5 are 99.64(43) %, 99.65(46) %, and 99.48(46) %,
respectively. We also show the average fidelity for each
kz value with h = 0.5 and h = 3.2 between the numer-
ically generated and experimentally implemented states
in Supplementary Fig. 3b - c.

SUPPLEMENTARY NOTE 4:. DISCRETIZATION
SCHEME TO MEASURE HOPF INDEX

We use the discretization scheme introduced in [4, 5]
and applied in [6] to measure the Hopf index directly
from experimental data. The Hopf index can be written
as:

χ = −
∫
BZ

F ·Ad3k, (10)

where F is the Berry curvature with Fµ =
i
2π ϵµντ (∂kν

⟨ψk|)(∂kτ
|ψk⟩) and A is the associated Berry

connection satisfying ∇×A = F . To avoid the arbitrary
phase problem, we can use a discretized version of the
Berry curvature [4, 5]:

Fµ(kJ ) =
i

2π
ϵµντ lnUν(kJ ) lnUτ (kJ+ν̂). (11)

The U(1)-link is defined as

Uν(kJ ) =
⟨ψ(kJ )|ψ(kJ+ν̂)⟩
|⟨ψ(kJ )|ψ(kJ+ν̂)⟩|

, (12)

with ν̂ ∈ {x̂, ŷ, ẑ}, which is a unit vector in the corre-
sponding direction. This discretized version of F can be
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Supplementary Figure 2. State fidelity Fk for legiti-
mate samples. The states are measured via the likelihood
estimation at different momenta k. Each panel consists of 10
subfigures where the momenta kz are equally spaced from 0
to 1.8π. The horizontal and vertical axes of each subfigure
denote kx and ky varying from 0 to 1.8π with equal spac-
ing. The panels represent parameters h = 3.2 with average
fidelity 99.77(41)%, h =2 with average fidelity 99.78(41)%
and h = 0.5 with average fidelity 99.77(45)%, respectively.

calculated after performing quantum state tomography
at all points kJ on the momentum grid. We can also
obtain the Berry connection A by Fourier transforming
∇×A = F with the Coulomb gauge ∇ ·A = 0. Finally,
instead of doing the integral, we sum over all points on
the momentum grid to obtain the Hopf index χ. It is
shown in [2, 6] that for a 10× 10× 10 grid, this method
is quite robust to various perturbations and can extract
the Hopf index with high accuracy.

SUPPLEMENTARY NOTE 5: CONVOLUTIONAL
NEURAL NETWORK CLASSIFIER

We use a 3D convolutional neural network (CNN) clas-
sifier to predict the Hopf index. The classifier accepts
density matrices on a 10×10×10 momentum grid as in-
put. Each density matrix is represented by three real
indices (x1, x2, x3) in the Bloch sphere, where

xi = tr(ρσi), i = 1, 2, 3, (13)

with σi (i = 1, 2, 3) denoting the usual Pauli matrices.
With the activation function set as the Relu function,
the classifier consists of an input layer with the shape
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Supplementary Figure 3. State fidelity Fk for adver-
sarial examples. a The states are measured via the like-
lihood estimation at different momenta k. Each panel plots
10 subfigures with the momenta kz equally spaced from 0 to
1.8π. The horizontal and vertical axes of each subfigure de-
note kx and ky varying from 0 to 1.8π with equal spacing.
The panels represent parameters h = 3.2 with average fi-
delity 99.64(43)%, h =2 with average fidelity 99.65(46)% and
h = 0.5 with average fidelity 99.48(46)%, respectively. b The
average fidelities at different kz values for h = 0.5. The angu-
lar direction represents different kz and the radius direction
represents the fidelity. c The average fidelities at different kz

values for and h = 3.2.

10×10×10×3, two 3D convolution layers, one max pool-
ing layer, and one fully-connected flattening layer. The
classifier ends with a softmax layer, which outputs the
classification confidences P (χ = 0, 1,−2) for each topo-
logical phase. The detail of parameters used in the clas-
sifier are listed in the Supplementary Table 1.
We adapt the supervised learning approach to train-

ing our classifier learning topological phases [7–9]. With
h uniformly varied from −5 to 5, we numerically generate
5000 samples with known Hopf index χ. To avoid the nu-
merically generated data being too close to experimental
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Supplementary Figure 4. The accuracy and cross-
entropy at different epochs in the training process.
The classifier is trained on numerically generated data from
h ∈ [−5, 5] except intervals [0.48, 0.52], [1.98, 2.02] and
[3.18, 3.22]. There are 3471 samples in the training set, 952
samples in the validation set, and 521 samples in the test set.
The inset shows the distribution of the training, validation,
and test samples. The accuracy and cross-entropy loss con-
verge after about 10 epochs.

legitimate samples with h = 0.5, 2, 3.2, we remove nu-
merical samples in the intervals [0.48, 0.52], [1.98, 2.02],
and [3.18, 3.22], where the experimental legitimate sam-
ples lie. We randomly choose samples to form a training
set with size 3471, a validation set with size 952, and a
test set with size 521. The accuracy and cross-entropy
at different epochs in the training process are shown in
Supplementary Fig. 4 and the inset shows the distribu-
tion of the training, validation, and test samples. The
hyper-parameters used in the training process are shown
in the Supplementary Table 2.

Layer Size/Ch. Stride Act.

Input 3
Conv3D 2× 2× 2 8 1 Relu
Conv3D 4× 4× 4 16 1 Relu
MaxPool 2× 2× 2 1

Flatten
Linear 512 Relu
Linear 3 Softmax

Supplementary Table 1. The architecture details of
the classifier. Size represents the number of the hidden
nodes used in fully-connected layers. Ch. represents the num-
ber of channels used in convolutional layers. Act. represents
the activation function.

Optimizer Epoch Batch size Learning rate ρ (in RMSprop)

RMSprop 50 128 10−3 0.9

Supplementary Table 2. The hyper-parameters used
for training the classifier.

The training process ends with an accuracy of 99.2 %
on the training set and 99.6 % on the validation set. On
the test set, the classifier obtains an accuracy of 99.2 %
and the outputs for each sample are shown in Supple-
mentary Fig. 5. One can identify the correct phase tran-
sition points h = −3,−1, 1, 3 from the sharp probabilities
crosses.

SUPPLEMENTARY NOTE 6: ADVERSARIAL
EXAMPLES GENERATION

In the main text, we claim that our CNN classifier is
vulnerable to adversarial examples, which are obtained
by adding a tiny but carefully-crafted perturbation on
the legitimate data. In the supervised learning case, as
the legitimate samples are labeled by (xleg, yleg), the task
to generate adversarial examples reduces to maximize the
loss function on legitimate samples:

max
δ∈∆

L(f(xleg + δ; θ), yleg). (14)

In this work, we apply three typical methods in the adver-
sarial machine learning literature to solve this problem:
projected gradient descent (PGD) [10] and momentum
iterative method (MIM) [11] for the continuous attack
scenario; differential evolution algorithm (DEA) [12, 13]
for the discrete attack scenario.

Projected gradient descent

Projected gradient descent (PGD) is developed based
on an elementary method called the fast gradient sign
method (FGSM) [10]. The FGSM is a one-step attack
that perturbs the legitimate sample xleg according to the
sign of the gradient:

δFGSM = ϵ · sign(∇xL(f(xleg; θ), yleg)). (15)

With a large step size ϵ, the FGSMmay perform poorly
at the point whose gradient changes abruptly. To deal
with this problem, PGD uses FGSM with a multiple-step
procedure. In each step, PGD performs a projection πC
to ensure that the perturbation is restricted in a certain
region [10]:

x
(t+1)
leg = πC(x

(t)
leg +

ϵ

T
· δFGSM(x

(t)
leg)), t = 1, 2 . . . , T.

(16)

In our work, we restrict the perturbation to be within
the region with l∞-norm γ, which means that for each
component xj of xleg, πC projects it into [xleg,j −
γ, xleg,j + γ]. The pseudo-code for PGD is shown in Al-
gorithm 1.



5

Supplementary Figure 5. The classifier’s output on the test set. For each input as the density matrices on the
10×10×10 momentum grid, the classifier outputs the probabilities for each phase that the input may belong to. The classifier
exhibits near-perfect performance on the data which it has not seen before, and successfully identify the transition points by
the sharp confidence clips around |h| = 3 and 1.

Algorithm 1 Projected Gradient Descent Method

Input The classifier f(•; θ), loss function L, the legitimate
density matrix (xleg, y).

Input The FGSM step size ϵ, iteration number T , l∞-norm
restriction γ.

Output An adversarial example x∗.
1: x(0) = xleg

2: α = ϵ
T

3: for i = 1, . . . , T do
4: g(i) = ∇xL(f(x

(i−1); θ), yleg))

5: for Each component j of x(i−1) do

6: δj = α · sign(g(i)j )

7: x
(i)
j = x

(i−1)
j + δj

8: if x
(i)
j > x

(0)
j + γ then

9: x
(i)
j = πC(x

(i)
j ) = 2(x

(0)
j + γ)− x

(i)
j

10: end if
11: if x

(i)
j < x

(0)
j − γ then

12: x
(i)
j = πC(x

(i)
j ) = 2(x

(0)
j − γ)− x

(i)
j

13: end if
14: end for
15: end for
16: return x∗ = x(T )

||x(T )||

Momentum iterative method

PGD performs FGSM iteratively with a much smaller
step size to deal with rapidly changing gradients, but it
can easily drop into local extremums and exhibit poor
performance. The momentum iterative method (MIM)
introduces momentum into the iterative FGSM to avoid
being trapped by local extremums. Concretely, with l∞-
norm ϵ, iteration number T , the MIM updates the ad-
versarial example with the following rule [11]:

a0 = 0, at = µ·at−1+
∇xL(f(x

(t−1); θ), yleg)

||∇xL(f(x(t−1); θ), yleg)||
, (17)

x(t) = x(t−1) +
ϵ

T
· sign(at), (18)

where µ is a decay factor and a performs as the accel-
erated velocity which contains the information of past
gradient descent direction. The pseudo-code for MIM is
shown in Algorithm 2.

Algorithm 2 Momentum Iterative Method

Input The classifier f(•; θ), loss function L, legitimate den-
sity matrix (xleg, y).

Input The l∞-norm restriction ϵ, iteration number T , decay
factor µ.

Output An adversarial example x∗.
1: x(0) = xleg

2: α = ϵ
T

3: a0 = 0
4: for i = 1, . . . , T do

5: ai = µ · ai−1 +
∇xL(f(x(i−1);θ),yleg)

||∇xL(f(x(i−1);θ),yleg))||

6: x(t) = x(t−1) + α · sign(at)
7: end for
8: return x∗ = x(T )

||x(T )||

Differential evolution algorithm

Differential evolution algorithm (DEA) belongs to the
general class of evolutionary algorithms, which is power-
ful to solve complex multi-modal optimization problems.
Concretely, DEA first randomly generates n candidates
{X} = X1, X2, . . . , Xn as possible solutions. These can-
didates become parents in the first iteration. In each
iteration, DEA generates a new set of candidates called
children from the current parents first by [12, 13]:

X ′
i = Xj + F · (Xk −Xl), (19)

where Xj , Xk, Xl are randomly picked from {X} and dis-
tinct from each other. F is called the mutual factor.
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Then, for each component j of X ′
i, with randomly picked

rj from U(0, 1):

(X ′
i)j = (Xi)j , if rj > P, (20)

where P is called the crossover probability. If the chil-
dren X ′

i has better performance than the parent Xi, then
DEA will replace Xi with X

′
i. This procedure will repeat

for several iterations until the candidates are almost con-
verged.

In our scenario, we need to discretely change m den-
sity matrices on the 10 × 10 × 10 grid and keep others
unchanged. Therefore, the candidates are in the form of

X = (pos1, idx1)× (pos2, idx2)× · · · × (posm, idxm)

= (pos, idx)m
,

(21)
which changes xleg by setting (xleg)posi = idxi. The
pseudo-code for DEA is shown in Algorithm 3.

h=0.5

π 0

kz

95

97.5

h=3.2

π 0

kz

98

99.5
a b

Supplementary Figure 6. State fidelity Fk between ex-
perimentally implemented adversarial examples and
legitimate samples. a The fidelity at different kz values
with h = 0.5. The angular direction represents different kz
and the radius direction represents the fidelity. b The fidelity
at different kz values with h = 3.2.

We use cleverhans [14] to implement PGD and MIM,
and adapt the code in Ref. [15] to implement DEA. We
use MIM for legitimate samples with h = 0.5, 2 and use
PGD for h = 3.2 to numerically generate adversarial ex-
amples with continuous perturbations on all density ma-
trices. We also use DEA for h = 3.2 to numerically
generate adversarial examples with only seven discrete
density matrices changed. It should be noted that, al-
though all perturbations generated by PGD, MIM, and
DEA are restricted to be tiny, they can make the legiti-
mate samples unphysical, namely that they are not nor-
malized to one after adding the perturbation. To avoid
this, we renormalize all density matrices in the adver-
sarial examples, but this can make these examples lose
the ability to mislead the classifier. The noises in exper-
iment can also deteriorate their performance. To deal
with this problem, we repeatedly adjust the parameters

and restrictions to numerically generate different adver-
sarial examples until there is one can successfully mislead
the classifier after normalization and adding simulated
noises. After numerically generating these adversarial
examples, we reconstruct their Hamiltonian in the NV
center. The fidelity between experimentally realized ad-
versarial examples and legitimate samples at different kz
values are shown in Supplementary Fig. 6. The average
fidelity for h = 0.5 and h = 3.2 are 96.63 % and 98.94 %.

Algorithm 3 Differential Evolution Algorithm

Input The legitimate sample (xleg, y), trained model
f(•; θ).

Input The iteration number T , the population size n, the
number m of pixels to be changed, the mutual factor F ,
the crossover probability P .

Output An adversarial example x∗.
1: Randomly generate perturbation Xi = (pos, idx)m with

pos ∈ [0, 9]3 and idx ∈ [−1, 1]3 for i = 1, 2, . . . , n.
2: len = 6m = lengnth of each Xi

3: Perform Xi on xleg to obtain x∗
i for i = 1, 2, . . . , n.

4: for t = 1, 2, . . . , T do
5: for i = 1, 2, . . . , n do
6: Randomly pick distinct j, k, l ∈ [n]/{i}
7: X ′

i = Xj + F · (Xk −Xl)
8: for s = 1, 2, . . . , len do
9: Randomly pick r from U(0, 1)

10: if r > P then
11: (X ′

i)s = (Xi)s
12: end if
13: end for
14: Perform X ′

i on xleg to obtain x∗′
i

15: if L(f(x∗′
i ; θ), yleg) > L(f(x∗

i ; θ), yleg) then
16: Xi = X ′

i

17: x∗
i = x∗′

i

18: end if
19: end for
20: end for
21: Find the x∗

q that has the largest L(f(x∗′
i ; θ), yleg) among

{x∗
1, x

∗
2, . . . , x

∗
n}

22: return x∗ =
x∗
q

||x∗
q ||

SUPPLEMENTARY NOTE 7: 3D HOPF
FIBRATION REPRESENTATION

In the main text, we present a one layer’s cross sec-
tion of spin textures. The topological properties of the
Hopf insulator are fully captured by the 3D spin texture.
The 3D spin textures of the realized legitimate and ad-
versarial examples are shown in Supplementary Fig. 7.
This result shows that the spin textures of topological
nontrivial phases (h = 0.5 for χ = −2 and h = 2 for
χ = 1) are twisted in a nontrival way, while the topo-
logical trivial one (h = 3.2 for χ = 0) is untwisted. The
nonzero integer-valued topological invariant guarantees
the spin texture cannot be untwisted by continuous de-
formations. Comparing with corresponding adversarial
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Supplementary Figure 7. Measured spin textures of experimental legitimate samples and adversarial examples
obtained by continuous attacks. Each column contains all layers of measured spin textures for kz = 0, 0.1, . . . , 0.9 × 2π.
The arrow at each point shows the projection of the Bloch vector into the x-y plane and the color represents the magnitude
of the z component of the Bloch vector. a Topologically trivial phase with h = 3.2, corresponding to χ = 0. b Topological
nontrivial phase with h = 0.5, corresponding to χ = −2. c Topological nontrivial phase with h = 2, corresponding to χ = 1.
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Supplementary Figure 8. The 3D preimage contours
that show topological properties of the Hopf insu-
lator. a Topological link, obtained from two spin states
with Bloch sphere representation S = (1, 0,−1)/

√
2 (blue)

and (−1, 0,−1)/
√
2 (orange), for the legitimate sample with

h = 2 in the stereographic coordinates. Solid lines are curves
from theoretically calculated directions Sth and the stars are
experimentally measured spin orientations. The deviation
|Sexp−Sth| ≤ 0.45 (0.5) for the blue (orange) curve. b Topo-
logical link of adversarial examples with h = 2 with deviation
|Sexp−Sth| ≤ 0.35 (0.4) for blue (orange) curves. c Unlinked
loops of legitimate sample with h = 3.2. Two spin orienta-
tions are S = (0, 1, 0) (blue) and S = (0,−1, 0) (orange). The
deviation |Sexp − Sth| ≤ 0.35 for the blue and orange curve.
d Unlinked loops of adversarial example of h = 3.2. The de-
viation |Sexp − Sth| ≤ 0.3 (0.35) for the blue (orange) curve.

examples, it is evident that although adversarial pertur-
bations can modify the local details of the spin textures,
they do not change its global twisted features and thus
the corresponding topological index remains unaltered.

From the Eq. (1) in the main text, we can derive the
ground state on the Bloch sphere S2 with any given mo-
mentum point k in T3. Consequently, by this equation,
one can obtain the preimage contours in T3 of any spin
orientation S2. To visualize the link and knot for topo-
logical nontrivial phases without gluing the boundary, we
map the preimage contours in T3 into R3. Concretely, the
mapping can be decomposited into two parts [6]:

T3 g−→ S3 s−→ R3. (22)

The mapping g first maps the 3D torus T3 to the stere-

ographic coordinates S3 by:

η↑(k) = sin kx − i sin ky,

η↓(k) = sin kz − i(cos kx + cos ky + cos kz + h). (23)

where (η1, η2, η3, η4) = (Re[η↑], Im[η↑], Re[η↓], Im[η↓])
are points on S3 (up to a trivial normalization). For
the purpose of easy visualization, the links are further
transformed from the stereographic coordinates of S3 to
R3 by mapping s:

(x, y, z) =
1

1 + η4
(η1, η2, η3). (24)

In Fig. 4 in the main text, we show the 3D preimage
contours of topological nontrivial phase χ = −2, which
present topological links between two orientations, keep
twisted together after adding the perturbations to legit-
imate samples. The two orientations of spins in Bloch
sphere chosen in the figure are Sth = (1, 0,−1)/

√
2 and

(−1, 0,−1)/
√
2. To obtain the preimage contours on a

discrete momentum data grid, we need to select all preim-
age points with a prescribed tolerance threshold. This
can be achieved by defining an ϵ-neighborhood of the de-
sired spin orientation Sth [16]:

Nϵ(Sth) = {S(k) : |S(k)− Sth| ≤ ϵ}. (25)

The choice of ϵ satisfies condition containing sufficient
data points and displaying a clear loop structure simul-
taneously. We use the same method and obtain preim-
ages in momentum space T3 for topological trivial phase
χ = 0 in Supplementary Fig. 8a - b and topological
nontrivial phase χ = 1 in Supplementary Fig. 8c - d.
From this figure one can clearly figure out that adversar-
ial perturbations do not change the topological links: for
topological nontrivial phases the preimage countours are
linked whereas for the trivial ones they are unlinked.

SUPPLEMENTARY NOTE 8: ADVERSARIAL
TRAINING

As mentioned in the main text, in order to enhance the
robustness of the phase classifier to adversarial perturba-
tions, we have tried a defense strategy that is a variation
of adversarial training. Adversarial training [10], which
is the simplest and most straightforward one among var-
ious defense strategies, is to train the classifier by le-
gitimate and adversarial data alternatively. To increase
the classifier’s robustness to both carefully designed and
experimental noises, we modify the adversarial training
algorithm and make it also take the randomly dropped
data into account. The algorithm we use is shown in
Algorithm 4.
After the adversarial training, the classifier becomes

immune to both the adversarial attack M used in adver-
sarial training and the experimental noises when a large
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portion of data are dropped. As shown in Supplementary
Fig. 9a, we test the experimental implementation for le-
gitimate sample with h = 3.2 under the same condition as
the case in the main text. We find that after adversarial
training, the classifier can correctly classify the sample
with more than 90% percent of data are dropped, and
the ratio of adversarial perturbations in the experimen-
tal noises increases much slower. This result may arise
from two reasons: i) adding the randomly dropped data
in training dataset forces the classifier to learn the rela-
tion between different density matrices in the 10×10×10
grid. ii) adding the adversarial examples with small per-
turbations in training dataset forces the classifier to ob-
tain more flatten weights and make similar predictions
near each data point.

Although this strategy can improve the classifier’s ro-
bustness to both kinds of adversarial perturbations in
most cases, it decreases the classifier’s performance near
the phase transition points: as shown in Supplementary
Fig. 9b, after adversarial training, the classifier’s con-
fidence cliff around the phase transition point becomes
flatter. This result is naturally originated from the rea-
son ii) mentioned above, which indicates that the clas-
sifier is forced to perform similarly near the transition
point. Actually, the phenomenon that there is a com-
petition between adversarial robustness and generaliza-
tion accuracy, is known as the “No free lunch” theorem
for adversarial robustness: any classifier can be misled
with high confidence once the perturbations are slightly
greater than the natural noises if class labels and the data
distribution satisfies certain conditions.

Algorithm 4 Adversarial Training

Input The training dataset D = (x, y), the loss function
L, the training epochs T , the batch size B, the gradient
optimization methods G.

Input The method M for generating adversarial examples.
Output An adversarial trained classifier f .
1: Initialize the classifier f = f(•, θ1)
2: n = ⌊ |D|

B
⌋

3: for i = 1, . . . , T do
4: for j = 1, . . . , n do
5: Choose next B samples from D:{x(B), y(B)}
6: lleg = L(f(x(B), θi), y

(B))

7: x
(B)
adv = M(f(•, θi),x(B))

8: ladv = L(f(x
(B)
adv, θi), y

(B))

9: Initialize x
(B)
drop = x(B)

10: Dropping number N = ⌊U(0, 10× 10× 10)⌋
11: for k = 1, . . . , N do
12: Dropping index idx = ⌊U(0, 10× 10× 10)⌋
13: x

(B)
drop(idx) = 0

14: end for
15: ldrop = L(f(x

(B)
drop, θi), y

(B))

16: l(B) = 0.5lleg + 0.25ladv + 0.25ldrop
17: update θi+1 = θi −G(f(•, θi), l(B))
18: end for
19: return f = f(•, θT+1)

b
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Supplementary Figure 9. The performance for the
adversarial training. a After adversarial training, the clas-
sifier can correctly classify the clean data of topological triv-
ial phase (h = 3.2, χ = 0) with more than 90% of the data
dropped; and the ratio of adversarial (Adv.) perturbations
also increases much slower compared with the case Fig. 1c
in the main text. The error bars are obtained from 100 ran-
dom data dropping trials. b The classification confidence cliff
near the phase transition point h = 3. The solid lines in-
dicate the classifier’s confidence before adversarial training.
The dash lines indicate the classifier’s confidence after adver-
sarial training. After adversarial training, the confidence cliff
near the transition point becomes flatter, which would affect
the accurate identification of the phase transition points.
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