
Noname manuscript No.
(will be inserted by the editor)

Supplement Material: Irregular Shape Small Nodules Detection

Using a Robust Scan Statistic

Ali Abolhassani · Marcos O. Prates · Safieh

Mahmoodi

Received: date / Accepted: date

SM-1 New validity indexes

In this section we call the validity index presented in Equation (5) (of the main text) as “Zhou

validity index (ZVI)”. We also define two other validity indexes to compare with ZVI. They are

defined as follow:

1- Changing the denominator of ZVI to the

mean(distance between sub-partitions) +
√

Var(distance between sub-partitions).

We call modified validity index as MSE-type validity index.

2- Changing the denominator of ZVI to the

min
i,j

|λCi − λCj |2. (1)

For this modification, the validity index will be minimum, when its denominator, i.e. equation (1),

becomes maximum. We call this modified validity index as Minimax validity index. Based on our
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simulation, we do not detect considerable difference in the performance of these three validity

index in cluster detection problems.

SM-2 Generating random numbers from Bell distribution

Castellares et al. (2018) introduced the Bell distribution with one parameter under the regression

framework and showed that it is suitable to deal with over-dispersed data. Because, for a random

variable V ∼ Bell(θ), where θ > 0

E(V ) = θeθ, V ar(V ) = θ(1 + θ)eθ,

hence the index of dispersion is Id =
V ar(V )

E(V )
= 1 + θ > 1, which means that this distribution

covers over-dispersion.

To generate random numbers from Bell distribution, consider the following assumptions.

Suppose that U = X1+ . . .+XN , such that Xi’s are independent zero-truncated Poisson(θ) and

N ∼ Poisson(eθ − 1). Also, consider that, N is independent of Xi’s. Then, one can prove that U

follows a Bell(θ). Using this property we can generate random numbers from Bell distribution.

SM-3 Binomial maps

The framework of this scenario is similar to the Poisson maps in the main paper. Just, instead

of the Poisson distribution, we use the binomial distribution to generate maps.

In the first step, Bin(1000, 0.012) is used to generate the number of cases inside cluster areas

and a Bin(1000, 0.01) for outside. Four criteria: recall, precision, biassness, and F1, are used to

compare three different scans. The results are shown in Figure 1. Since the figure for recall and

precision are almost similar to scenario Poisson(10)-Poisson(12), its interpretation is the same.

Bias value for Ir-Bell and Ir-binomial are similar and they show superiority in comparison with

the bias value for Ir-Poisson, where its value is further from 1. The value of F1 for Ir-binomial

is better than the two others. As before, we plot precision and recall for the first 50 iterations of

simulations in Figure 2. In this figure, recall for Ir-binomial is considerably higher than two other

scans. The precision of the three scans is about the same. Since recall for Ir-binomial is bigger, it

means that this scan detects clusters better for the maps generated by the binomial distribution.

In the case of the Ir-Bell scan, fluctuation of the recall and precision are very similar and stable.

This means that the Ir-Bell scan does a fair job of detecting the true clusters in binomial maps.
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Fig. 1: Data for the map are generated from the binomial with parameter (1000, 0.012) and (1000, .01) respectively

inside and outside cluster. From left to right: the violin plot for the recall, precision, bias, and F1. The number

of iteration is 200. The red, green, blue colors are respectively the Ir-Bell, Ir-binomial, Ir-Poisson scan.

Fig. 2: Variation of the recall and precision in the first 50 iteration of simulation study for scenario

binomial(1000, 0.01)-binomial(1000, 0.012). From left to right: the Ir-Bell, Ir-binomial and Ir-Poisson scans.

Increasing the parameter inside the cluster from 0.012 to 0.02 leads us to obtain Figure 3. The

Ir-binomial and Ir-Bell have better value for F1. Even though the bias value for the Ir-Poisson

scan is slightly better, the three scans have their bias value very close to 1. As before, to have a

better vision on the precision and recall, we plot the first 50 of them pointwise in Figure 4. As it

can be seen, precision for the Ir-Bell and Ir-binomial is higher than for the Ir-Poisson. Since the

values of the precision and recall in Ir-Bell is high, the detected cluster by the Ir-Bell is a really

good approximation of the true cluster.

In the last step of this scenario, we increase the parameter from 0.02 to 0.04. The detection

of clusters by the three scans is almost perfect and the four criteria are close to 1.
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Fig. 3: Data for the map are generated from the binomial with parameter (1000, 0.02) and (1000, 0.01) respectively

inside and outside cluster. From left to right: the violin plot for the recall, precision, bias, and F1. The number

of iteration is 200. The red, green, blue colors are respectively for the Ir-Bell, Ir-binomial, Ir-Poisson scans.

Fig. 4: Variation of the recall and precision in the first 50 iteration of simulation study for scenario

binomial(1000, 0.01)-binomial(1000, 0.02). From left to right: the Ir-Bell, Ir-binomial and Ir-Poisson scans.
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