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1. Characterization of AuBPs and AuBPs@mSiO, NPs
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Fig. S1. DLS size measurement of AuBPs and AuBPs@mSiO, core-shell NPs
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Fig. S2. Particle size distribution charts of AuBPs and AuBPs@mSiO, core-shell NPs. 200 particles were
counted.



2. 10, generation by EPR/TEMP
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Fig. S3. a) Reaction of TEMP with !0, to produce TEMPO b) TEMPO EPR spectrum and ¢) EPR

equipment.
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Fig. S4. EPR spectra as a function of time for a) Free RB, b) AuBPs, ¢) AuBPs@mSiO,, d) AuBPs in presence of

RB and e) AuBPs@mSiO, in presence of RB.
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3. 10, generation by oxidation of ADPA

Fitting of the data to a first order kinetic (In Iy/I vs. t) resulted in a straight line, corresponding to a

first order process in respect with the anthracene following the general kinetic equation:

[1] d[DPAA]/dt =k, ['O,][DPAA]

Where k, corresponds to the kinetic constant associated to the reaction of singlet oxygen with

DPAA

Singlet oxygen is produced by reaction of ground-state, triplet oxygen with the PS at its excited

state, following the equation (for a given PS):
[2] d [102 ]/dt = kpn [Psn*][SOZ]

With [PS,] and k;, being the concentration of photosensitizer n and its photosensitizing kinetic

constant, respectively.

The equation of singlet oxygen decay can be written as -d['O,]/dt = k.4 ['O,][DPAA] +
(kortk)['O,]), k; and k,, being the radiative and nonradiative rates of excited (singlet) oxygen in
water. Assuming that the monomolecular nonradiative and radiative phenomena of singlet oxygen
deactivation are very fast as compared to their generation and reactivity towards anthracene rates,
and that singlet oxygene generation is slow in regard with its deactivation, the quasi stationary state

approximation can be considered and we can write that

[3]

) _kpn[Ps;;]Foz]
[0z = k,+k,,

By combining [3] with [1], and by integrating the resulting equation it comes that

ln[DPAA]O _ ko[PS 1 ]0,]
[4] [DPAA], k,.+k,,

* 113
kpn[PSn][ 0,]
Which can be rewritten, defining K= r nr

[3]




[DPAA],
In

K, can thus be calculated by linear regression [DPAA], vs t

For two PS, P, and PS, associated to a photosensitization kinetic constant k,; and k,, and an
apparent constant K; and K,, the ratio of the slopes K; over K, can be expressed, after
simplification of recurring terms by

Ky ke, [PS1]

K. 1 [pc*]
Now, considering that the solution concentrations have been adjusted so that their absorbance at the
irradiation wavelength is constant it comes by definition that [PS 1] - [PS 2]

Ky ky on

And the ratio of the slopes K, kPZ =Paz

This relation is used here to compare the photosensitization efficiency of all studied PS
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Fig. S5. Emission spectra of ADPA for the samples a) RB b) AuBPs in presence of RB and ¢) AuBPs@mSiO; in

presence of RB

4. 10, photooxygenations in microfluidic reactor
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Fig. S6. a) Emission spectrum of the green LEDs b) Irradiance of the green LEDs as a function of the distance

The residence time is calculated according to:

. _ _ Internal volume (mlL)
Residence time (min) =

Flow rate (mL-min~ 1)
The total flow rate combines the individual flow rates of all fluids fed into the reactor. The actual
gas flow rate is calculated from the flow rate measured by the MFC according to the following

equations:

Py (atm)-V (L)
n, =
%2 R(L-atm- mol~ LK~ 1)-Ty(K)

real

n, ‘R-T
0,

Vreal = p

real



(L)-Methionine
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Fig. S7. NMR spectra of Met, MetO and overoxidated methionine sulfone
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Fig. S8. a) NMR spectrum of the initial solution of RB with 0.1M of Met and the obtained NMR spectra after 54 s
and 69 s of residence time b) NMR spectrum of the initial solution of AuBPs@mSiO; in presence of RB with 0.1M

of Met and the obtained NMR spectra after 54 s and 69 s of residence time
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Fig. S9. a) UV-Vis spectrum of the initial solution of RB with 0.1M of Met and the obtained UV-Vis spectra after 54
s and 69 s of residence time b) UV-Vis spectrum of the initial solution of AuBPs@mSiO; in presence of RB with

0.1M of Met and the obtained UV-Vis spectra after 54 s and 69 s of residence time



