SUPPLEMENTARY MATERIALS FOR "BRIDGING RANDOMIZED CONTROLLED TRIALS AND SINGLE-ARM TRIALS USING COMMENSURATE PRIORS IN ARM-BASED NETWORK META-ANALYSIS"

BY ZHENXUN WANG, LIFENG LIN, THOMAS MURRAY, JAMES S. HODGES AND HAITAO CHU

APPENDIX A: COMPLETE MOTIVATING DATASET

Xu et al. (2018) selected not only the 31 RCTs but also found 36 single-arm studies to use as a validation group in their original analysis. We excluded 9 single-arm studies because they did not provide information about treatment-related adverse events. Only 1 RCT investigated tremelimumab, which did not show a statistically significant survival advantage over standard chemotherapy in first-line treatment of patients with metastatic melanoma (Ribas et al., 2013). Moreover, tremelimumab did not have any available information from single-arm studies. Therefore, our analysis excluded tremelimumab. We also excluded 2 RCTs (Motzer et al., 2015a; Bang et al., 2017) and transformed 1 RCT (Hersh et al., 2010) into a single-arm study (by dropping one treatment arm) because the doses of ICIs investigated in these RCTs, such as nivolumab 0.3mg/kg every 3 weeks, nivolumab 2mg/kg every 3 weeks, and nivolumab 10mg/kg every 3 weeks in the RCT by Motzer et al. (2015a), did not match doses in the other RCTs. Table A1 presents the complete dataset.

Table A1: The dataset of safety of ICIs on cancer. It includes study index, author and year of each study, treatment details, number of treatment-related grade 3-5 adverse events (*r*), number of patients assigned in each treatment arm (*n*). ICI=immune checkpoint inhibitor; NIV=nivolumab; IPI=ipilimumab; PEM=pembrolizumab; ATE=atezolizumab; ICC=investigator's choice chemotherapy.

					-
	Study	Author (year)	Treatment r	n	-
Phase	e II or II	I RCT:			-
1	Webe	er et al. (2017)	NIV: 3mg/kg every 2 weeks	65	452
1			IPI: 10mg/kg every 3 weeks	210	453
2	Lark	in et al. (2015) &	NIV: 3mg/kg every 2 weeks	68	313
2	Wolc	hok et al. (2017)	2ICIs: NIV+IPI	186	311
2			IPI: 3mg/kg every 3 weeks	87	313
3	Robe	ert et al. (2015a)	& PEM: 10mg/kg every 2 weeks	48	278
3	Scha	chter et al. (2017) PEM: 10mg/kg every 3 weeks	46	277
3			IPI: 3mg/kg every 3 weeks	50	256
4	Rittn	neyer et al. (2017	ATE: 1200mg every 3 weeks	90	609
4			ICC	248	578
5	Web	er et al. (2015) &	NIV: 3mg/kg every 2 weeks	37	268
5	Lark	in et al. (2018)	ICC	35	102
6	Robe	ert et al. (2011) &	z ICI+ICC	103	247
6	Maic	et al. (2015)	ICC	15	251
7	Ferri	s et al. (2016)	NIV: 3mg/kg every 2 weeks	32	236
7			ICC	40	111

Continued on next page

Table A1 – *Continued from previous page*

	Study Author (year) Treat	tment r	n	
8	Govindan et al. (2017)	ICI+ICC	205	388
8		ICC	129	361
9	Motzer et al. (2015b)	NIV: 3mg/kg every 2 weeks	76	406
9		ICC	147	397
10	Carbone et al. (2017)	NIV: 3mg/kg every 3 weeks	49	267
10		ICC	136	263
11	Bellmunt et al. (2017)	PEM: 200mg every 3 weeks	40	266
11		ICC	126	255
12	Ascierto et al. (2017)	IPI: 10mg/kg every 3 weeks	128	364
12		IPI: 3mg/kg every 3 weeks	68	362
13	Reck et al. (2016a)	PEM: 200mg every 3 weeks	41	154
13		ICC	80	150
14	Reck et al. (2016b)	ICI+ICC	231	478
14		ICC	214	476
15	Langer et al. (2016)	ICI+ICC	23	59
15		ICC	16	62
16	Postow et al. (2015) &	2ICIs: NIV+IPI	54	94
16	Hodi et al. (2016)	IPI: 3mg/kg every 3 weeks	9	46
17	Herbst et al. (2016)	PEM: 2 mg/kg every 3 weeks	43	339
17		PEM: 10 mg/kg every 3 weeks	55	343
17		ICC	114	309
18	Fehrenbacher et al. (2016)	ATE: 1200mg every 3 weeks	17	142
18		ICC	55	135
19	Robert et al. (2015b)	NIV: 3mg/kg every 2 weeks	24	206
19		ICC	36	205
20	Ribas et al. (2015)	ICC	45	171
20		PEM: 2 mg/kg every 3 weeks	19	178
20		PEM: 10 mg/kg every 3 weeks	25	179
21	Brahmer et al. (2015)	NIV: 3mg/kg every 2 weeks	9	131
21		ICC	75	129
22	Borghaei et al. (2015)	NIV: 3mg/kg every 2 weeks	31	287
22		ICC	145	268
23	Powles et al. (2018)	ATE: 1200mg every 3 weeks	95	459
23		ICC	198	443
24	Reck et al. (2012)	ICI+ICC	40	84
24		ICC	13	44
25	Lynch et al. (2012)	ICC	25	65
25		ICI+ICC	56	138
26	Hamid et al. (2011)	IPI: 3mg/kg every 3 weeks	7	40
26		IPI: 10mg/kg every 3 weeks	14	42
27	Wolchok et al. (2010)	IPI: 3mg/kg every 3 weeks	6	71
27		IPI: 10mg/kg every 3 weeks	18	71
Singl	le-arm trial:			
1	Giaccone et al. (2018)	PEM: 200mg every 3 weeks	6	40
2	Goldberg et al. (2016)	PEM: 10mg/kg every 2 weeks	5	36
3	Haag et al. (2018)	IPI: 10mg/kg every 3 weeks	9	25
4	Nghiem et al. (2016)	PEM: 2mg/kg every 3 weeks	4	26

Continued on next page

Table A1 – *Continued from previous page*

	Study Author (year) Tre	eatment r	n	-
5	Younes et al. (2016)	NIV: 3mg/kg every 2 weeks	20	80
6	Amin et al. (2016)	ICI+ICC	30	46
7	Giacomo et al. (2012)	ICI+ICC	47	86
8	Hamanishi et al. (2015)	NIV: 3mg/kg every 2 weeks	4	10
9	Hida et al. (2017)	NIV: 3mg/kg every 2 weeks	2	35
10	Kudo et al. (2017)	NIV: 3mg/kg every 2 weeks	11	65
11	Maruyama et al. (2017)	NIV: 3mg/kg every 2 weeks	4	17
12	Nishio et al. (2017)	NIV: 3mg/kg every 2 weeks	17	76
13	Overman et al. (2018)	NIV: 3mg/kg every 2 weeks	15	74
14	Sharma et al. (2017)	NIV: 3mg/kg every 2 weeks	51	270
15	Yamazaki et al. (2015a)	IPI: 3mg/kg every 3 weeks	3	20
16	Yamazaki et al. (2017)	NIV: 3mg/kg every 2 weeks	3	23
17	Yamazaki et al. (2015b)	ICI+ICC	11	15
18	Zimmer et al. (2015a)	IPI: 3mg/kg every 3 weeks	20	53
19	Zimmer et al. (2015b)	IPI: 3mg/kg every 3 weeks	20	103
20	Balar et al. (2017)	ATE: 1200mg every 3 weeks	20	119
21	Bauml et al. (2017)	PEM: 200mg every 3 weeks	26	171
22	O'Day et al. (2010)	IPI: 10mg/kg every 3 weeks	39	155
23	Peters et al. (2017)	ATE: 1200mg every 3 weeks	82	659
24	Rizvi et al. (2015)	NIV: 3mg/kg every 2 weeks	22	117
25	Rosenberg et al. (2016)	ATE: 1200mg every 3 weeks	50	310
26	Kang et al. (2017)	NIV: 3mg/kg every 2 weeks	39	330
27	Kwon et al. (2014)	IPI: 10mg/kg every 3 weeks	145	393
28	Hersh et al. (2010)	ICI+ICC	9	35

APPENDIX B: ADDITIONAL DETAILS OF THE PROPOSED METHODS

B.1. Likelihood function. The likelihood function for θ_k based on data \mathcal{D}_k from the k^{th} RCT can be written as:

$$L(\boldsymbol{\theta}_k | \mathcal{D}_k) = \prod_{t \in \mathcal{A}_k} [\operatorname{logit}^{-1}(\boldsymbol{\theta}_{kt})]^{r_{kt}} [1 - \operatorname{logit}^{-1}(\boldsymbol{\theta}_{kt})]^{n_{kt} - r_{kt}}$$

Similarly, the likelihood function for θ_{jt}^s based on data \mathcal{D}_j^s from the j^{th} single-arm trial is:

$$L(\theta_{jt}^{s}|\mathcal{D}_{j}^{s}) = \prod_{t \in \mathcal{A}_{j}^{s}} [\text{logit}^{-1}(\theta_{jt}^{s})]^{r_{jt}^{s}} [1 - \text{logit}^{-1}(\theta_{jt}^{s})]^{n_{jt}^{s} - r_{jt}^{s}}.$$

Since $|\mathcal{A}_j^s| = 1$, we can simply denote θ_{jt}^s by θ_j^s . Without loss of generality, we focus on illustrating the joint posterior distribution under the DCP model. Noting that Σ depends on Δ and ρ , the joint posterior distribution can be written as:

$$\begin{aligned} &(1) \\ &\pi(\mu, \Delta, \mu^{s}, \sigma^{s}, \rho, \theta_{1}, \dots, \theta_{K}, \theta^{s}, \kappa^{m}, \tau^{m}, \kappa^{v}, \tau^{v} | \mathcal{D}_{1:K}, \mathcal{D}_{1:J}^{s}) \\ &\propto \prod_{k=1}^{K} \left\{ \prod_{t \in \mathcal{A}_{k}} [\log it^{-1}(\theta_{kt})]^{r_{kt}} [1 - \log it^{-1}(\theta_{kt})]^{n_{kt} - r_{kt}} | \mathbf{\Sigma} |^{-\frac{1}{2}} e^{-\frac{1}{2}(\theta_{k} - \mu)' \mathbf{\Sigma}^{-1}(\theta_{k} - \mu)} \right\} \times \\ &\prod_{j=1}^{J} \left\{ \prod_{t \in \mathcal{A}_{j}} [\log it^{-1}(\theta_{jt}^{s})]^{r_{jt}^{s}} [1 - \log it^{-1}(\theta_{jt}^{s})]^{(n_{jt}^{s} - r_{jt}^{s})}(\sigma_{t}^{s})^{-1} e^{-\frac{1}{2}\left(\frac{\theta_{jt}^{s} - \mu_{t}^{s}}{\sigma_{t}^{s}}\right)^{2}} \right\} \times \\ &\prod_{t=1}^{T} \left\{ [(\tau_{t}^{m})^{\frac{1}{2}} e^{-\frac{1}{2}\tau_{t}^{m}(\mu_{t} - \mu_{t}^{s})^{2}}]^{(1 - \kappa_{t}^{m})} [(R^{m})^{\frac{1}{2}} e^{-\frac{1}{2}R^{m}(\mu_{t} - \mu_{t}^{s})^{2}}]^{\kappa_{t}^{m}} \right\} \times \\ &\prod_{t=1}^{T} \left\{ \left[(\tau_{t}^{v})^{\frac{1}{2}} \sigma_{t}^{-1} e^{-\frac{1}{2}\tau_{t}^{v}(\log(\sigma_{t}) - \log(\sigma_{t}^{s}))^{2}} \right]^{1 - \kappa_{t}^{v}} \left[(R^{v})^{\frac{1}{2}} \sigma_{t}^{-1} e^{-\frac{1}{2}R^{v}(\log(\sigma_{t}) - \log(\sigma_{t}^{s}))^{2}} \right]^{\kappa_{t}^{v}} \right\} \times \\ &\prod_{t=1}^{T} \left\{ \pi(\mu_{t}^{s})\pi(\sigma_{t}^{s})\pi(\kappa_{t}^{m})\pi(\tau_{t}^{m})\pi(\kappa_{t}^{v})\pi(\tau_{t}^{v})] \times \pi(\rho), \end{aligned} \right. \end{aligned}$$

where $\mathcal{D}_{1:K} = \{\mathcal{D}_1, \dots, \mathcal{D}_K\}, \mathcal{D}_{1:J}^s = \{\mathcal{D}_1^s, \dots, \mathcal{D}_J^s\}, \boldsymbol{\theta}^s = (\theta_1^s, \dots, \theta_J^s)', \boldsymbol{\kappa}^m = (\kappa_1^m, \dots, \kappa_T^m)', \boldsymbol{\tau}^m = (\tau_1^m, \dots, \tau_T^m)', \boldsymbol{\kappa}^v = (\kappa_1^v, \dots, \kappa_T^v)', \text{ and } \boldsymbol{\tau}^v = (\tau_1^v, \dots, \tau_T^v)'.$

B.2. LPML Derivation. As a measure of the model's predictive ability, the LPML can be written as:

$$LPML = \sum_{k=1}^{K} \log(CPO_k);$$
$$CPO_k = f(\mathcal{D}_k | \mathcal{D}_{-k}, \mathcal{D}_{1:J}^s)$$

where CPO_k is the conditional predictive ordinate of the k^{th} RCT based on the remaining $\mathcal{D}_{-k} = \{\mathcal{D}_l : l \neq k\}$ and on the full data from the single-arm trials $\mathcal{D}_{1:J}^s$.

Let ψ represent all unknown parameters μ , Δ , μ^{s} , σ^{s} , ρ , $\theta_{1}, \ldots, \theta_{K}^{s}$, θ^{s} , κ^{m} , τ^{m} , κ^{v} , and τ^{v} ; also, let ψ_{-k} represent all the unknown parameters except θ_{k} . Then CPO_k can be written

as:

$$\begin{split} &E\left[\frac{1}{f(\mathcal{D}_{k}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})}\right] \\ &= \int \frac{\pi(\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k}|\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}})}{f(\mathcal{D}_{k}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})} d\boldsymbol{\theta}_{k}d\boldsymbol{\psi}_{-k} \\ &= \int \frac{f(\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})\pi(\boldsymbol{\theta}_{k})\pi(\boldsymbol{\psi}_{-k})}{f(\mathcal{D}_{k}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})f(\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}})} d\boldsymbol{\theta}_{k}d\boldsymbol{\psi}_{-k} \\ &= \int \frac{f(\mathcal{D}_{-k},\mathcal{D}_{1:J}^{\mathrm{s}}|\boldsymbol{\psi}_{-k})f(\mathcal{D}_{k}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})\pi(\boldsymbol{\theta}_{k})\pi(\boldsymbol{\psi}_{-k})}{f(\mathcal{D}_{k}|\boldsymbol{\theta}_{k},\boldsymbol{\psi}_{-k})f(\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}})} d\boldsymbol{\theta}_{k}d\boldsymbol{\psi}_{-k} \\ &= \int \frac{f(\mathcal{D}_{-k},\mathcal{D}_{1:J}^{\mathrm{s}}|\boldsymbol{\psi}_{-k})\pi(\boldsymbol{\psi}_{-k})}{f(\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}})} d\boldsymbol{\psi}_{-k} \\ &= \frac{f(\mathcal{D}_{-k},\mathcal{D}_{1:J}^{\mathrm{s}})}{f(\mathcal{D}_{1:K},\mathcal{D}_{1:J}^{\mathrm{s}})} = \frac{1}{f(\mathcal{D}_{k}|\mathcal{D}_{-k},\mathcal{D}_{1:J}^{\mathrm{s}})} = \frac{1}{\mathrm{CPO}_{k}}, \end{split}$$

where $\pi(\theta_k, \psi_{-k} | \mathcal{D}_{1:K}, \mathcal{D}_{1:J}^s)$ is the joint posterior distribution in Equation (1). Let $\{\psi_c, c = 1, \ldots, C\}$ denote the MCMC samples of ψ from this joint posterior distribution. Then CPO_k can be approximated by

$$\left(\frac{1}{C}\sum_{c=1}^{C}\frac{1}{f(\mathcal{D}_k|\boldsymbol{\psi}_c)}\right)^{-1}.$$

APPENDIX C: DETAILS OF SIMULATION RESULTS

C.1. Bias. Tables C1–C8 provide the estimated bias and the Monte Carlo standard error of the posterior median for the five methods (NB, CPV, FBV, CPM, and DCP) using different data-generating mechanisms (EM-EV, UM-EV, EM-UV, and UM-UV) and missingness structures (MCAR and MAR).

Simulation results comparing data generated under the EM-EV scenario with MCAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Description	Tradi		Bias (N	Ionte Carlo standar	d error)	
Parameter	Truth	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.068 (0.016)	0.051 (0.016)	0.066 (0.016)	0.055 (0.013)	0.059 (0.013)
cLOR ₁₃	0.50	0.109 (0.026)	0.099 (0.025)	0.103 (0.025)	0.050 (0.016)	0.065 (0.017)
$cLOR_{14}$	0.00	0.029 (0.007)	0.026 (0.007)	0.029 (0.007)	0.018 (0.005)	0.016 (0.005)
$cLOR_{15}$	-0.50	0.000 (0.007)	0.002 (0.007)	0.005 (0.007)	-0.002(0.005)	-0.003 (0.005)
cLOR ₂₃	-0.50	0.026 (0.031)	0.038 (0.031)	0.026 (0.031)	-0.010 (0.022)	0.001 (0.022)
cLOR ₂₄	-1.00	-0.042 (0.018)	-0.026 (0.017)	-0.038 (0.017)	-0.038 (0.014)	-0.044 (0.014)
cLOR ₂₅	-1.50	-0.076 (0.019)	-0.052 (0.018)	-0.064 (0.018)	-0.060 (0.014)	-0.064 (0.015)
cLOR ₃₄	-0.50	-0.079(0.027)	-0.072 (0.026)	-0.073 (0.026)	-0.032 (0.017)	-0.049 (0.018)
cLOR ₃₅	-1.00	-0.111 (0.027)	-0.097 (0.026)	-0.098 (0.026)	-0.054 (0.017)	-0.069 (0.018)
cLOR ₄₅	-0.50	-0.031 (0.010)	-0.024 (0.009)	-0.024(0.009)	-0.021 (0.006)	-0.019 (0.006)
μ_1	-2.00	-0.003 (0.004)	0.005 (0.004)	0.007 (0.004)	-0.005 (0.003)	-0.003 (0.003)
μ_2	-3.00	-0.074 (0.017)	-0.047 (0.016)	-0.061 (0.016)	-0.060 (0.014)	-0.063 (0.014)
μ_3	-2.50	-0.115 (0.026)	-0.096 (0.026)	-0.098 (0.025)	-0.056 (0.016)	-0.070(0.017)
μ_4	-2.00	-0.033 (0.006)	-0.022 (0.006)	-0.022 (0.006)	-0.023 (0.004)	-0.019 (0.004)
μ_5	-1.50	-0.004(0.007)	0.002 (0.006)	0.001 (0.006)	-0.003(0.005)	-0.001 (0.005)
p_1	0.12	0.002 (0.000)	0.000 (0.000)	0.000 (0.000)	0.002 (0.000)	-0.001 (0.000)
p_2	0.07	0.019 (0.001)	0.010 (0.001)	0.013 (0.001)	0.017 (0.001)	0.006 (0.001)
p_3	0.10	0.038 (0.002)	0.020 (0.002)	0.026 (0.002)	0.035 (0.002)	0.011 (0.002)
p_4	0.12	0.005 (0.001)	0.000 (0.001)	0.000 (0.001)	0.004 (0.000)	-0.001(0.000)
p_5	0.19	0.014 (0.001)	0.004 (0.001)	0.004 (0.001)	0.010 (0.001)	0.002 (0.001)
δ_1	0.40	0.033 (0.004)	-0.051 (0.003)	-0.063 (0.003)	0.030 (0.004)	-0.054 (0.003)
δ_2	1.00	0.337 (0.020)	0.120 (0.016)	0.208 (0.016)	0.283 (0.019)	0.068 (0.015)
δ_3	1.00	0.736 (0.022)	0.229 (0.021)	0.331 (0.021)	0.487 (0.021)	0.088 (0.017)
δ_4	0.30	0.152 (0.007)	-0.051 (0.005)	-0.037 (0.004)	0.102 (0.006)	-0.066(0.004)
δ_5	0.30	0.263 (0.010)	-0.011 (0.006)	0.007 (0.005)	0.162 (0.008)	-0.039 (0.005)
ρ	0.50	0.005 (0.007)	-0.026 (0.007)	-0.033 (0.007)	0.016 (0.007)	-0.016 (0.007)

TABLE	C2
-------	----

Simulation results comparing data generated under the EM-EV scenario with MAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Parameter Truth			Bias (N	Ionte Carlo standar	d error)	
Parameter	Irum	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.190 (0.019)	0.012 (0.017)	0.073 (0.017)	0.093 (0.015)	0.025 (0.014)
cLOR ₁₃	0.50	0.119 (0.025)	0.071 (0.024)	0.081 (0.024)	0.054 (0.016)	0.053 (0.016)
$cLOR_{14}$	0.00	-0.012 (0.007)	0.034 (0.007)	0.033 (0.007)	0.005 (0.005)	0.024 (0.005)
$cLOR_{15}$	-0.50	-0.115 (0.009)	0.058 (0.008)	0.048 (0.008)	-0.012 (0.005)	0.049 (0.006)
cLOR ₂₃	-0.50	-0.128 (0.030)	0.030 (0.029)	-0.029(0.029)	-0.057 (0.021)	0.015 (0.021)
cLOR ₂₄	-1.00	-0.230 (0.020)	0.021 (0.018)	-0.041 (0.018)	-0.092 (0.015)	-0.001 (0.015)
cLOR ₂₅	-1.50	-0.407 (0.023)	0.026 (0.019)	-0.048 (0.019)	-0.127 (0.015)	0.014 (0.015)
cLOR ₃₄	-0.50	-0.157 (0.026)	-0.042 (0.025)	-0.052(0.025)	-0.054 (0.017)	-0.030 (0.017)
cLOR ₃₅	-1.00	-0.345 (0.027)	-0.040 (0.025)	-0.062 (0.025)	-0.090 (0.016)	-0.015 (0.017)
cLOR ₄₅	-0.50	-0.114 (0.010)	0.022 (0.009)	0.012 (0.009)	-0.019 (0.006)	0.024 (0.007)
μ_1	-2.00	-0.004 (0.004)	0.005 (0.004)	0.007 (0.004)	-0.008 (0.003)	-0.003 (0.003)
μ_2	-3.00	-0.181 (0.019)	0.002 (0.017)	-0.057 (0.018)	-0.096 (0.015)	-0.024 (0.014)
μ_3	-2.50	-0.123 (0.025)	-0.067 (0.025)	-0.075 (0.024)	-0.063 (0.016)	-0.056 (0.016)
μ_4	-2.00	-0.002(0.006)	-0.033 (0.006)	-0.030 (0.006)	-0.016 (0.004)	-0.029 (0.005)
μ_5	-1.50	0.088 (0.008)	-0.064(0.007)	-0.052(0.007)	-0.002(0.005)	-0.056(0.005)
p_1	0.12	0.002 (0.000)	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	-0.001 (0.000)
p_2	0.07	0.015 (0.001)	0.012 (0.001)	0.012 (0.001)	0.015 (0.001)	0.008 (0.001)
p_3	0.10	0.042 (0.002)	0.024 (0.002)	0.029 (0.002)	0.041 (0.002)	0.014 (0.001)
p_4	0.12	0.010 (0.001)	-0.002 (0.001)	-0.001 (0.001)	0.006 (0.001)	-0.002(0.000)
p_5	0.19	0.030 (0.002)	-0.006 (0.001)	-0.004 (0.001)	0.010 (0.001)	-0.006 (0.001)
δ_1	0.40	0.033 (0.004)	-0.052 (0.003)	-0.064 (0.003)	0.029 (0.004)	-0.055 (0.003)
δ_2	1.00	0.376 (0.020)	0.111 (0.015)	0.197 (0.015)	0.277 (0.017)	0.063 (0.014)
δ_3	1.00	0.906 (0.022)	0.293 (0.021)	0.379 (0.020)	0.624 (0.021)	0.139 (0.017)
δ_4	0.30	0.200 (0.009)	-0.058(0.005)	-0.042 (0.004)	0.125 (0.007)	-0.077(0.004)
δ_5	0.30	0.319 (0.010)	-0.012 (0.005)	0.010 (0.005)	0.161 (0.007)	-0.043 (0.005)
ρ	0.50	0.082 (0.006)	-0.061 (0.006)	-0.051 (0.006)	0.033 (0.006)	-0.051 (0.006)

Simulation results comparing data generated under the UM-EV scenario with MCAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Donomatan	Truth		Bias (N	Ionte Carlo standar	d error)	
Parameter	Irun	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.068 (0.016)	0.048 (0.016)	0.066 (0.016)	-0.087 (0.013)	-0.058 (0.013)
cLOR ₁₃	0.50	0.108 (0.026)	0.100 (0.025)	0.107 (0.025)	-0.209 (0.016)	-0.127 (0.017)
$cLOR_{14}$	0.00	0.029 (0.007)	0.029 (0.007)	0.035 (0.007)	0.171 (0.007)	0.129 (0.007)
$cLOR_{15}$	-0.50	0.000 (0.007)	0.004 (0.007)	0.009 (0.007)	0.151 (0.007)	0.107 (0.007)
cLOR ₂₃	-0.50	0.026 (0.031)	0.042 (0.030)	0.031 (0.030)	-0.123 (0.021)	-0.076 (0.021)
$cLOR_{24}$	-1.00	-0.042 (0.018)	-0.020 (0.017)	-0.032 (0.017)	0.263 (0.014)	0.189 (0.014)
$cLOR_{25}$	-1.50	-0.076 (0.019)	-0.048 (0.018)	-0.059 (0.018)	0.246 (0.014)	0.168 (0.014)
cLOR ₃₄	-0.50	-0.078(0.027)	-0.070(0.026)	-0.071 (0.026)	0.386 (0.017)	0.260 (0.018)
cLOR ₃₅	-1.00	-0.111 (0.027)	-0.097 (0.026)	-0.097 (0.026)	0.370 (0.017)	0.241 (0.017)
$cLOR_{45}$	-0.50	-0.031 (0.010)	-0.026 (0.009)	-0.026 (0.009)	-0.019 (0.008)	-0.022(0.009)
μ_1	-2.00	-0.003 (0.004)	0.007 (0.004)	0.011 (0.004)	0.009 (0.004)	0.017 (0.004)
μ_2	-3.00	-0.073 (0.017)	-0.043 (0.016)	-0.057 (0.016)	0.096 (0.013)	0.074 (0.013)
μ_3	-2.50	-0.114 (0.026)	-0.095 (0.026)	-0.098 (0.025)	0.219 (0.016)	0.143 (0.017)
μ_4	-2.00	-0.033 (0.006)	-0.023 (0.006)	-0.024 (0.006)	-0.163 (0.006)	-0.113 (0.006)
μ_5	-1.50	-0.004 (0.007)	0.002 (0.007)	0.001 (0.007)	-0.141 (0.006)	-0.090 (0.006)
p_1	0.12	0.002 (0.000)	0.000 (0.000)	0.000 (0.000)	0.003 (0.000)	0.001 (0.000)
p_2	0.07	0.019 (0.001)	0.009 (0.001)	0.011 (0.001)	0.027 (0.001)	0.013 (0.001)
p_3	0.10	0.038 (0.002)	0.019 (0.002)	0.024 (0.002)	0.062 (0.002)	0.030 (0.002)
p_4	0.12	0.005 (0.001)	0.000 (0.001)	0.000 (0.001)	-0.006 (0.001)	-0.009 (0.001)
p_5	0.19	0.014 (0.001)	0.004 (0.001)	0.005 (0.001)	-0.003 (0.001)	-0.008 (0.001)
δ_1	0.40	0.033 (0.004)	-0.064 (0.004)	-0.093 (0.003)	0.032 (0.004)	-0.065 (0.004)
δ_2	1.00	0.337 (0.020)	0.095 (0.015)	0.172 (0.014)	0.279 (0.019)	0.060 (0.014)
δ_3	1.00	0.737 (0.022)	0.196 (0.020)	0.278 (0.019)	0.521 (0.022)	0.093 (0.016)
δ_4	0.30	0.153 (0.007)	-0.033 (0.005)	-0.014 (0.004)	0.164 (0.007)	-0.016 (0.005)
δ_5	0.30	0.263 (0.010)	0.004 (0.006)	0.026 (0.005)	0.237 (0.008)	0.017 (0.005)
ρ	0.50	0.004 (0.007)	-0.028 (0.007)	-0.040 (0.007)	0.001 (0.007)	-0.031 (0.007)

TABLE	C4
-------	----

Simulation results comparing data generated under the UM-EV scenario with MAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromatar	Truth		Bias (N	Ionte Carlo standar	d error)	
Parameter	Irun	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.190 (0.019)	0.005 (0.016)	0.067 (0.017)	-0.160 (0.013)	-0.185 (0.013)
cLOR ₁₃	0.50	0.118 (0.025)	0.071 (0.024)	0.080 (0.024)	-0.209 (0.016)	-0.146 (0.016)
$cLOR_{14}$	0.00	-0.012 (0.007)	0.033 (0.007)	0.035 (0.007)	0.169 (0.007)	0.148 (0.007)
$cLOR_{15}$	-0.50	-0.115 (0.009)	0.054 (0.008)	0.046 (0.008)	0.179 (0.007)	0.200 (0.007)
cLOR ₂₃	-0.50	-0.129 (0.030)	0.039 (0.029)	-0.019 (0.028)	-0.064 (0.020)	0.024 (0.020)
$cLOR_{24}$	-1.00	-0.229 (0.020)	0.026 (0.018)	-0.036 (0.018)	0.334 (0.014)	0.336 (0.014)
$cLOR_{25}$	-1.50	-0.406 (0.023)	0.026 (0.019)	-0.048 (0.019)	0.338 (0.015)	0.385 (0.014)
cLOR ₃₄	-0.50	-0.156 (0.026)	-0.042(0.025)	-0.051 (0.025)	0.380 (0.017)	0.296 (0.017)
cLOR ₃₅	-1.00	-0.344 (0.027)	-0.046 (0.025)	-0.067 (0.025)	0.377 (0.017)	0.342 (0.017)
$cLOR_{45}$	-0.50	-0.114 (0.010)	0.017 (0.009)	0.007 (0.009)	0.005 (0.008)	0.050 (0.008)
μ_1	-2.00	-0.004 (0.004)	0.007 (0.004)	0.011 (0.004)	0.011 (0.004)	0.019 (0.004)
μ_2	-3.00	-0.181 (0.019)	0.010 (0.017)	-0.049 (0.017)	0.181 (0.013)	0.211 (0.013)
μ_3	-2.50	-0.122 (0.025)	-0.065 (0.025)	-0.070 (0.024)	0.221 (0.016)	0.165 (0.016)
μ_4	-2.00	-0.003 (0.006)	-0.032 (0.006)	-0.028(0.006)	-0.162 (0.006)	-0.131 (0.006)
μ_5	-1.50	0.088 (0.008)	-0.059 (0.007)	-0.044 (0.007)	-0.176 (0.006)	-0.186 (0.006)
p_1	0.12	0.002 (0.000)	0.000 (0.000)	0.000 (0.000)	0.003 (0.000)	0.002 (0.000)
p_2	0.07	0.015 (0.001)	0.012 (0.001)	0.011 (0.001)	0.028 (0.001)	0.020 (0.001)
p_3	0.10	0.043 (0.002)	0.023 (0.002)	0.027 (0.002)	0.065 (0.002)	0.032 (0.002)
p_4	0.12	0.010 (0.001)	-0.001 (0.001)	0.000 (0.001)	-0.006 (0.001)	-0.011 (0.001)
p_5	0.19	0.030 (0.002)	-0.004 (0.001)	-0.002 (0.001)	-0.012 (0.001)	-0.023 (0.001)
δ_1	0.40	0.034 (0.004)	-0.065 (0.004)	-0.093 (0.003)	0.027 (0.004)	-0.067 (0.004)
δ_2	1.00	0.376 (0.020)	0.087 (0.014)	0.162 (0.014)	0.200 (0.017)	0.014 (0.013)
δ_3	1.00	0.905 (0.022)	0.258 (0.020)	0.322 (0.019)	0.577 (0.021)	0.116 (0.016)
δ_4	0.30	0.200 (0.009)	-0.038 (0.005)	-0.016 (0.004)	0.152 (0.007)	-0.033 (0.005)
δ_5	0.30	0.320 (0.010)	0.005 (0.006)	0.032 (0.005)	0.170 (0.008)	-0.021 (0.005)
ρ	0.50	0.081 (0.006)	-0.061 (0.006)	-0.055 (0.006)	-0.154 (0.006)	-0.213 (0.006)

Simulation results comparing data generated under the EM-UV scenario with MCAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromatar	Truth		Bias (N	Ionte Carlo standar	d error)	
Parameter	Irun	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.068 (0.016)	0.017 (0.015)	-0.021 (0.015)	0.087 (0.012)	0.067 (0.012)
cLOR ₁₃	0.50	0.108 (0.026)	0.059 (0.024)	0.015 (0.024)	0.054 (0.011)	0.036 (0.016)
$cLOR_{14}$	0.00	0.029 (0.007)	0.029 (0.007)	0.008 (0.007)	0.024 (0.006)	0.024 (0.006)
$cLOR_{15}$	-0.50	0.000 (0.007)	-0.003 (0.007)	-0.029(0.008)	0.000 (0.007)	-0.006(0.007)
cLOR ₂₃	-0.50	0.026 (0.031)	0.037 (0.029)	0.033 (0.029)	-0.038 (0.016)	-0.034 (0.020)
$cLOR_{24}$	-1.00	-0.041 (0.018)	0.010 (0.017)	0.027 (0.017)	-0.066 (0.013)	-0.047 (0.014)
$cLOR_{25}$	-1.50	-0.075 (0.019)	-0.026 (0.017)	-0.012 (0.017)	-0.092 (0.014)	-0.078(0.014)
cLOR ₃₄	-0.50	-0.078(0.027)	-0.030 (0.025)	-0.008 (0.025)	-0.030 (0.012)	-0.014 (0.017)
cLOR ₃₅	-1.00	-0.111 (0.027)	-0.066 (0.025)	-0.046 (0.025)	-0.056 (0.012)	-0.045 (0.017)
$cLOR_{45}$	-0.50	-0.031 (0.010)	-0.034 (0.009)	-0.038 (0.010)	-0.025 (0.009)	-0.030(0.009)
μ_1	-2.00	-0.003 (0.004)	-0.005 (0.004)	-0.038 (0.004)	-0.005 (0.004)	-0.007 (0.004)
μ_2	-3.00	-0.073 (0.017)	-0.023 (0.016)	-0.013 (0.016)	-0.093 (0.012)	-0.076 (0.012)
μ_3	-2.50	-0.114 (0.026)	-0.065 (0.025)	-0.048 (0.024)	-0.060 (0.010)	-0.044 (0.016)
μ_4	-2.00	-0.033 (0.006)	-0.035 (0.006)	-0.044(0.007)	-0.030 (0.006)	-0.032(0.006)
μ_5	-1.50	-0.004 (0.007)	-0.003 (0.007)	-0.007(0.007)	-0.006 (0.007)	-0.003 (0.006)
p_1	0.12	0.002 (0.000)	0.002 (0.000)	0.024 (0.001)	0.002 (0.000)	0.002 (0.000)
p_2	0.07	0.019 (0.001)	0.008 (0.001)	0.016 (0.001)	0.014 (0.001)	0.001 (0.001)
p_3	0.10	0.038 (0.002)	0.006 (0.002)	0.008 (0.002)	0.030 (0.001)	-0.003 (0.002)
p_4	0.12	0.005 (0.001)	0.004 (0.001)	0.014 (0.001)	0.005 (0.001)	0.004 (0.001)
p_5	0.19	0.014 (0.001)	0.010 (0.001)	0.022 (0.001)	0.013 (0.001)	0.010 (0.001)
δ_1	0.40	0.033 (0.004)	0.037 (0.004)	0.610 (0.007)	0.033 (0.004)	0.034 (0.004)
δ_2	1.00	0.337 (0.020)	0.020 (0.015)	0.185 (0.017)	0.267 (0.018)	-0.032 (0.014)
δ_3	1.00	0.737 (0.022)	-0.216 (0.019)	-0.186 (0.017)	0.427 (0.021)	-0.297 (0.015)
δ_4	0.30	0.153 (0.007)	0.163 (0.007)	0.427 (0.010)	0.132 (0.007)	0.148 (0.006)
δ_5	0.30	0.264 (0.010)	0.213 (0.008)	0.466 (0.012)	0.212 (0.009)	0.183 (0.007)
ρ	0.50	0.005 (0.007)	-0.013 (0.007)	0.107 (0.007)	0.014 (0.007)	-0.008 (0.007)

Simulation results comparing data generated under the EM-UV scenario with MAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	Truth		Bias (N	Ionte Carlo standar	d error)	
Falameter	IIuui	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.190 (0.019)	-0.043 (0.016)	-0.116 (0.015)	0.127 (0.013)	0.023 (0.013)
$cLOR_{13}$	0.50	0.118 (0.025)	0.021 (0.024)	-0.024 (0.023)	0.060 (0.011)	0.013 (0.015)
$cLOR_{14}$	0.00	-0.012 (0.007)	0.005 (0.007)	-0.026 (0.007)	-0.004 (0.006)	0.002 (0.006)
$cLOR_{15}$	-0.50	-0.115 (0.009)	-0.037 (0.008)	-0.123 (0.009)	-0.050(0.008)	-0.028(0.008)
cLOR ₂₃	-0.50	-0.128 (0.030)	0.052 (0.028)	0.090 (0.027)	-0.079 (0.016)	-0.013 (0.019)
$cLOR_{24}$	-1.00	-0.229 (0.020)	0.039 (0.018)	0.093 (0.017)	-0.140 (0.014)	-0.026 (0.014)
$cLOR_{25}$	-1.50	-0.406 (0.023)	-0.031 (0.019)	-0.013 (0.019)	-0.210 (0.015)	-0.070 (0.015)
cLOR ₃₄	-0.50	-0.157 (0.026)	-0.024 (0.025)	-0.002(0.024)	-0.071 (0.012)	-0.017 (0.017)
cLOR ₃₅	-1.00	-0.345 (0.027)	-0.094 (0.025)	-0.108 (0.024)	-0.137 (0.013)	-0.058(0.017)
$cLOR_{45}$	-0.50	-0.114 (0.010)	-0.049 (0.009)	-0.098 (0.010)	-0.051 (0.009)	-0.033 (0.009)
μ_1	-2.00	-0.004 (0.004)	-0.005 (0.004)	-0.038 (0.004)	-0.003 (0.004)	-0.008 (0.004)
μ_2	-3.00	-0.181 (0.019)	0.050 (0.017)	0.112 (0.016)	-0.124 (0.012)	-0.025 (0.013)
μ_3	-2.50	-0.122 (0.025)	-0.025 (0.024)	-0.007 (0.023)	-0.065 (0.011)	-0.022 (0.015)
μ_4	-2.00	-0.002(0.006)	-0.018 (0.006)	-0.020(0.006)	-0.006 (0.006)	-0.016 (0.006)
μ_5	-1.50	0.088 (0.008)	0.013 (0.008)	0.060 (0.008)	0.035 (0.007)	0.008 (0.007)
p_1	0.12	0.002 (0.000)	0.002 (0.000)	0.024 (0.001)	0.002 (0.000)	0.001 (0.000)
p_2	0.07	0.015 (0.001)	0.012 (0.001)	0.023 (0.001)	0.012 (0.001)	0.005 (0.001)
p_3	0.10	0.042 (0.002)	0.010 (0.002)	0.010 (0.002)	0.036 (0.001)	0.000 (0.001)
p_4	0.12	0.010 (0.001)	0.006 (0.001)	0.018 (0.001)	0.009 (0.001)	0.006 (0.001)
p_5	0.19	0.030 (0.002)	0.014 (0.001)	0.032 (0.002)	0.019 (0.001)	0.012 (0.001)
δ_1	0.40	0.033 (0.004)	0.033 (0.004)	0.607 (0.007)	0.034 (0.004)	0.031 (0.004)
δ_2	1.00	0.375 (0.020)	0.022 (0.015)	0.173 (0.016)	0.274 (0.017)	-0.013 (0.013)
δ_3	1.00	0.905 (0.022)	-0.163 (0.020)	-0.164 (0.016)	0.565 (0.021)	-0.255 (0.015)
δ_4	0.30	0.200 (0.009)	0.182 (0.007)	0.434 (0.010)	0.168 (0.008)	0.167 (0.007)
δ_5	0.30	0.319 (0.010)	0.233 (0.008)	0.475 (0.012)	0.222 (0.008)	0.189 (0.007)
ρ	0.50	0.081 (0.006)	-0.027 (0.006)	0.089 (0.006)	0.059 (0.006)	-0.007 (0.006)

Simulation results comparing data generated under the UM-UV scenario with MCAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Demonstern	Trach		Bias (N	Ionte Carlo standar	d error)	
Parameter	Irun	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.068 (0.016)	0.005 (0.015)	-0.041 (0.015)	-0.115 (0.011)	-0.075 (0.012)
cLOR ₁₃	0.50	0.108 (0.026)	0.054 (0.024)	0.009 (0.024)	-0.281 (0.010)	-0.126 (0.017)
$cLOR_{14}$	0.00	0.029 (0.007)	0.029 (0.007)	0.006 (0.007)	0.110 (0.007)	0.110 (0.007)
$cLOR_{15}$	-0.50	0.000 (0.007)	-0.002(0.007)	-0.029(0.008)	0.101 (0.007)	0.093 (0.007)
cLOR ₂₃	-0.50	0.026 (0.031)	0.046 (0.029)	0.048 (0.028)	-0.160 (0.015)	-0.056 (0.020)
$cLOR_{24}$	-1.00	-0.041 (0.018)	0.022 (0.017)	0.046 (0.016)	0.230 (0.012)	0.187 (0.013)
$cLOR_{25}$	-1.50	-0.075 (0.019)	-0.012 (0.017)	0.008 (0.017)	0.224 (0.013)	0.172 (0.013)
cLOR ₃₄	-0.50	-0.078(0.027)	-0.027 (0.025)	-0.004 (0.025)	0.394 (0.012)	0.241 (0.018)
cLOR ₃₅	-1.00	-0.111 (0.027)	-0.060 (0.025)	-0.041 (0.025)	0.387 (0.012)	0.227 (0.017)
$cLOR_{45}$	-0.50	-0.031 (0.010)	-0.032 (0.009)	-0.036 (0.009)	-0.007 (0.009)	-0.016 (0.009)
μ_1	-2.00	-0.003 (0.004)	-0.005 (0.004)	-0.039 (0.004)	0.031 (0.004)	0.024 (0.004)
μ_2	-3.00	-0.073 (0.017)	-0.011 (0.015)	0.006 (0.015)	0.149 (0.011)	0.100 (0.012)
μ_3	-2.50	-0.114 (0.026)	-0.060(0.025)	-0.044 (0.024)	0.318 (0.010)	0.152 (0.017)
μ_4	-2.00	-0.033 (0.006)	-0.035 (0.006)	-0.043 (0.006)	-0.076 (0.006)	-0.084 (0.006)
μ_5	-1.50	-0.004 (0.007)	-0.004 (0.007)	-0.008(0.007)	-0.067 (0.007)	-0.066 (0.007)
p_1	0.12	0.002 (0.000)	0.002 (0.000)	0.026 (0.001)	0.006 (0.000)	0.005 (0.000)
p_2	0.07	0.019 (0.001)	0.005 (0.001)	0.011 (0.001)	0.029 (0.001)	0.008 (0.001)
p_3	0.10	0.038 (0.002)	0.004 (0.002)	0.005 (0.002)	0.066 (0.002)	0.012 (0.002)
p_4	0.12	0.005 (0.001)	0.004 (0.001)	0.014 (0.001)	0.001 (0.001)	-0.001 (0.001)
p_5	0.19	0.014 (0.001)	0.010 (0.001)	0.022 (0.001)	0.006 (0.001)	0.001 (0.001)
δ_1	0.40	0.033 (0.004)	0.033 (0.004)	0.644 (0.006)	0.033 (0.004)	0.031 (0.004)
δ_2	1.00	0.337 (0.020)	-0.049 (0.014)	0.062 (0.015)	0.258 (0.018)	-0.093 (0.013)
δ_3	1.00	0.736 (0.022)	-0.267 (0.018)	-0.264 (0.015)	0.478 (0.022)	-0.318 (0.014)
δ_4	0.30	0.153 (0.007)	0.155 (0.007)	0.413 (0.010)	0.145 (0.007)	0.151 (0.006)
δ_5	0.30	0.263 (0.010)	0.211 (0.009)	0.480 (0.013)	0.235 (0.009)	0.197 (0.008)
ρ	0.50	0.005 (0.007)	-0.017 (0.007)	0.086 (0.007)	0.010 (0.007)	-0.016 (0.007)

Simulation results comparing data generated under the UM-UV scenario with MAR missingness of treatment arms. The estimated bias and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	Truth		Bias (N	Ionte Carlo standar	d error)	
Parameter	IIuui	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	1.00	0.190 (0.019)	-0.083 (0.016)	-0.187 (0.015)	-0.159 (0.011)	-0.202 (0.011)
cLOR ₁₃	0.50	0.119 (0.025)	0.013 (0.023)	-0.037 (0.022)	-0.282 (0.010)	-0.157 (0.016)
$cLOR_{14}$	0.00	-0.012 (0.007)	0.008 (0.007)	-0.018(0.007)	0.095 (0.007)	0.105 (0.007)
$cLOR_{15}$	-0.50	-0.115 (0.009)	-0.030 (0.008)	-0.105 (0.009)	0.104 (0.008)	0.127 (0.007)
cLOR ₂₃	-0.50	-0.129 (0.030)	0.086 (0.027)	0.153 (0.026)	-0.125 (0.014)	0.039 (0.018)
$cLOR_{24}$	-1.00	-0.229 (0.020)	0.084 (0.017)	0.176 (0.016)	0.259 (0.012)	0.311 (0.013)
$cLOR_{25}$	-1.50	-0.407 (0.023)	0.018 (0.018)	0.084 (0.018)	0.255 (0.013)	0.328 (0.013)
cLOR ₃₄	-0.50	-0.157 (0.026)	-0.012 (0.025)	0.020 (0.024)	0.376 (0.011)	0.265 (0.017)
cLOR ₃₅	-1.00	-0.346 (0.027)	-0.079 (0.025)	-0.073 (0.024)	0.370 (0.012)	0.281 (0.017)
$cLOR_{45}$	-0.50	-0.115 (0.010)	-0.046 (0.010)	-0.087(0.010)	0.003 (0.009)	0.019 (0.009)
μ_1	-2.00	-0.004 (0.004)	-0.005 (0.004)	-0.039 (0.004)	0.032 (0.004)	0.024 (0.004)
μ_2	-3.00	-0.181 (0.019)	0.090 (0.016)	0.181 (0.015)	0.203 (0.011)	0.236 (0.011)
μ_3	-2.50	-0.122 (0.025)	-0.017 (0.024)	0.006 (0.023)	0.320 (0.010)	0.183 (0.016)
μ_4	-2.00	-0.002(0.006)	-0.021 (0.006)	-0.029(0.006)	-0.066 (0.006)	-0.082(0.006)
μ_5	-1.50	0.089 (0.009)	0.008 (0.008)	0.040 (0.008)	-0.080(0.007)	-0.110 (0.007)
p_1	0.12	0.002 (0.000)	0.002 (0.000)	0.026 (0.001)	0.006 (0.000)	0.005 (0.000)
p_2	0.07	0.015 (0.001)	0.011 (0.001)	0.021 (0.001)	0.028 (0.001)	0.015 (0.001)
p_3	0.10	0.042 (0.002)	0.008 (0.002)	0.008 (0.002)	0.070 (0.002)	0.015 (0.002)
p_4	0.12	0.010 (0.001)	0.006 (0.001)	0.016 (0.001)	0.002 (0.001)	-0.001 (0.001)
p_5	0.19	0.030 (0.002)	0.013 (0.001)	0.029 (0.002)	0.002 (0.001)	-0.006 (0.001)
δ_1	0.40	0.033 (0.004)	0.030 (0.004)	0.643 (0.006)	0.029 (0.004)	0.030 (0.004)
δ_2	1.00	0.376 (0.020)	-0.046 (0.013)	0.039 (0.014)	0.180 (0.016)	-0.124 (0.012)
δ_3	1.00	0.905 (0.022)	-0.217 (0.019)	-0.250 (0.014)	0.549 (0.022)	-0.305 (0.014)
δ_4	0.30	0.200 (0.009)	0.170 (0.007)	0.414 (0.010)	0.146 (0.007)	0.145 (0.007)
δ_5	0.30	0.320 (0.010)	0.231 (0.009)	0.486 (0.014)	0.197 (0.008)	0.169 (0.007)
ρ	0.50	0.082 (0.006)	-0.044 (0.006)	0.043 (0.006)	-0.092 (0.007)	-0.158 (0.006)

14

C.2. Mean squared error (MSE). Tables C9–C16 provide the estimated mean squared error and the Monte Carlo standard error of the posterior median for the five methods (NB, CPV, FBV, CPM, and DCP) using different data-generating mechanisms (EM-EV, UM-EV, EM-UV, and UM-UV) and missingness structures (MCAR and MAR).

TABLE	C9
-------	----

Simulation results comparing data generated under the EM-EV scenario with MCAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Domomotor		MSE (M	onte Carlo standa	ard error)	
Tarameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	0.275 (0.000)	0.252 (0.000)	0.257 (0.000)	0.185 (0.000)	0.184 (0.000)
cLOR ₁₃	0.673 (0.001)	0.653 (0.001)	0.638 (0.001)	0.273 (0.000)	0.299 (0.001)
$cLOR_{14}$	0.047 (0.000)	0.044 (0.000)	0.044 (0.000)	0.022 (0.000)	0.025 (0.000)
$cLOR_{15}$	0.055 (0.000)	0.050 (0.000)	0.050 (0.000)	0.027 (0.000)	0.029 (0.000)
cLOR ₂₃	0.990 (0.002)	0.945 (0.002)	0.931 (0.002)	0.465 (0.001)	0.487 (0.001)
$cLOR_{24}$	0.324 (0.001)	0.296 (0.000)	0.301 (0.000)	0.198 (0.000)	0.202 (0.000)
$cLOR_{25}$	0.354 (0.001)	0.315 (0.000)	0.321 (0.000)	0.210 (0.000)	0.215 (0.000)
cLOR ₃₄	0.727 (0.001)	0.702 (0.001)	0.684 (0.001)	0.285 (0.001)	0.316 (0.001)
cLOR ₃₅	0.738 (0.001)	0.703 (0.001)	0.687 (0.001)	0.283 (0.000)	0.314 (0.001)
$cLOR_{45}$	0.093 (0.000)	0.080 (0.000)	0.080 (0.000)	0.038 (0.000)	0.043 (0.000)
μ_1	0.016 (0.000)	0.015 (0.000)	0.015 (0.000)	0.007 (0.000)	0.008 (0.000)
μ_2	0.289 (0.000)	0.265 (0.000)	0.270 (0.000)	0.187 (0.000)	0.187 (0.000)
μ_3	0.697 (0.001)	0.675 (0.001)	0.658 (0.001)	0.271 (0.000)	0.299 (0.001)
μ_4	0.042 (0.000)	0.039 (0.000)	0.039 (0.000)	0.017 (0.000)	0.020 (0.000)
μ_5	0.047 (0.000)	0.042 (0.000)	0.042 (0.000)	0.021 (0.000)	0.024 (0.000)
p_1	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
p_2	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)
p_3	0.006 (0.000)	0.005 (0.000)	0.006 (0.000)	0.004 (0.000)	0.002 (0.000)
p_4	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
p_5	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)
δ_1	0.019 (0.000)	0.015 (0.000)	0.013 (0.000)	0.018 (0.000)	0.015 (0.000)
δ_2	0.513 (0.001)	0.269 (0.001)	0.294 (0.001)	0.426 (0.001)	0.215 (0.000)
δ_3	1.035 (0.001)	0.505 (0.001)	0.536 (0.001)	0.691 (0.001)	0.309 (0.001)
δ_4	0.078 (0.000)	0.023 (0.000)	0.018 (0.000)	0.050 (0.000)	0.022 (0.000)
δ_5	0.165 (0.000)	0.031 (0.000)	0.027 (0.000)	0.085 (0.000)	0.025 (0.000)
ρ	0.044 (0.000)	0.044 (0.000)	0.045 (0.000)	0.046 (0.000)	0.045 (0.000)

Simulation results comparing data generated under the EM-EV scenario with MAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	MSE (Monte Carlo standard error)					
Faranneter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.389 (0.001)	0.278 (0.000)	0.301 (0.000)	0.223 (0.000)	0.205 (0.000)	
cLOR ₁₃	0.620 (0.001)	0.595 (0.001)	0.567 (0.001)	0.258 (0.000)	0.272 (0.000)	
$cLOR_{14}$	0.046 (0.000)	0.046 (0.000)	0.046 (0.000)	0.022 (0.000)	0.026 (0.000)	
$cLOR_{15}$	0.093 (0.000)	0.061 (0.000)	0.060 (0.000)	0.029 (0.000)	0.033 (0.000)	
cLOR ₂₃	0.917 (0.001)	0.824 (0.001)	0.814 (0.001)	0.443 (0.001)	0.448 (0.001)	
$cLOR_{24}$	0.468 (0.001)	0.322 (0.000)	0.342 (0.001)	0.234 (0.000)	0.218 (0.000)	
cLOR ₂₅	0.676 (0.001)	0.352 (0.001)	0.375 (0.001)	0.255 (0.000)	0.226 (0.000)	
cLOR ₃₄	0.694 (0.001)	0.648 (0.001)	0.620 (0.001)	0.277 (0.000)	0.294 (0.000)	
cLOR ₃₅	0.823 (0.001)	0.646 (0.001)	0.617 (0.001)	0.277 (0.000)	0.286 (0.000)	
cLOR ₄₅	0.113 (0.000)	0.083 (0.000)	0.083 (0.000)	0.039 (0.000)	0.045 (0.000)	
μ_1	0.016 (0.000)	0.015 (0.000)	0.015 (0.000)	0.007 (0.000)	0.008 (0.000)	
μ_2	0.403 (0.001)	0.294 (0.000)	0.315 (0.000)	0.225 (0.000)	0.208 (0.000)	
μ_3	0.637 (0.001)	0.608 (0.001)	0.580 (0.001)	0.255 (0.000)	0.271 (0.000)	
μ_4	0.040 (0.000)	0.040 (0.000)	0.040 (0.000)	0.017 (0.000)	0.022 (0.000)	
μ_5	0.080 (0.000)	0.053 (0.000)	0.052 (0.000)	0.022 (0.000)	0.028 (0.000)	
p_1	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_2	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	
p_3	0.006 (0.000)	0.005 (0.000)	0.005 (0.000)	0.005 (0.000)	0.002 (0.000)	
p_4	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_5	0.003 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	
δ_1	0.018 (0.000)	0.015 (0.000)	0.013 (0.000)	0.017 (0.000)	0.015 (0.000)	
δ_2	0.528 (0.001)	0.238 (0.000)	0.269 (0.000)	0.375 (0.001)	0.196 (0.000)	
δ_3	1.302 (0.002)	0.516 (0.001)	0.542 (0.001)	0.835 (0.001)	0.298 (0.001)	
δ_4	0.116 (0.000)	0.024 (0.000)	0.019 (0.000)	0.066 (0.000)	0.023 (0.000)	
δ_5	0.207 (0.000)	0.030 (0.000)	0.027 (0.000)	0.080 (0.000)	0.023 (0.000)	
ρ	0.041 (0.000)	0.035 (0.000)	0.035 (0.000)	0.041 (0.000)	0.037 (0.000)	

Simulation results comparing data generated under the UM-EV scenario with MCAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	MSE (Monte Carlo standard error)					
Faranneter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.274 (0.000)	0.247 (0.000)	0.250 (0.000)	0.176 (0.000)	0.168 (0.000)	
cLOR ₁₃	0.673 (0.001)	0.644 (0.001)	0.631 (0.001)	0.299 (0.000)	0.293 (0.000)	
$cLOR_{14}$	0.047 (0.000)	0.044 (0.000)	0.044 (0.000)	0.074 (0.000)	0.061 (0.000)	
cLOR ₁₅	0.055 (0.000)	0.050 (0.000)	0.050 (0.000)	0.069 (0.000)	0.058 (0.000)	
cLOR ₂₃	0.991 (0.002)	0.928 (0.002)	0.907 (0.001)	0.448 (0.001)	0.458 (0.001)	
$cLOR_{24}$	0.324 (0.001)	0.291 (0.000)	0.293 (0.000)	0.271 (0.000)	0.237 (0.000)	
$cLOR_{25}$	0.353 (0.001)	0.309 (0.000)	0.312 (0.000)	0.267 (0.000)	0.237 (0.000)	
cLOR ₃₄	0.727 (0.001)	0.692 (0.001)	0.675 (0.001)	0.428 (0.001)	0.379 (0.001)	
cLOR ₃₅	0.737 (0.001)	0.694 (0.001)	0.679 (0.001)	0.409 (0.001)	0.361 (0.001)	
cLOR ₄₅	0.093 (0.000)	0.081 (0.000)	0.081 (0.000)	0.071 (0.000)	0.076 (0.000)	
μ_1	0.016 (0.000)	0.015 (0.000)	0.015 (0.000)	0.014 (0.000)	0.015 (0.000)	
μ_2	0.289 (0.000)	0.260 (0.000)	0.262 (0.000)	0.182 (0.000)	0.174 (0.000)	
μ_3	0.697 (0.001)	0.666 (0.001)	0.650 (0.001)	0.298 (0.000)	0.299 (0.000)	
μ_4	0.042 (0.000)	0.039 (0.000)	0.039 (0.000)	0.066 (0.000)	0.054 (0.000)	
μ_5	0.047 (0.000)	0.042 (0.000)	0.042 (0.000)	0.059 (0.000)	0.048 (0.000)	
p_1	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_2	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	
p_3	0.006 (0.000)	0.005 (0.000)	0.006 (0.000)	0.008 (0.000)	0.004 (0.000)	
p_4	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_5	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	
δ_1	0.019 (0.000)	0.017 (0.000)	0.016 (0.000)	0.019 (0.000)	0.017 (0.000)	
δ_2	0.513 (0.001)	0.234 (0.000)	0.240 (0.000)	0.421 (0.001)	0.191 (0.000)	
δ_3	1.034 (0.001)	0.441 (0.001)	0.450 (0.001)	0.756 (0.001)	0.278 (0.001)	
δ_4	0.078 (0.000)	0.023 (0.000)	0.019 (0.000)	0.077 (0.000)	0.023 (0.000)	
δ_5	0.164 (0.000)	0.033 (0.000)	0.030 (0.000)	0.127 (0.000)	0.030 (0.000)	
ρ	0.044 (0.000)	0.044 (0.000)	0.045 (0.000)	0.046 (0.000)	0.046 (0.000)	

Simulation results comparing data generated under the UM-EV scenario with MAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Deremator	MSE (Monte Carlo standard error)					
Faranneter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.388 (0.001)	0.271 (0.000)	0.289 (0.000)	0.200 (0.000)	0.201 (0.000)	
cLOR ₁₃	0.619 (0.001)	0.592 (0.001)	0.567 (0.001)	0.300 (0.000)	0.288 (0.000)	
$cLOR_{14}$	0.046 (0.000)	0.046 (0.000)	0.046 (0.000)	0.071 (0.000)	0.066 (0.000)	
$cLOR_{15}$	0.093 (0.000)	0.061 (0.000)	0.060 (0.000)	0.079 (0.000)	0.086 (0.000)	
cLOR ₂₃	0.916 (0.001)	0.815 (0.001)	0.808 (0.001)	0.409 (0.001)	0.414 (0.001)	
$cLOR_{24}$	0.466 (0.001)	0.316 (0.000)	0.333 (0.001)	0.319 (0.000)	0.314 (0.000)	
cLOR ₂₅	0.674 (0.001)	0.349 (0.001)	0.370 (0.001)	0.336 (0.000)	0.355 (0.000)	
cLOR ₃₄	0.694 (0.001)	0.645 (0.001)	0.621 (0.001)	0.432 (0.001)	0.390 (0.001)	
cLOR ₃₅	0.822 (0.001)	0.644 (0.001)	0.619 (0.001)	0.422 (0.001)	0.411 (0.001)	
$cLOR_{45}$	0.114 (0.000)	0.083 (0.000)	0.083 (0.000)	0.065 (0.000)	0.072 (0.000)	
μ_1	0.016 (0.000)	0.015 (0.000)	0.015 (0.000)	0.015 (0.000)	0.015 (0.000)	
μ_2	0.403 (0.001)	0.287 (0.000)	0.302 (0.000)	0.213 (0.000)	0.218 (0.000)	
μ_3	0.636 (0.001)	0.605 (0.001)	0.579 (0.001)	0.300 (0.000)	0.292 (0.000)	
μ_4	0.040 (0.000)	0.040 (0.000)	0.040 (0.000)	0.065 (0.000)	0.057 (0.000)	
μ_5	0.080 (0.000)	0.053 (0.000)	0.052 (0.000)	0.069 (0.000)	0.073 (0.000)	
p_1	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_2	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	
p_3	0.006 (0.000)	0.005 (0.000)	0.005 (0.000)	0.008 (0.000)	0.004 (0.000)	
p_4	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_5	0.003 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	
δ_1	0.018 (0.000)	0.017 (0.000)	0.016 (0.000)	0.018 (0.000)	0.018 (0.000)	
δ_2	0.528 (0.001)	0.211 (0.000)	0.226 (0.000)	0.313 (0.000)	0.164 (0.000)	
δ_3	1.301 (0.002)	0.472 (0.001)	0.464 (0.001)	0.782 (0.001)	0.275 (0.001)	
δ_4	0.115 (0.000)	0.024 (0.000)	0.020 (0.000)	0.076 (0.000)	0.023 (0.000)	
δ_5	0.208 (0.000)	0.032 (0.000)	0.030 (0.000)	0.089 (0.000)	0.027 (0.000)	
ρ	0.041 (0.000)	0.035 (0.000)	0.036 (0.000)	0.064 (0.000)	0.076 (0.000)	

Simulation results comparing data generated under the EM-UV scenario with MCAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Deremator	MSE (Monte Carlo standard error)					
Faranieter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.274 (0.000)	0.236 (0.000)	0.229 (0.000)	0.147 (0.000)	0.156 (0.000)	
cLOR ₁₃	0.670 (0.001)	0.599 (0.001)	0.567 (0.001)	0.120 (0.000)	0.265 (0.000)	
$cLOR_{14}$	0.047 (0.000)	0.047 (0.000)	0.049 (0.000)	0.042 (0.000)	0.042 (0.000)	
$cLOR_{15}$	0.055 (0.000)	0.053 (0.000)	0.058 (0.000)	0.052 (0.000)	0.049 (0.000)	
cLOR ₂₃	0.988 (0.002)	0.868 (0.001)	0.825 (0.001)	0.250 (0.000)	0.405 (0.001)	
$cLOR_{24}$	0.323 (0.001)	0.285 (0.000)	0.281 (0.000)	0.172 (0.000)	0.185 (0.000)	
$cLOR_{25}$	0.352 (0.001)	0.304 (0.000)	0.295 (0.000)	0.194 (0.000)	0.203 (0.000)	
cLOR ₃₄	0.724 (0.001)	0.649 (0.001)	0.619 (0.001)	0.146 (0.000)	0.289 (0.000)	
cLOR ₃₅	0.736 (0.001)	0.653 (0.001)	0.622 (0.001)	0.150 (0.000)	0.290 (0.001)	
$cLOR_{45}$	0.093 (0.000)	0.089 (0.000)	0.095 (0.000)	0.082 (0.000)	0.078 (0.000)	
μ_1	0.016 (0.000)	0.016 (0.000)	0.018 (0.000)	0.014 (0.000)	0.014 (0.000)	
μ_2	0.289 (0.000)	0.248 (0.000)	0.241 (0.000)	0.146 (0.000)	0.157 (0.000)	
μ_3	0.695 (0.001)	0.622 (0.001)	0.590 (0.001)	0.112 (0.000)	0.266 (0.000)	
μ_4	0.042 (0.000)	0.042 (0.000)	0.045 (0.000)	0.037 (0.000)	0.037 (0.000)	
μ_5	0.047 (0.000)	0.045 (0.000)	0.047 (0.000)	0.043 (0.000)	0.040 (0.000)	
p_1	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_2	0.002 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)	
p_3	0.006 (0.000)	0.005 (0.000)	0.005 (0.000)	0.003 (0.000)	0.002 (0.000)	
p_4	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)	
p_5	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)	
δ_1	0.019 (0.000)	0.020 (0.000)	0.417 (0.000)	0.019 (0.000)	0.019 (0.000)	
δ_2	0.513 (0.001)	0.240 (0.000)	0.339 (0.001)	0.404 (0.001)	0.205 (0.000)	
δ_3	1.034 (0.001)	0.414 (0.001)	0.308 (0.000)	0.633 (0.001)	0.299 (0.000)	
δ_4	0.078 (0.000)	0.070 (0.000)	0.278 (0.000)	0.064 (0.000)	0.060 (0.000)	
δ_5	0.165 (0.000)	0.110 (0.000)	0.353 (0.000)	0.121 (0.000)	0.087 (0.000)	
ρ	0.044 (0.000)	0.046 (0.000)	0.055 (0.000)	0.046 (0.000)	0.047 (0.000)	

Simulation results comparing data generated under the EM-UV scenario with MAR missingness of treatment
arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are
rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Domonotor		MSE (Monte Carlo standard error)					
Tarafficter	NB	CPV	FBV	CPM	DCP		
cLOR ₁₂	0.388 (0.001)	0.262 (0.000)	0.250 (0.000)	0.175 (0.000)	0.168 (0.000)		
cLOR ₁₃	0.619 (0.001)	0.559 (0.001)	0.513 (0.001)	0.125 (0.000)	0.236 (0.000)		
$cLOR_{14}$	0.046 (0.000)	0.046 (0.000)	0.049 (0.000)	0.041 (0.000)	0.041 (0.000)		
$cLOR_{15}$	0.093 (0.000)	0.068 (0.000)	0.095 (0.000)	0.066 (0.000)	0.059 (0.000)		
cLOR ₂₃	0.913 (0.001)	0.777 (0.001)	0.713 (0.001)	0.271 (0.000)	0.374 (0.001)		
$cLOR_{24}$	0.466 (0.001)	0.314 (0.000)	0.300 (0.000)	0.208 (0.000)	0.200 (0.000)		
$cLOR_{25}$	0.674 (0.001)	0.363 (0.001)	0.349 (0.001)	0.258 (0.000)	0.225 (0.000)		
cLOR ₃₄	0.694 (0.001)	0.622 (0.001)	0.576 (0.001)	0.157 (0.000)	0.273 (0.000)		
cLOR ₃₅	0.822 (0.001)	0.646 (0.001)	0.605 (0.001)	0.185 (0.000)	0.282 (0.000)		
cLOR ₄₅	0.113 (0.000)	0.092 (0.000)	0.109 (0.000)	0.081 (0.000)	0.075 (0.000)		
μ_1	0.016 (0.000)	0.016 (0.000)	0.018 (0.000)	0.014 (0.000)	0.014 (0.000)		
μ_2	0.402 (0.001)	0.278 (0.000)	0.265 (0.000)	0.171 (0.000)	0.169 (0.000)		
μ_3	0.636 (0.001)	0.573 (0.001)	0.526 (0.001)	0.114 (0.000)	0.235 (0.000)		
μ_4	0.040 (0.000)	0.040 (0.000)	0.042 (0.000)	0.036 (0.000)	0.035 (0.000)		
μ_5	0.080 (0.000)	0.058 (0.000)	0.073 (0.000)	0.055 (0.000)	0.048 (0.000)		
p_1	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)		
p_2	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)		
p_3	0.006 (0.000)	0.004 (0.000)	0.004 (0.000)	0.003 (0.000)	0.002 (0.000)		
p_4	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.000 (0.000)		
p_5	0.003 (0.000)	0.002 (0.000)	0.004 (0.000)	0.002 (0.000)	0.001 (0.000)		
δ_1	0.018 (0.000)	0.019 (0.000)	0.413 (0.000)	0.018 (0.000)	0.019 (0.000)		
δ_2	0.526 (0.001)	0.212 (0.000)	0.289 (0.000)	0.354 (0.001)	0.180 (0.000)		
δ_3	1.300 (0.002)	0.426 (0.001)	0.282 (0.000)	0.781 (0.001)	0.293 (0.000)		
δ_4	0.116 (0.000)	0.084 (0.000)	0.295 (0.000)	0.091 (0.000)	0.073 (0.000)		
δ_5	0.208 (0.000)	0.120 (0.000)	0.370 (0.000)	0.118 (0.000)	0.086 (0.000)		
ρ	0.041 (0.000)	0.034 (0.000)	0.046 (0.000)	0.043 (0.000)	0.036 (0.000)		

Simulation results comparing data generated under the UM-UV scenario with MCAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor		MSE (M	onte Carlo standa	ard error)	
raianietei	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	0.274 (0.000)	0.227 (0.000)	0.219 (0.000)	0.133 (0.000)	0.140 (0.000)
cLOR ₁₃	0.671 (0.001)	0.596 (0.001)	0.564 (0.001)	0.185 (0.000)	0.292 (0.000)
$cLOR_{14}$	0.047 (0.000)	0.046 (0.000)	0.047 (0.000)	0.057 (0.000)	0.056 (0.000)
$cLOR_{15}$	0.055 (0.000)	0.053 (0.000)	0.058 (0.000)	0.063 (0.000)	0.059 (0.000)
cLOR ₂₃	0.989 (0.002)	0.859 (0.001)	0.812 (0.001)	0.245 (0.000)	0.415 (0.001)
$cLOR_{24}$	0.324 (0.001)	0.275 (0.000)	0.265 (0.000)	0.203 (0.000)	0.201 (0.000)
cLOR ₂₅	0.353 (0.001)	0.293 (0.000)	0.281 (0.000)	0.215 (0.000)	0.208 (0.000)
cLOR ₃₄	0.724 (0.001)	0.647 (0.001)	0.614 (0.001)	0.290 (0.000)	0.366 (0.001)
cLOR ₃₅	0.736 (0.001)	0.646 (0.001)	0.614 (0.001)	0.285 (0.000)	0.353 (0.001)
$cLOR_{45}$	0.093 (0.000)	0.088 (0.000)	0.091 (0.000)	0.084 (0.000)	0.078 (0.000)
μ_1	0.016 (0.000)	0.016 (0.000)	0.018 (0.000)	0.016 (0.000)	0.016 (0.000)
μ_2	0.289 (0.000)	0.239 (0.000)	0.228 (0.000)	0.141 (0.000)	0.145 (0.000)
μ_3	0.695 (0.001)	0.618 (0.001)	0.587 (0.001)	0.197 (0.000)	0.303 (0.001)
μ_4	0.042 (0.000)	0.041 (0.000)	0.043 (0.000)	0.045 (0.000)	0.044 (0.000)
μ_5	0.047 (0.000)	0.045 (0.000)	0.047 (0.000)	0.051 (0.000)	0.048 (0.000)
p_1	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)
p_2	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)
p_3	0.006 (0.000)	0.004 (0.000)	0.004 (0.000)	0.007 (0.000)	0.003 (0.000)
p_4	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)
p_5	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.001 (0.000)	0.001 (0.000)
δ_1	0.019 (0.000)	0.019 (0.000)	0.455 (0.000)	0.019 (0.000)	0.019 (0.000)
δ_2	0.512 (0.001)	0.205 (0.000)	0.226 (0.000)	0.401 (0.001)	0.175 (0.000)
δ_3	1.034 (0.001)	0.413 (0.001)	0.296 (0.000)	0.720 (0.001)	0.301 (0.000)
δ_4	0.078 (0.000)	0.068 (0.000)	0.270 (0.000)	0.073 (0.000)	0.064 (0.000)
δ_5	0.164 (0.000)	0.118 (0.000)	0.407 (0.001)	0.137 (0.000)	0.101 (0.000)
ρ	0.044 (0.000)	0.046 (0.000)	0.051 (0.000)	0.047 (0.000)	0.048 (0.000)

Simulation results comparing data generated under the UM-UV scenario with MAR missingness of treatment arms. The estimated mean squared error and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP).

Deremator	MSE (Monte Carlo standard error)						
Tarafficter	NB	CPV	FBV	CPM	DCP		
cLOR ₁₂	0.387 (0.001)	0.248 (0.000)	0.246 (0.000)	0.141 (0.000)	0.165 (0.000)		
cLOR ₁₃	0.620 (0.001)	0.550 (0.001)	0.506 (0.001)	0.183 (0.000)	0.272 (0.000)		
$cLOR_{14}$	0.046 (0.000)	0.046 (0.000)	0.048 (0.000)	0.053 (0.000)	0.054 (0.000)		
$cLOR_{15}$	0.094 (0.000)	0.069 (0.000)	0.091 (0.000)	0.069 (0.000)	0.071 (0.000)		
cLOR ₂₃	0.915 (0.001)	0.754 (0.001)	0.698 (0.001)	0.217 (0.000)	0.342 (0.001)		
$cLOR_{24}$	0.466 (0.001)	0.299 (0.000)	0.292 (0.000)	0.215 (0.000)	0.253 (0.000)		
cLOR ₂₅	0.675 (0.001)	0.338 (0.000)	0.318 (0.000)	0.232 (0.000)	0.276 (0.000)		
cLOR ₃₄	0.694 (0.001)	0.611 (0.001)	0.567 (0.001)	0.273 (0.000)	0.354 (0.000)		
cLOR ₃₅	0.824 (0.001)	0.633 (0.001)	0.591 (0.001)	0.280 (0.000)	0.368 (0.000)		
$cLOR_{45}$	0.114 (0.000)	0.093 (0.000)	0.110 (0.000)	0.080 (0.000)	0.077 (0.000)		
μ_1	0.016 (0.000)	0.016 (0.000)	0.018 (0.000)	0.016 (0.000)	0.016 (0.000)		
μ_2	0.402 (0.001)	0.265 (0.000)	0.259 (0.000)	0.157 (0.000)	0.184 (0.000)		
μ_3	0.636 (0.001)	0.563 (0.001)	0.516 (0.001)	0.195 (0.000)	0.281 (0.000)		
μ_4	0.040 (0.000)	0.041 (0.000)	0.042 (0.000)	0.043 (0.000)	0.044 (0.000)		
μ_5	0.080 (0.000)	0.059 (0.000)	0.071 (0.000)	0.057 (0.000)	0.059 (0.000)		
p_1	0.000 (0.000)	0.000 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)		
p_2	0.001 (0.000)	0.001 (0.000)	0.002 (0.000)	0.002 (0.000)	0.001 (0.000)		
p_3	0.006 (0.000)	0.004 (0.000)	0.004 (0.000)	0.007 (0.000)	0.002 (0.000)		
p_4	0.001 (0.000)	0.001 (0.000)	0.001 (0.000)	0.000 (0.000)	0.000 (0.000)		
p_5	0.003 (0.000)	0.002 (0.000)	0.003 (0.000)	0.001 (0.000)	0.001 (0.000)		
δ_1	0.018 (0.000)	0.019 (0.000)	0.453 (0.000)	0.019 (0.000)	0.020 (0.000)		
δ_2	0.528 (0.001)	0.183 (0.000)	0.187 (0.000)	0.292 (0.000)	0.155 (0.000)		
δ_3	1.300 (0.002)	0.413 (0.001)	0.264 (0.000)	0.772 (0.001)	0.290 (0.000)		
δ_4	0.115 (0.000)	0.081 (0.000)	0.282 (0.000)	0.077 (0.000)	0.064 (0.000)		
δ_5	0.208 (0.000)	0.128 (0.000)	0.420 (0.001)	0.106 (0.000)	0.084 (0.000)		
ρ	0.041 (0.000)	0.036 (0.000)	0.042 (0.000)	0.051 (0.000)	0.059 (0.000)		

C.3. Coverage. Tables C17–C24 provide the estimated coverage of the 95% credible interval and the Monte Carlo standard error for posterior median from the five methods (NB, CPV, FBV, CPM, and DCP) using different data-generating mechanisms (EM-EV, UM-EV, EM-UV, and UM-UV) and missingness structures (MCAR and MAR).

Simulation results comparing data generated under the EM-EV scenario with MCAR missingness of treatment arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor		CP (Mo	onte Carlo standa	rd error)	
Tarameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	0.981 (0.004)	0.964 (0.006)	0.970 (0.005)	0.970 (0.005)	0.955 (0.007)
$cLOR_{13}$	1.000 (0.000)	0.988 (0.003)	0.986 (0.004)	0.997 (0.002)	0.983 (0.004)
$cLOR_{14}$	0.994 (0.002)	0.965 (0.006)	0.962 (0.006)	0.993 (0.003)	0.979 (0.005)
$cLOR_{15}$	0.999 (0.001)	0.977 (0.005)	0.978 (0.005)	0.999 (0.001)	0.987 (0.004)
cLOR ₂₃	0.999 (0.001)	0.990 (0.003)	0.988 (0.003)	0.996 (0.002)	0.983 (0.004)
$cLOR_{24}$	0.995 (0.002)	0.972 (0.005)	0.977 (0.005)	0.983 (0.004)	0.964 (0.006)
$cLOR_{25}$	0.999 (0.001)	0.978 (0.005)	0.982 (0.004)	0.986 (0.004)	0.970 (0.005)
cLOR ₃₄	1.000 (0.000)	0.980 (0.004)	0.979 (0.005)	0.997 (0.002)	0.982 (0.004)
cLOR ₃₅	1.000 (0.000)	0.988 (0.003)	0.986 (0.004)	1.000 (0.000)	0.989 (0.003)
$cLOR_{45}$	0.999 (0.001)	0.976 (0.005)	0.979 (0.005)	0.998 (0.001)	0.982 (0.004)
μ_1	0.973 (0.005)	0.939 (0.008)	0.928 (0.008)	0.983 (0.004)	0.964 (0.006)
μ_2	0.979 (0.005)	0.957 (0.006)	0.967 (0.006)	0.975 (0.005)	0.964 (0.006)
μ_3	0.999 (0.001)	0.983 (0.004)	0.981 (0.004)	0.996 (0.002)	0.984 (0.004)
μ_4	0.997 (0.002)	0.958 (0.006)	0.961 (0.006)	0.994 (0.002)	0.977 (0.005)
μ_5	0.999 (0.001)	0.972 (0.005)	0.975 (0.005)	0.999 (0.001)	0.983 (0.004)
p_1	0.968 (0.006)	0.929 (0.008)	0.925 (0.008)	0.974 (0.005)	0.958 (0.006)
p_2	0.962 (0.006)	0.957 (0.006)	0.955 (0.007)	0.960 (0.006)	0.953 (0.007)
p_3	0.983 (0.004)	0.968 (0.006)	0.973 (0.005)	0.969 (0.005)	0.975 (0.005)
p_4	0.990 (0.003)	0.958 (0.006)	0.961 (0.006)	0.992 (0.003)	0.981 (0.004)
p_5	0.996 (0.002)	0.974 (0.005)	0.978 (0.005)	0.997 (0.002)	0.977 (0.005)
δ_1	0.939 (0.008)	0.906 (0.009)	0.896 (0.010)	0.943 (0.007)	0.896 (0.010)
δ_2	0.910 (0.009)	0.953 (0.007)	0.932 (0.008)	0.924 (0.008)	0.956 (0.006)
δ_3	0.955 (0.007)	0.973 (0.005)	0.928 (0.008)	0.967 (0.006)	0.977 (0.005)
δ_4	0.956 (0.006)	0.991 (0.003)	0.991 (0.003)	0.962 (0.006)	0.994 (0.002)
δ_5	0.933 (0.008)	0.977 (0.005)	0.976 (0.005)	0.948 (0.007)	0.987 (0.004)
ρ	1.000 (0.000)	0.996 (0.002)	0.996 (0.002)	0.997 (0.002)	0.997 (0.002)

Simulation results comparing data generated under the EM-EV scenario with MAR missingness of treatment
arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior
median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor		CP (Mo	onte Carlo standa	rd error)	
Faranneter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	0.982 (0.004)	0.965 (0.006)	0.974 (0.005)	0.987 (0.004)	0.973 (0.005)
cLOR ₁₃	0.999 (0.001)	0.985 (0.004)	0.978 (0.005)	0.995 (0.002)	0.978 (0.005)
$cLOR_{14}$	0.996 (0.002)	0.962 (0.006)	0.962 (0.006)	0.996 (0.002)	0.972 (0.005)
cLOR ₁₅	0.998 (0.001)	0.988 (0.003)	0.989 (0.003)	1.000 (0.000)	0.993 (0.003)
cLOR ₂₃	1.000 (0.000)	0.992 (0.003)	0.992 (0.003)	0.996 (0.002)	0.986 (0.004)
$cLOR_{24}$	0.994 (0.002)	0.975 (0.005)	0.977 (0.005)	0.993 (0.003)	0.986 (0.004)
$cLOR_{25}$	0.997 (0.002)	0.982 (0.004)	0.985 (0.004)	0.996 (0.002)	0.990 (0.003)
cLOR ₃₄	0.999 (0.001)	0.984 (0.004)	0.985 (0.004)	0.996 (0.002)	0.981 (0.004)
cLOR ₃₅	0.999 (0.001)	0.987 (0.004)	0.985 (0.004)	0.998 (0.001)	0.982 (0.004)
cLOR ₄₅	1.000 (0.000)	0.989 (0.003)	0.990 (0.003)	1.000 (0.000)	0.987 (0.004)
μ_1	0.975 (0.005)	0.936 (0.008)	0.927 (0.008)	0.982 (0.004)	0.963 (0.006)
μ_2	0.984 (0.004)	0.960 (0.006)	0.972 (0.005)	0.983 (0.004)	0.972 (0.005)
μ_3	0.999 (0.001)	0.983 (0.004)	0.979 (0.005)	0.996 (0.002)	0.979 (0.005)
μ_4	0.995 (0.002)	0.956 (0.006)	0.960 (0.006)	0.996 (0.002)	0.965 (0.006)
μ_5	0.999 (0.001)	0.983 (0.004)	0.986 (0.004)	0.999 (0.001)	0.989 (0.003)
p_1	0.967 (0.006)	0.928 (0.008)	0.924 (0.008)	0.973 (0.005)	0.960 (0.006)
p_2	0.974 (0.005)	0.960 (0.006)	0.969 (0.005)	0.968 (0.006)	0.967 (0.006)
p_3	0.985 (0.004)	0.972 (0.005)	0.975 (0.005)	0.967 (0.006)	0.976 (0.005)
p_4	0.984 (0.004)	0.963 (0.006)	0.965 (0.006)	0.990 (0.003)	0.977 (0.005)
p_5	0.994 (0.002)	0.986 (0.004)	0.986 (0.004)	0.995 (0.002)	0.993 (0.003)
δ_1	0.945 (0.007)	0.902 (0.009)	0.892 (0.010)	0.947 (0.007)	0.899 (0.010)
δ_2	0.921 (0.009)	0.952 (0.007)	0.927 (0.008)	0.933 (0.008)	0.955 (0.007)
δ_3	0.935 (0.008)	0.965 (0.006)	0.920 (0.009)	0.950 (0.007)	0.979 (0.005)
δ_4	0.955 (0.007)	0.996 (0.002)	0.994 (0.002)	0.969 (0.005)	0.996 (0.002)
δ_5	0.931 (0.008)	0.986 (0.004)	0.984 (0.004)	0.958 (0.006)	0.986 (0.004)
ρ	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)

Simulation results comparing data generated under the UM-EV scenario with MCAR missingness of treatment arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	CP (Monte Carlo standard error)					
Parameter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.982 (0.004)	0.960 (0.006)	0.965 (0.006)	0.973 (0.005)	0.967 (0.006)	
$cLOR_{13}$	0.999 (0.001)	0.983 (0.004)	0.982 (0.004)	0.993 (0.003)	0.974 (0.005)	
$cLOR_{14}$	0.995 (0.002)	0.966 (0.006)	0.966 (0.006)	0.972 (0.005)	0.933 (0.008)	
$cLOR_{15}$	0.999 (0.001)	0.976 (0.005)	0.978 (0.005)	0.990 (0.003)	0.955 (0.007)	
cLOR ₂₃	0.999 (0.001)	0.986 (0.004)	0.985 (0.004)	0.996 (0.002)	0.978 (0.005)	
$cLOR_{24}$	0.995 (0.002)	0.970 (0.005)	0.970 (0.005)	0.964 (0.006)	0.952 (0.007)	
cLOR ₂₅	0.998 (0.001)	0.977 (0.005)	0.980 (0.004)	0.976 (0.005)	0.956 (0.006)	
cLOR ₃₄	1.000 (0.000)	0.976 (0.005)	0.976 (0.005)	0.985 (0.004)	0.962 (0.006)	
cLOR ₃₅	0.999 (0.001)	0.986 (0.004)	0.985 (0.004)	0.989 (0.003)	0.972 (0.005)	
$cLOR_{45}$	0.999 (0.001)	0.979 (0.005)	0.980 (0.004)	1.000 (0.000)	0.988 (0.003)	
μ_1	0.975 (0.005)	0.933 (0.008)	0.911 (0.009)	0.969 (0.005)	0.933 (0.008)	
μ_2	0.979 (0.005)	0.957 (0.006)	0.962 (0.006)	0.970 (0.005)	0.956 (0.006)	
μ_3	0.999 (0.001)	0.978 (0.005)	0.981 (0.004)	0.991 (0.003)	0.968 (0.006)	
μ_4	0.998 (0.001)	0.963 (0.006)	0.966 (0.006)	0.958 (0.006)	0.910 (0.009)	
μ_5	0.999 (0.001)	0.976 (0.005)	0.983 (0.004)	0.989 (0.003)	0.955 (0.007)	
p_1	0.967 (0.006)	0.922 (0.008)	0.908 (0.009)	0.960 (0.006)	0.926 (0.008)	
p_2	0.963 (0.006)	0.953 (0.007)	0.956 (0.006)	0.927 (0.008)	0.937 (0.008)	
p_3	0.983 (0.004)	0.968 (0.006)	0.970 (0.005)	0.926 (0.008)	0.940 (0.008)	
p_4	0.990 (0.003)	0.970 (0.005)	0.972 (0.005)	0.999 (0.001)	0.930 (0.008)	
p_5	0.997 (0.002)	0.978 (0.005)	0.980 (0.004)	1.000 (0.000)	0.966 (0.006)	
δ_1	0.940 (0.008)	0.883 (0.010)	0.817 (0.012)	0.941 (0.007)	0.884 (0.010)	
δ_2	0.913 (0.009)	0.960 (0.006)	0.942 (0.007)	0.929 (0.008)	0.964 (0.006)	
δ_3	0.956 (0.006)	0.974 (0.005)	0.930 (0.008)	0.968 (0.006)	0.979 (0.005)	
δ_4	0.955 (0.007)	0.989 (0.003)	0.990 (0.003)	0.946 (0.007)	0.984 (0.004)	
δ_5	0.930 (0.008)	0.974 (0.005)	0.972 (0.005)	0.931 (0.008)	0.973 (0.005)	
ρ	1.000 (0.000)	0.996 (0.002)	0.995 (0.002)	0.998 (0.001)	0.994 (0.002)	

Simulation results comparing data generated under the UM-EV scenario with MAR missingness of treatment arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Domomotor	CP (Monte Carlo standard error)					
Parameter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.982 (0.004)	0.967 (0.006)	0.973 (0.005)	0.981 (0.004)	0.960 (0.006)	
cLOR ₁₃	0.999 (0.001)	0.986 (0.004)	0.980 (0.004)	0.992 (0.003)	0.973 (0.005)	
$cLOR_{14}$	0.998 (0.001)	0.964 (0.006)	0.965 (0.006)	0.975 (0.005)	0.934 (0.008)	
$cLOR_{15}$	0.998 (0.001)	0.992 (0.003)	0.991 (0.003)	0.995 (0.002)	0.939 (0.008)	
cLOR ₂₃	1.000 (0.000)	0.990 (0.003)	0.989 (0.003)	0.996 (0.002)	0.990 (0.003)	
$cLOR_{24}$	0.994 (0.002)	0.974 (0.005)	0.976 (0.005)	0.977 (0.005)	0.948 (0.007)	
cLOR ₂₅	0.997 (0.002)	0.985 (0.004)	0.987 (0.004)	0.994 (0.002)	0.956 (0.006)	
cLOR ₃₄	0.999 (0.001)	0.984 (0.004)	0.984 (0.004)	0.986 (0.004)	0.959 (0.006)	
cLOR ₃₅	0.999 (0.001)	0.994 (0.002)	0.989 (0.003)	0.996 (0.002)	0.966 (0.006)	
$cLOR_{45}$	1.000 (0.000)	0.994 (0.002)	0.995 (0.002)	1.000 (0.000)	0.989 (0.003)	
μ_1	0.975 (0.005)	0.930 (0.008)	0.907 (0.009)	0.970 (0.005)	0.929 (0.008)	
μ_2	0.983 (0.004)	0.962 (0.006)	0.968 (0.006)	0.977 (0.005)	0.955 (0.007)	
μ_3	0.999 (0.001)	0.983 (0.004)	0.979 (0.005)	0.992 (0.003)	0.971 (0.005)	
μ_4	0.995 (0.002)	0.961 (0.006)	0.963 (0.006)	0.974 (0.005)	0.900 (0.009)	
μ_5	0.999 (0.001)	0.987 (0.004)	0.992 (0.003)	0.997 (0.002)	0.929 (0.008)	
p_1	0.966 (0.006)	0.922 (0.008)	0.910 (0.009)	0.956 (0.006)	0.927 (0.008)	
p_2	0.974 (0.005)	0.956 (0.006)	0.963 (0.006)	0.934 (0.008)	0.941 (0.007)	
p_3	0.984 (0.004)	0.970 (0.005)	0.973 (0.005)	0.931 (0.008)	0.952 (0.007)	
p_4	0.984 (0.004)	0.963 (0.006)	0.967 (0.006)	0.998 (0.001)	0.925 (0.008)	
p_5	0.994 (0.002)	0.989 (0.003)	0.991 (0.003)	1.000 (0.000)	0.950 (0.007)	
δ_1	0.946 (0.007)	0.884 (0.010)	0.814 (0.012)	0.947 (0.007)	0.878 (0.010)	
δ_2	0.922 (0.008)	0.951 (0.007)	0.930 (0.008)	0.950 (0.007)	0.959 (0.006)	
δ_3	0.934 (0.008)	0.964 (0.006)	0.922 (0.008)	0.960 (0.006)	0.979 (0.005)	
δ_4	0.955 (0.007)	0.991 (0.003)	0.987 (0.004)	0.961 (0.006)	0.989 (0.003)	
δ_5	0.932 (0.008)	0.982 (0.004)	0.980 (0.004)	0.957 (0.006)	0.986 (0.004)	
ρ	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	

Simulation results comparing data generated under the EM-UV scenario with MCAR missingness of treatment arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Deremator		CP (Mo	nte Carlo standa	rd error)	
Faranneter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	0.981 (0.004)	0.943 (0.007)	0.962 (0.006)	0.978 (0.005)	0.950 (0.007)
$cLOR_{13}$	0.999 (0.001)	0.920 (0.009)	0.904 (0.009)	1.000 (0.000)	0.980 (0.004)
$cLOR_{14}$	0.995 (0.002)	0.992 (0.003)	0.997 (0.002)	0.993 (0.003)	0.989 (0.003)
$cLOR_{15}$	0.999 (0.001)	0.993 (0.003)	0.997 (0.002)	0.996 (0.002)	0.992 (0.003)
cLOR ₂₃	0.999 (0.001)	0.942 (0.007)	0.929 (0.008)	0.997 (0.002)	0.966 (0.006)
$cLOR_{24}$	0.995 (0.002)	0.978 (0.005)	0.981 (0.004)	0.989 (0.003)	0.973 (0.005)
cLOR ₂₅	0.999 (0.001)	0.990 (0.003)	0.990 (0.003)	0.995 (0.002)	0.986 (0.004)
cLOR ₃₄	1.000 (0.000)	0.943 (0.007)	0.929 (0.008)	0.999 (0.001)	0.982 (0.004)
cLOR ₃₅	1.000 (0.000)	0.970 (0.005)	0.954 (0.007)	1.000 (0.000)	0.988 (0.003)
$cLOR_{45}$	0.999 (0.001)	0.997 (0.002)	0.998 (0.001)	0.998 (0.001)	0.995 (0.002)
μ_1	0.975 (0.005)	0.973 (0.005)	1.000 (0.000)	0.970 (0.005)	0.969 (0.005)
μ_2	0.979 (0.005)	0.942 (0.007)	0.950 (0.007)	0.981 (0.004)	0.948 (0.007)
μ_3	0.998 (0.001)	0.908 (0.009)	0.884 (0.010)	0.999 (0.001)	0.977 (0.005)
μ_4	0.999 (0.001)	0.992 (0.003)	0.997 (0.002)	0.991 (0.003)	0.989 (0.003)
μ_5	0.999 (0.001)	0.990 (0.003)	0.991 (0.003)	0.998 (0.001)	0.992 (0.003)
p_1	0.968 (0.006)	0.968 (0.006)	0.987 (0.004)	0.956 (0.006)	0.960 (0.006)
p_2	0.964 (0.006)	0.935 (0.008)	0.921 (0.009)	0.967 (0.006)	0.952 (0.007)
p_3	0.982 (0.004)	0.918 (0.009)	0.886 (0.010)	0.983 (0.004)	0.963 (0.006)
p_4	0.991 (0.003)	0.991 (0.003)	0.993 (0.003)	0.991 (0.003)	0.990 (0.003)
p_5	0.996 (0.002)	0.989 (0.003)	0.992 (0.003)	0.990 (0.003)	0.985 (0.004)
δ_1	0.940 (0.008)	0.939 (0.008)	0.017 (0.004)	0.941 (0.007)	0.941 (0.007)
δ_2	0.911 (0.009)	0.944 (0.007)	0.933 (0.008)	0.929 (0.008)	0.948 (0.007)
δ_3	0.956 (0.006)	0.983 (0.004)	0.987 (0.004)	0.966 (0.006)	0.968 (0.006)
δ_4	0.956 (0.006)	0.944 (0.007)	0.435 (0.016)	0.958 (0.006)	0.949 (0.007)
δ_5	0.932 (0.008)	0.939 (0.008)	0.540 (0.016)	0.939 (0.008)	0.939 (0.008)
ρ	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.997 (0.002)	0.997 (0.002)

Simulation results comparing data generated under the EM-UV scenario with MAR missingness of treatment
arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior
median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Domonator	CP (Monte Carlo standard error)					
Parameter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.981 (0.004)	0.959 (0.006)	0.963 (0.006)	0.988 (0.003)	0.977 (0.005)	
cLOR ₁₃	0.999 (0.001)	0.933 (0.008)	0.925 (0.008)	0.999 (0.001)	0.968 (0.006)	
$cLOR_{14}$	0.998 (0.001)	0.993 (0.003)	0.999 (0.001)	0.991 (0.003)	0.990 (0.003)	
$cLOR_{15}$	0.999 (0.001)	0.997 (0.002)	0.998 (0.001)	0.995 (0.002)	0.994 (0.002)	
cLOR ₂₃	1.000 (0.000)	0.970 (0.005)	0.956 (0.006)	0.998 (0.001)	0.977 (0.005)	
$cLOR_{24}$	0.995 (0.002)	0.983 (0.004)	0.980 (0.004)	0.993 (0.003)	0.987 (0.004)	
$cLOR_{25}$	0.997 (0.002)	0.994 (0.002)	0.990 (0.003)	0.996 (0.002)	0.994 (0.002)	
cLOR ₃₄	0.999 (0.001)	0.957 (0.006)	0.945 (0.007)	0.998 (0.001)	0.977 (0.005)	
cLOR ₃₅	0.999 (0.001)	0.975 (0.005)	0.963 (0.006)	1.000 (0.000)	0.983 (0.004)	
cLOR ₄₅	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	0.998 (0.001)	0.999 (0.001)	
μ_1	0.976 (0.005)	0.974 (0.005)	1.000 (0.000)	0.968 (0.006)	0.969 (0.005)	
μ_2	0.982 (0.004)	0.955 (0.007)	0.952 (0.007)	0.990 (0.003)	0.973 (0.005)	
μ_3	0.999 (0.001)	0.931 (0.008)	0.907 (0.009)	0.998 (0.001)	0.970 (0.005)	
μ_4	0.995 (0.002)	0.990 (0.003)	0.991 (0.003)	0.989 (0.003)	0.986 (0.004)	
μ_5	0.999 (0.001)	0.996 (0.002)	0.995 (0.002)	0.996 (0.002)	0.990 (0.003)	
p_1	0.966 (0.006)	0.968 (0.006)	0.987 (0.004)	0.960 (0.006)	0.962 (0.006)	
p_2	0.972 (0.005)	0.949 (0.007)	0.898 (0.010)	0.980 (0.004)	0.955 (0.007)	
p_3	0.986 (0.004)	0.926 (0.008)	0.903 (0.009)	0.972 (0.005)	0.971 (0.005)	
p_4	0.984 (0.004)	0.988 (0.003)	0.989 (0.003)	0.981 (0.004)	0.981 (0.004)	
p_5	0.993 (0.003)	0.997 (0.002)	0.993 (0.003)	0.990 (0.003)	0.986 (0.004)	
δ_1	0.943 (0.007)	0.938 (0.008)	0.017 (0.004)	0.943 (0.007)	0.939 (0.008)	
δ_2	0.922 (0.008)	0.946 (0.007)	0.958 (0.006)	0.934 (0.008)	0.940 (0.008)	
δ_3	0.934 (0.008)	0.988 (0.003)	0.994 (0.002)	0.953 (0.007)	0.979 (0.005)	
δ_4	0.954 (0.007)	0.958 (0.006)	0.462 (0.016)	0.957 (0.006)	0.962 (0.006)	
δ_5	0.933 (0.008)	0.939 (0.008)	0.547 (0.016)	0.948 (0.007)	0.952 (0.007)	
ρ	1.000 (0.000)	1.000 (0.000)	0.997 (0.002)	1.000 (0.000)	1.000 (0.000)	

Simulation results comparing data generated under the UM-UV scenario with MCAR missingness of treatment arms. The 95% CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Deremator	CP (Monte Carlo standard error)					
Parameter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.981 (0.004)	0.937 (0.008)	0.955 (0.007)	0.980 (0.004)	0.953 (0.007)	
cLOR ₁₃	0.999 (0.001)	0.907 (0.009)	0.899 (0.010)	0.993 (0.003)	0.919 (0.009)	
$cLOR_{14}$	0.994 (0.002)	0.991 (0.003)	0.998 (0.001)	0.989 (0.003)	0.988 (0.003)	
$cLOR_{15}$	0.999 (0.001)	0.997 (0.002)	0.999 (0.001)	0.995 (0.002)	0.988 (0.003)	
cLOR ₂₃	0.999 (0.001)	0.937 (0.008)	0.909 (0.009)	0.999 (0.001)	0.956 (0.006)	
$cLOR_{24}$	0.995 (0.002)	0.975 (0.005)	0.981 (0.004)	0.983 (0.004)	0.963 (0.006)	
$cLOR_{25}$	0.999 (0.001)	0.984 (0.004)	0.984 (0.004)	0.987 (0.004)	0.970 (0.005)	
cLOR ₃₄	1.000 (0.000)	0.939 (0.008)	0.925 (0.008)	0.987 (0.004)	0.923 (0.008)	
cLOR ₃₅	1.000 (0.000)	0.964 (0.006)	0.952 (0.007)	0.996 (0.002)	0.957 (0.006)	
$cLOR_{45}$	0.999 (0.001)	0.997 (0.002)	0.998 (0.001)	0.998 (0.001)	0.994 (0.002)	
μ_1	0.974 (0.005)	0.973 (0.005)	1.000 (0.000)	0.955 (0.007)	0.960 (0.006)	
μ_2	0.978 (0.005)	0.932 (0.008)	0.939 (0.008)	0.973 (0.005)	0.941 (0.007)	
μ_3	0.999 (0.001)	0.898 (0.010)	0.857 (0.011)	0.992 (0.003)	0.900 (0.009)	
μ_4	0.999 (0.001)	0.991 (0.003)	0.995 (0.002)	0.991 (0.003)	0.982 (0.004)	
μ_5	0.999 (0.001)	0.994 (0.002)	0.996 (0.002)	0.995 (0.002)	0.988 (0.003)	
p_1	0.967 (0.006)	0.968 (0.006)	0.985 (0.004)	0.946 (0.007)	0.949 (0.007)	
p_2	0.962 (0.006)	0.928 (0.008)	0.922 (0.008)	0.918 (0.009)	0.934 (0.008)	
p_3	0.983 (0.004)	0.904 (0.009)	0.871 (0.011)	0.897 (0.010)	0.916 (0.009)	
p_4	0.991 (0.003)	0.990 (0.003)	0.992 (0.003)	0.996 (0.002)	0.990 (0.003)	
p_5	0.996 (0.002)	0.993 (0.003)	0.993 (0.003)	0.998 (0.001)	0.992 (0.003)	
δ_1	0.941 (0.007)	0.941 (0.007)	0.005 (0.002)	0.938 (0.008)	0.942 (0.007)	
δ_2	0.913 (0.009)	0.938 (0.008)	0.949 (0.007)	0.932 (0.008)	0.941 (0.007)	
δ_3	0.957 (0.006)	0.978 (0.005)	0.972 (0.005)	0.968 (0.006)	0.945 (0.007)	
δ_4	0.956 (0.006)	0.955 (0.007)	0.516 (0.016)	0.955 (0.007)	0.948 (0.007)	
δ_5	0.932 (0.008)	0.933 (0.008)	0.583 (0.016)	0.929 (0.008)	0.932 (0.008)	
ρ	1.000 (0.000)	0.999 (0.001)	0.998 (0.001)	0.997 (0.002)	0.999 (0.001)	

Simulation res	ults comparing data generated under the UM-UV scenario with MAR missingness of treatment
arms. The 95%	CrI's estimated coverage probability (CP) and the Monte Carlo standard error of the posterior
	median are summarized for the five methods (NB, CPV, FBV, CPM, and DCP).

Doromotor	CP (Monte Carlo standard error)					
Faranneter	NB	CPV	FBV	CPM	DCP	
cLOR ₁₂	0.983 (0.004)	0.948 (0.007)	0.951 (0.007)	0.984 (0.004)	0.952 (0.007)	
cLOR ₁₃	0.999 (0.001)	0.922 (0.008)	0.914 (0.009)	0.995 (0.002)	0.932 (0.008)	
$cLOR_{14}$	0.999 (0.001)	0.993 (0.003)	0.999 (0.001)	0.992 (0.003)	0.984 (0.004)	
$cLOR_{15}$	0.999 (0.001)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.989 (0.003)	
cLOR ₂₃	1.000 (0.000)	0.963 (0.006)	0.939 (0.008)	0.999 (0.001)	0.980 (0.004)	
$cLOR_{24}$	0.995 (0.002)	0.980 (0.004)	0.972 (0.005)	0.981 (0.004)	0.962 (0.006)	
cLOR ₂₅	0.997 (0.002)	0.990 (0.003)	0.991 (0.003)	1.000 (0.000)	0.988 (0.003)	
cLOR ₃₄	0.999 (0.001)	0.951 (0.007)	0.937 (0.008)	0.998 (0.001)	0.935 (0.008)	
cLOR ₃₅	0.998 (0.001)	0.973 (0.005)	0.965 (0.006)	1.000 (0.000)	0.966 (0.006)	
$cLOR_{45}$	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	0.997 (0.002)	
μ_1	0.974 (0.005)	0.973 (0.005)	1.000 (0.000)	0.956 (0.006)	0.964 (0.006)	
μ_2	0.984 (0.004)	0.945 (0.007)	0.939 (0.008)	0.983 (0.004)	0.943 (0.007)	
μ_3	0.999 (0.001)	0.913 (0.009)	0.875 (0.010)	0.996 (0.002)	0.913 (0.009)	
μ_4	0.995 (0.002)	0.992 (0.003)	0.992 (0.003)	0.995 (0.002)	0.984 (0.004)	
μ_5	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.985 (0.004)	
p_1	0.967 (0.006)	0.966 (0.006)	0.985 (0.004)	0.943 (0.007)	0.949 (0.007)	
p_2	0.974 (0.005)	0.940 (0.008)	0.884 (0.010)	0.927 (0.008)	0.929 (0.008)	
p_3	0.983 (0.004)	0.919 (0.009)	0.884 (0.010)	0.888 (0.010)	0.925 (0.008)	
p_4	0.984 (0.004)	0.988 (0.003)	0.990 (0.003)	0.991 (0.003)	0.989 (0.003)	
p_5	0.995 (0.002)	0.997 (0.002)	0.996 (0.002)	0.998 (0.001)	0.989 (0.003)	
δ_1	0.944 (0.007)	0.939 (0.008)	0.005 (0.002)	0.944 (0.007)	0.939 (0.008)	
δ_2	0.922 (0.008)	0.944 (0.007)	0.964 (0.006)	0.956 (0.006)	0.931 (0.008)	
δ_3	0.935 (0.008)	0.988 (0.003)	0.990 (0.003)	0.960 (0.006)	0.966 (0.006)	
δ_4	0.955 (0.007)	0.959 (0.006)	0.533 (0.016)	0.964 (0.006)	0.962 (0.006)	
δ_5	0.932 (0.008)	0.948 (0.007)	0.579 (0.016)	0.950 (0.007)	0.957 (0.006)	
ρ	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	1.000 (0.000)	

C.4. Empirical standard error (Empse). Tables C25–C32 provide the empirical standard error and the Monte Carlo standard error of the posterior median for the five methods (NB, CPV, FBV, CPM, and DCP) using different data-generating mechanisms (EM-EV, UM-EV, EM-UV, and UM-UV) and missingness structures (MCAR and MAR). The relative percent increase in precision comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

TABLE C25

Simulation results comparing data generated under the EM-EV scenario with MCAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter	Empse (Monte Carlo standard error)					Relative % increase in precision			
i uluiletei	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.520 (0.012)	0.500 (0.011)	0.503 (0.011)	0.426 (0.010)	0.425 (0.010)	8.1	6.6	48.6	49.8
cLOR ₁₃	0.813 (0.018)	0.803 (0.018)	0.792 (0.018)	0.520 (0.012)	0.543 (0.012)	2.7	5.4	144.4	124.5
$cLOR_{14}$	0.215 (0.005)	0.208 (0.005)	0.208 (0.005)	0.148 (0.003)	0.157 (0.004)	7.0	7.4	111.4	88.9
cLOR ₁₅	0.235 (0.005)	0.224 (0.005)	0.223 (0.005)	0.163 (0.004)	0.172 (0.004)	10.3	10.5	106.5	87.4
cLOR ₂₃	0.995 (0.022)	0.972 (0.022)	0.965 (0.022)	0.682 (0.015)	0.698 (0.016)	4.8	6.4	112.7	103.2
cLOR ₂₄	0.568 (0.013)	0.544 (0.012)	0.547 (0.012)	0.444 (0.010)	0.447 (0.010)	9.2	7.8	64.0	61.2
cLOR ₂₅	0.590 (0.013)	0.559 (0.013)	0.563 (0.013)	0.455 (0.010)	0.460 (0.010)	11.3	9.9	68.1	64.7
cLOR ₃₄	0.849 (0.019)	0.835 (0.019)	0.824 (0.018)	0.533 (0.012)	0.560 (0.013)	3.4	6.2	153.6	129.6
cLOR ₃₅	0.852 (0.019)	0.833 (0.019)	0.823 (0.018)	0.529 (0.012)	0.556 (0.012)	4.6	7.1	159.3	134.6
$cLOR_{45}$	0.304 (0.007)	0.282 (0.006)	0.282 (0.006)	0.193 (0.004)	0.206 (0.005)	15.9	15.9	148.6	118.6
μ_1	0.125 (0.003)	0.124 (0.003)	0.124 (0.003)	0.085 (0.002)	0.091 (0.002)	2.0	2.5	117.1	92.0
μ_2	0.533 (0.012)	0.513 (0.011)	0.517 (0.012)	0.429 (0.010)	0.428 (0.010)	8.0	6.6	54.8	54.9
μ_3	0.828 (0.019)	0.817 (0.018)	0.806 (0.018)	0.518 (0.012)	0.542 (0.012)	2.7	5.5	155.7	132.9
μ_4	0.202 (0.005)	0.196 (0.004)	0.196 (0.004)	0.129 (0.003)	0.140 (0.003)	6.4	6.5	143.6	107.6
μ_5	0.217 (0.005)	0.206 (0.005)	0.205 (0.005)	0.146 (0.003)	0.154 (0.003)	11.3	11.3	121.8	97.3
p_1	0.014 (0.000)	0.014 (0.000)	0.013 (0.000)	0.010 (0.000)	0.010 (0.000)	2.8	3.4	96.3	91.9
p_2	0.037 (0.001)	0.033 (0.001)	0.034 (0.001)	0.033 (0.001)	0.026 (0.001)	23.2	19.3	22.7	100.6
p_3	0.070 (0.002)	0.069 (0.002)	0.071 (0.002)	0.055 (0.001)	0.048 (0.001)	2.8	-1.8	64.3	112.9
p_4	0.021 (0.000)	0.020 (0.000)	0.020 (0.000)	0.015 (0.000)	0.015 (0.000)	9.3	9.5	108.4	110.1
p_5	0.032 (0.001)	0.030 (0.001)	0.030 (0.001)	0.023 (0.001)	0.023 (0.001)	14.6	15.0	94.2	100.7
δ_1	0.133 (0.003)	0.110 (0.002)	0.095 (0.002)	0.130 (0.003)	0.108 (0.002)	45.2	96.5	4.2	50.4
δ_2	0.632 (0.014)	0.505 (0.011)	0.502 (0.011)	0.588 (0.013)	0.459 (0.010)	56.4	58.7	15.3	89.2
δ_3	0.703 (0.016)	0.673 (0.015)	0.653 (0.015)	0.674 (0.015)	0.549 (0.012)	9.2	15.8	8.7	64.1
δ_4	0.234 (0.005)	0.143 (0.003)	0.130 (0.003)	0.200 (0.004)	0.131 (0.003)	168.9	223.5	37.5	219.0
δ_5	0.309 (0.007)	0.176 (0.004)	0.164 (0.004)	0.244 (0.005)	0.154 (0.003)	209.7	254.1	60.7	302.9
ρ	0.209 (0.005)	0.208 (0.005)	0.210 (0.005)	0.213 (0.005)	0.211 (0.005)	0.8	-1.2	-3.7	-1.5

SUPPLEMENTARY MATERIALS

Simulation results comparing data generated under the EM-EV scenario with MAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter	Empse (Monte Carlo standard error)					Relativ	/e % incr	ease in pro	ecision
1 urumeter	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.594 (0.013)	0.527 (0.012)	0.544 (0.012)	0.464 (0.010)	0.452 (0.010)	26.9	19.3	64.2	72.8
cLOR ₁₃	0.779 (0.017)	0.768 (0.017)	0.749 (0.017)	0.505 (0.011)	0.519 (0.012)	2.8	8.2	137.6	124.9
$cLOR_{14}$	0.215 (0.005)	0.212 (0.005)	0.212 (0.005)	0.150 (0.003)	0.160 (0.004)	3.4	3.4	107.0	80.3
cLOR ₁₅	0.283 (0.006)	0.240 (0.005)	0.240 (0.005)	0.169 (0.004)	0.175 (0.004)	38.9	38.6	181.4	161.2
cLOR ₂₃	0.949 (0.021)	0.907 (0.020)	0.902 (0.020)	0.664 (0.015)	0.670 (0.015)	9.5	10.7	104.6	101.1
$cLOR_{24}$	0.645 (0.014)	0.567 (0.013)	0.584 (0.013)	0.476 (0.011)	0.467 (0.010)	29.2	21.9	83.7	90.3
cLOR ₂₅	0.715 (0.016)	0.593 (0.013)	0.611 (0.014)	0.489 (0.011)	0.476 (0.011)	45.5	36.8	113.6	125.6
cLOR ₃₄	0.819 (0.018)	0.804 (0.018)	0.786 (0.018)	0.524 (0.012)	0.541 (0.012)	3.7	8.4	144.6	128.7
cLOR ₃₅	0.839 (0.019)	0.803 (0.018)	0.783 (0.018)	0.519 (0.012)	0.535 (0.012)	9.2	14.8	162.0	146.1
cLOR ₄₅	0.317 (0.007)	0.287 (0.006)	0.288 (0.006)	0.196 (0.004)	0.211 (0.005)	21.6	21.5	161.1	126.6
μ_1	0.125 (0.003)	0.124 (0.003)	0.124 (0.003)	0.085 (0.002)	0.091 (0.002)	2.0	2.5	118.9	91.7
μ_2	0.609 (0.014)	0.543 (0.012)	0.558 (0.012)	0.465 (0.010)	0.455 (0.010)	25.9	19.0	71.8	78.9
μ_3	0.789 (0.018)	0.777 (0.017)	0.758 (0.017)	0.501 (0.011)	0.518 (0.012)	2.9	8.3	147.5	132.2
μ_4	0.201 (0.004)	0.198 (0.004)	0.198 (0.004)	0.131 (0.003)	0.145 (0.003)	3.1	2.6	133.2	92.3
μ_5	0.268 (0.006)	0.221 (0.005)	0.222 (0.005)	0.149 (0.003)	0.158 (0.004)	46.9	45.8	221.9	187.6
p_1	0.014 (0.000)	0.014 (0.000)	0.013 (0.000)	0.010 (0.000)	0.010 (0.000)	2.5	3.1	98.6	90.3
p_2	0.030 (0.001)	0.030 (0.001)	0.030 (0.001)	0.027 (0.001)	0.024 (0.001)	-3.1	-1.3	17.9	58.0
p_3	0.065 (0.001)	0.065 (0.001)	0.066 (0.001)	0.054 (0.001)	0.046 (0.001)	2.3	-2.2	48.3	99.8
p_4	0.024 (0.001)	0.020 (0.000)	0.020 (0.000)	0.016 (0.000)	0.015 (0.000)	41.1	40.0	129.2	162.8
p_5	0.050 (0.001)	0.033 (0.001)	0.033 (0.001)	0.026 (0.001)	0.023 (0.001)	126.1	123.5	271.8	361.9
δ_1	0.130 (0.003)	0.110 (0.002)	0.095 (0.002)	0.129 (0.003)	0.109 (0.002)	38.7	88.0	1.1	41.5
δ_2	0.622 (0.014)	0.475 (0.011)	0.480 (0.011)	0.546 (0.012)	0.438 (0.010)	71.4	68.3	29.8	101.5
δ_3	0.694 (0.016)	0.656 (0.015)	0.631 (0.014)	0.668 (0.015)	0.528 (0.012)	11.9	21.1	8.0	73.2
δ_4	0.275 (0.006)	0.144 (0.003)	0.133 (0.003)	0.225 (0.005)	0.130 (0.003)	263.0	329.3	49.4	346.6
δ_5	0.325 (0.007)	0.173 (0.004)	0.163 (0.004)	0.233 (0.005)	0.147 (0.003)	252.1	298.2	94.0	390.2
ρ	0.187 (0.004)	0.176 (0.004)	0.181 (0.004)	0.199 (0.004)	0.187 (0.004)	12.8	6.1	-12.4	0.1

Simulation results comparing data generated under the UM-EV scenario with MCAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter		Empse (M	Ionte Carlo stand	lard error)		Relativ	/e % incr	ease in pr	ecision
	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.519 (0.012)	0.495 (0.011)	0.496 (0.011)	0.411 (0.009)	0.406 (0.009)	10.2	9.8	60.0	63.8
cLOR ₁₃	0.813 (0.018)	0.797 (0.018)	0.787 (0.018)	0.505 (0.011)	0.527 (0.012)	4.2	6.7	159.1	138.4
cLOR ₁₄	0.215 (0.005)	0.208 (0.005)	0.208 (0.005)	0.210 (0.005)	0.211 (0.005)	6.9	7.2	4.7	4.1
cLOR ₁₅	0.234 (0.005)	0.224 (0.005)	0.223 (0.005)	0.214 (0.005)	0.216 (0.005)	9.8	10.3	20.1	17.7
cLOR ₂₃	0.995 (0.022)	0.963 (0.022)	0.952 (0.021)	0.658 (0.015)	0.673 (0.015)	6.9	9.2	128.9	118.9
$cLOR_{24}$	0.568 (0.013)	0.539 (0.012)	0.541 (0.012)	0.449 (0.010)	0.449 (0.010)	10.8	10.2	59.9	59.9
cLOR ₂₅	0.589 (0.013)	0.555 (0.012)	0.556 (0.012)	0.455 (0.010)	0.457 (0.010)	13.0	12.4	67.8	66.0
cLOR ₃₄	0.849 (0.019)	0.829 (0.019)	0.819 (0.018)	0.529 (0.012)	0.558 (0.012)	4.9	7.5	157.7	131.6
cLOR ₃₅	0.852 (0.019)	0.828 (0.019)	0.819 (0.018)	0.522 (0.012)	0.551 (0.012)	5.9	8.3	166.5	139.4
cLOR ₄₅	0.304 (0.007)	0.283 (0.006)	0.283 (0.006)	0.266 (0.006)	0.275 (0.006)	15.0	14.9	30.5	21.7
μ_1	0.125 (0.003)	0.124 (0.003)	0.123 (0.003)	0.120 (0.003)	0.120 (0.003)	2.3	3.3	9.1	8.8
μ_2	0.533 (0.012)	0.508 (0.011)	0.509 (0.011)	0.415 (0.009)	0.411 (0.009)	10.1	9.6	64.7	67.9
μ_3	0.828 (0.019)	0.811 (0.018)	0.801 (0.018)	0.500 (0.011)	0.528 (0.012)	4.2	6.8	173.7	145.7
μ_4	0.202 (0.005)	0.196 (0.004)	0.196 (0.004)	0.200 (0.004)	0.202 (0.005)	5.8	5.8	2.0	-0.4
μ_5	0.217 (0.005)	0.206 (0.005)	0.206 (0.005)	0.197 (0.004)	0.200 (0.004)	10.6	10.7	21.1	17.4
p_1	0.014 (0.000)	0.014 (0.000)	0.013 (0.000)	0.013 (0.000)	0.013 (0.000)	2.8	3.9	3.7	6.0
p_2	0.037 (0.001)	0.033 (0.001)	0.033 (0.001)	0.039 (0.001)	0.029 (0.001)	27.2	22.7	-12.7	60.2
p_3	0.070 (0.002)	0.069 (0.002)	0.071 (0.002)	0.063 (0.001)	0.053 (0.001)	4.1	-1.5	24.0	75.6
p_4	0.021 (0.000)	0.020 (0.000)	0.020 (0.000)	0.019 (0.000)	0.020 (0.000)	9.0	9.0	26.2	13.5
p_5	0.032 (0.001)	0.030 (0.001)	0.030 (0.001)	0.027 (0.001)	0.028 (0.001)	13.6	14.2	48.5	30.8
δ_1	0.133 (0.003)	0.112 (0.003)	0.088 (0.002)	0.133 (0.003)	0.112 (0.003)	39.7	129.1	0.3	40.7
δ_2	0.632 (0.014)	0.474 (0.011)	0.458 (0.010)	0.586 (0.013)	0.434 (0.010)	77.6	90.2	16.4	112.5
δ_3	0.701 (0.016)	0.634 (0.014)	0.611 (0.014)	0.696 (0.016)	0.520 (0.012)	22.1	31.6	1.4	82.1
δ_4	0.234 (0.005)	0.149 (0.003)	0.138 (0.003)	0.224 (0.005)	0.150 (0.003)	148.8	189.5	8.9	143.7
δ_5	0.308 (0.007)	0.181 (0.004)	0.172 (0.004)	0.266 (0.006)	0.173 (0.004)	189.6	222.1	33.9	218.3
ρ	0.209 (0.005)	0.208 (0.005)	0.209 (0.005)	0.216 (0.005)	0.213 (0.005)	1.4	0.2	-5.7	-3.3

SUPPLEMENTARY MATERIALS

Simulation results comparing data generated under the UM-EV scenario with MAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter		Empse (N	Ionte Carlo stand	lard error)		Relativ	/e % incr	ease in pr	ecision
1 unumeter	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.594 (0.013)	0.520 (0.012)	0.533 (0.012)	0.418 (0.009)	0.409 (0.009)	30.1	23.8	102.1	111.2
cLOR ₁₃	0.778 (0.017)	0.766 (0.017)	0.749 (0.017)	0.507 (0.011)	0.517 (0.012)	3.2	8.0	135.7	126.8
cLOR ₁₄	0.215 (0.005)	0.212 (0.005)	0.212 (0.005)	0.206 (0.005)	0.210 (0.005)	3.3	3.1	8.9	5.3
cLOR ₁₅	0.283 (0.006)	0.241 (0.005)	0.241 (0.005)	0.216 (0.005)	0.215 (0.005)	37.8	37.9	72.0	73.1
cLOR ₂₃	0.949 (0.021)	0.902 (0.020)	0.899 (0.020)	0.636 (0.014)	0.643 (0.014)	10.6	11.4	122.3	117.4
$cLOR_{24}$	0.644 (0.014)	0.562 (0.013)	0.576 (0.013)	0.455 (0.010)	0.448 (0.010)	31.0	24.7	99.7	106.4
cLOR ₂₅	0.714 (0.016)	0.591 (0.013)	0.607 (0.014)	0.471 (0.011)	0.455 (0.010)	46.2	38.3	129.8	146.0
cLOR ₃₄	0.819 (0.018)	0.803 (0.018)	0.787 (0.018)	0.536 (0.012)	0.550 (0.012)	4.0	8.2	132.8	121.6
cLOR ₃₅	0.839 (0.019)	0.802 (0.018)	0.784 (0.018)	0.529 (0.012)	0.542 (0.012)	9.6	14.5	151.5	139.7
cLOR ₄₅	0.317 (0.007)	0.288 (0.006)	0.288 (0.006)	0.255 (0.006)	0.265 (0.006)	21.1	21.3	55.6	43.9
μ_1	0.126 (0.003)	0.124 (0.003)	0.123 (0.003)	0.121 (0.003)	0.121 (0.003)	2.4	3.4	6.9	7.6
μ_2	0.609 (0.014)	0.536 (0.012)	0.548 (0.012)	0.425 (0.010)	0.417 (0.009)	29.2	23.6	105.2	113.5
μ_3	0.789 (0.018)	0.776 (0.017)	0.758 (0.017)	0.501 (0.011)	0.514 (0.012)	3.3	8.2	147.3	135.0
μ_4	0.201 (0.004)	0.198 (0.004)	0.199 (0.004)	0.196 (0.004)	0.199 (0.004)	2.7	2.1	4.3	1.3
μ_5	0.268 (0.006)	0.222 (0.005)	0.223 (0.005)	0.195 (0.004)	0.195 (0.004)	45.4	44.1	89.7	89.6
p_1	0.014 (0.000)	0.014 (0.000)	0.013 (0.000)	0.014 (0.000)	0.013 (0.000)	2.6	3.6	0.6	3.4
p_2	0.030 (0.001)	0.030 (0.001)	0.030 (0.001)	0.034 (0.001)	0.028 (0.001)	-3.2	-1.6	-23.2	13.9
p_3	0.065 (0.001)	0.064 (0.001)	0.066 (0.001)	0.061 (0.001)	0.051 (0.001)	3.4	-1.3	14.1	65.8
p_4	0.024 (0.001)	0.021 (0.000)	0.021 (0.000)	0.019 (0.000)	0.019 (0.000)	39.1	37.5	60.9	54.6
p_5	0.050 (0.001)	0.034 (0.001)	0.034 (0.001)	0.028 (0.001)	0.027 (0.001)	121.3	117.6	211.6	240.5
δ_1	0.130 (0.003)	0.112 (0.003)	0.088 (0.002)	0.133 (0.003)	0.115 (0.003)	33.7	119.1	-5.3	27.3
δ_2	0.622 (0.014)	0.452 (0.010)	0.447 (0.010)	0.523 (0.012)	0.405 (0.009)	89.9	93.3	41.7	136.0
δ_3	0.695 (0.016)	0.637 (0.014)	0.600 (0.013)	0.671 (0.015)	0.512 (0.011)	19.1	33.9	7.3	84.1
δ_4	0.275 (0.006)	0.151 (0.003)	0.141 (0.003)	0.230 (0.005)	0.147 (0.003)	232.3	278.6	43.0	250.9
δ_5	0.326 (0.007)	0.178 (0.004)	0.171 (0.004)	0.246 (0.005)	0.162 (0.004)	232.8	263.0	75.5	306.1
ρ	0.187 (0.004)	0.176 (0.004)	0.181 (0.004)	0.201 (0.004)	0.177 (0.004)	12.2	6.2	-13.8	11.6

Simulation results comparing data generated under the EM-UV scenario with MCAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Encode (Contraction 1 and 1 and 1)						D 1 2	<i>ci</i> .		
Parameter		Empse (N	Ionte Carlo stand	lard error)		Relati	ve % incre	ease in pr	ecision
	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.519 (0.012)	0.485 (0.011)	0.478 (0.011)	0.373 (0.008)	0.390 (0.009)	14.4	17.9	93.7	77.6
cLOR ₁₃	0.812 (0.018)	0.772 (0.017)	0.753 (0.017)	0.342 (0.008)	0.514 (0.012)	10.6	16.2	463.6	149.4
$cLOR_{14}$	0.215 (0.005)	0.215 (0.005)	0.221 (0.005)	0.203 (0.005)	0.203 (0.005)	0.7	-5.3	12.7	13.0
cLOR ₁₅	0.234 (0.005)	0.231 (0.005)	0.240 (0.005)	0.229 (0.005)	0.222 (0.005)	3.3	-4.4	4.9	11.6
cLOR ₂₃	0.994 (0.022)	0.931 (0.021)	0.908 (0.020)	0.498 (0.011)	0.636 (0.014)	14.0	19.9	298.0	144.3
cLOR ₂₄	0.567 (0.013)	0.534 (0.012)	0.530 (0.012)	0.410 (0.009)	0.428 (0.010)	12.7	14.6	91.8	76.0
cLOR ₂₅	0.589 (0.013)	0.551 (0.012)	0.544 (0.012)	0.431 (0.010)	0.445 (0.010)	14.5	17.5	87.1	75.6
cLOR ₃₄	0.848 (0.019)	0.806 (0.018)	0.787 (0.018)	0.381 (0.009)	0.538 (0.012)	10.7	16.0	394.2	148.5
cLOR ₃₅	0.851 (0.019)	0.806 (0.018)	0.788 (0.018)	0.383 (0.009)	0.537 (0.012)	11.7	16.8	394.7	151.3
$cLOR_{45}$	0.304 (0.007)	0.297 (0.007)	0.306 (0.007)	0.285 (0.006)	0.277 (0.006)	5.0	-1.4	14.2	20.3
μ_1	0.125 (0.003)	0.126 (0.003)	0.130 (0.003)	0.119 (0.003)	0.119 (0.003)	-0.4	-6.7	11.3	10.2
μ_2	0.533 (0.012)	0.498 (0.011)	0.491 (0.011)	0.371 (0.008)	0.390 (0.009)	14.4	17.8	106.6	86.9
μ_3	0.826 (0.018)	0.786 (0.018)	0.767 (0.017)	0.329 (0.007)	0.514 (0.012)	10.4	15.9	529.8	158.0
μ_4	0.202 (0.005)	0.201 (0.005)	0.206 (0.005)	0.190 (0.004)	0.189 (0.004)	0.6	-4.2	12.8	13.7
μ_5	0.217 (0.005)	0.212 (0.005)	0.218 (0.005)	0.208 (0.005)	0.200 (0.004)	4.2	-1.0	8.2	17.2
p_1	0.014 (0.000)	0.014 (0.000)	0.018 (0.000)	0.013 (0.000)	0.013 (0.000)	-0.5	-39.3	10.2	9.3
p_2	0.037 (0.001)	0.033 (0.001)	0.037 (0.001)	0.030 (0.001)	0.025 (0.001)	24.4	-3.2	47.6	118.0
p_3	0.070 (0.002)	0.067 (0.001)	0.067 (0.002)	0.046 (0.001)	0.048 (0.001)	9.1	8.2	135.7	112.9
p_4	0.021 (0.000)	0.021 (0.000)	0.025 (0.001)	0.020 (0.000)	0.020 (0.000)	1.0	-29.5	8.8	13.2
p_5	0.032 (0.001)	0.031 (0.001)	0.035 (0.001)	0.031 (0.001)	0.030 (0.001)	7.4	-12.6	6.6	20.2
δ_1	0.133 (0.003)	0.136 (0.003)	0.212 (0.005)	0.132 (0.003)	0.135 (0.003)	-4.9	-60.7	0.9	-2.6
δ_2	0.632 (0.014)	0.490 (0.011)	0.552 (0.012)	0.577 (0.013)	0.452 (0.010)	66.7	31.1	19.9	95.3
δ_3	0.701 (0.016)	0.607 (0.014)	0.523 (0.012)	0.672 (0.015)	0.459 (0.010)	33.5	79.5	8.7	133.2
δ_4	0.234 (0.005)	0.208 (0.005)	0.310 (0.007)	0.215 (0.005)	0.195 (0.004)	26.9	-42.8	18.2	44.8
δ_5	0.309 (0.007)	0.253 (0.006)	0.370 (0.008)	0.276 (0.006)	0.232 (0.005)	48.4	-30.3	25.2	77.3
ρ	0.209 (0.005)	0.214 (0.005)	0.209 (0.005)	0.215 (0.005)	0.217 (0.005)	-4.3	0.5	-5.2	-7.0

SUPPLEMENTARY MATERIALS

Simulation results comparing data generated under the EM-UV scenario with MAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter		Empse (N	Ionte Carlo stand	lard error)		Relati	ve % incr	ease in pr	ecision
1 unumeter	NB	CPV	FBV	СРМ	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.593 (0.013)	0.510 (0.011)	0.486 (0.011)	0.398 (0.009)	0.409 (0.009)	35.1	48.7	121.8	110.0
cLOR13	0.778 (0.017)	0.748 (0.017)	0.716 (0.016)	0.348 (0.008)	0.486 (0.011)	8.4	18.1	400.5	156.8
$cLOR_{14}$	0.215 (0.005)	0.215 (0.005)	0.220 (0.005)	0.203 (0.005)	0.201 (0.005)	0.6	-3.9	11.9	14.2
cLOR ₁₅	0.283 (0.006)	0.259 (0.006)	0.282 (0.006)	0.252 (0.006)	0.242 (0.005)	19.8	0.6	26.2	36.6
cLOR ₂₃	0.948 (0.021)	0.880 (0.020)	0.840 (0.019)	0.514 (0.012)	0.612 (0.014)	15.9	27.2	239.3	139.8
cLOR ₂₄	0.643 (0.014)	0.559 (0.013)	0.540 (0.012)	0.434 (0.010)	0.446 (0.010)	32.3	42.1	119.4	107.8
cLOR ₂₅	0.714 (0.016)	0.602 (0.013)	0.591 (0.013)	0.463 (0.010)	0.469 (0.011)	40.6	45.8	137.9	131.1
cLOR ₃₄	0.818 (0.018)	0.788 (0.018)	0.759 (0.017)	0.390 (0.009)	0.522 (0.012)	7.7	16.1	339.4	145.7
cLOR ₃₅	0.839 (0.019)	0.798 (0.018)	0.771 (0.017)	0.408 (0.009)	0.528 (0.012)	10.5	18.5	323.2	152.3
cLOR ₄₅	0.317 (0.007)	0.300 (0.007)	0.315 (0.007)	0.281 (0.006)	0.273 (0.006)	11.6	1.2	27.6	35.0
μ_1	0.126 (0.003)	0.126 (0.003)	0.130 (0.003)	0.119 (0.003)	0.119 (0.003)	-0.3	-6.5	11.0	10.4
μ_2	0.608 (0.014)	0.525 (0.012)	0.503 (0.011)	0.394 (0.009)	0.410 (0.009)	34.0	46.3	138.1	120.0
μ_3	0.789 (0.018)	0.757 (0.017)	0.725 (0.016)	0.332 (0.007)	0.484 (0.011)	8.5	18.2	463.8	165.3
μ_4	0.201 (0.004)	0.200 (0.004)	0.205 (0.005)	0.190 (0.004)	0.187 (0.004)	0.2	-4.0	11.3	15.5
μ_5	0.268 (0.006)	0.241 (0.005)	0.264 (0.006)	0.233 (0.005)	0.220 (0.005)	23.7	3.3	32.9	49.1
p_1	0.014 (0.000)	0.014 (0.000)	0.018 (0.000)	0.013 (0.000)	0.013 (0.000)	-0.4	-39.8	8.8	9.8
p_2	0.030 (0.001)	0.030 (0.001)	0.034 (0.001)	0.025 (0.001)	0.023 (0.001)	-4.2	-22.5	38.7	69.4
p_3	0.065 (0.001)	0.062 (0.001)	0.062 (0.001)	0.046 (0.001)	0.045 (0.001)	9.6	9.5	99.8	113.8
p_4	0.024 (0.001)	0.022 (0.000)	0.028 (0.001)	0.023 (0.001)	0.021 (0.000)	19.4	-23.5	7.2	33.2
p_5	0.050 (0.001)	0.041 (0.001)	0.050 (0.001)	0.041 (0.001)	0.036 (0.001)	50.0	-1.1	48.3	90.1
δ_1	0.130 (0.003)	0.134 (0.003)	0.213 (0.005)	0.131 (0.003)	0.133 (0.003)	-6.6	-62.8	-1.5	-5.0
δ_2	0.621 (0.014)	0.460 (0.010)	0.509 (0.011)	0.528 (0.012)	0.424 (0.009)	82.2	49.2	38.6	114.4
δ_3	0.694 (0.016)	0.632 (0.014)	0.505 (0.011)	0.679 (0.015)	0.478 (0.011)	20.5	89.1	4.4	110.6
δ_4	0.275 (0.006)	0.224 (0.005)	0.326 (0.007)	0.252 (0.006)	0.212 (0.005)	50.5	-28.9	19.6	68.8
δ_5	0.325 (0.007)	0.255 (0.006)	0.380 (0.008)	0.263 (0.006)	0.224 (0.005)	62.2	-26.6	52.5	110.5
ρ	0.186 (0.004)	0.184 (0.004)	0.195 (0.004)	0.198 (0.004)	0.190 (0.004)	3.0	-8.7	-11.4	-4.1

Simulation results comparing data generated under the UM-UV scenario with MCAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Empre (Marta Carla standard smar)						D 1 2	<i>ci</i> .		
Parameter		Empse (N	Ionte Carlo stand	lard error)		Relati	ve % incre	ease in pr	ecision
	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.519 (0.012)	0.477 (0.011)	0.466 (0.010)	0.346 (0.008)	0.366 (0.008)	18.7	24.0	125.1	101.1
cLOR ₁₃	0.812 (0.018)	0.771 (0.017)	0.751 (0.017)	0.325 (0.007)	0.526 (0.012)	11.1	16.8	523.7	138.6
$cLOR_{14}$	0.215 (0.005)	0.213 (0.005)	0.216 (0.005)	0.212 (0.005)	0.208 (0.005)	2.2	-0.7	2.8	6.8
cLOR ₁₅	0.234 (0.005)	0.231 (0.005)	0.240 (0.005)	0.231 (0.005)	0.225 (0.005)	2.6	-4.3	3.4	8.5
cLOR ₂₃	0.995 (0.022)	0.926 (0.021)	0.901 (0.020)	0.469 (0.010)	0.642 (0.014)	15.3	22.0	350.1	139.9
cLOR ₂₄	0.568 (0.013)	0.524 (0.012)	0.513 (0.011)	0.388 (0.009)	0.408 (0.009)	17.5	22.4	113.9	93.7
cLOR ₂₅	0.589 (0.013)	0.541 (0.012)	0.531 (0.012)	0.406 (0.009)	0.423 (0.009)	18.5	23.4	110.9	94.1
cLOR ₃₄	0.848 (0.019)	0.804 (0.018)	0.784 (0.018)	0.367 (0.008)	0.555 (0.012)	11.1	17.0	432.5	133.1
cLOR ₃₅	0.851 (0.019)	0.802 (0.018)	0.783 (0.018)	0.368 (0.008)	0.550 (0.012)	12.6	18.2	436.1	139.8
cLOR ₄₅	0.304 (0.007)	0.295 (0.007)	0.300 (0.007)	0.291 (0.007)	0.280 (0.006)	6.2	2.9	9.3	18.2
μ_1	0.125 (0.003)	0.126 (0.003)	0.130 (0.003)	0.122 (0.003)	0.122 (0.003)	-0.2	-6.7	6.6	5.1
μ_2	0.533 (0.012)	0.489 (0.011)	0.478 (0.011)	0.345 (0.008)	0.367 (0.008)	18.7	24.4	138.2	110.3
μ_3	0.827 (0.018)	0.784 (0.018)	0.766 (0.017)	0.309 (0.007)	0.529 (0.012)	11.0	16.5	614.7	143.9
μ_4	0.202 (0.005)	0.200 (0.004)	0.202 (0.005)	0.199 (0.004)	0.194 (0.004)	1.7	-0.2	3.1	8.8
μ_5	0.217 (0.005)	0.213 (0.005)	0.217 (0.005)	0.216 (0.005)	0.210 (0.005)	3.8	-0.8	0.3	6.3
p_1	0.014 (0.000)	0.014 (0.000)	0.017 (0.000)	0.014 (0.000)	0.014 (0.000)	-0.1	-37.5	-5.7	-4.9
p_2	0.037 (0.001)	0.032 (0.001)	0.035 (0.001)	0.037 (0.001)	0.027 (0.001)	32.5	10.3	-3.3	85.2
p_3	0.070 (0.002)	0.067 (0.001)	0.067 (0.001)	0.049 (0.001)	0.051 (0.001)	10.1	10.4	103.2	85.4
p_4	0.021 (0.000)	0.021 (0.000)	0.025 (0.001)	0.020 (0.000)	0.019 (0.000)	2.5	-24.4	18.9	23.2
p_5	0.032 (0.001)	0.031 (0.001)	0.035 (0.001)	0.029 (0.001)	0.029 (0.001)	8.4	-14.1	22.2	27.2
δ_1	0.133 (0.003)	0.135 (0.003)	0.199 (0.004)	0.133 (0.003)	0.134 (0.003)	-3.7	-55.6	-0.9	-2.2
δ_2	0.632 (0.014)	0.450 (0.010)	0.472 (0.011)	0.579 (0.013)	0.408 (0.009)	97.2	79.5	19.1	139.8
δ_3	0.702 (0.016)	0.585 (0.013)	0.476 (0.011)	0.702 (0.016)	0.447 (0.010)	44.0	117.4	0.1	146.5
δ_4	0.234 (0.005)	0.211 (0.005)	0.315 (0.007)	0.227 (0.005)	0.204 (0.005)	23.4	-44.8	6.0	31.8
δ_5	0.308 (0.007)	0.271 (0.006)	0.420 (0.009)	0.286 (0.006)	0.249 (0.006)	29.3	-46.4	15.4	52.4
ρ	0.209 (0.005)	0.214 (0.005)	0.208 (0.005)	0.217 (0.005)	0.218 (0.005)	-4.3	1.0	-6.6	-7.8

SUPPLEMENTARY MATERIALS

Simulation results comparing data generated under the UM-UV scenario with MAR missingness of treatment arms. The Empse and the Monte Carlo standard error of the posterior median are rounded to 3 decimal places for the five methods (NB, CPV, FBV, CPM, and DCP). The relative percent increase in precision when comparing four methods (CPV, FBV, CPM, and DCP) versus NB is also summarized.

Parameter		Empse (M	Ionte Carlo stand	lard error)		Relati	ive % incr	ease in pro	ecision
1 unumeter	NB	CPV	FBV	CPM	DCP	CPV	FBV	CPM	DCP
cLOR ₁₂	0.593 (0.013)	0.492 (0.011)	0.460 (0.010)	0.341 (0.008)	0.353 (0.008)	45.5	66.4	203.2	182.1
cLOR ₁₃	0.779 (0.017)	0.742 (0.017)	0.710 (0.016)	0.322 (0.007)	0.498 (0.011)	10.2	20.1	486.0	144.7
$cLOR_{14}$	0.215 (0.005)	0.215 (0.005)	0.219 (0.005)	0.209 (0.005)	0.208 (0.005)	0.5	-3.7	5.9	7.1
cLOR ₁₅	0.284 (0.006)	0.260 (0.006)	0.283 (0.006)	0.241 (0.005)	0.235 (0.005)	18.8	0.6	39.0	46.1
cLOR ₂₃	0.949 (0.021)	0.864 (0.019)	0.822 (0.018)	0.449 (0.010)	0.584 (0.013)	20.4	33.3	346.9	164.2
cLOR ₂₄	0.643 (0.014)	0.541 (0.012)	0.511 (0.011)	0.385 (0.009)	0.395 (0.009)	41.5	58.3	179.6	164.7
cLOR ₂₅	0.714 (0.016)	0.582 (0.013)	0.558 (0.012)	0.408 (0.009)	0.411 (0.009)	50.7	63.7	205.6	201.6
cLOR ₃₄	0.818 (0.018)	0.782 (0.018)	0.753 (0.017)	0.362 (0.008)	0.533 (0.012)	9.4	18.0	410.7	135.7
cLOR ₃₅	0.840 (0.019)	0.792 (0.018)	0.766 (0.017)	0.378 (0.008)	0.538 (0.012)	12.5	20.3	394.8	143.9
cLOR ₄₅	0.317 (0.007)	0.302 (0.007)	0.320 (0.007)	0.283 (0.006)	0.277 (0.006)	10.5	-1.5	25.9	31.1
μ_1	0.126 (0.003)	0.126 (0.003)	0.130 (0.003)	0.123 (0.003)	0.123 (0.003)	-0.2	-6.7	4.9	4.1
μ_2	0.608 (0.014)	0.507 (0.011)	0.476 (0.011)	0.341 (0.008)	0.358 (0.008)	44.1	63.2	218.5	188.6
μ_3	0.789 (0.018)	0.751 (0.017)	0.719 (0.016)	0.305 (0.007)	0.498 (0.011)	10.3	20.4	570.6	150.8
μ_4	0.200 (0.004)	0.200 (0.004)	0.204 (0.005)	0.195 (0.004)	0.192 (0.004)	0.2	-3.2	5.2	8.6
μ_5	0.269 (0.006)	0.242 (0.005)	0.263 (0.006)	0.225 (0.005)	0.217 (0.005)	23.2	4.3	43.0	53.0
p_1	0.014 (0.000)	0.014 (0.000)	0.017 (0.000)	0.014 (0.000)	0.014 (0.000)	-0.5	-37.9	-8.1	-6.5
p_2	0.030 (0.001)	0.031 (0.001)	0.034 (0.001)	0.031 (0.001)	0.025 (0.001)	-5.0	-21.7	-6.3	38.3
p_3	0.065 (0.001)	0.062 (0.001)	0.062 (0.001)	0.048 (0.001)	0.048 (0.001)	11.0	11.8	84.0	89.7
p_4	0.024 (0.001)	0.022 (0.000)	0.027 (0.001)	0.021 (0.000)	0.020 (0.000)	19.5	-20.0	31.2	46.8
p_5	0.050 (0.001)	0.041 (0.001)	0.051 (0.001)	0.035 (0.001)	0.032 (0.001)	48.3	-3.3	109.9	142.4
δ_1	0.130 (0.003)	0.134 (0.003)	0.199 (0.004)	0.134 (0.003)	0.138 (0.003)	-6.6	-57.5	-5.9	-11.1
δ_2	0.622 (0.014)	0.425 (0.010)	0.431 (0.010)	0.510 (0.011)	0.374 (0.008)	114.2	108.8	48.9	177.2
δ_3	0.695 (0.016)	0.605 (0.014)	0.450 (0.010)	0.687 (0.015)	0.444 (0.010)	31.8	138.7	2.3	144.4
δ_4	0.275 (0.006)	0.228 (0.005)	0.332 (0.007)	0.235 (0.005)	0.208 (0.005)	45.2	-31.6	36.0	74.2
δ_5	0.326 (0.007)	0.273 (0.006)	0.429 (0.010)	0.260 (0.006)	0.235 (0.005)	43.0	-42.1	57.4	92.2
ρ	0.186 (0.004)	0.185 (0.004)	0.200 (0.004)	0.206 (0.005)	0.186 (0.004)	2.0	-13.1	-18.4	0.9

C.5. Effective sample size (ESS). Tables C33–C40 provide median and minimum effective sample size among 1000 simulations for the five methods (NB, CPV, FBV, CPM, and DCP) using different data-generating mechanisms (EM-EV, UM-EV, EM-UV, and UM-UV) and missingness structures (MCAR and MAR).

Simulation results comparing data generated under the EM-EV scenario with MCAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Danamatan		Media	n ESS (minimum	ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	21878 (3691)	17633 (3870)	28799 (4767)	17476 (3732)	14245 (3210)
cLOR ₁₃	12591 (1785)	5470 (968)	13924 (1878)	11545 (1977)	8287 (1588)
cLOR ₁₄	10571 (1789)	11413 (2770)	17800 (3787)	15638 (3411)	11411 (3009)
cLOR ₁₅	7532 (824)	7737 (1487)	12235 (2797)	11514 (1537)	9155 (2295)
cLOR ₂₃	12951 (2038)	6348 (975)	14981 (2122)	12361 (2436)	9154 (1904)
$cLOR_{24}$	15451 (2341)	14814 (3232)	24316 (4829)	15998 (3951)	12821 (3315)
$cLOR_{25}$	11480 (2148)	12158 (2618)	20089 (4248)	14207 (3947)	11741 (2742)
cLOR ₃₄	12035 (1865)	5508 (972)	13697 (1884)	11337 (2111)	8080 (1608)
cLOR ₃₅	10975 (1809)	5402 (971)	13208 (1781)	11032 (2274)	7978 (1672)
$cLOR_{45}$	8078 (1038)	7360 (1575)	11763 (2860)	11381 (2721)	8186 (2448)
μ_1	52802 (10427)	41960 (5185)	55832 (6932)	39616 (8143)	37326 (4286)
μ_2	22178 (3720)	17922 (3351)	28903 (4762)	17282 (3770)	14137 (3024)
μ_3	12780 (1769)	5521 (973)	13994 (1834)	11507 (2021)	8222 (1583)
μ_4	9879 (1463)	9601 (1914)	15358 (3272)	13859 (3067)	9554 (2101)
μ_5	7490 (782)	6874 (1406)	11000 (2645)	10681 (1482)	7877 (1755)
p_1	55846 (10475)	45022 (5128)	58027 (6949)	43286 (7904)	40457 (4104)
p_2	22749 (3558)	16500 (2522)	32356 (3101)	22279 (2714)	15820 (3016)
p_3	13032 (2675)	6800 (802)	15320 (1856)	13097 (2457)	7571 (1910)
p_4	8432 (1356)	9218 (1921)	15824 (3030)	10011 (2499)	9392 (1860)
p_5	8192 (821)	7129 (1212)	11612 (2454)	8638 (1273)	7741 (1489)
δ_1	37712 (6570)	19887 (2560)	41686 (5970)	40041 (7140)	19620 (3100)
δ_2	16874 (2829)	9665 (2254)	24341 (3113)	17928 (2996)	9960 (2426)
δ_3	10743 (1864)	3068 (222)	15550 (2073)	11377 (2137)	4755 (614)
δ_4	5128 (1050)	4540 (1521)	11434 (3154)	7059 (1633)	4865 (1430)
δ_5	4808 (675)	3095 (897)	6935 (1652)	5227 (857)	3889 (1112)
ρ	10232 (4033)	8645 (3817)	11817 (4467)	11015 (4099)	9069 (3556)

TABLE	C34
IADLL	CJ4

Simulation results comparing data generated under the EM-EV scenario with MAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Donomator		Media	n ESS (minimum	n ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	7230 (1444)	7462 (1740)	11496 (2931)	8862 (1186)	7786 (1167)
cLOR ₁₃	12244 (4228)	5812 (552)	14621 (3484)	11994 (3161)	8832 (1845)
$cLOR_{14}$	7628 (1274)	9736 (3027)	14963 (4664)	13638 (2546)	10879 (3270)
$cLOR_{15}$	3343 (435)	4082 (909)	6283 (1262)	6924 (1234)	6239 (1119)
cLOR ₂₃	10173 (3509)	5800 (555)	12921 (4241)	10324 (2052)	8091 (2017)
$cLOR_{24}$	6514 (1540)	7066 (1807)	10786 (3013)	8599 (1345)	7489 (1371)
$cLOR_{25}$	4333 (818)	5414 (1399)	8326 (2109)	7216 (1259)	6646 (1227)
cLOR ₃₄	11124 (3676)	5761 (556)	14255 (3551)	11718 (3038)	8616 (1726)
cLOR ₃₅	7297 (1220)	5145 (552)	12027 (2157)	9942 (2285)	7979 (1971)
$cLOR_{45}$	3847 (514)	4434 (925)	6907 (1633)	7852 (1365)	6439 (1652)
μ_1	37479 (9248)	41466 (3817)	49036 (8202)	33985 (8934)	37846 (4464)
μ_2	7434 (1434)	7557 (1747)	11549 (2991)	8899 (1189)	7789 (1203)
μ_3	12389 (4331)	5836 (552)	14693 (3444)	11894 (3203)	8838 (1873)
μ_4	7364 (1180)	8207 (2264)	13045 (3557)	12172 (2562)	8918 (2315)
μ_5	3342 (438)	3738 (798)	5870 (1272)	6587 (1151)	5501 (1008)
p_1	38647 (9198)	44095 (3906)	51602 (8219)	36794 (8978)	40567 (4795)
p_2	18073 (4851)	14697 (4120)	21741 (6618)	20417 (3474)	15041 (3086)
p_3	12655 (3041)	7224 (1358)	16368 (3446)	14011 (3145)	8036 (1818)
p_4	4725 (708)	6457 (1278)	11212 (2746)	7096 (1376)	7458 (2128)
p_5	3334 (476)	3262 (683)	5286 (1241)	5260 (882)	4665 (860)
δ_1	30123 (6020)	19888 (2376)	38646 (6331)	35501 (5416)	19896 (3011)
δ_2	9562 (1438)	7943 (1674)	17618 (3289)	13888 (1315)	8732 (1108)
δ_3	10333 (1943)	2950 (302)	15549 (1969)	11117 (2191)	4559 (928)
δ_4	3895 (686)	3837 (989)	9315 (2549)	5682 (1091)	4360 (1510)
δ_5	3579 (493)	2566 (783)	5285 (1258)	4947 (793)	3581 (762)
ρ	6620 (2854)	6564 (2665)	8539 (3545)	8265 (3325)	7419 (3169)

Simulation results comparing data generated under the UM-EV scenario with MCAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Domomotor		Media	an ESS (minimur	n ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	21822 (3841)	17764 (3330)	29165 (6122)	19273 (4470)	16234 (3472)
cLOR ₁₃	12570 (1472)	5591 (562)	13677 (1089)	12199 (1925)	9159 (1901)
$cLOR_{14}$	10647 (1741)	11912 (2995)	18271 (4370)	14567 (2938)	11320 (2892)
$cLOR_{15}$	7598 (903)	7840 (2086)	12583 (3032)	11339 (1769)	9183 (2043)
cLOR ₂₃	13016 (1691)	6313 (566)	14991 (1362)	13006 (2670)	10175 (2328)
$cLOR_{24}$	15736 (2281)	14965 (3646)	25073 (5950)	15909 (4289)	13655 (3741)
$cLOR_{25}$	11348 (2034)	12188 (2701)	20122 (4303)	14031 (3779)	12186 (3003)
cLOR ₃₄	11869 (1595)	5598 (561)	13569 (1181)	11681 (2267)	8932 (2018)
cLOR ₃₅	11096 (1553)	5435 (562)	13094 (1152)	11026 (2131)	8728 (2035)
cLOR ₄₅	8087 (1560)	7605 (1761)	12331 (2988)	10899 (2543)	8451 (1959)
μ_1	52597 (9967)	41534 (3170)	53903 (6047)	45710 (10439)	38877 (3692)
μ_2	22264 (3890)	18220 (3391)	29638 (6084)	18699 (3884)	16194 (3464)
μ_3	12699 (1498)	5601 (563)	13802 (1086)	12063 (1914)	9157 (1841)
μ_4	9990 (1762)	10120 (2113)	16511 (3240)	12668 (2476)	9503 (1903)
μ_5	7510 (841)	7092 (1740)	11611 (2701)	10321 (1596)	8121 (1914)
p_1	56232 (9854)	44737 (3204)	56215 (6321)	48040 (10702)	40167 (3718)
p_2	23100 (2712)	17071 (1902)	33303 (3999)	20337 (2852)	15761 (3254)
p_3	13156 (2655)	6917 (748)	15518 (1856)	11835 (2505)	7956 (1443)
p_4	8592 (1437)	9705 (1920)	17073 (3187)	12401 (2445)	10510 (1926)
p_5	8089 (832)	7230 (1428)	12310 (2421)	11697 (1320)	8768 (1841)
δ_1	37933 (6519)	20154 (2984)	40270 (6520)	40818 (7190)	20499 (3150)
δ_2	17169 (2390)	9985 (1875)	26827 (3972)	18640 (3145)	11085 (2666)
δ_3	10540 (1684)	3107 (292)	16226 (2185)	11473 (1695)	5087 (1150)
δ_4	5100 (796)	4658 (1589)	11431 (2738)	7260 (1348)	5327 (1421)
δ_5	4766 (695)	3174 (948)	7133 (1568)	6009 (641)	4227 (1227)
ρ	10216 (4133)	8649 (3697)	11728 (4893)	11040 (3923)	9320 (3137)

Simulation results comparing data generated under the UM-EV scenario with MAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Domomotor		Media	n ESS (minimum	ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	7184 (1483)	7793 (2135)	12135 (3161)	11003 (1673)	10511 (2335)
$cLOR_{13}$	12104 (4328)	5932 (638)	14625 (2929)	14003 (3868)	10519 (2729)
$cLOR_{14}$	7551 (1341)	10007 (2934)	15139 (3923)	14468 (2647)	12029 (3607)
$cLOR_{15}$	3303 (364)	4130 (593)	6248 (1481)	8269 (1518)	7636 (1661)
cLOR ₂₃	10116 (3454)	5896 (685)	13158 (3654)	12676 (2758)	10255 (2605)
$cLOR_{24}$	6501 (1767)	7341 (2082)	11356 (3523)	9988 (2096)	9466 (2182)
$cLOR_{25}$	4307 (603)	5452 (1319)	8396 (2378)	8107 (1716)	7984 (2016)
cLOR ₃₄	10999 (3702)	5912 (641)	14189 (3199)	13240 (3833)	10109 (2733)
cLOR ₃₅	7204 (1336)	5212 (676)	11591 (2157)	11165 (2831)	9570 (2524)
$cLOR_{45}$	3828 (444)	4577 (726)	7098 (1551)	9572 (1587)	8015 (1896)
μ_1	38069 (10672)	39785 (4038)	47977 (8082)	46802 (9813)	46032 (3628)
μ_2	7450 (1513)	7905 (2166)	12218 (2941)	10858 (1680)	10343 (2176)
μ_3	12231 (4211)	5959 (645)	14693 (2807)	13894 (3891)	10525 (2633)
μ_4	7389 (1136)	8664 (2305)	13636 (3284)	12205 (2409)	9814 (2848)
μ_5	3314 (323)	3850 (611)	5932 (1372)	7688 (1449)	6646 (1517)
p_1	39664 (11151)	42306 (4075)	49109 (8142)	48335 (9938)	47334 (3850)
p_2	18354 (3653)	14830 (3758)	21494 (5787)	19949 (3609)	15848 (2856)
p_3	12673 (2834)	7261 (1521)	16249 (1985)	14225 (3104)	8889 (1173)
p_4	4719 (860)	6767 (1801)	11616 (2755)	9635 (1698)	9180 (2235)
p_5	3338 (359)	3326 (666)	5431 (1239)	6828 (1179)	5767 (1252)
δ_1	30208 (6771)	20878 (2960)	37779 (5957)	40959 (6685)	23357 (2981)
δ_2	9583 (1473)	8300 (1831)	19720 (3138)	16929 (1774)	11202 (2131)
δ_3	10163 (2123)	2973 (458)	15397 (2238)	12204 (2325)	5364 (546)
δ_4	3803 (702)	3995 (1137)	9325 (2684)	6608 (1291)	5136 (1597)
δ_5	3519 (272)	2647 (695)	5412 (1233)	5833 (1085)	4098 (1175)
ρ	6665 (3136)	6625 (3246)	8570 (3768)	7989 (3191)	7559 (2775)

Simulation results comparing data generated under the EM-UV scenario with MCAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Domonator	Median ESS (minimum ESS)				
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	22108 (3726)	18004 (2921)	41494 (4251)	18856 (4715)	15041 (2615)
$cLOR_{13}$	12496 (1658)	5169 (701)	16423 (1829)	13697 (2905)	8161 (1408)
$cLOR_{14}$	10621 (1842)	16031 (2312)	42827 (8196)	13150 (3141)	14668 (3731)
$cLOR_{15}$	7501 (848)	9401 (1689)	26946 (6107)	9361 (1535)	10177 (2423)
$cLOR_{23}$	12864 (1879)	6523 (872)	19737 (2072)	14438 (3503)	9625 (1980)
$cLOR_{24}$	15673 (3030)	15568 (3650)	34034 (6554)	15200 (3693)	13241 (4012)
$cLOR_{25}$	11624 (1922)	11645 (2151)	27697 (5947)	12308 (2819)	11211 (3091)
cLOR ₃₄	12041 (1692)	5572 (873)	17330 (1850)	12780 (2821)	8557 (1918)
cLOR ₃₅	11011 (1714)	5399 (873)	16991 (2057)	11338 (3108)	8053 (1894)
$cLOR_{45}$	7925 (1050)	9783 (2039)	25491 (5597)	9204 (2804)	9936 (2922)
μ_1	52706 (9712)	52449 (4684)	79115 (10705)	38251 (9983)	39324 (5256)
μ_2	22268 (3802)	18164 (2256)	37347 (3369)	18285 (4344)	14469 (2708)
μ_3	12621 (1661)	5007 (629)	14834 (1359)	13610 (2913)	7801 (1315)
μ_4	9928 (1712)	14893 (2236)	35122 (5122)	11384 (3002)	12883 (2718)
μ_5	7405 (906)	8945 (1706)	23190 (5370)	8654 (1481)	9245 (2239)
p_1	55848 (9749)	54641 (4537)	81089 (12878)	41565 (10841)	42663 (5298)
p_2	22832 (3118)	17184 (2819)	40517 (5023)	22810 (2684)	16590 (3065)
p_3	13175 (2879)	5538 (787)	16003 (1759)	14179 (3200)	6631 (1362)
p_4	8608 (1593)	13473 (2143)	35539 (5222)	9423 (1815)	12388 (2229)
p_5	8059 (960)	9822 (1789)	24903 (3914)	8353 (1317)	9323 (2069)
δ_1	38259 (6639)	33303 (3609)	107055 (26740)	39189 (7353)	32834 (4078)
δ_2	16908 (2995)	9444 (2037)	27368 (4527)	17886 (3019)	9983 (2413)
δ_3	10521 (1855)	2614 (440)	12393 (1246)	11272 (2743)	3992 (1038)
δ_4	5153 (1071)	7060 (1721)	29192 (5109)	6556 (1129)	7823 (1747)
δ_5	4729 (596)	4414 (1224)	17290 (3597)	5172 (1053)	5564 (1384)
ρ	10449 (4043)	9738 (3115)	19333 (4575)	10994 (4449)	10340 (3554)

Simulation results comparing data generated under the EM-UV scenario with MAR missingness of treatment
arms. The median and minimum effective sample size of the posterior median among 1000 simulations are
summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Domonator		Medi	an ESS (minimum	ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	7168 (1450)	7593 (1764)	21094 (2760)	9274 (1524)	8280 (1556)
cLOR ₁₃	12356 (4055)	5346 (683)	18242 (1449)	14281 (4066)	8535 (1958)
$cLOR_{14}$	7527 (1674)	13522 (1910)	41732 (9694)	10782 (1827)	13099 (2470)
$cLOR_{15}$	3324 (425)	4854 (1061)	16794 (2411)	5557 (1146)	6607 (1020)
cLOR ₂₃	10098 (3322)	5658 (683)	17585 (3131)	11184 (2798)	8187 (2155)
$cLOR_{24}$	6548 (1846)	7406 (1843)	20155 (3569)	8269 (2064)	8075 (2080)
cLOR ₂₅	4327 (753)	5222 (1400)	14525 (2549)	6207 (1509)	6391 (1628)
cLOR ₃₄	11222 (3342)	5723 (689)	18673 (1710)	12458 (3058)	8680 (2030)
cLOR ₃₅	7122 (1491)	4518 (690)	15346 (1905)	8630 (1798)	6959 (1487)
$cLOR_{45}$	3720 (502)	5704 (1149)	18598 (3168)	6338 (1103)	7388 (1127)
μ_1	37854 (10409)	47340 (5804)	75265 (10195)	30478 (9635)	36996 (6101)
μ_2	7398 (1397)	7689 (1836)	19978 (2647)	9329 (1535)	8157 (1430)
μ_3	12408 (4131)	5242 (684)	16483 (1354)	14253 (4159)	8204 (1827)
μ_4	7301 (1743)	12493 (1938)	32109 (4926)	9589 (1840)	11587 (2448)
μ_5	3319 (378)	4694 (989)	14872 (2125)	5403 (1027)	6165 (989)
p_1	39778 (10916)	49383 (5752)	77725 (10955)	32435 (10346)	39215 (6211)
p_2	18223 (4200)	16443 (3237)	44890 (5664)	21253 (4180)	17015 (2607)
p_3	12774 (2609)	5842 (881)	17537 (2225)	14592 (2519)	6841 (1055)
p_4	4754 (935)	8947 (1261)	27236 (5077)	6522 (973)	9341 (1718)
p_5	3342 (408)	4489 (920)	13868 (2087)	4734 (786)	5458 (917)
δ_1	29286 (6002)	32479 (4338)	101346 (26906)	33675 (8045)	33866 (3537)
δ_2	9757 (1236)	7277 (1447)	17022 (2154)	14157 (1624)	8699 (1495)
δ_3	10101 (2120)	2404 (517)	12707 (2171)	10976 (1858)	3719 (707)
δ_4	3782 (661)	5986 (1326)	24659 (4466)	5173 (780)	6810 (1266)
δ_5	3512 (364)	3583 (789)	13803 (1899)	4820 (695)	5027 (1026)
ρ	6614 (2906)	7171 (2776)	15109 (2626)	7734 (3393)	7938 (3196)

Simulation results comparing data generated under the UM-UV scenario with MCAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Damaratan		Medi	an ESS (minimum	ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	22133 (4273)	17479 (3128)	42791 (6732)	21089 (4765)	16733 (3923)
$cLOR_{13}$	12522 (1486)	4881 (652)	16397 (1436)	14779 (2915)	8855 (1275)
$cLOR_{14}$	10646 (1605)	15496 (3323)	43531 (6062)	12570 (1634)	14079 (2859)
$cLOR_{15}$	7460 (648)	9217 (1020)	27194 (6517)	8939 (1648)	9793 (1463)
cLOR ₂₃	13004 (1811)	6290 (649)	19137 (1773)	15680 (3672)	10177 (1492)
$cLOR_{24}$	15767 (2583)	14347 (2389)	34490 (5723)	15392 (3047)	13810 (3381)
$cLOR_{25}$	11536 (2229)	11097 (1775)	27392 (4045)	12122 (2362)	11149 (2538)
cLOR ₃₄	11949 (1519)	5403 (653)	17026 (1391)	13148 (3119)	8883 (1233)
cLOR ₃₅	11037 (1578)	5330 (652)	17074 (1271)	11460 (2424)	8230 (1283)
$cLOR_{45}$	8037 (1538)	9549 (1340)	25816 (4050)	8970 (1727)	9662 (2047)
μ_1	51542 (8698)	52523 (6338)	81843 (13005)	41676 (8985)	43379 (5547)
μ_2	22424 (4293)	17395 (2882)	37868 (4707)	20396 (4379)	16163 (3809)
μ_3	12599 (1514)	4711 (653)	14330 (1072)	14533 (2921)	8337 (1246)
μ_4	9995 (1632)	14108 (3282)	34523 (4881)	11009 (1521)	12223 (2589)
μ_5	7429 (664)	8739 (1048)	22868 (3139)	8356 (1295)	8919 (1381)
p_1	54926 (8785)	55348 (6084)	83859 (14340)	43200 (9132)	44256 (5819)
p_2	22731 (2917)	17532 (2627)	40409 (5756)	20545 (2490)	15559 (2846)
p_3	12992 (2354)	5437 (552)	15149 (1544)	12883 (3449)	6787 (804)
p_4	8637 (1675)	13143 (2441)	35247 (3799)	11168 (1950)	12951 (3125)
p_5	8164 (695)	9494 (975)	25278 (2782)	9923 (1466)	9992 (1267)
δ_1	37672 (6689)	33075 (3072)	110671 (42655)	38931 (7705)	34106 (3922)
δ_2	16990 (2768)	9534 (2130)	27623 (5109)	18566 (2545)	10511 (2376)
δ_3	10559 (1676)	2566 (360)	12493 (2197)	11674 (2259)	4113 (752)
δ_4	5145 (838)	6804 (1568)	28382 (3356)	6462 (1160)	7537 (1780)
δ_5	4811 (504)	4224 (797)	16411 (2434)	5341 (659)	5312 (960)
ρ	10113 (3811)	9752 (3725)	19902 (4484)	10922 (4196)	10300 (3936)

Simulation results comparing data generated under the UM-UV scenario with MAR missingness of treatment arms. The median and minimum effective sample size of the posterior median among 1000 simulations are summarized for the five methods (NB, CPV, FBV, CPM, and DCP)

Domomotor		Medi	ian ESS (minimum	ESS)	
Parameter	NB	CPV	FBV	CPM	DCP
cLOR ₁₂	7153 (1573)	7739 (1956)	25010 (4837)	11414 (1996)	11123 (2691)
$cLOR_{13}$	12437 (3803)	5356 (824)	18402 (2466)	16939 (5016)	10203 (1966)
$cLOR_{14}$	7608 (1327)	13327 (2449)	43731 (6768)	11871 (1169)	14623 (3162)
$cLOR_{15}$	3348 (371)	4885 (702)	18660 (1400)	6595 (1131)	7933 (1364)
$cLOR_{23}$	10142 (3453)	5701 (854)	18149 (3008)	13929 (3682)	10086 (2819)
$cLOR_{24}$	6502 (1691)	7634 (1892)	23441 (4816)	9681 (2112)	9905 (2607)
$cLOR_{25}$	4377 (934)	5235 (907)	16651 (2579)	7204 (1720)	7641 (2121)
cLOR ₃₄	11319 (3295)	5683 (835)	18553 (2354)	14088 (2563)	10003 (2415)
cLOR ₃₅	7304 (1256)	4476 (776)	15978 (2089)	9983 (2300)	8029 (1883)
$cLOR_{45}$	3838 (364)	5604 (932)	20099 (2099)	7551 (1328)	8764 (1485)
μ_1	37225 (7605)	48655 (5202)	83019 (12321)	39008 (7525)	50919 (4735)
μ_2	7359 (1393)	7855 (1954)	23145 (3311)	11604 (1599)	10603 (2248)
μ_3	12516 (3924)	5173 (835)	16551 (2312)	16771 (5037)	9449 (1890)
μ_4	7249 (1297)	12138 (2490)	33620 (5572)	10149 (1108)	12266 (3212)
μ_5	3336 (344)	4650 (630)	15713 (1277)	6248 (1105)	7290 (1163)
p_1	39071 (7664)	51242 (5170)	85148 (13409)	37893 (7935)	51411 (4767)
p_2	18270 (3877)	16673 (3403)	47924 (5602)	21240 (3616)	17518 (3198)
p_3	12841 (2748)	5614 (1111)	17638 (2186)	14812 (2655)	7333 (1247)
p_4	4638 (798)	8678 (2207)	28960 (4399)	8167 (1280)	10982 (2222)
p_5	3362 (488)	4535 (574)	14696 (1268)	5824 (1102)	6651 (976)
δ_1	29669 (6627)	33184 (3950)	107552 (37133)	38075 (7074)	39213 (2606)
δ_2	9609 (1178)	7458 (1710)	18453 (3328)	17101 (1769)	10863 (1969)
δ_3	10166 (1995)	2496 (408)	12800 (2359)	12001 (2189)	4201 (1019)
δ_4	3813 (646)	5740 (1812)	23597 (4752)	5861 (920)	7278 (1951)
δ_5	3545 (433)	3638 (521)	14149 (1148)	5423 (827)	5497 (977)
ρ	6612 (2864)	7189 (3029)	16832 (3542)	7770 (3004)	8260 (2514)

APPENDIX D: ADDITIONAL SIMULATION RESULTS

Figure D1 and Table D1 present additional simulation results.

	+
-	\sim
2	i_{ij}
	Ř
	Ц
/	
	5
_	ĩ
2	<u>.</u>
1	ರ್
]	Ó,
	<i>.</i> .
	.*
	\square
	S
	la
	ted a
	lated a
	culated a
, ,	alculated a
ġ	calculated a
, ,	is calculated a
, ,	$_{ij}$ is calculated a
<i>r</i> - <i>n</i>	$0R_{ij}$ is calculated a
<i>r</i> - <i>n</i>	LOR $_{ij}$ is calculated a
<i>r</i> .	LOR_{ij} is calculated a
<i>v</i> -	LOR _{ij} is calculated a

Parameter	Truth			Bias				Mean	squarec	l error			Covera	age prob	ability	
		BB	CPV	FBV	CPM	DCP	NB	CPV	FBV	CPM	DCP	NB	CPV	FBV	CPM	DCP
Scenario El	M-EV															
LOR_{ij}		0.57	0.49	0.53	0.34	0.39	4.27	4.04	3.99	1.99	2.11	0.00	0.00	0.00	0.00	0.00
μ_t		0.23	0.17	0.19	0.15	0.16	1.09	1.04	1.02	0.50	0.54	0.00	0.01	0.02	0.00	0.00
p_t		0.08	0.03	0.04	0.07	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.02	0.02	0.00	0.00
δ_t		1.52	0.46	0.65	1.06	0.32	1.81	0.84	0.89	1.27	0.59	0.07	0.04	0.09	0.03	0.05
LOR_{25}	-1.50	-0.08	-0.05	-0.06	-0.06	-0.06	0.35	0.32	0.32	0.21	0.22	1.00	0.98	0.98	0.99	0.97
p_5	0.19	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.97	0.98	1.00	0.98
δ_5	0.30	0.26	-0.01	0.01	0.16	-0.04	0.16	0.03	0.03	0.09	0.03	0.93	0.98	0.98	0.95	0.99
Scenario U	M-EV															
LOR_{ij}		0.57	0.48	0.53	2.02	1.38	4.27	3.98	3.92	2.51	2.33	0.00	0.00	0.00	0.00	0.02
μ_t		0.23	0.17	0.19	0.63	0.44	1.09	1.02	1.01	0.62	0.59	0.00	0.02	0.04	0.00	0.06
p_t		0.08	0.03	0.04	0.10	0.06	0.01	0.01	0.01	0.01	0.01	0.00	0.03	0.04	0.05	0.07
δ_t		1.52	0.39	0.58	1.23	0.25	1.81	0.75	0.76	1.40	0.54	0.07	0.07	0.16	0.05	0.07
LOR_{25}	-1.50	-0.08	-0.05	-0.06	0.25	0.17	0.35	0.31	0.31	0.27	0.24	1.00	0.98	0.98	0.98	0.96
p_5	0.19	0.01	0.00	0.00	-0.00	-0.01	0.00	0.00	0.00	0.00	0.00	1.00	0.98	0.98	1.00	0.97
δ_5	0.30	0.26	0.00	0.03	0.24	0.02	0.16	0.03	0.03	0.13	0.03	0.93	0.97	0.97	0.93	0.97
Scenario El	M-UV															
LOR_{ij}		0.57	0.31	0.24	0.47	0.38	4.26	3.78	3.64	1.35	1.96	0.00	0.05	0.09	0.00	0.00
μ_t		0.23	0.13	0.15	0.19	0.16	1.09	0.97	0.94	0.35	0.51	0.00	0.05	0.07	0.00	0.00
p_t		0.08	0.03	0.08	0.06	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.05	0.09	0.00	0.00
δ_t		1.52	0.65	1.87	1.07	0.69	1.81	0.85	1.70	1.24	0.67	0.07	0.03	1.87	0.04	0.02
LOR_{25}	-1.50	-0.08	-0.03	-0.01	-0.09	-0.08	0.35	0.30	0.30	0.19	0.20	1.00	0.99	0.99	0.99	0.99
p_5	0.19	0.01	0.01	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	1.00	0.99	0.99	0.99	0.98
δ_5	0.30	0.26	0.21	0.47	0.21	0.18	0.16	0.11	0.35	0.12	0.09	0.93	0.94	0.54	0.94	0.94
Scenario U.	M-UV															
LOR_{ij}	•	0.57	0.29	0.27	2.01	1.30	4.27	3.73	3.57	1.76	2.17	0.00	0.08	0.12	0.00	0.06
μ_t		0.23	0.11	0.14	0.64	0.43	1.09	0.96	0.92	0.45	0.56	0.00	0.07	0.10	0.00	0.06
p_t	•	0.08	0.03	0.08	0.11	0.03	0.01	0.01	0.01	0.01	0.01	0.00	0.07	0.11	0.09	0.05
δ_t		1.52	0.71	1.86	1.15	0.79	1.81	0.82	1.65	1.35	0.66	0.06	0.04	1.75	0.05	0.04
LOR_{25}	-1.50	-0.08	-0.01	0.01	0.22	0.17	0.35	0.29	0.28	0.21	0.21	1.00	0.98	0.98	0.99	0.97
p_5	0.19	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.99	0.99	1.00	0.99
δ_5	0.30	0.26	0.21	0.48	0.23	0.20	0.16	0.12	0.41	0.14	0.10	0.93	0.93	0.58	0.93	0.93

SUPPLEMENTARY MATERIALS

APPENDIX E: SENSITIVITY ANALYSES

This appendix presents sensitivity analyses testing how much importance should be placed on the mean and variance information from single-arm trials. We first focused on choice of $p^{\rm m}$ for the CPM method. For the CPM1, CPM2, and CPM3 methods mentioned in Figure E1, we selected $p^{\rm m} = 0.9$, 0.5, and 0.1 respectively. As we can see, both standard deviations and absolute risks were quite sensitive to the choice of $p^{\rm m}$, especially for the treatments ATE and IPI high.

FIG E1. Results for the dataset about safety of ICIs in cancer treatment: forest plot of posterior estimates of standard deviations σ_t and absolute risks p_t (posterior median with 95% credible interval). Different colors indicate different methods (CPM1, CPM2, CPM3, and NB). The y-axis represents regimen abbreviations, with the number of RCTs (B_t) and single-arm trials (B_t^s) in parentheses.

We then focused on choice of p^v for the CPV method. For the CPV1, CPV2, and CPV3 methods mentioned in Figure E2, we selected $p^v = 0.9, 0.5$, and 0.1 respectively. As we can see, the choice of p^v was less sensitive; any choice of $0.1 \le p^v \le 0.5$ could be a reasonable selection for the CPV method.

FIG E2. Results for the dataset about safety of ICIs in cancer treatment: forest plot of posterior estimates of standard deviations σ_t and absolute risks p_t (posterior median with 95% credible interval). Different colors indicate different methods (FBV, CPV1, CPV2, CPV3, and NB). The y-axis represents regimen abbreviations, with the number of RCTs (B_t) and single-arm trials (B_t^s) in parentheses.

Last, we wanted to examine the influence of p^{m} and p^{v} in the DCP method. For the DCP1, DCP2, and DCP3 methods mentioned in Figure E3, we selected $(p^{m}, p^{v}) = (0.9, 0.9)$, (0.5, 0.5), and (0.1, 0.1) respectively. The results were a mix of the previous two sensitivity analyses.

FIG E3. Results for the dataset about safety of ICIs in cancer treatment: forest plot of posterior estimates of standard deviations σ_t and absolute risks p_t (posterior median with 95% credible interval). Different colors indicate different methods (FBMV, DCP1, DCP2, DCP3, and NB). The y-axis represents regimen abbreviations, with the number of RCTs (B_t) and single-arm trials (B_t^s) in parentheses.

APPENDIX F: COMPARISON WITH CONTRAST-BASED METHODS

In this appendix, we compare our CPV and NB models with two contrast-based approaches in the case study:

- the contrast-based (CB) model with equal contrast heterogeneity variance, which is Model 1 in White et al. (2019);
- the CB with random study intercepts (CB-2), which is Model 3 in White et al. (2019).

Table F1 presents the results.

TABLE F1

Analysis of ICI safety in cancer treatment: posterior medians and 95% credible intervals by 4 different models (NB, CPV, CB, and CB-2). The estimated parameters include absolute risk of events for the t^{th} treatment (p_t), and log odds ratios LOR_{ij} comparing treatments i and j. Treatment labels: 1) NIV; 2) IPI low; 3) IPI high; 4) PEM; 5) ATE; 6) ICI+ICC; 7) 2ICIs; and 8) ICC.

	NB	CPV	CB-2	CB
LOR_{12}	-0.36(-0.88, 0.26)	-0.35(-0.82, 0.20)	-0.27 (-0.77, 0.23)	-0.40(-1.20, 0.39)
LOR_{13}	-1.32(-2.20, -0.46)	-1.30 (-1.87, -0.69)	-1.26(-1.82, -0.68)	-1.48(-2.37, -0.60)
LOR_{14}	-0.17(-0.72, 0.38)	-0.16(-0.57, 0.23)	-0.11 (-0.59, 0.37)	-0.23(-0.97, 0.49)
LOR_{15}	-0.08 (-1.26, 1.66)	-0.13(-0.67, 0.55)	0.00(-0.60, 0.60)	-0.10(-0.99, 0.80)
LOR_{16}	-1.74(-2.16, -1.38)	-1.72 (-2.10, -1.36)	-1.86 (-2.34, -1.39)	-2.29 (-3.03, -1.57)
LOR_{17}	-1.99 (-3.41, 2.23)	-1.99 (-3.69, 2.00)	-1.86(-2.59, -1.14)	-1.86(-2.91, -0.84)
LOR_{18}	-1.33 (-1.73, -0.93)	-1.31 (-1.69, -0.93)	-1.30(-1.60, -1.00)	-1.50(-1.99, -1.02)
LOR ₂₃	-0.97 (-1.90, -0.11)	-0.95 (-1.63, -0.30)	-0.99(-1.61, -0.37)	-1.07 (-1.80, -0.35)
LOR_{24}	0.19 (-0.52, 0.82)	0.18 (-0.40, 0.69)	0.16(-0.46, 0.78)	0.17 (-0.73, 1.06)
LOR_{25}	0.28 (-1.00, 2.04)	0.22 (-0.49, 0.98)	0.27 (-0.50, 1.00)	0.31 (-0.83, 1.45)
LOR ₂₆	-1.38(-2.00, -0.90)	-1.37 (-1.95, -0.89)	-1.59 (-2.23, -0.96)	-1.89(-2.91, -0.88)
LOR_{27}	-1.61 (-3.09, 2.55)	-1.63 (-3.35, 2.32)	-1.59 (-2.34, -0.86)	-1.46 (-2.39, -0.54)
LOR ₂₈	-0.97(-1.61, -0.44)	-0.96(-1.56, -0.45)	-1.03(-1.57, -0.50)	-1.10(-1.94, -0.25)
LOR_{34}	1.15 (0.21, 2.16)	1.13 (0.48, 1.76)	1.15 (0.45, 1.83)	1.25 (0.20, 2.26)
LOR ₃₅	1.25 (-0.23, 3.20)	1.17 (0.40, 2.01)	1.25 (0.45, 2.03)	1.38 (0.18, 2.61)
LOR ₃₆	-0.43(-1.28, 0.46)	-0.43(-1.04, 0.17)	-0.61 (-1.31, 0.09)	-0.81 (-1.93, 0.30)
LOR ₃₇	-0.62(-2.37, 3.62)	-0.67(-2.49, 3.32)	-0.61(-1.50, 0.27)	-0.38(-1.49, 0.73)
LOR ₃₈	-0.01(-0.88, 0.89)	-0.01 (-0.65, 0.61)	-0.04(-0.66, 0.56)	-0.02(-0.98, 0.91)
LOR_{45}	0.09(-1.18, 1.88)	0.03(-0.55, 0.75)	0.10 (-0.60, 0.80)	0.14(-0.83, 1.11)
LOR_{46}	-1.57 (-2.12, -1.06)	-1.56 (-1.99, -1.13)	-1.75(-2.33, -1.18)	-2.05(-2.90, -1.24)
LOR ₄₇	-1.80(-3.35, 2.41)	-1.82(-3.54, 2.17)	-1.76(-2.59, -0.93)	-1.62(-2.80, -0.47)
LOR_{48}	-1.16 (-1.69, -0.63)	-1.14(-1.57, -0.71)	-1.20(-1.64, -0.75)	-1.27 (-1.88, -0.66)
LOR ₅₆	-1.66(-3.42, -0.48)	-1.59(-2.30, -1.03)	-1.86(-2.53, -1.16)	-2.19 (-3.15, -1.24)
LOR ₅₇	-1.87 (-4.16, 2.35)	-1.84 (-3.65, 2.14)	-1.86(-2.77, -0.93)	-1.76 (-3.08, -0.44)
LOR ₅₈	-1.25 (-2.96, -0.09)	-1.18(-1.85, -0.63)	-1.30(-1.86, -0.71)	-1.40(-2.16, -0.66)
LOR ₆₇	-0.24(-1.72, 4.00)	-0.26(-2.00, 3.75)	0.00(-0.85, 0.85)	0.43 (-0.83, 1.66)
LOR ₆₈	0.42 (0.04, 0.80)	0.42 (0.02, 0.80)	0.56 (0.13, 0.98)	0.79 (0.22, 1.35)
LOR78	0.65 (-3.56, 2.12)	0.67 (-3.33, 2.39)	0.56 (-0.20, 1.33)	0.35 (-0.74, 1.47)
p_1	0.14 (0.11, 0.18)	0.14 (0.12, 0.17)	0.14 (0.11, 0.17)	
p_2	0.19 (0.13, 0.27)	0.19 (0.14, 0.27)	0.18 (0.12, 0.26)	
p_3	0.38 (0.25, 0.56)	0.37 (0.27, 0.50)	0.37 (0.25, 0.50)	
p_4	0.16 (0.12, 0.26)	0.16 (0.13, 0.22)	0.15 (0.10, 0.22)	
p_5	0.16 (0.09, 0.41)	0.16 (0.11, 0.25)	0.14 (0.09, 0.23)	
p_6	0.47 (0.42, 0.53)	0.47 (0.41, 0.54)	0.51 (0.41, 0.62)	
p_7	0.54 (0.14, 0.73)	0.54 (0.14, 0.75)	0.51 (0.34, 0.68)	
p_8	0.38 (0.31, 0.46)	0.38 (0.31, 0.46)	0.37 (0.32, 0.44)	

REFERENCES

- AMIN, A., LAWSON, D. H., SALAMA, A. K. S., KOON, H. B., GUTHRIE, T., THOMAS, S. S., O'DAY, S. J., SHAHEEN, M. F., ZHANG, B., FRANCIS, S. and HODI, F. S. (2016). Phase II study of vemurafenib followed by ipilimumab in patients with previously untreated BRAF-mutated metastatic melanoma. *Journal for ImmunoTherapy of Cancer* 4.
- ASCIERTO, P. A., VECCHIO, M. D., ROBERT, C., MACKIEWICZ, A., CHIARION-SILENI, V., ARANCE, A., LEBBÉ, C., BASTHOLT, L., HAMID, O., RUTKOWSKI, P., MCNEIL, C., GARBE, C., LOQUAI, C., DRENO, B., THOMAS, L., GROB, J.-J., LISZKAY, G., NYAKAS, M., GUTZMER, R., PIKIEL, J., GRANGE, F., HOELLER, C., FERRARESI, V., SMYLIE, M., SCHADENDORF, D., MORTIER, L., SVANE, I. M., HENNICKEN, D., QURESHI, A. and MAIO, M. (2017). Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. *The Lancet Oncology* 18 611–622.
- BALAR, A. V., GALSKY, M. D., ROSENBERG, J. E., POWLES, T., PETRYLAK, D. P., BELLMUNT, J., LO-RIOT, Y., NECCHI, A., HOFFMAN-CENSITS, J., PEREZ-GRACIA, J. L., DAWSON, N. A., VAN DER HEI-JDEN, M. S., DREICER, R., SRINIVAS, S., RETZ, M. M., JOSEPH, R. W., DRAKAKI, A., VAISHAM-PAYAN, U. N., SRIDHAR, S. S., QUINN, D. I., DURÁN, I., SHAFFER, D. R., EIGL, B. J., GRIVAS, P. D., YU, E. Y., LI, S., KADEL, E. E., BOYD, Z., BOURGON, R., HEGDE, P. S., MARIATHASAN, S., THÅSTRÖM, A., ABIDOYE, O. O., FINE, G. D. and BAJORIN, D. F. (2017). Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. *The Lancet* **389** 67–76.
- BANG, Y.-J., CHO, J. Y., KIM, Y. H., KIM, J. W., BARTOLOMEO, M. D., AJANI, J. A., YAMAGUCHI, K., BALOGH, A., SANCHEZ, T. and MOEHLER, M. (2017). Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/metastatic gastric or gastroesophageal junction cancer. *Clinical Cancer Research* 23 5671–5678.
- BAUML, J., SEIWERT, T. Y., PFISTER, D. G., WORDEN, F., LIU, S. V., GILBERT, J., SABA, N. F., WEISS, J., WIRTH, L., SUKARI, A., KANG, H., GIBSON, M. K., MASSARELLI, E., POWELL, S., MEISTER, A., SHU, X., CHENG, J. D. and HADDAD, R. (2017). Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. *Journal of Clinical Oncology* 35 1542–1549.
- BELLMUNT, J., DE WIT, R., VAUGHN, D. J., FRADET, Y., LEE, J.-L., FONG, L., VOGELZANG, N. J., CLIMENT, M. A., PETRYLAK, D. P., CHOUEIRI, T. K., NECCHI, A., GERRITSEN, W., GURNEY, H., QUINN, D. I., CULINE, S., STERNBERG, C. N., MAI, Y., POEHLEIN, C. H., PERINI, R. F. and BA-JORIN, D. F. (2017). Pembrolizumab as second-line therapy for advanced rrothelial carcinoma. *New England Journal of Medicine* **376** 1015–1026.
- BORGHAEI, H., PAZ-ARES, L., HORN, L., SPIGEL, D. R., STEINS, M., READY, N. E., CHOW, L. Q., VOKES, E. E., FELIP, E., HOLGADO, E., BARLESI, F., KOHLHÄUFL, M., ARRIETA, O., BURGIO, M. A., FAYETTE, J., LENA, H., PODDUBSKAYA, E., GERBER, D. E., GETTINGER, S. N., RUDIN, C. M., RIZVI, N., CRINÒ, L., BLUMENSCHEIN, G. R., ANTONIA, S. J., DORANGE, C., HARBISON, C. T., FINCKEN-STEIN, F. G. and BRAHMER, J. R. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-smallcell lung cancer. *New England Journal of Medicine* **373** 1627–1639.
- BRAHMER, J., RECKAMP, K. L., BAAS, P., CRINÒ, L., EBERHARDT, W. E. E., PODDUBSKAYA, E., ANTO-NIA, S., PLUZANSKI, A., VOKES, E. E., HOLGADO, E., WATERHOUSE, D., READY, N., GAINOR, J., FRON-TERA, O. A., HAVEL, L., STEINS, M., GARASSINO, M. C., AERTS, J. G., DOMINE, M., PAZ-ARES, L., RECK, M., BAUDELET, C., HARBISON, C. T., LESTINI, B. and SPIGEL, D. R. (2015). Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. *New England Journal of Medicine* 373 123–135.
- CARBONE, D. P., RECK, M., PAZ-ARES, L., CREELAN, B., HORN, L., STEINS, M., FELIP, E., VAN DEN HEUVEL, M. M., CIULEANU, T.-E., BADIN, F., READY, N., HILTERMANN, T. J. N., NAIR, S., JUER-GENS, R., PETERS, S., MINENZA, E., WRANGLE, J. M., RODRIGUEZ-ABREU, D., BORGHAEI, H., BLU-MENSCHEIN, G. R., VILLARUZ, L. C., HAVEL, L., KREJCI, J., JAIME, J. C., CHANG, H., GEESE, W. J., BHAGAVATHEESWARAN, P., CHEN, A. C. and SOCINSKI, M. A. (2017). First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. *New England Journal of Medicine* 376 2415–2426.
- FEHRENBACHER, L., SPIRA, A., BALLINGER, M., KOWANETZ, M., VANSTEENKISTE, J., MAZIERES, J., PARK, K., SMITH, D., ARTAL-CORTES, A., LEWANSKI, C., BRAITEH, F., WATERKAMP, D., HE, P., ZOU, W., CHEN, D. S., YI, J., SANDLER, A. and RITTMEYER, A. (2016). Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. *The Lancet* **387** 1837–1846.
- FERRIS, R. L., BLUMENSCHEIN, G., FAYETTE, J., GUIGAY, J., COLEVAS, A. D., LICITRA, L., HARRING-TON, K., KASPER, S., VOKES, E. E., EVEN, C., WORDEN, F., SABA, N. F., DOCAMPO, L. C. I., HAD-DAD, R., RORDORF, T., KIYOTA, N., TAHARA, M., MONGA, M., LYNCH, M., GEESE, W. J., KOPIT, J.,

SHAW, J. W. and GILLISON, M. L. (2016). Nivolumab for recurrent squamous-cell carcinoma of the head and neck. *New England Journal of Medicine* **375** 1856–1867.

- GIACCONE, G., KIM, C., THOMPSON, J., MCGUIRE, C., KALLAKURY, B., CHAHINE, J. J., MANNING, M., MOGG, R., BLUMENSCHEIN, W. M., TAN, M. T., SUBRAMANIAM, D. S., LIU, S. V., KAPLAN, I. M. and MCCUTCHEON, J. N. (2018). Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study. *The Lancet Oncology* **19** 347–355.
- GIACOMO, A. M. D., ASCIERTO, P. A., PILLA, L., SANTINAMI, M., FERRUCCI, P. F., GIANNARELLI, D., MARASCO, A., RIVOLTINI, L., SIMEONE, E., NICOLETTI, S. V., FONSATTI, E., ANNESI, D., QUEIROLO, P., TESTORI, A., RIDOLFI, R., PARMIANI, G. and MAIO, M. (2012). Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. *The Lancet Oncology* 13 879–886.
- GOLDBERG, S. B., GETTINGER, S. N., MAHAJAN, A., CHIANG, A. C., HERBST, R. S., SZNOL, M., TSIOURIS, A. J., COHEN, J., VORTMEYER, A., JILAVEANU, L., YU, J., HEGDE, U., SPEAKER, S., MADURA, M., RALABATE, A., RIVERA, A., ROWEN, E., GERRISH, H., YAO, X., CHIANG, V. and KLUGER, H. M. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. *The Lancet Oncology* **17** 976–983.
- GOVINDAN, R., SZCZESNA, A., AHN, M.-J., SCHNEIDER, C.-P., MELLA, P. F. G., BARLESI, F., HAN, B., GANEA, D. E., PAWEL, J. V., VLADIMIROV, V., FADEEVA, N., LEE, K. H., KURATA, T., ZHANG, L., TAMURA, T., POSTMUS, P. E., JASSEM, J., O'BYRNE, K., KOPIT, J., LI, M., TSCHAIKA, M. and RECK, M. (2017). Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. *Journal of Clinical Oncology* **35** 3449–3457.
- HAAG, G. M., ZOERNIG, I., HASSEL, J. C., HALAMA, N., DICK, J., LANG, N., PODOLA, L., FUNK, J., ZIEGELMEIER, C., JUENGER, S., BUCUR, M., UMANSKY, L., FALK, C. S., FREITAG, A., KARAPANAGIOTOU-SCHENKEL, I., BECKHOVE, P., ENK, A. and JAEGER, D. (2018). Phase II trial of ipilimumab in melanoma patients with preexisting humoural immune response to NY-ESO-1. *European Journal* of Cancer 90 122–129.
- HAMANISHI, J., MANDAI, M., IKEDA, T., MINAMI, M., KAWAGUCHI, A., MURAYAMA, T., KANAI, M., MORI, Y., MATSUMOTO, S., CHIKUMA, S., MATSUMURA, N., ABIKO, K., BABA, T., YAMAGUCHI, K., UEDA, A., HOSOE, Y., MORITA, S., YOKODE, M., SHIMIZU, A., HONJO, T. and KONISHI, I. (2015). Safety and antitumor activity of anti–PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. *Journal of Clinical Oncology* 33 4015–4022.
- HAMID, O., SCHMIDT, H., NISSAN, A., RIDOLFI, L., AAMDAL, S., HANSSON, J., GUIDA, M., HYAMS, D. M., GÓMEZ, H., BASTHOLT, L., CHASALOW, S. D. and BERMAN, D. (2011). A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. *Journal of Translational Medicine* **9**.
- HERBST, R. S., BAAS, P., KIM, D.-W., FELIP, E., PÉREZ-GRACIA, J. L., HAN, J.-Y., MOLINA, J., KIM, J.-H., ARVIS, C. D., AHN, M.-J., MAJEM, M., FIDLER, M. J., DE CASTRO, G., GARRIDO, M., LU-BINIECKI, G. M., SHENTU, Y., IM, E., DOLLED-FILHART, M. and GARON, E. B. (2016). Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *The Lancet* **387** 1540–1550.
- HERSH, E. M., O'DAY, S. J., POWDERLY, J., KHAN, K. D., PAVLICK, A. C., CRANMER, L. D., SAM-LOWSKI, W. E., NICHOL, G. M., YELLIN, M. J. and WEBER, J. S. (2010). A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. *Investi*gational New Drugs 29 489–498.
- HIDA, T., NISHIO, M., NOGAMI, N., OHE, Y., NOKIHARA, H., SAKAI, H., SATOUCHI, M., NAKAGAWA, K., TAKENOYAMA, M., ISOBE, H., FUJITA, S., TANAKA, H., MINATO, K., TAKAHASHI, T., MAEMONDO, M., TAKEDA, K., SAKA, H., GOTO, K., ATAGI, S., HIRASHIMA, T., SUMIYOSHI, N. and TAMURA, T. (2017). Efficacy and safety of nivolumab in Japanese patients with advanced or recurrent squamous non-small cell lung cancer. *Cancer Science* **108** 1000–1006.
- HODI, F. S., CHESNEY, J., PAVLICK, A. C., ROBERT, C., GROSSMANN, K. F., MCDERMOTT, D. F., LINETTE, G. P., MEYER, N., GIGUERE, J. K., AGARWALA, S. S., SHAHEEN, M., ERNSTOFF, M. S., MINOR, D. R., SALAMA, A. K., TAYLOR, M. H., OTT, P. A., HORAK, C., GAGNIER, P., JIANG, J., WOL-CHOK, J. D. and POSTOW, M. A. (2016). Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. *The Lancet Oncology* **17** 1558–1568.
- KANG, Y.-K., BOKU, N., SATOH, T., RYU, M.-H., CHAO, Y., KATO, K., CHUNG, H. C., CHEN, J.-S., MURO, K., KANG, W. K., YEH, K.-H., YOSHIKAWA, T., OH, S. C., BAI, L.-Y., TAMURA, T., LEE, K.-W., HAMAMOTO, Y., KIM, J. G., CHIN, K., OH, D.-Y., MINASHI, K., CHO, J. Y., TSUDA, M. and CHEN, L.-T.

(2017). Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. *The Lancet* **390** 2461–2471.

- KUDO, T., HAMAMOTO, Y., KATO, K., URA, T., KOJIMA, T., TSUSHIMA, T., HIRONAKA, S., HARA, H., SATOH, T., IWASA, S., MURO, K., YASUI, H., MINASHI, K., YAMAGUCHI, K., OHTSU, A., DOKI, Y. and KITAGAWA, Y. (2017). Nivolumab treatment for oesophageal squamous-cell carcinoma: an open-label, multicentre, phase 2 trial. *The Lancet Oncology* 18 631–639.
- KWON, E. D., DRAKE, C. G., SCHER, H. I., FIZAZI, K., BOSSI, A., VAN DEN EERTWEGH, A. J. M., KRAINER, M., HOUEDE, N., SANTOS, R., MAHAMMEDI, H., NG, S., MAIO, M., FRANKE, F. A., SUNDAR, S., AGARWAL, N., BERGMAN, A. M., CIULEANU, T. E., KORBENFELD, E., SENGELØV, L., HANSEN, S., LOGOTHETIS, C., BEER, T. M., MCHENRY, M. B., GAGNIER, P., LIU, D. and GERRIT-SEN, W. R. (2014). Ipilimumab versus placebo after radiotherapy in patients with metastatic castrationresistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. *The Lancet Oncology* 15 700–712.
- LANGER, C. J., GADGEEL, S. M., BORGHAEI, H., PAPADIMITRAKOPOULOU, V. A., PATNAIK, A., POW-ELL, S. F., GENTZLER, R. D., MARTINS, R. G., STEVENSON, J. P., JALAL, S. I., PANWALKAR, A., YANG, J. C.-H., GUBENS, M., SEQUIST, L. V., AWAD, M. M., FIORE, J., GE, Y., RAFTOPOULOS, H. and GANDHI, L. (2016). Carboplatin and pemetrexed with or without pembrolizumab for advanced, nonsquamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. *The Lancet Oncology* **17** 1497–1508.
- LARKIN, J., CHIARION-SILENI, V., GONZALEZ, R., GROB, J. J., COWEY, C. L., LAO, C. D., SCHADEN-DORF, D., DUMMER, R., SMYLIE, M., RUTKOWSKI, P., FERRUCCI, P. F., HILL, A., WAGSTAFF, J., CAR-LINO, M. S., HAANEN, J. B., MAIO, M., MARQUEZ-RODAS, I., MCARTHUR, G. A., ASCIERTO, P. A., LONG, G. V., CALLAHAN, M. K., POSTOW, M. A., GROSSMANN, K., SZNOL, M., DRENO, B., BASTHOLT, L., YANG, A., ROLLIN, L. M., HORAK, C., HODI, F. S. and WOLCHOK, J. D. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. *New England Journal of Medicine* **373** 23–34.
- LARKIN, J., MINOR, D., D'ANGELO, S., NEYNS, B., SMYLIE, M., MILLER, W. H., GUTZMER, R., LINETTE, G., CHMIELOWSKI, B., LAO, C. D., LORIGAN, P., GROSSMANN, K., HASSEL, J. C., SZNOL, M., DAUD, A., SOSMAN, J., KHUSHALANI, N., SCHADENDORF, D., HOELLER, C., WALKER, D., KONG, G., HORAK, C. and WEBER, J. (2018). Overall survival in patients With advanced melanoma who received nivolumab Versus investigator's choice chemotherapy in CheckMate 037: a randomized, controlled, open-Label phase III trial. *Journal of Clinical Oncology* 36 383–390.
- LYNCH, T. J., BONDARENKO, I., LUFT, A., SERWATOWSKI, P., BARLESI, F., CHACKO, R., SEBASTIAN, M., NEAL, J., LU, H., CUILLEROT, J.-M. and RECK, M. (2012). Ipilimumab in combination With paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. *Journal of Clinical Oncology* **30** 2046–2054.
- MAIO, M., GROB, J.-J., AAMDAL, S., BONDARENKO, I., ROBERT, C., THOMAS, L., GARBE, C., CHIARION-SILENI, V., TESTORI, A., CHEN, T.-T., TSCHAIKA, M. and WOLCHOK, J. D. (2015). Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. *Journal of Clinical Oncology* 33 1191–1196.
- MARUYAMA, D., HATAKE, K., KINOSHITA, T., FUKUHARA, N., CHOI, I., TANIWAKI, M., ANDO, K., TERUI, Y., HIGUCHI, Y., ONISHI, Y., ABE, Y., KOBAYASHI, T., SHIRASUGI, Y. and TOBINAI, K. (2017). Multicenter phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. *Cancer Science* **108** 1007–1012.
- MOTZER, R. J., RINI, B. I., MCDERMOTT, D. F., REDMAN, B. G., KUZEL, T. M., HARRISON, M. R., VAISHAMPAYAN, U. N., DRABKIN, H. A., GEORGE, S., LOGAN, T. F., MARGOLIN, K. A., PLI-MACK, E. R., LAMBERT, A. M., WAXMAN, I. M. and HAMMERS, H. J. (2015a). Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. *Journal of Clinical Oncology* 33 1430–1437.
- MOTZER, R. J., ESCUDIER, B., MCDERMOTT, D. F., GEORGE, S., HAMMERS, H. J., SRINIVAS, S., TYKODI, S. S., SOSMAN, J. A., PROCOPIO, G., PLIMACK, E. R., CASTELLANO, D., CHOUEIRI, T. K., GURNEY, H., DONSKOV, F., BONO, P., WAGSTAFF, J., GAULER, T. C., UEDA, T., TOMITA, Y., SCHUTZ, F. A., KOLLMANNSBERGER, C., LARKIN, J., RAVAUD, A., SIMON, J. S., XU, L.-A., WAX-MAN, I. M. and SHARMA, P. (2015b). Nivolumab versus everolimus in advanced renal-cell carcinoma. *New England Journal of Medicine* **373** 1803–1813.
- NGHIEM, P. T., BHATIA, S., LIPSON, E. J., KUDCHADKAR, R. R., MILLER, N. J., ANNAMALAI, L., BERRY, S., CHARTASH, E. K., DAUD, A., FLING, S. P., FRIEDLANDER, P. A., KLUGER, H. M., KOHRT, H. E., LUNDGREN, L., MARGOLIN, K., MITCHELL, A., OLENCKI, T., PARDOLL, D. M., REDDY, S. A., SHANTHA, E. M., SHARFMAN, W. H., SHARON, E., SHEMANSKI, L. R., SHINO-HARA, M. M., SUNSHINE, J. C., TAUBE, J. M., THOMPSON, J. A., TOWNSON, S. M., YEARLEY, J. H.,

TOPALIAN, S. L. and CHEEVER, M. A. (2016). PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. *New England Journal of Medicine* **374** 2542–2552.

- NISHIO, M., HIDA, T., ATAGI, S., SAKAI, H., NAKAGAWA, K., TAKAHASHI, T., NOGAMI, N., SAKA, H., TAKENOYAMA, M., MAEMONDO, M., OHE, Y., NOKIHARA, H., HIRASHIMA, T., TANAKA, H., FUJITA, S., TAKEDA, K., GOTO, K., SATOUCHI, M., ISOBE, H., MINATO, K., SUMIYOSHI, N. and TAMURA, T. (2017). Multicentre phase II study of nivolumab in Japanese patients with advanced or recurrent non-squamous nonsmall cell lung cancer. *ESMO Open* 2 e000108.
- O'DAY, S. J., MAIO, M., CHIARION-SILENI, V., GAJEWSKI, T. F., PEHAMBERGER, H., BONDARENKO, I. N., QUEIROLO, P., LUNDGREN, L., MIKHAILOV, S., ROMAN, L., VERSCHRAEGEN, C., HUMPHREY, R., IBRAHIM, R., DE PRIL, V., HOOS, A. and WOLCHOK, J. D. (2010). Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. *Annals* of Oncology **21** 1712–1717.
- OVERMAN, M. J., LONARDI, S., WONG, K. Y. M., LENZ, H.-J., GELSOMINO, F., AGLIETTA, M., MORSE, M. A., CUTSEM, E. V., MCDERMOTT, R., HILL, A., SAWYER, M. B., HENDLISZ, A., NEYNS, B., SVRCEK, M., MOSS, R. A., LEDEINE, J.-M., CAO, Z. A., KAMBLE, S., KOPETZ, S. and ANDRÉ, T. (2018). Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. *Journal of Clinical Oncology* 36 773–779.
- PETERS, S., GETTINGER, S., JOHNSON, M. L., JÄNNE, P. A., GARASSINO, M. C., CHRISTOPH, D., TOH, C. K., RIZVI, N. A., CHAFT, J. E., COSTA, E. C., PATEL, J. D., CHOW, L. Q. M., KOCZY-WAS, M., HO, C., FRÜH, M., VAN DEN HEUVEL, M., ROTHENSTEIN, J., RECK, M., PAZ-ARES, L., SHEP-HERD, F. A., KURATA, T., LI, Z., QIU, J., KOWANETZ, M., MOCCI, S., SHANKAR, G., SANDLER, A. and FELIP, E. (2017). Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1–selected advanced non–small-cell lung cancer (BIRCH). *Journal of Clinical Oncol*ogy 35 2781–2789.
- POSTOW, M. A., CHESNEY, J., PAVLICK, A. C., ROBERT, C., GROSSMANN, K., MCDERMOTT, D., LINETTE, G. P., MEYER, N., GIGUERE, J. K., AGARWALA, S. S., SHAHEEN, M., ERNSTOFF, M. S., MINOR, D., SALAMA, A. K., TAYLOR, M., OTT, P. A., ROLLIN, L. M., HORAK, C., GAGNIER, P., WOL-CHOK, J. D. and HODI, F. S. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. *New England Journal of Medicine* **372** 2006–2017.
- POWLES, T., DURÁN, I., VAN DER HEIJDEN, M. S., LORIOT, Y., VOGELZANG, N. J., GIORGI, U. D., OUDARD, S., RETZ, M. M., CASTELLANO, D., BAMIAS, A., FLÉCHON, A., GRAVIS, G., HUSSAIN, S., TAKANO, T., LENG, N., KADEL, E. E., BANCHEREAU, R., HEGDE, P. S., MARIATHASAN, S., CUI, N., SHEN, X., DERLETH, C. L., GREEN, M. C. and RAVAUD, A. (2018). Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. *The Lancet* **391** 748–757.
- RECK, M., BONDARENKO, I., LUFT, A., SERWATOWSKI, P., BARLESI, F., CHACKO, R., SEBASTIAN, M., LU, H., CUILLEROT, J. M. and LYNCH, T. J. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial[†]. Annals of Oncology 24 75–83.
- RECK, M., RODRÍGUEZ-ABREU, D., ROBINSON, A. G., HUI, R., CSŐSZI, T., FÜLÖP, A., GOTTFRIED, M., PELED, N., TAFRESHI, A., CUFFE, S., O'BRIEN, M., RAO, S., HOTTA, K., LEIBY, M. A., LU-BINIECKI, G. M., SHENTU, Y., RANGWALA, R. and BRAHMER, J. R. (2016a). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. *New England Journal of Medicine* **375** 1823– 1833.
- RECK, M., LUFT, A., SZCZESNA, A., HAVEL, L., KIM, S.-W., AKERLEY, W., PIETANZA, M. C., LONG WU, Y., ZIELINSKI, C., THOMAS, M., FELIP, E., GOLD, K., HORN, L., AERTS, J., NAKAGAWA, K., LORI-GAN, P., PIETERS, A., SANCHEZ, T. K., FAIRCHILD, J. and SPIGEL, D. (2016b). Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. *Journal of Clinical Oncology* 34 3740–3748.
- RIBAS, A., KEFFORD, R., MARSHALL, M. A., PUNT, C. J. A., HAANEN, J. B., MARMOL, M., GARBE, C., GOGAS, H., SCHACHTER, J., LINETTE, G., LORIGAN, P., KENDRA, K. L., MAIO, M., TREFZER, U., SMYLIE, M., MCARTHUR, G. A., DRENO, B., NATHAN, P. D., MACKIEWICZ, J., KIRKWOOD, J. M., GOMEZ-NAVARRO, J., HUANG, B., PAVLOV, D. and HAUSCHILD, A. (2013). Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. *Journal of Clinical Oncology* **31** 616–622.
- RIBAS, A., PUZANOV, I., DUMMER, R., SCHADENDORF, D., HAMID, O., ROBERT, C., HODI, F. S., SCHACHTER, J., PAVLICK, A. C., LEWIS, K. D., CRANMER, L. D., BLANK, C. U., O'DAY, S. J., ASCIERTO, P. A., SALAMA, A. K. S., MARGOLIN, K. A., LOQUAI, C., EIGENTLER, T. K., GANGAD-HAR, T. C., CARLINO, M. S., AGARWALA, S. S., MOSCHOS, S. J., SOSMAN, J. A., GOLDINGER, S. M.,

SHAPIRA-FROMMER, R., GONZALEZ, R., KIRKWOOD, J. M., WOLCHOK, J. D., EGGERMONT, A., LI, X. N., ZHOU, W., ZERNHELT, A. M., LIS, J., EBBINGHAUS, S., KANG, S. P. and DAUD, A. (2015). Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. *The Lancet Oncology* **16** 908–918.

- RITTMEYER, A., BARLESI, F., WATERKAMP, D., PARK, K., CIARDIELLO, F., VON PAWEL, J., GADGEEL, S. M., HIDA, T., KOWALSKI, D. M., DOLS, M. C., CORTINOVIS, D. L., LEACH, J., PO-LIKOFF, J., BARRIOS, C., KABBINAVAR, F., FRONTERA, O. A., MARINIS, F. D., TURNA, H., LEE, J.-S., BALLINGER, M., KOWANETZ, M., HE, P., CHEN, D. S., SANDLER, A. and GANDARA, D. R. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. *The Lancet* **389** 255–265.
- RIZVI, N. A., MAZIÈRES, J., PLANCHARD, D., STINCHCOMBE, T. E., DY, G. K., ANTONIA, S. J., HORN, L., LENA, H., MINENZA, E., MENNECIER, B., OTTERSON, G. A., CAMPOS, L. T., GANDARA, D. R., LEVY, B. P., NAIR, S. G., ZALCMAN, G., WOLF, J., SOUQUET, P.-J., BALDINI, E., CAPPUZZO, F., CHOUAID, C., DOWLATI, A., SANBORN, R., LOPEZ-CHAVEZ, A., GROHE, C., HUBER, R. M., HAR-BISON, C. T., BAUDELET, C., LESTINI, B. J. and RAMALINGAM, S. S. (2015). Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous nonsmall-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. *The Lancet Oncology* 16 257–265.
- ROBERT, C., THOMAS, L., BONDARENKO, I., O'DAY, S., WEBER, J., GARBE, C., LEBBE, C., BAURAIN, J.-F., TESTORI, A., GROB, J.-J., DAVIDSON, N., RICHARDS, J., MAIO, M., HAUSCHILD, A., MILLER, W. H., GASCON, P., LOTEM, M., HARMANKAYA, K., IBRAHIM, R., FRANCIS, S., CHEN, T.-T., HUMPHREY, R., HOOS, A. and WOLCHOK, J. D. (2011). Ipilimumab plus dacarbazine for previously nntreated metastatic melanoma. *New England Journal of Medicine* **364** 2517–2526.
- ROBERT, C., SCHACHTER, J., LONG, G. V., ARANCE, A., GROB, J. J., MORTIER, L., DAUD, A., CAR-LINO, M. S., MCNEIL, C., LOTEM, M., LARKIN, J., LORIGAN, P., NEYNS, B., BLANK, C. U., HAMID, O., MATEUS, C., SHAPIRA-FROMMER, R., KOSH, M., ZHOU, H., IBRAHIM, N., EBBINGHAUS, S. and RIBAS, A. (2015a). Pembrolizumab versus ipilimumab in advanced melanoma. *New England Journal of Medicine* 372 2521–2532.
- ROBERT, C., LONG, G. V., BRADY, B., DUTRIAUX, C., MAIO, M., MORTIER, L., HASSEL, J. C., RUTKOWSKI, P., MCNEIL, C., KALINKA-WARZOCHA, E., SAVAGE, K. J., HERNBERG, M. M., LEBBÉ, C., CHARLES, J., MIHALCIOIU, C., CHIARION-SILENI, V., MAUCH, C., COGNETTI, F., ARANCE, A., SCHMIDT, H., SCHADENDORF, D., GOGAS, H., LUNDGREN-ERIKSSON, L., HORAK, C., SHARKEY, B., WAXMAN, I. M., ATKINSON, V. and ASCIERTO, P. A. (2015b). Nivolumab in previously untreated melanoma without BRAF mutation. *New England Journal of Medicine* **372** 320–330.
- ROSENBERG, J. E., HOFFMAN-CENSITS, J., POWLES, T., VAN DER HEIJDEN, M. S., BALAR, A. V., NECCHI, A., DAWSON, N., O'DONNELL, P. H., BALMANOUKIAN, A., LORIOT, Y., SRINIVAS, S., RETZ, M. M., GRIVAS, P., JOSEPH, R. W., GALSKY, M. D., FLEMING, M. T., PETRYLAK, D. P., PEREZ-GRACIA, J. L., BURRIS, H. A., CASTELLANO, D., CANIL, C., BELLMUNT, J., BAJORIN, D., NICKLES, D., BOURGON, R., FRAMPTON, G. M., CUI, N., MARIATHASAN, S., ABIDOYE, O., FINE, G. D. and DRE-ICER, R. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. *The Lancet* **387** 1909–1920.
- SCHACHTER, J., RIBAS, A., LONG, G. V., ARANCE, A., GROB, J.-J., MORTIER, L., DAUD, A., CAR-LINO, M. S., MCNEIL, C., LOTEM, M., LARKIN, J., LORIGAN, P., NEYNS, B., BLANK, C., PE-TRELLA, T. M., HAMID, O., ZHOU, H., EBBINGHAUS, S., IBRAHIM, N. and ROBERT, C. (2017). Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). *The Lancet* **390** 1853–1862.
- SHARMA, P., RETZ, M., SIEFKER-RADTKE, A., BARON, A., NECCHI, A., BEDKE, J., PLIMACK, E. R., VAENA, D., GRIMM, M.-O., BRACARDA, S., ARRANZ, J. Á., PAL, S., OHYAMA, C., SACI, A., QU, X., LAMBERT, A., KRISHNAN, S., AZRILEVICH, A. and GALSKY, M. D. (2017). Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. *The Lancet Oncology* 18 312–322.
- WEBER, J. S., D'ANGELO, S. P., MINOR, D., HODI, F. S., GUTZMER, R., NEYNS, B., HOELLER, C., KHUSHALANI, N. I., MILLER, W. H., LAO, C. D., LINETTE, G. P., THOMAS, L., LORIGAN, P., GROSS-MANN, K. F., HASSEL, J. C., MAIO, M., SZNOL, M., ASCIERTO, P. A., MOHR, P., CHMIELOWSKI, B., BRYCE, A., SVANE, I. M., GROB, J.-J., KRACKHARDT, A. M., HORAK, C., LAMBERT, A., YANG, A. S. and LARKIN, J. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. *The Lancet Oncology* 16 375–384.

- WEBER, J., MANDALA, M., VECCHIO, M. D., GOGAS, H. J., ARANCE, A. M., COWEY, C. L., DALLE, S., SCHENKER, M., CHIARION-SILENI, V., MARQUEZ-RODAS, I., GROB, J.-J., BUTLER, M. O., MID-DLETON, M. R., MAIO, M., ATKINSON, V., QUEIROLO, P., GONZALEZ, R., KUDCHADKAR, R. R., SMYLIE, M., MEYER, N., MORTIER, L., ATKINS, M. B., LONG, G. V., BHATIA, S., LEBBÉ, C., RUTKOWSKI, P., YOKOTA, K., YAMAZAKI, N., KIM, T. M., DE PRIL, V., SABATER, J., QURESHI, A., LARKIN, J. and ASCIERTO, P. A. (2017). Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. *New England Journal of Medicine* **377** 1824–1835.
- WHITE, I. R., TURNER, R. M., KARAHALIOS, A. and SALANTI, G. (2019). A comparison of arm-based and contrast-based models for network meta-analysis. *Statistics in Medicine* **38** 5197–5213.
- WOLCHOK, J. D., NEYNS, B., LINETTE, G., NEGRIER, S., LUTZKY, J., THOMAS, L., WATERFIELD, W., SCHADENDORF, D., SMYLIE, M., GUTHRIE, T., GROB, J.-J., CHESNEY, J., CHIN, K., CHEN, K., HOOS, A., O'DAY, S. J. and LEBBÉ, C. (2010). Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. *The Lancet Oncology* 11 155–164.
- WOLCHOK, J. D., CHIARION-SILENI, V., GONZALEZ, R., RUTKOWSKI, P., GROB, J.-J., COWEY, C. L., LAO, C. D., WAGSTAFF, J., SCHADENDORF, D., FERRUCCI, P. F., SMYLIE, M., DUMMER, R., HILL, A., HOGG, D., HAANEN, J., CARLINO, M. S., BECHTER, O., MAIO, M., MARQUEZ-RODAS, I., GUIDOBONI, M., MCARTHUR, G., LEBBÉ, C., ASCIERTO, P. A., LONG, G. V., CEBON, J., SOSMAN, J., POSTOW, M. A., CALLAHAN, M. K., WALKER, D., ROLLIN, L., BHORE, R., HODI, F. S. and LARKIN, J. (2017). Overall survival with combined nivolumab and ipilimumab in advanced melanoma. *New England Journal of Medicine* 377 1345–1356.
- XU, C., CHEN, Y.-P., DU, X.-J., LIU, J.-Q., HUANG, C.-L., CHEN, L., ZHOU, G.-Q., LI, W.-F., MAO, Y.-P., HSU, C., LIU, Q., LIN, A.-H., TANG, L.-L., SUN, Y. and MA, J. (2018). Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. *BMJ* k4226.
- YAMAZAKI, N., KIYOHARA, Y., UHARA, H., FUKUSHIMA, S., UCHI, H., SHIBAGAKI, N., TSUTSUMIDA, A., YOSHIKAWA, S., OKUYAMA, R., ITO, Y. and TOKUDOME, T. (2015a). Phase II study of ipilimumab monotherapy in Japanese patients with advanced melanoma. *Cancer Chemotherapy and Pharmacology* **76** 997–1004.
- YAMAZAKI, N., UHARA, H., FUKUSHIMA, S., UCHI, H., SHIBAGAKI, N., KIYOHARA, Y., TSUTSUMIDA, A., NAMIKAWA, K., OKUYAMA, R., OTSUKA, Y. and TOKUDOME, T. (2015b). Phase II study of the immunecheckpoint inhibitor ipilimumab plus dacarbazine in Japanese patients with previously untreated, unresectable or metastatic melanoma. *Cancer Chemotherapy and Pharmacology* **76** 969–975.
- YAMAZAKI, N., KIYOHARA, Y., UHARA, H., UEHARA, J., FUJIMOTO, M., TAKENOUCHI, T., OTSUKA, M., UCHI, H., IHN, H. and MINAMI, H. (2017). Efficacy and safety of nivolumab in Japanese patients with previously untreated advanced melanoma: a phase II study. *Cancer Science* 108 1223–1230.
- YOUNES, A., SANTORO, A., SHIPP, M., ZINZANI, P. L., TIMMERMAN, J. M., ANSELL, S., ARMAND, P., FANALE, M., RATANATHARATHORN, V., KURUVILLA, J., COHEN, J. B., COLLINS, G., SAVAGE, K. J., TRNENY, M., KATO, K., FARSACI, B., PARKER, S. M., RODIG, S., ROEMER, M. G. M., LIGON, A. H. and ENGERT, A. (2016). Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stemcell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. *The Lancet Oncology* **17** 1283–1294.
- ZIMMER, L., VAUBEL, J., MOHR, P., HAUSCHILD, A., UTIKAL, J., SIMON, J., GARBE, C., HERBST, R., ENK, A., KÄMPGEN, E., LIVINGSTONE, E., BLUHM, L., ROMPEL, R., GRIEWANK, K. G., FLUCK, M., SCHILLING, B. and SCHADENDORF, D. (2015a). Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. *PLOS ONE* 10 e0118564.
- ZIMMER, L., EIGENTLER, T. K., KIECKER, F., SIMON, J., UTIKAL, J., MOHR, P., BERKING, C., KÄMP-GEN, E., DIPPEL, E., STADLER, R., HAUSCHILD, A., FLUCK, M., TERHEYDEN, P., ROMPEL, R., LO-QUAI, C., ASSI, Z., GARBE, C. and SCHADENDORF, D. (2015b). Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab in pretreated patients with different subtypes of metastatic melanoma. *Journal* of Translational Medicine 13.