Supporting Information

Tunable Physical Properties in $BiAl_{1-x}Mn_xO_3$ Thin Films with Novel Layered Supercell Structures

Shikhar Misra,^a Leigang Li,^a, Xingyao Gao,^a Jie Jian,^a Zhimin Qi^a, Dmitry Zemlyanov^b, Haiyan Wang^{a,c,*}

^aSchool of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States

^bBirck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States ^cSchool of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States

Target Mn%	Film Mn%	Bi	Al	Mn	Sr	Ті	0
33	40	8.51	4.49	2.84	12.19	13.94	58.03
50	55	8.82	3.09	3.75	12.24	13.91	58.19
67	67	6.37	1.82	3.78	13.56	14.88	59.59
80	80	8.17	1.24	5.21	12.89	14.15	58.33

Table S1. Composition of the film calculated using EDS in SEM.

Figure S1. XRD of BAO film deposited on CeO₂ buffered STO

Figure S2. A line scan across the pillars, showing the pillar to be *Al-rich*, formed within the $BA_{1-x}M_xO(x=0.67)$ matrix.

Figure S3. XPS analysis of two extreme composition (a) x=0.4 and (b) x=0.8 showing the two possible Mn³⁺ and Mn⁴⁺ oxidation states.

Figure S4. PFM phase hysteresis loops for all the different thin films.