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Supplementary Figures

Figure S1. Bioinformatic analysis pipeline for discovery and analysis of novel mucins.
Schematic display of the bioinformatic pipeline we used for mucin identification.



Figure S2: Lineage-specific mucinization events (a) Table showing all discovered
lineage-specific mucins arranged based on homology indicating ancestral mucinization events.
Colored boxes with numbers denote the number of independent mucinization events found
through identity-by-descent during BLAST searches. (b) Comparison of gene locations
(synteny) in the SCPP locus. Pseudogenes are indicated by dotted grey lines. Lineage-specific
mucins are indicated in color. The lineage-specific mucins that show cross-species homology
are indicated by connecting lines. The synthetic location of Muc7 across species is indicated for
reference. (c) Phylogeny of placental mammals showing potential events of mucinization. The
dots in the phylogeny matching in color to panels a and b indicate estimated emergence of
lineage-specific mucins.



Figure S3: Lineage-specific and orphan mucin structure. Examples of O-glycosylation and
repeat content of lineage-specific or orphan mucin genes. The red dots correspond to predicted
O-glycosylation sites, with darker shades indicating a higher predicted chance of glycosylation
based on the amino acid sequence and surrounding motifs. PTS-rich domains are highlighted
with a pink border. The dark grey squares represent repeats. The copy number of the repeats
and the length of each individual repeat (period size) are noted above each domain.



Figure S4: Chinese Pangolin genome harbors two lineage-specific mucin genes that
likely originated from precursor genes coding for proteins rich in proline. UCSC Genome
Browser screenshot of the Chinese pangolin reference genome zoomed into the SCPP locus
with the RefSeq gene annotation using data from other mammalian species. The consolidated
versions of gene annotations for the two putative mucin genes (SMR3A/B and OPRPN based
on their homology to human genes) are magnified and shown below the predicted gene
annotations. Parts of these two novel mucin genes that do not show homology to sequences in
other species (pink ellipses) and harbor PTS-repeats similar to other mucins. We labeled these
sequences as “Mucin-like” in the diagram. A study found transcripts matching to OPRPN based
on RNAseq reads from the Sunda pangolin salivary glands (75) (transcripts: gene22848/new
gene_9802). These transcripts map back to the Chinese Pangolin reference genome OPRPN
mucin-like domain (red circle). The histogram at the bottom right shows an analysis of the
abundances of transcripts expressed in Sunda pangolin salivary glands. We found that the
expression level of the mucin-like sequences of this gene (corresponding to the transcript new
gene_9802) is higher than 94% of all transcripts expressed in Sunda pangolin salivary glands.

https://paperpile.com/c/7MVDwU/MPhFY


Figure S5: Comparison of lineage-specific mucin exonic repeat period size with other
exonic repeats in their respective genomes. The x-axis of the density plots shows the log
sequence length of individual repeat units (period size) as documented by Tandem Repeat
Finder. The top (pink), middle (tan), and bottom (green) plots show period size distribution of
lineage-specific mucins, known mucins in humans, and all exonic repeats in the human
genome, respectively. The data show that the period size of mucin exonic repeats falls within
the average range of other known exonic repeat units.



Figure S6: Mechanisms of repeat expansion. As depicted in the schematic model at the top,
we considered two potential mechanisms through which exonic repeats could have expanded.
One mechanism involves “step-wise” copy number gains and losses of exonic repeats, where
only one repeat unit is gained or lost, likely through replication slippage. The other mechanism
involves multiple repeat units to be gained or lost in larger “chunks”, likely through non-allelic
homologous recombination. The bottom panel shows our analysis of sequence diversity of
Muc10 in rodents (upper) and Muc2-like in felines (lower). We found evidence for the
occurrence of both “step-wise” and “chunky” evolution of exonic repeats.



Figure S7: Pairwise comparison of repeats within lineage-specific mucins of Felinae and
Rodentia. We analyzed the sequence differences among individual repeat units both within and
across species for Muc2-like in Felinae (house cat, puma, tiger, and leopard) (red, top panels)
and Muc10 in rodentia (house mouse, brown rat, black rat, and ryukyu mouse) (blue, bottom
panels). Each data point represents a comparison of two different repeat unit sequences. Left
panels show the number of nucleotide changes (x-axis) versus the number of amino acid
changes (y-axis) as a result of nonsynonymous differences. The right panels show the same
x-axis data plotted against the number of threonine and serine (TS) amino acid changes. The
regression line and R2 for each plot is shown.



Figure S8: The expression of lineage-specific mucins in species with available
transcriptome data. The plot indicates whether individual lineage-specific mucin genes are
expressed (red) or not (cream) based on available RNAseq data for multiple tissues (columns)
across species (rows). We highlighted three genes (Muc2-like, Muc7, and Smr3a) to exemplify
the RNA-seq data mapping to mucin genes. Lineage-specific mucins with a * indicate a
shortened version of the gene annotation.



Figure S9. Analysis of other candidate human mucins as defined by the “mucinome”. (a)
Heatmap of the top 50 mucin candatiate human proteins (plus MUC20 & MUC21) as ranked by
the mucin score (defined by (38)), across the five mammalian species: human, chimpanzee,
mouse, cow, and ferret. Purple squares indicate the presence of the gene in the given genome
and that the gene contains a repeat domain (repeat tandems ≥ 3). Grey squares indicate
presence of the gene without a repeat domain, and white squares represent absence of the
gene in the species’ genome. (b) Box plot representing the percentage of T and S amino acids
within the proteins. Proteins are categorized into lineage-specific mucins (pink; as defined in our
cross-species mucin pipeline), human mucinome candidates with repeats (magenta), human
mucinome candidates without repeats (dark grey), and SCPP proteins (light grey). Individual
proteins of each species are indicated by dots representing a protein without repeats and
triangles representing proteins with repeats.

https://paperpile.com/c/7MVDwU/dgi9
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