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Fig. S1. Initial data analysis workflow. Data were collected with a 300 kV Thermo Scientific Krios TEM in 
super resolution mode and processed with cryoSPARC (26). Parameters are described in Materials and 
Methods. Three models were generated using ab initio reconstruction. Two of the volumes displayed 
structural features consistent with the TET ribozyme (red boxes). These volumes and their associated 
particles were subjected to 3D variability analysis, 3D classification, and refinements. See Fig. S3.  
  



 
Fig. S2. Unsupervised 3D classification in Relion. Particles were classified into five classes. The resolution 
of each map is shown at the top and the fraction of particles at the bottom. The area corresponding to the 
catalytic core is boxed in each map. 
  



 
Fig. S3. Two ribozyme core conformations revealed by particle variability analysis. (A) cryoSPARC 3D 
variability analysis (28) was used to resolve conformational heterogeneity. Two ab initio models consistent 
with TET structure (Fig. S1) were refined and used as inputs for variability analyses. Four frames along 
the first principal component were generated for each input map. The total particles (n = 650,948) were re-
classified across the eight frames using ‘heterogeneous refinement’ in cryoSPARC. (B) Close-up of the 
cores of refined maps generated variability analyses. Inspection of the maps revealed two conformational 
classes (yellow vs. blue maps). Major differences were observed in the direction of J8/7 density (red arrow) 
and orientation of the P7 minor groove (cyan asterisk). Further analysis revealed that the first class (yellow, 
~26% of particles) corresponds to the N state and that the second class (blue, ~74% of particles) 
corresponds to the M state.  



 

 
 
Fig. S4. Calculation of map resolutions. Fourier Shell Correlation (FSC) curves for the refinement of the N 
(A) and M (B) states of TET, generated by cryoSPARC (26). The resolutions reported were estimated 
using half maps and gold standard FSC (GSFSC) of 0.143 and corrected using high-resolution noise 
substitution (40) to measure the amount of noise overfitting. 
  



 
Fig. S5. Map of N agrees with published structure of apo L-21 ScaI TET ribozyme. (A) Comparison of one 
of the conformations revealed in this study (folded at 25°C) to one generated in previous studies (folded 
at 50°C) (EMD-31385) (12). The correlation between the maps is 0.94, as calculated with UCSF Chimera 
(35). (B) Published structure of TET in N state (PDB ID: 7ez0) docked into map of N generated in this study 
(CCmask = 0.77). (C) Correlation per residue was similar between the published map of N (EMD-31385, 
blue) and the published structure (PDB ID: 7ez0) and the map of N generated in this study (yellow) and 
the published structure.   



 
Fig. S6. Structural modelling of M. (A) Workflow followed to model the structure of M using autoDRRAFTER 
(13), Phenix (29), and Coot (30). (B) Regions of TET modeled. Nucleotides that were removed from 
published structure of TET (PDB ID: 7ez0) and were modeled de novo by fragment assembly in 
autoDRRAFTER are colored red.  



 
 
Fig. S7. Local resolution of N and M cryo-EM maps. (A) Structure (PDB ID: 7ez0) and cryo-EM map of N 
colored according to its local resolution. (B) Structure and cryo-EM map of M colored according to its local 
resolution. Threshold for local Fourier Shell Correlation (FSC) resolution was set to 0.143.   
  



 
 
 
 
Fig. S8. Differences in the relative position of peripheral domains between N and M. (A) Superposition of 
the backbones of N and M (RMSDbackbone: 2.43 Å; 3758 atoms aligned). Regions that are distinct in the 
misfolded state were removed and did not contribute to the alignment. Nucleotides compared in (C) are 
colored and boxed. (B) Superposition of N and M based on the structural alignment of the P4-P6 domain 
(nts. 107 to 258; RMSD: 0.995Å). Colors are as in (A). (C) Superimposed structures (B) viewed from three 
angles. Distances measured between phosphates.  
  



Table S1. Data collection parameters and model statistics.  
 

 TET M State TET N State 
Microscope Krios Krios 
Voltage (KeV) 300 300 
Camera Falcon 3 DED Falcon 3 DED 
Pixel size at detector (Å/pixel) 0.5395 0.5395 
Total electron exposure (e-/Å2) 32 32 
No. of frames collected during exposure 46 46 
Defocus range (µm) 0.8-2.0 0.8-2.0 
Automation software SerialEM SerialEM 
Tilt angle (o) 0 0 
Energy filter slit width (eV) 20 20 
Micrographs collected (no.) 6,222 6,222 
Total extracted particles (no.) 4,272,705 4,272,702 
Reconstruction  
Final refined particles (no.) 98,071 92,828 
Point group C1 C1 
Resolution (Å) FSC: 0.143 3.9 3.4 
Map sharpening B factor (Å2) 167.1 121.9 

Map sharpening methods cryoSPARC 
 global sharpening 

cryoSPARC 
global sharpening 

Model Composition   

Protein 0 - 
RNA 386 - 
Model Refinement   
Refinement package Phenix - 

- Real or reciprocal space Real - 
Model-Map scores    

- CC (box) 0.76 - 
- CC (mask) 0.74 - 
- CC (volume) 0.73 - 
- CC (peaks) 0.66 - 

R.m.s deviations from ideal values   
- Bond lengths (Å) 0.001 - 
- Bond angles (o) 0.412 - 

Model Validation   
MolProbity score 2.51 - 
Clashscore 6.61 - 

 
  



Movie Legends 
 
Movie S1. Conformational heterogeneity localized to the core of the ribozyme. Particle 3D variability 
analysis in cryoSPARC was used to reveal heterogeneity at the core. Video shows four frames along the 
first principal component.  
 
Movie S2. Conformational differences between M and N states. Video displays an example of the type of 
rearrangements necessary to transition from the N to the M states. Modelling was done by rearranging the 
structure manually. 
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