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S1: ADDITIONAL DATA: ALGORITHM TRAINING

In this section we report additional results from training the data-driven algorithm. Training data is derived from various
well-established AFM models with different interaction physics. In particular, we utilized the following models for the training
and validation of the algorithm:

A. Derjaguin-Muller-Toporov (DMT) model1;

B. Lennard-Jones model.

C. DMT model with viscoelastic damping.

D. DMT model with exponential damping.

E. JKR model.

Models and results of the training are detailed in the next subsections.

A. DMT model

The equation of motion governing the AFM dynamics undergoing DMT interaction is given by Eq. 1. Here, the cantilever tip
deflection towards the sample is denoted by x and the instantaneous tip-sample distance and the indentation depth are indicated by
z and δ , respectively. It should be noted that both z and δ are functions of x. The damping and stiffness coefficients are indicated
by D and K, the amplitude of the dither piezoelectric actuator is denoted by B. The dotted quantities represent derivatives with
respect to the re-scaled time τ (τ =ω0t), where ω0 is the natural frequency of the cantilever. In the DMT model, the tip-sample
force Fts consists of: i) long range Van der Waals attractive force with coefficient C1 governed by a second order inverse power
law; ii) repulsive component described by the Hertz contact force with effective stiffness governed by the coefficient C2; iii)
adhesion force given by Fa = 4πRγ with R and γ representing the AFM tip radius and surface interaction energy, respectively.
The adhesion force Fa can be reformulated as an attractive force such that it depends on the intermolecular distance a0 and its
strength is governed by the coefficient C3. The coefficients utilized for the simulations are that of reference article. [1, 2]. The
results of this model are discussed in the main manuscript.

ẍ+Dẋ+Kx = Fts (z)+Bcos(Ωτ)

Fts (z) =
{

C1/z2, for z > a0

C2 (δ )
3/2−Fa, for z≤ ā0.

Fa = 4πRγ =C3/a0
2.

(1)
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description of the library functions in Tab. 1.
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B. Lennard-Jones model

In the Lennard-Jones (LJ) force model the tip-sample interaction is described by the continuous and smooth functions of
Eq. 2:

ẍ+Dẋ+Kx = Fts (z)+Bcos(Ωτ)

Fts (z) =C1/z2 +C2/z8 .
(2)

The tip-sample force Fts consists of Van der Waals attractive force comprising a second and an eighth order inverse power
law function of the instantaneous tip-sample separation z and proportional to the coefficients C1 and C2, respectively. Additional
parameters in Eq. 2 related to the cantilever dynamics are those of Eq. 1 and described in Sec. A. The coefficients for the
simulations are obtained from the reference article [3, 4].

Figures. S1.1 (a) & (b) highlight the transient and steady state dynamics as determined by the data-driven analysis. In addition
to the state vectors, Figs. S1.1 (c) & (d) show the transient and steady state tip-sample force. In either of the cases the blue
and orange colours indicate the original and identified responses. Furthermore, Fig. S1.2 shows the coefficients obtained from
the data-driven algorithm in comparison with the values used in simulation; whereas table I provides an insight into the library
functions used in the simulation. It must be noted that since the model is governed by a smooth and continuous tip-sample force
with relatively simple functions, the LJ model shows the fastest convergence rate among all the tested models.
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FIG. S1.1: Simulations of a cantilever interacting with a sample based on LJ force model. The LJ model parameters are tuned
to induce transient and steady state dynamics in order to replicate the experiments. (a) Transient dynamics prediction: The blue
curve indicates the simulated transient phase space trajectory and the orange curve is the prediction from the data-driven model.
(b) Steady state dynamics prediction: The blue curve indicates the simulated steady state phase space trajectory and the orange
curve shows prediction from the data-driven model. (c)-(d) Comparison of the tip sample force between the LJ simulation (blue)
and the data-driven model (orange) for both the transient and steady state scenarios. The coefficients utilized for the simulations
are that of Rutzel et al. [3, 4]
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FIG. S1.2: Coefficient matrix showing the influence of each library function on the governing equations of LJ force model. The
blue color indicates the original value of the coefficients and the orange color indicates the coefficients as determined by the

data-driven model. The θi functions are detailed in Tab. I

TABLE I: Description of the nonlinear functions used in the coefficient matrix of Fig. S1.2.

Function ID θ1toθ8 θ9 θ10 θ11

Function definition z−n , n=1 to 8 z1.5 z2 sin(Ωτ)

C. DMT model with viscoelastic damping

The third stage of the training is performed employing a standard DMT model with an additional viscoelastic term in the
interaction mechanism. Viscoelasticity plays an important role in the energy dissipation mechanisms when dealing with soft
samples, e.g. polymers and biological specimens [5–7]. Identification of these dissipation mechanisms is crucial to understand
the hysteresis observed in experiments. Equation. 3 describes the DMT model accounting for the viscoelastic behaviour. The
basic mathematical model is that of Eq. 1, adding a viscoelastic contribution controlled by the coefficient C4 that depends on the
rate of indentation (δ̇ ). Similar to the LJ model, the amplitude of deflection is described with x, the instantaneous tip-sample
distance by z and the indentation depth by δ . The coefficients utilized for the simulations are derived from the reference articles
[1, 5, 6]. Contrary to the LJ model, the DMT model with viscoelastic terms contains both conservative and dissipative nature of
interaction and represents a closer picture to what is encountered in an experimental scenario.

ẍ+Dẋ+Kx = Fts (z, ż)+Bcos(Ωτ)

Fts (z, ż) =
{

C1/z2, for z > a0

C2 (δ )
3/2−C4

√
δ δ̇ −Fa, for z≤ ā0.

Fa = 4πRγ =C3/a0
2

(3)

Figures. S1.3 (a) and (b) highlight the transient and steady state dynamics as determined by the data-driven analysis. In
addition, Figs. S1.3 (c) and (d) show the simulated and reconstructed tip-sample force for the transient and steady state case.
The coefficients extracted from the data-driven approach are compared with those of the simulations in Fig. S1.4. The difference
in the identified coefficients leads to a phase drift of the identified trajectory and visible in Fig. S1.3(d). The description of the
library functions used in the simulation is reported in table II. The algorithm identifies three additional functions with respect
to those in Eq. 3: i) θ2 = z−3, in combination with θ1 is used by the algorithm for estimating long range attractive forces; ii)
θ11 = sin(τ), function that is similar to the excitation function cos(τ) but with a 90 deg phase difference; iii) θ10, a bridging
function similar to the constant term described by Fa in Eq. 3. These additional functions help to accommodate the perturbation
in the dynamics due to the presence of noise.
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FIG. S1.3: Simulations of a cantilever interacting with a sample based on DMT force model with additional viscoelastic
interaction. The model parameters are tuned to induce transient and steady state dynamics in order to replicate the experiments.
(a) Transient dynamics prediction: The blue curve indicates the simulated transient phase space trajectory and the orange curve

is the prediction from the data-driven model. (b) Steady state dynamics prediction: The blue curve indicates the simulated
steady state phase space trajectory and the orange curve shows prediction from the data-driven model. (c)-(d) Comparison of
the tip sample force between the simulation (blue) and the data-driven model (orange) for both the transient and steady state

scenarios.

TABLE II: Description of the nonlinear functions used in the coefficient matrix of Fig. S1.4.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 δ 0.5 δ̇ δ δ̇ 2 z0.5 ż z ż2 δ 2 δ 2.5 δ 1.5 z−2 ∀z≤ a0 sin(Ωτ)
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FIG. S1.4: Coefficient matrix showing the influence of each library function on the governing equations of DMT force model
with additional viscoelastic interactions. The blue color indicates the original value of the coefficients and the orange color

indicates the coefficients as determined by the data-driven model.
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D. DMT with exponential damping

6150

6200

10

6250

200

6300

10-10
0

-10-20Deflection (nm)

)s
( e

mi
T

0
20

50

100

200

150

0
-20

-20

Velocity (mm/s)

Original dynamics

Identified dynamics

Original dynamics

Identified dynamics

10 20 30 40 50

0

100

200

300

400

T
ip

-s
am

p
le

 f
o

rc
e 

(n
N

) Original 

Identified 

(c)

(a) (b)

6240 6250 6260 6270 6280

0

100

200

300

400

T
ip

-s
am

p
le

 f
o

rc
e 

(n
N

) Original 

Identified 

(d)

Deflection (nm)

)s
( e

mi
T

Velocity (m
m

/s)

FIG. S1.5: Simulations of a cantilever interacting with a sample based on DMT force model with additional exponential
damping term. The model parameters are tuned to induce transient and steady state dynamics in order to replicate the behaviour

found in experiments. (a) Transient dynamics prediction: The blue curve indicates the simulated transient phase space
trajectory and the orange curve is the prediction from the data-driven model. (b) Steady state dynamics prediction: The blue
curve indicates the simulated steady state phase space trajectory and the orange curve shows prediction from the data-driven
model. (c)-(d) Comparison of the tip sample force between the simulation (blue) and the data-driven model (orange) for both

the transient and steady state scenarios.

This stage of the training sees the DMT model augmented with exponential damping term in the interaction mechanism
(Eq. 4). The exponential damping term captures the capillary forces, adhesion and other surface forces with certain decay length
[8]. In turn they contribute to the hysteresis in the interaction. The exponential damping term in Eq. 4 is governed by the
coefficient C4 and depends on the instantaneous tip-sample distance z and the instantaneous velocity ż, contributing to the non-
dissipative nature of interaction. Furthermore, in a similar fashion to the aforementioned models, the amplitude of deflection is
governed by x, the indentation depth by δ and the decay length of the exponential damping by zβ . The coefficients utilized for
the simulations are derived from the reference articles [8].

ẍ+Dẋ+Kx = Fts (z, ż)+Bcos(Ωτ)

Fts (z, ż) =

{
C1/z2−C4 exp(z/zβ )ż, for z > a0

C2 (δ )
3/2−Fa−C4 exp(z/zβ )ż, for z≤ ā0.

Fa = 4πRγ =C3/a0
2

(4)

Figures S1.5 (a) and (b) illustrate the transient and steady state dynamics as determined by the data-driven analysis. In addition
to the state vectors, Figs. S1.5 (c) and (d) report the transient and steady state tip-sample force. The coefficients obtained from
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the data-driven algorithm are listed in Fig. S1.6. The data-driven reconstruction with DMT model and exponential damping
does not highlight the phase shift of Sec. C. The library functions used in the simulation is in Tab. III. Again we observe three
additional functions in the identification. The functions θ2 described by z−3 and θ9 described by zż arise due to the presence of
noise. Whereas, the function θ10 acts as a bridging function similar to the constant term described by Fa in Eq. 4.

Original coefficients Identified coefficients

x100

x100

x10

x10-3

Ω

FIG. S1.6: Coefficient matrix showing the influence of each library function on the governing equations of DMT force model
with additional exponential damping. The blue color indicates the original value of the coefficients and the orange color

indicates the coefficients as determined by the data-driven model. The θi functions are detailed in Tab. III.

TABLE III: Description of the nonlinear functions used in the coefficient matrix of Fig. S1.6.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 exp(z/zβ )ż exp(z/zβ )
2ż2 z ż z ż2 δ 2 δ 2.5 δ 1.5 z−2 ∀z≤ a0 sin(Ωτ)
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E. JKR model

The last stage of the training is performed with a Johnson, Kendall and Roberts (JKR) force model. The JKR model is particu-
larly suited for AFM cantilever with large tip radius and large adhesion forces, which are regularly encountered in biological and
soft polymers [9]. The equation describing the tip-sample interaction is shown in Eq. 5. Here, the tip-sample force Fts consists
of long range Van der Waals attractive force with coefficient C1 governed by a second order inverse power law. The contact
mechanics is described by the Hertz contact force with effective stiffness governed by the coefficient C2, and the adhesion force
given by Fa similar to the DMT model used in the main manuscript. However, in case of JKR model the adhesion force given by
Fa = 3πRγ is in general larger in amplitude due to larger tip radius and surface energy and thus leads to larger dissipation and
hysteresis during the pull off event. Once gain, here R and γ are the AFM tip radius and surface interaction energy respectively.
Similar to Eq. 3, the adhesion force Fa translates into an attractive force that depends on the intermolecular distance a0 and its
strength governed by the coefficient C4.

0
40

50

100

20 40

150

0 20
0-20 -20

-40 -40
Deflection (nm)

)s
( e

mi
T

Velocity (mm/s)

Original dynamics

Identified dynamics

Original 

Identified 

1.54 1.545 1.55 1.555 1.56 1.565

104

-5

0

5

10

15

20

25

T
ip

-s
am

p
le

 f
o
rc

e 
(n

N
)

50 100 150

-10

0

10

20

30

40

50

60

T
ip

-s
am

p
le

 f
o
rc

e 
(n

N
) Original 

Identified 

1.555

1.56

20

1.565

104

1.57

200
0

-20 -20

Original dynamics

Identified dynamics

Deflection (nm)

)s
( e

mi
T

Velocity (mm/s)

(a) (b)

(c) (d)

FIG. S1.7: Simulations of a cantilever interacting with a sample based on JKR force model used in the training stage of the
data-driven model. The model parameters are tuned to induce transient and steady state dynamics in order to replicate the
behaviour found in experiments. (a) Transient dynamics prediction: The blue curve indicates the simulated transient phase

space trajectory and the orange curve is the prediction from the data-driven model. (b) Steady state dynamics prediction: The
blue curve indicates the simulated steady state phase space trajectory and the orange curve shows prediction from the

data-driven model. (c)-(d) Comparison of the tip sample force between the simulation (blue) and the data-driven model
(orange) for both the transient and steady state scenarios. The coefficients utilized for the simulations are derived from the

reference article [10].
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ẍ+Dẋ+Kx = Fts (z, ż)+Bcos(Ωτ)

Fts (z, ż) =
{

C1/z2, for z > a0

C2 (δ )
3/2−Fa, for z≤ ā0.

Fa = 3πRγ =C3/a0
2

(5)

The dynamics of the system described by a JKR interaction force resembles that of the DMT model in the main manuscript
as observed in Figs. S1.7 (a) and (b). The data-driven algorithm is able to accurately capture the governing dynamics with a
small phase difference which occurs once again due to the presence of noise. The Reconstruction of transient and steady state
tip-sample force is reported in Figs. S1.7 (c) and (d). Here, in contrast to the DMT model, the presence of a larger adhesion force
during the pull off of the cantilever results in larger hysteresis as observed in Figs. S1.7 (c) and (d). Furthermore, Fig. S1.8 shows
the coefficients obtained from the data-driven algorithm in comparison with the values used for simulation. Due to similar nature
of the functions required to described both the JKR and DMT models, we utilize the same library used for the DMT model in
main manuscript (Tab. 1) to describe the JKR force interactions as well which highlights the interchangeability and universal
nature of the technique.

Original coefficients Identified coefficients
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x10
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Ω

FIG. S1.8: Coefficient matrix showing the influence of each library function on the governing equations of JKR force model.
The blue color indicates the original value of the coefficients and the orange color indicates the coefficients as determined by

the data-driven model. The θi functions are detailed in Tab. IV.

TABLE IV: Description of the nonlinear functions used in the coefficient matrix of Fig. S1.8.

Function ID θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Function definition z−2 z−3 δ 0.5 δ̇ δ δ̇ 2 z0.5 ż z ż2 δ 2 δ 2.5 δ 1.5 z−2 ∀z≤ a0 sin(Ωτ)
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S2: ADDITIONAL EXPERIMENTAL RESULTS

F. Identification of tip-sample interaction in LDPE sample

Figure S2.9 reports the data-driven identification for a silicon cantilever interacting with a LDPE sample. The presentation of
the results is similar to that of Fig. 3 of the main manuscript. We acquire a total of 50 periods of time oscillations obtained at
a fixed distance of 63.1 nm from the sample. We performed data-driven analysis to identify the dynamics (Fig. S2.9(a)) and to
capture the variation of the instantaneous tip-sample force period by period (Fig. S2.9(b)).

0

200

15

30

100100

45

500

60

0-100 -50
-100-200

T
im

e 
(μ

s)

Velocity (mm/s)

(a)

35 40 45 50

-200

0

100

-100

200

300

-60

-40

-20

0

20

40

60

Time (μs)

Acceleration (m/ms 2)

Experiments

Identification
(b)

Tip-sample force
Acceleration

A
cc

el
er

at
io

n
 (

m
/m

s2
) T

ip
-sam

p
le fo

rce (n
N

)

FIG. S2.9: Data-driven identification on silicon cantilever interacting with LDPE sample. The experimental deflection is
obtained at a fixed tip-sample distance of 63.1 nm. (a) Identification of velocity and acceleration state vectors from data-driven

model. The blue and orange curves represent the experimental and identified state space trajectories, respectively. (b)
Estimation of the tip-sample force from data-driven model (orange) superimposed on the experimental acceleration signal

(blue).
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