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- Online Methods - 

 

Inclusion & Exclusion criteria  

Patients in Study Arm 1 originated from the AdipoRedOx study (Oxford REC C: 11/SC/0140), 

which enrols patients undergoing cardiac surgery [including coronary artery bypass grafting 

(CABG) and valve replacement/repair] at the John Radcliffe hospital, Oxford University NHS 

Foundation Trust, UK. Exclusion criteria include inflammatory, neoplastic, renal, or hepatic 

diseases. All subjects in Study Arm 1 have given written informed consent for sample and data 

collection, and follow-up imaging. Subjects in Study Arm 2 are part of the prospective arm of the 

Oxford Risk Factors and cArdiovascular imagiNg (ORFAN) study (Oxford REC C: 15/SC/0545, 

NCT05169333). These patients gave written informed consent to participate in the study and came 

back for a follow up CCTA scan. The patients in Study Arms 3 and 4 are part of the registry arm 

of the Oxford Risk Factors and cArdiovascular imagiNg (ORFAN) study (Oxford REC C: 

15/SC/0545, NCT05169333), and the collection of pseudoanonymised data was performed under 

Section 251 (NHS Act 2006), with specific approval from the Confidentiality Advisory Group 

(CAG, reference 20/CAG/0157), as defined in the ORFAN Study protocol.  

 

Severity of COVID-19 

The severity of COVID-19 infection in our population was defined according to the WHO 

Working Group on the Clinical Characterisation and Management of COVID-19 infection scoring 

system for hospitalised patients, as follows: mild disease: hospitalised patients not requiring 

oxygen therapy (score 4); moderate disease: patients requiring oxygen by mask or nasal prongs 
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(score 5); severe disease: patients supported with non-invasive ventilation (score 6); critical: 

patients supported with intubation and mechanical ventilation (score 7-9)1. 

 

Tissue Collection, RNA Isolation and Sequencing Library Preparation 

In Study Arm 1, IMA specimens were collected during surgery and stored in TRI reagent (Sigma, 

catalogue number T9424) at -80oC until thawed for RNA isolation. Total RNA was isolated by a 

phenol to chloroform (1:5 ratio) separation protocol followed by a magnetic beads-based RNA 

purification method on a KingFisher magnetic particle processor (Thermo Fisher Scientific), using 

the MagMAX mirVana total RNA isolation kit (Thermo Fisher Scientific, Catalogue Number 

A27828). RNA concentration was assessed spectrophotometrically on NanoDrop ND-1000. For 

RNA sequencing, the QuantSeq 3’ mRNA (Lexogen) library preparation kit was used. All samples 

were sequenced as part of a large multiplex pool on an Illumina NovaSeq 6000 system producing 

150bp paired-end reads. The COMBAT whole blood RNAseq dataset was generated as described 

previously2.  Briefly, whole blood was collected into Tempus tubes (Life Technologies) and frozen 

at -80oC until extraction in batches. Total RNA-seq was performed with libraries prepared by 

Oxford Genomics Centre with the NEBNext Ultra II Directional RNA Library Prep Kit for 

Illumina after rRNA and globin depletion. Libraries were sequenced as a single pool of 144 

samples (124 patients) on one NovaSeq S4 flow cell (4 lanes) with a target of 50M 100bp read 

pairs per sample.  

 

Sequencing Data Processing and Analysis 

RNAseq read pairs were split and only read 1 was used for alignment and quantification, 

appropriate for the library preparation protocol used. After initial poor mapping results with full-
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length 150bp reads, reads reduced to 75bp and trimmed for adapter and low-complexity sequence 

using fqtrim v0.9.53 were aligned to Homo sapiens reference genome, GRCh37 using Hisat2 

version-2.0.44. Gene annotation files were downloaded in GTF format from Ensembl, release 765.  

Reads mapping to annotated exon features were quantified with featureCounts6, part of subread-

v1.5.07, using default parameters and keeping all aligned reads including potential duplicates (due 

to the 3’ protocol). Quality metrics for aligned reads were estimated using CollectRnaSeqMetrics, 

implemented in Picard tools v1.928. The raw count tables produced by featureCounts were 

imported in R Statistical Software9 for further processing and analysis using in-built functionality 

and relevant packages as detailed below. In COMBAT, adaptor sequences were removed with 

TrimGalore, reads aligned to the reference genome (GRCh18) using STAR and read counts 

generated with featureCounts and annotations from Ensembl (v100). One poor quality sample was 

removed, and features filtered based on a threshold of >10 reads in >10 samples. The data were 

normalised using the trimmed mean of M-values method from edgeR and log2-transformation. 

Samples (n=30) from the 23 patients with a CT scan and therefore C19-RS calculated were 

extracted from this complete dataset. 

 

Clustering and Differential Expression Analysis 

The set of inflammatory genes was extracted from the count table and filtered to exclude those 

with low expression levels: counts per million (CPM) values were generated using the edgeR 

package10 and 51 genes with CPM > 1 in at least 10 out of 55 patients were retained.  Unsupervised 

hierarchical clustering was performed on this set of genes with the Minkowksi distance metric 

(p=10) and ward.D clustering method (heatmap.2 function in the gplots package11) and visualised 

as a heatmap with dendrogram. The 2 clusters of samples identified based on the inflammatory 
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expression profile were then assessed for differential expression (edgeR package10) on the full set 

of expressed genes in the RNA-Seq dataset. This generated a list of 132 genes identified as 

differentially upregulated (logFC > 1 and p < 0.05) between the 2 clusters of patients. In order to 

validate our clusters for activation of inflammation within the vasculature we conducted pathway 

enrichment analysis in ConsensusPathDB-human with the up-regulated differentially expressed 

genes (DEGs); the input for pathway analysis was the set of 132 genes with logFC > 1 and p < 

0.05.  

 

In the COMBAT dataset, 77 of the inflammatory genes had been retained post-filtering on the full 

dataset. The scaled expression of these genes across the range of C19-RS were visualised as a 

heatmap using the pheatmap R package, and unsupervised clustering was performed as above. 

Differential expression analysis was performed on protein-coding genes using one sample per 

patient (closest timepoint to CT scan) and the limma package, comparing high (above median) and 

low (below median) C19-RS scores and adjusting for age and sex. Multiple testing correction was 

performed using the Benjamini-Hochberg method. 

 

Weighted Gene Co-expression Network Analysis (WGCNA) was applied through the “cornet” 

pipeline to identify modules of correlated genes in the complete COMBAT dataset (143 samples 

from 123 patients) (Langfelder and Horvath, 2008, https://github.com/sansomlab/cornet.git). In 

brief, this uses a stepwise approach of correlation network construction and module detection. 

Using the soft thresholding power of 4, a signed-hybrid network was built, with the biweight 

midcorrelation as the adjacency function. The adjacency matrix was transformed into a topological 

overlap matrix to calculate the dissimilarity, and a dissimilarity threshold of 0.3 was used to merge 
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modules with very similar expression profiles. Module eigengene values (module first principal 

component) were used to summarise modules and perform module-C19-RS correlation analysis 

(Pearson correlation). Pathway enrichment analysis was performed using the hypergeometric test 

with the default settings of the “cornet” pipeline (https://github.com/sansomlab/cornet.git). 

 

Viral Genome Sequencing 

Samples were sequenced using a multiplex PCR based approach with the ARTIC LoCost 

protocol12 and v3 primers1using R9.4.1 flow cells (Oxford Nanopore Technologies, Oxford, UK). 

Consensus sequences were generated using ARTIC field bioinformatics v1.2.1.13 All sequences 

underwent quality control, requiring >90% consensus genome coverage at ≥20 depth. Lineages 

were assigned with Pangolin14.   

 

Coronary and Pulmonary Computed Tomography Angiography Imaging and Acquisition 

Protocols 

In Study Arm 1 participants underwent coronary CTA (CCTA) prospectively after patient consent 

using a 64-slice scanner (LightSpeed Ultra or Revolution GSI, General Electric) as previously 

described8. Heart rate was optimised using intravenous injection of beta-blockers and sublingual 

glyceryl-trinitrate (800ug) was also administered to achieve maximum coronary vasodilatation. 

CCTA was performed following intravenous injection of 95ml of iodine-based contrast medium 

(Niopam 370, BRACCO) at a flow rate of 6mL/sec (tube energy of 120 or 100 kVp, axial slice 

thickness of 0.625 mm, rotation time of 0.35 sec, detector coverage of 40 mm). Prospective image 

acquisition was used by ECG-gating at 75% of cardiac cycle (with 100 msec padding for optimal 

imaging of the right coronary artery if required). In Study Arm 2, we identified patients with 
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existing CCTA imaging, who were recruited prospectively into the ORFAN study before the 

pandemic and were participating into the prospective follow up part of the study (NCT05169333). 

Within that cohort, we then identified patients who had confirmed COVID-19 infection in the past 

6 months, and we matched them 1:1 for age, sex, and BMI to control cases from the same cohort 

who had never been diagnosed with COVID-19 until the time of the screening. These patients 

were then invited to return for their follow up research CCTA scan, as part of the ORFAN study 

protocol, which was done prospectively, maintaining identical scanning settings as for their 

baseline scan. CCTA scans were performed on a 320-slice scanner (Aquilion One, Canon Medical 

Systems, Tochigi, Japan) In patients with heart rate > 65 beats/minute, 5 mg of intravenous 

metoprolol (with incremental 5 mg doses up to a maximum dose of 40 mg) Patients also received 

0.8 mg of nitroglycerin sublingually immediately before CCTA and iodinated contrast (Iomeron 

350, Bracco UK Ltd) was administered at flow rate of 5-6 ml/s. In Study Arms 3 and 4, we 

identified the consecutive patients who were hospitalised with COVID-19 and had a clinically-

indicated CTA of their pulmonary arteries at the Oxford University Hospitals NHS Trust, 

University Hospitals of Leicester NHS Trust and Royal United Hospitals Bath NHS Trust between 

March 2020 - January 2021. These were existing scans that were analysed blindly by two operators 

within the quality management System of the Oxford Cardiovascular CT (OXACCT) core lab. In 

Study Arm 3, participants underwent pulmonary CTA (CTPA) on the GE Revolution HD CT 

scanner. During the initial phase of the pandemic, suspected cases of COVID-19 pneumonia had 

standard CTPA or dual energy CTPA (DECTPA)15. The single energy CTPA were perform using 

80-120kV and contrast 70-100mL at 4 mL/s dependent on body size. DECTPA were performed 

using rapid kV switching to optimise contrast and thrombus visualisation. These scans were all 

non-ECG gated. In Study Arm 4, scans from University Hospitals of Leicester were performed on 
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a Siemens Somatom Definition Flash CT scanner, using a FLASH protocol with the following 

scan parameters: dose modulation on, quality reference kVp 100, ref mAs 100, pitch: 2.1, rotation 

time 0.28s, detector configuration 128x0.6mm, suspended respiration scan from lung apices to 

lung bases, using a pre monitoring slice at the level of the pulmonary artery for optimal contrast 

enhancement of the pulmonary arteries, contrast agent: omnipaque 350,  50mls at 4ml/sec plus 

50mls saline flush. Scans from the Royal United Hospitals Bath were performed on either Siemens 

Somatom Definition Edge scanner with the following scan parameters: dose modulation on, 

quality reference kVp 120, ref mAs 145, pitch 1.2, rotation time 0.5s, detector configuration 

128x0.6mm, suspended respiration scan from lung apices to lung bases, using a bolus-tracking 

method with threshold of 100 HU in an ROI in a slice at the level of the main pulmonary artery 

and a 4 second delay after triggering, contrast agent: omnipaque 350, 60mls at 5ml/s plus 50mls 

0.9% saline flush at 5ml/sec or Siemens Somatom Drive scanner with the following scan 

parameters: dose modulation on, dual source dual energy 80 kVp / ref mAs 141 and Sn-filter 140 

kVp / ref mAs 60, pitch 1.2, rotation time 0.5s, detector configuration 128x0.6mm, suspended 

respiration scan from lung apices to lung bases, using a bolus-tracking method with threshold of 

100 HU in an ROI in a slice at the level of the main pulmonary artery and a 9 second delay after 

triggering, contrast agent: omnipaque 350, 75mls at 5ml/s plus 25mls 50:50 mix omnipaque 350 / 

0.9% saline flush at 5ml/sec.  

 

Adipose Tissue Segmentation and Radiomic Characterization 

Prior to segmentation, all scans were screened for image quality, and ones deemed as poor quality 

were excluded from further analysis (appendix p 18). Image processing and extraction of radiomic 

features was performed using the CaRi-Research™ toolbox 2.1.1. (Caristo Diagnostics, Oxford 
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UK).16 Perivascular adipose tissue segmentation was performed manually around the right IMA 

from the level of the aortic arch to 120mm caudally. Perivascular space was defined as the space 

within a radial distance from the outer vessel wall equal to the diameter of the respective vessel, 

as previously described17. A segmentation tool was used to track a cylindrical segmentation area 

around the internal mammary artery with a diameter as described above. Following this, manual 

corrections were made, so as to exclude any lung tissue or any other type of tissue posterior to the 

intrathoracic fascia, which would not be in direct contact with the internal mammary artery. 

Following this step, the segmentation was computationally thresholded to an attenuation window 

of -190 to -30 HU in order to isolate perivascular adipose tissue only. Similarly, perivascular 

adipose tissue segmentation around the descending thoracic aorta was performed manually from 

the level of the pulmonary artery bifurcation to 67.5mm caudally, as previously described18. 

Perivascular space was defined as the space within a cylindrical layer that is expanded beyond the 

vessel borders by a distance equal to 10mm. In order to avoid lung tissue and any COVID-19 

related lesions, peri-aortic adipose tissue directly adjacent to the left lateral side of the descending 

thoracic aorta was removed. Again, the segmentation was computationally thresholded to an 

attenuation window of -190 to -30 HU in order to isolate perivascular adipose tissue only. The 

segmentations were performed by two experienced researchers, according to a Standard Operating 

Procedure (SOP), developed within the Oxford Academic Cardiovascular CT Core lab. This SOP 

provides clear instructions on how the segmentations are performed, and it includes specific 

process for training of the operators, and criteria to sign them off as competent to perform this 

analysis. This SOP is part of the Quality Management System of the OXACCT core lab (version 

0.1, May 2020), which is a qualified imaging core-lab supporting academic as well as industrial 

clinical trials. For this study, CPK and CX were the two clinically qualified operators who 
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performed the analyses of the scans, blinded to group allocation. For C19-RS measurements inter-

observer agreement amongst two independent operators was excellent ICC: 0.914. To address this 

further, in post-hoc analyses we added the rater as a covariate in our multivariable models, and 

that had no impact on the significance or effect size of C19-RS on the prediction of in-hospital 

outcomes. Specifically, the HR for C19-RS in predicting in-hospital mortality was 3.20 [95%CI: 

1.42-7.19], p=0.005 in Arm 3 and 2.85 [95%CI 1.20-6.75], p=0.01 in Arm 4, when the rater was 

included into the model together with age, sex, cardiovascular risk factors (hypertension, 

hyperlipidaemia, diabetes, BMI, presence of coronary artery disease), C-reactive protein plasma 

levels, white blood cell count, plasma troponin, history of chronic obstructive pulmonary disease 

and CT tube voltage. Given the heterogeneity of tube voltage and effective energies used in the 

various imaging protocols, we rescaled all images using 100kVp as reference. Conversion factors 

(appendix p 39) for tube voltage 120kVp and effective energies 55, 58, and 70 keVs were 

calculated from data previously validated19. Radiomic features were extracted using CaRi-

ResearchTM 2.1.1. toolbox (Caristo Diagnostics, Oxford UK) and pyradiomics16.  

 

A total of 1,655 radiomic features were extracted from each segmented PVAT volume. Briefly, 

the radiomic features obtained were based on shape-based analysis, first order statistics, grey level 

co-occurrence matrix (glcm), grey level run length matrix (glrlm), grey level size zone matrix 

(glszm), grey level dependence matrix (gldm), neighbouring grey tone difference matrix (ngtdm). 

All these features were calculated on the original images and after applying transformations on the 

images. The transformations included Laplacian of Gaussian (log) with various sigma (1, 2, 3, 4, 

5 mm), wavelet-LLH, wavelet-LHL, wavelet-LHH, wavelet-HLL, wavelet-HLH, wavelet-HHL, 

square, square root, logarithm and exponential. The bin width was kept at 25. 
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Radiomic feature filtering and XGBoost modelling 

Firstly, we performed a stability assessment of all 3,310 different radiomic features. For this 

purpose we used 24 Lung CT scans (12 paired scans, performed 15 minutes apart) from the RIDER 

dataset20 to assess the scan-rescan ICC of each radiomic feature. Only radiomic features with 

ICC≥0.90 were included in further analyses (n=2,177, appendix p 27). Although the RIDER 

dataset was not designed with inflammation in mind, it still provides a valid technical dataset that 

allows reliable testing of the reproducibility of radiomic features in the PVAT around human 

IMAs. We next filtered out redundant radiomic features with Spearman’s rho coefficient lower 

than an absolute value of 0.9, using the “findCorrelation” function of the “caret” package in R 

(n=497). For further filtering of radiomic features we removed features significantly correlated 

with BMI and total intrathoracic adipose tissue, using a threshold of 0.05 in the Spearman’s rho 

correlation p value (n=333). Next, we isolated a randomly split 20% exploratory subset from the 

Study Arm 3 population, applied a univariate ROC analysis for outcome prediction in that subset 

(outcome: COVID-19 positive status) as well as in Study Arm 1 (outcome: high vascular 

inflammation), and filtered in only those radiomic features that predicted the outcome in both 

datasets in the same direction (n=144). Finally, recursive feature elimination with a random forest 

algorithm and repeated five-fold cross-validation showed a plateau in the accuracy of the trained 

model with a selection of 33 final features (appendix p 28).  

 

Radiomic features that were retained after filtering, were scaled and fit in an extreme gradient 

boosting algorithm. We considered a series of machine learning methodologies to use in our 

datasets, including other decision trees, and random forest algorithms (appendix p 40). Extreme 
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gradient boosting with method “gbtree” was the method with the best performance. We therefore 

decided to choose extreme gradient boosting, also because this is the de facto standard algorithm 

for getting accurate results from predictive modelling with machine learning. It’s the fastest 

gradient-boosting library with very high accuracy. It is understood to perform well in many 

applications with a fair amount of data and can detect and learn from non-linear data patterns21. 

The final product of the XGBoost algorithm (namely the raw logit values) was defined as C19-RS. 

To avoid overfitting issue, we used 5-fold cross validation and tuned the hyperparameters by 

optimising step size shrinkage, L2 regularization parameter and learning rate. We used early 

stopping technique that works by monitoring the performance of the model that is being trained 

on a separate test dataset and stopping the training procedure once the performance on the test 

dataset has not improved after a fixed number of training iterations. It avoids overfitting by 

attempting to automatically select the inflection point where performance on the test dataset starts 

to decrease while performance on the training dataset continues to improve as the model starts to 

overfit. Although modest number of samples were used during training step of model development, 

the accuracy of the model was not degraded on external validation data suggesting that model was 

not overfitted. 

 

Statistical Analysis 

Participant demographics are summarized as numbers (percentages) or median (25th to 75th 

percentile) for categorical and continuous variables, respectively. Between-group comparisons 

were performed using Pearson’s chi-squared test for categorical variables, and the Mann-Whitney 

independent samples test for numeric variables. As for power calculations22, Study Arm 1 was 

exploratory and served as the development set for C19-RS. In Study Arm 2, power calculations 
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were performed in advance, in order to define the sample size needed to recall for a follow up scan. 

We calculated that for COVID-19 positive patients in order to explore a delta in C19-RS values 

between baseline and follow-up scans of 1.7 with standard deviation of 2.3, we would require a 

sample size of 21. This sample size would offer us statistical power 0.9 to detect a difference of 

1.7 arbitrary units (AU) in delta(C19-RS) between cases and controls, for SD 2.3 and α=0.05. In 

Study Arm 3, we calculated that for a population of 250, of which a third would have high C19-

RS values, we would be able to detect a minimum hazard ratio of 1.64 with power 0.9 and α=0.05. 

For Study Arm 4, we calculated that for a hazard ratio of 3.31 taken from the internal test cohort, 

power 0.8 and alpha 0.05, we would require 22 events. Missing values within the datasets were 

imputed with predictive mean matching using the “mice” package. We further performed post-hoc 

exploratory subgroup analyses excluding variables with missingness greater than 10%. Statistical 

analyses were performed in the R environment (R version 3.6.0 and R Studio version 1.2.1335; 

COMBAT whole blood: R version 3.6.2, RStudio 1.2.5042 running on the BMRC compute 

cluster). All tests were two-sided and α was set at 0.05. When C19-RS was measured, the outcomes 

data were collected and the statistical analysis took place as post-hoc investigation of prospectively 

collected data. Model development and reporting followed TRIPOD (transparent reporting of a 

multivariable prediction model for individual prediction or diagnosis) guidelines (appendix 

p76)23. 

 

Study Arm 1 

Hierarchical clustering was performed using Ward’s method and Minkowski distance with p set 

to 10. Radiomic features that were retained after filtering (described above), were scaled and fit in 

an extreme gradient boosting algorithm. The method chosen was decision trees, with eta set to 0.5, 



 

 13 

number of rounds 100, and maximum tree depth 50. The final product of the XGBoost algorithm 

was defined as C19-RS.  

 

Study Arm 2 

Propensity score matching for age, sex, and BMI was performed to compare 22 COVID-19 

patients with serial CCTA images and non-COVID-19 controls. Wilcoxon signed-rank test was 

used for paired comparisons, and unpaired Mann-Whitney U test was used for between groups 

comparisons.  

 

Study Arm 3 

In the overall Study Arm 3 population we first assessed C19-RS’ ability to detect COVID-19 in 

multivariable logistic regression. An optimal cut-off point for C19-RS was determined by the 

Youden’s statistic method in receiver operating characteristic curve analysis. In the COVID 

positive population only (n=254) C19-RS’ prognostic value for in-hospital death “due to” or 

“involving” COVID-19 as defined by the Office of National Statistics (ONS), and a composite 

endpoint of in-hospital death and intensive care unit (ICU) admission was assessed in receiver 

operating characteristic curves, univariate Kaplan–Meier curves, and logistic and Cox regression 

models adjusted for age above 65, sex, cardiovascular risk factors (hypertension, hyperlipidaemia, 

diabetes, BMI, presence of coronary artery disease), C-reactive protein plasma levels, white blood 

cell count, plasma troponin, history of chronic obstructive pulmonary disease and CT tube voltage. 

The optimal C19-RS cut-point for survival analyses was identified by the value that maximized 

the log-rank statistic for death in hospital. Correlation of C19-RS with C-reactive protein and 

length of hospital stay was assessed using Spearman’s rho. Missingness was 29.7% for BMI, 
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10.4% for CRP, 54.4% for troponin and below 10% for the rest of the variables. In the COMBAT 

total RNAseq data, differential gene expression analysis was performed using the limma R 

package, co-expressed gene modules identified using WGCNA, and pathway enrichment assessed 

used GOBP annotations and hypergeometric test as previously described2. Correlation of gene 

modules with the C19-RS signature was quantified by Pearson’s r. 

 

Study Arm 4 

C19-RS’ prognostic value for in-hospital death and a composite endpoint of in-hospital death and 

intensive care unit (ICU) admission was assessed in Cox regression models adjusted as above. 

Missingness was 45.2% for BMI, 75% for Troponin, and below 10% for the rest of the variables.  
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Online Figures 

 

Online Figure 1 | Workflow Diagram. Study Arm 1 utilised 55 patients from the Oxford Heart 

Vessels and Fat (Ox-HVF) Cohort that underwent cardiac surgery and CCTA imaging in order to 

develop the radiomic signature C19-RS based on high vascular inflammation. Study Arm 2 

included 88 paired CCTA scans. Study Arm 3 included 384 participants with CTPA imaging and 

was used for radiomic feature filtering and to validate C19-RS for COVID-19 discrimination 

(COVID-19 positive and negative individuals, n=331) and in-hospital outcome correlation 

(COVID-19 positive individuals only, n=254). Study Arm 4 served as an external, independent 

validation cohort of COVID-19 patients testing the prognostic value of C19-RS for in-hospital 

outcomes.  
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clinical outcomes

20% 
Exploratory Set
(53 individuals)

80% 
Validation Set

(216 individuals)

Determine filtered 
radiomic features

First UK wave 
(n=269)

Second UK wave
(n=115)

Association with 
transcriptional 

changes in 
peripheral blood

Study Arm 2

Extraction of a total of 3,130 
radiomic features from 

peri-IMA and peri-Aortic adipose 
tissue

Application of C19-RS

Explore C19-RS changes in time

Comparison of paired C19-RS 
pre vs post COVID-19 infection

Repeat CCTA

44 patients with Coronary CTA

22 had COVID-19 22 no COVID-19
1:1 match

<6 months 
post infection

Not significantly 
correlated with each 

other (rho<0.9)

Filtered Radiomic Features

Application 
of C19-RS

COVID-19 positive 
individuals only 

(n=254)
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Online Figure 2 | Image analysis and in-hospital outcomes collection diagram for Study Arms 

3 & 4. ICU: Intensive care unit.   
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Online Figure 3 | Features gain in C19-RS. C19-RS consists of 25 features, 8 peri-IMA radiomic 

and 17 peri-aorta features. Gain values represent the relative contribution of each radiomic feature 

to C19-RS. A higher gain value when compared to another feature implies higher importance for 

generating a prediction value. A full list of radiomic features is presented in appendix p 39.   
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Online Figure 4 | Optimal C19-RS cut-off for COVID-19 detection. Receiver operating 

characteristic curve, area under the curve (0.65 [95%CI: 0.57-0.73], p<0.001) and optimal cut-off 

point of C19-RS for COVID-19 detection in COVID-19 negative and positive patients from the 

validation Study Arm 3 population (n=331).  
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Online Figure 5 | Incremental value of C19-RS radiomic features in COVID-19 detection. 

Receiver operating characteristic curves of two logistic regression models showing that addition 

of the top third (n=8) of radiomic features comprising C19-RS significantly improved the 

performance of a baseline model consisting of age, sex, cardiovascular risk factors (hypertension, 

hyperlipidaemia, diabetes, BMI, presence of coronary artery disease), C-reactive protein plasma 

levels, white blood cell count, plasma troponin, and history of chronic obstructive pulmonary 

disease for COVID-19 detection. P values derived from the DeLong test of areas under the curve 

for model 1 (age, sex, hypertension, hyperlipidaemia, diabetes, BMI, presence of coronary artery 

disease, C-reactive protein plasma levels, white blood cell count, plasma troponin, and history of 

chronic obstructive pulmonary disease) and model 2 (model 1 plus eight C19-RS radiomic features 

with the highest gain values).  

 

  

Specificity
1.00 0.80 0.60 0.40 0.20 0.00

0.00

0.20

0.40

0.60

0.80

1.00

Se
ns
iti
vi
ty

Model 1, AUC: 0.80 [95%CI: 0.74-0.85]
Model 2, AUC: 0.85 [95%CI: 0.80-0.90]
PDeLong=0.006

eFigure 4



 

 22 

 

  

Online Figure 6 | Identifying the optimal C19-RS cut-off for in-hospital death prediction. 

Plot of the standardized log-rank statistic for prediction of death in-hospital versus different cut-

off points for C19-RS, showing optimal discrimination for a cut-off point of 6.99, in the COVID-

19 positive Study Arm 3 population (n=254). 
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Online Figure 7 | Decision curve analysis. Plot of decision curve analysis for composite endpoint 

prediction for each model. Model 1 (blue line) consists of demographic variables age, sex, 

hypertension (HTN), hyperlipidaemia (HLD), diabetes mellitus (DM), body mass index (BMI), 

presence of coronary artery disease (CAD), history of chronic obstructive pulmonary disease 

(COPD), tube voltage, and biochemistry biomarkers white blood cell count (WBC), C-reactive 

protein (CRP), and plasma troponin (Tn). Model 2 (purple line) includes all parameters in model 

1 plus C19-RS. The y-axis measures net benefit, calculated by summing the benefits (true 

positives) and subtracting the harms (false positives), in which the latter are weighted by a factor 

related to the relative harm of a missed cancer compared with the harm of an unnecessary biopsy. 
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Online Figure 8 | Unsupervised hierarchical clustering of the inflammatory genes in whole 

blood in the COMBAT dataset. The scaled expression of the 77 genes retained after filtering is 

visualised for the closest sample per patient to the CT scan. Hierarchical clustering separates the 

patients into 2 clusters with no clear association with C19-RS. 
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Online Figure 9 | Whole blood gene expression profiles and C19-RS. (a) Expression of the 

inflammation-related gene set in the COMBAT whole blood RNAseq dataset (30 samples from 23 

COVID-19 patients from Study Arm 3 with CT scans, 77 genes detected). Samples are ordered by 

C19-RS, genes are clustered using Ward’s method and Minkowski distance. Colour bar indicates 

sample timing and C19-RS. (b) Weighted Gene Correlation Network Analysis (WGCNA) on the 
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full COMBAT dataset defined gene expression modules2. Unassigned genes were categorised as 

MEgrey. (c) Correlation between C19-RS and the MEgreen eigengene by Pearson’s r. (d) GOBP 

pathway enrichment analysis for MEgreen module member genes using hypergeometric test (terms 

with adjusted p-value <0.001 shown, full results in appendix pp 65-67). X axis (odds ratio) 

indicates strength of association between pathway and module memberships, size of point (n 

genes) indicates number of genes with overlapping membership, colour of points (adjusted p 

value) indicates significance of association. 
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Online Figure 10 | Reproducibility analysis of perivascular adipose tissue features. Plot of the 

test-retest intraclass correlation coefficient (ICC) in the RIDER dataset of all 1,655 radiomic 

features measured around the right IMA (A) and descending aorta (B). Radiomic features are 

ranked on descending order based on their ICC value. A total of 1,248 and 929 radiomic features 

respectively were found to have an ICC equal to or greater than 0.90.   
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Online Figure 11 | Recursive feature elimination. Recursive feature elimination with a random 

forest algorithm and repeated five-fold cross-validation showed a plateau in the accuracy of the 

trained model with a maximal number of 33 selected features.   
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Online Figure 12 | The proposed imaging biomarker C19-RS. Vascular inflammation induced 

by the SARS-CoV-2 virus causes structural changes to perivascular adipose tissue. Utilising RNA 

sequencing data, a novel imaging biomarker -namely C19-RS- was trained to reflect upregulation 

of cytokine related genes in the arterial wall. C19-RS was higher in COVID-19 positive patients, 

particularly in those with the B.1.1.7 variant, and had significant prognostic value for in-hospital 

death prediction. 
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Online Figure 13 | Lumen attenuation and C19-RS. We tested lumen attenuation values in 100 

consecutive patients from the Study Arm 3 population. C19-RS did not significantly correlate with 

either internal mammary artery (IMA) lumen attenuation (a) or thoracic aorta lumen attenuation 

(b) values. Linear regression models were fitted with C19-RS being the dependent variable and 

lumen attenuation values the independent variable for panels a and b respectively. 
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Online Figure 14 | C19-RS in CCTA vs CTPA and different CTPA phases. (a) We matched 

22 COVID-19 negative patients undergoing coronary CTA from Study Arm 2 with 66 COVID-19 

negative patients from Study Arm 3 undergoing pulmonary CTA, matched for age, sex, BMI, 

hypertension, and diabetes. No significant difference was observed in aboluste C19-RS values 

between the two imaging protocols. P value derived from the Mann-Whitney U test. (b) We further 

analysed quantitatively CTPAs in Study Arm 3 in order to stratify the cohort by CTPA phase 

(CTPA arterial phase: good visual contrast penetration vs CTPA venous phase: poor visual contrast 

penetration). No difference in C19-RS was observed. P value derived from the Mann-Whitney U 

test. We have further performed an additional sensitivity analysis in which we have included the 

phase as a co-variate in the prognostic modelling in Study Arm 3. Indeed, there was no impact of 

this parameter on the prognostic value of C19RS. (C19-RS Adj. HR 3.37 [95%CI: 1.64-6.93, 

p<0.001], adjusted for age above 65, sex, cardiovascular risk factors (hypertension, 

hyperlipidaemia, diabetes, BMI, presence of coronary artery disease), C-reactive protein plasma 

levels, white blood cell count, plasma troponin, history of chronic obstructive pulmonary disease, 

CT tube voltage, and CTPA phase). 
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Online Table 1. List of genes chosen for unsupervised clustering in Study Arm 1 
CCL1 CXCL13 IFNL4 IL1RL2 IL6R 
CCL11 CXCL14 IFNW1 IL1RN IL6ST 
CCL13 CXCL16 IL10 IL2 IL7 
CCL14 CXCL17 IL11 IL20 IL9 
CCL15 CXCL2 IL12A IL20RB TNF 
CCL16 CXCL3 IL12B IL21 TNFAIP3 
CCL17 CXCL5 IL12RB1 IL22 TNFRSF11B 
CCL18 CXCL6 IL12RB2 IL23A TNFRSF13C 
CCL19 CXCL8 IL13 IL23R TNFRSF14 
CCL2 CXCL9 IL15 IL24 TNFRSF1B 
CCL20 IFNA1 IL16 IL25 TNFRSF21 
CCL21 IFNA10 IL17A IL26 TNFRSF4 
CCL22 IFNA14 IL17B IL27 TNFRSF8 
CCL23 IFNA16 IL17C IL27RA TNFRSF9 
CCL24 IFNA17 IL17D IL3 TNFSF10 
CCL25 IFNA2 IL17F IL31 TNFSF11 
CCL26 IFNA21 IL17RA IL31RA TNFSF12 
CCL27 IFNA4 IL17RB IL32 TNFSF13 
CCL28 IFNA5 IL17RC IL33 TNFSF13B 
CCL3 IFNA6 IL18 IL34 TNFSF14 
CCL4 IFNA7 IL18R1 IL36A TNFSF15 
CCL5 IFNA8 IL18RAP IL36B TNFSF18 
CCL7 IFNB1 IL19 IL36G TNFSF4 
CCL8 IFNE IL1A IL36RN TNFSF8 
CX3CL1 IFNG IL1B IL37 TNFSF9 
CX3CR1 IFNGR1 IL1F10 IL4 

 

CXCL1 IFNK IL1R1 IL4R 
 

CXCL10 IFNL1 IL1R2 IL5 
 

CXCL11 IFNL2 IL1RAP IL5RA 
 

CXCL12 IFNL3 IL1RL1 IL6 
 

  



 

 33 

 

 

 

 

 

 

  

Online Table 2. Demographic characteristics of the Study Arm 1 population.   
Study Arm 1 population  

All Cluster 1 Cluster 2 P value 
Total (n) 55 28 27 - 
Age (years) 68.5[61.0-75.0] 68.0[58.8-75.0] 70.5[64.0-75.8] 0.467 
Sex (male, %) 85.5 85.7 85.2 0.564 
Risk factors (%)  

   

Hypertension 70.9 60.7 81.5 0.087 
Dyslipidaemia 80.0 75.0 85.2 0.263 
Diabetes mellitus  16.4 14.3 18.5 0.524 
Smoking  56.4 57.2 55.5 0.928 
Systolic blood pressure (mmHg) 130.02+/-17.92 129.19+/-19.48 130.92+/-16.42 0.731 
Body Mass Index (BMI, kg/m2) 27.82+/-4.21 27.14+/-4.63 28.52+/-3.68 0.236 

Medication (%)      
Statins 87.3 85.7 88.9 0.913  
ACEi 63.6 57.1 70.4 0.360 

 

b-blockers 72.7 75.0 70.4 0.924 
Nitrates 54.5 60.7 48.1 0.597 

CT Scanning data     
Scan type CCTA CCTA CCTA  
Tube Voltage (kVp) n (%)  
100 
120 

 
2 
53 

 
1 
27 

 
1 
26 

 
1 
1 

ACEi=angiotensin converting enzyme inhibitors; continuous variables reported as means+/-SEM or median 
[IQR], as appropriate. CCTA: Gated coronary computed tomography angiography.  
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Online Table 3. C19-RS RQS 
Criteria Points Comments 

1 Image protocol quality - well-documented 
image protocols (for example, contrast, slice 
thickness, energy, etc.) and/or usage of public 
image protocols allow 
reproducibility/replicability 

1/2 All image protocols documented 
clearly on Online Appendix 

2 Multiple segmentations - possible actions are: 
segmentation by different 
physicians/algorithms/software, perturbing 
segmentations by (random) noise, 
segmentation at different breathing cycles. 
Analyse feature robustness to segmentation 
variabilities 

1/1 Three-dimensional segmentation 
performed by two independent 
analysts. Scan-rescan stability 
assessment of all 3,310 radiomic 
features done against the RIDER 
dataset.  

3 Phantom study on all scanners - detect inter-
scanner differences and vendor-dependent 
features. Analyse feature robustness to these 
sources of variability 

0/1 No phantom studies performed.  

4 Imaging at multiple time points - collect 
images of individuals at additional time points. 
Analyse feature robustness to temporal 
variabilities (for example, organ movement, 
organ expansion/shrinkage) 

1/1 Imaging at multiple time points given 
in Figure 4.  

5 Feature reduction or adjustment for multiple 
testing - decreases the risk of overfitting. 
Overfitting is inevitable if the number of 
features exceeds the number of samples. 
Consider feature robustness when selecting 
features 

3/3 Feature reduction performed against 
scan-rescan stability, and interobserver 
consistency. In addition, radiomic 
features that were significantly 
correlated with BMI and total 
intrathoracic adipose tissue were 
removed.  

6 Multivariable analysis with non radiomics 
features (for example, EGFR mutation) - is 
expected to provide a more holistic model. 
Permits correlating/inferencing between 
radiomics and non radiomics features 

1/1 All models adjusted for age, sex, 
cardiovascular risk factors 
(hypertension, hyperlipidaemia, 
diabetes, BMI, presence of coronary 
artery disease), C-reactive protein 
plasma levels, white blood cell count, 
plasma troponin, history of chronic 
obstructive pulmonary disease, and 
tube voltage.  

7 Detect and discuss biological correlates - 
demonstration of phenotypic differences 
(possibly associated with underlying gene–
protein expression patterns) deepens 
understanding of radiomics and biology 

1/1 Biological meaning of radiomic 
features within C19-RS given in Figure 
4a.  

8 Cut-off analyses - determine risk groups by 
either the median, a previously published cut-
off or report a continuous risk variable. 
Reduces the risk of reporting overly optimistic 
results 

1/1 C19-RS cut-off of 6.99 identified by 
the value that maximized the log-rank 
statistic for death in hospital.  
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9 Discrimination statistics - report discrimination 
statistics (for example, C-statistic, ROC curve, 
AUC) and their statistical significance (for 
example, p-values, confidence intervals). One 
can also apply resampling method (for 
example, bootstrapping, cross-validation) 

2/2 Discrimination statistics and ROC 
curves for C19-RS presented in Figure 
5a.  

10 Calibration statistics - report calibration 
statistics (for example, Calibration-in-the-
large/slope, calibration plots) and their 
statistical significance (for example, P-values, 
confidence intervals). One can also apply 
resampling method (for example, 
bootstrapping, cross-validation) 

1/2 C19-RS feature selection performed by 
recursive feature elimination with a 
random forest algorithm and repeated 
five-fold cross-validation.  

11 Prospective study registered in a trial database 
- provides the highest level of evidence 
supporting the clinical validity and usefulness 
of the radiomics biomarker 

7/7 Ongoing C19-RS validation/testing in 
the RECOVERY trial (NCT04381936).  

12 Validation - the validation is performed 
without retraining and without adaptation of 
the cut-off value, provides crucial information 
with regard to credible clinical performance 

5/5 External validation based on three 
datasets from distinct institutes 
(Oxford, Bath, Leicester).  

13 Comparison to 'gold standard' - assess the 
extent to which the model agrees with/is 
superior to the current 'gold standard' method 
(for example, TNM-staging for survival 
prediction). This comparison shows the added 
value of radiomics 

2/2 Presented in Figure 5b.  

14 Potential clinical utility - report on the current 
and potential application of the model in a 
clinical setting (for example, decision curve 
analysis). 

2/2 A decision curve analysis is presented 
in Online Figure 6.  

15 Cost-effectiveness analysis - report on the 
cost-effectiveness of the clinical application 
(for example, QALYs generated) 

0/1 No within the scope of this study.  

16 Open science and data - make code and data 
publicly available. Open science facilitates 
knowledge transfer and reproducibility of the 
study 

0/4 Individual participant-level data used 
for this report are not publicly 
available, because they contain 
protected patient health information. 
Requests for data access should be 
directed to the corresponding author 
via email. 

  Total points (28/36 = 77.8%) 
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Online Table 4. Demographic characteristics of the Study Arm 2 population.   
Study Arm 2 population  

All COVID Controls P value 
Total (n) 44 22 22 - 
Age (years) 57.5 [48.0, 63.3] 58.0 [48.8, 66.0] 56.5 [48.3, 62.8] 0.518 
Sex (male, %) 72.7 72.7 72.7 1 
Risk factors (%)  

   

Hypertension 50.0 50.0 50.0 1 
Diabetes mellitus  25.0 18.2 31.8 0.486 
Body Mass Index (kg/m2) 32.4+/-6.3 32.5+/-7.7 32.3+/-4.7 0.911 

COVID severity     
Mild - 40.9% - - 
Moderate - 36.4% - - 
Severe - 13.6% - - 
Critical - 9.1% - - 

C19-RS Baseline 5.9 [4.5, 6.9] 6.5 [3.9, 7.6] 5.1 [4.6, 6.8] 0.453 
C19-RS Follow-up 6.6 [4.7, 8.0] 7.7 [6.9, 8.3] 4.6 [3.7, 6.6] <0.001 
Delta C19-RS - 1.7 [-0.1, 3.2] -0.3 [-1.8, 0.9] 0.005 
Time between scans (years) - 2.2 [1.8, 4.1] 4.3 [4.1, 4.4] 0.002 
Continuous variables reported as means+/-SEM or median [IQR], as appropriate. Factor variables are presented 
as percentages. Delta C19-RS describes the difference in C19-RS between baseline and follow-up scanning.  
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Online Table 5. Demographic characteristics of the Study Arm 3 population.  
 

First UK Wave Second UK Wave 
 Strata by random split Strata by COVID status All 

 Exploratory 
(20%) 

Validation 
(80%) COVID Non-COVID p 

value 
Validation 

(100%) 
 N=53 N=216 N=169 N=100  N=115 
Age (years) 63.4[50.7-76.0] 57.9[46.6-74.0] 60.0 [51.1-75.7] 53.2 [40.1-69.8] 0.001 62.7 [51.6-75.6] 
Sex (male, %) 26 (49.1) 95 (44.0) 96 (56.8) 42 (46.7) 0.154 72 (62.6) 
Risk factors, n (%)       

Hypertension  23 (43.4) 69 (31.9) 72 (43.4) 20 (25.3) 0.01 26 (22.6) 
Dyslipidaemia  6 (11.3) 31 (14.4) 25 (15.2) 12 (15.2) 1 16 (13.9) 
Diabetes mellitus 13 (24.5) 37 (17.1) 39 (23.5) 11 (13.9) 0.117 25 (21.7) 
COPD 2 (3.8) 12 (5.6) 10 (6.1) 4 (5.1) 0.985 9 (7.8) 
CAD 5 (9.4) 16 (7.4) 13 (7.9) 8 (10.3) 0.71 15 (13.0) 
SBP (mmHg) 130.9±27.3 132.5±22.0 129.7±21.4 137.1±257 0.021 129.7±18.6 
BMI (kg/m2) 30.0±9.6 27.7±6.3 28.5±6.1 27.2±9.4 0.298 30.6±7.6 

Medication, n (%)       
 Statins 13 (24.5) 59 (27.3) 55 (33.1) 17 (21.5) 0.086 18 (15.7) 
 ACEi 7 (13.2) 27 (12.5) 29 (17.5) 5 (6.3) 0.031 10 (8.7) 
 Beta blockers 5 (9.4) 23 (10.6) 20 (12.0) 8 (10.1) 0.82 9 (7.8) 

Biochemical measurements      
CRP (mg/L) 82.9[33.0-180.0] 75.6[18.0-156.3] 97.0 [37.5, 185.3] 16.70 [2.1, 86.5] <0.001 98.8 [54.9, 141.4] 
WBC (x103) 8.3 [6.4-12.0] 8.6 [6.1-12.3] 7.5 [5.4, 10.7] 10.3 [7.5, 14.7] <0.001 7.1 [5.3, 9.5] 
Troponin (ng/L) 5.0 [2.0-62.5] 5.0 [2.0-20.0] 5.0 [2.0, 32.0] 3.0 [2.0, 11.0] 0.255 6.0 [4.0, 17.5] 

COVID Severity       
Mild - - 34.3% - - 9.6% 
Moderate - - 36.1% - - 49.6% 
Severe - - 10.0% - - 25.2% 
Critical - - 19.5% - - 15.6% 

Scan parameters       
Tube Voltage (kVp) or Effective Energy 
(keV), n (%)      

100 kVp 35 (66.0) 142 (65.7) 114 (67.5) 63 (63.0) 0.45 98 (85.2) 
110 kVp 0 (0) 0 (0) 0 0 - 13 (11.3) 
120 kVp 8 (15.1) 27 (12.5) 1 (0.6) 34 (34.0) <0.001 4 (3.5) 
55 keV 1 (1.9) 3 (1.4) 3 (1.8) 1 (1.0) 0.61 0 (0) 
58 keV 9 (17.0) 40 (18.5) 48 (28.4) 1 (1.0) <0.001 0 (0) 
70 keV 0 (0.0) 4 (1.9) 3 (1.8) 1 (1.0) 0.61 0 (0) 

Outcomes       
   Days in hospital 7.0[0.0-18.0] 4.0[0.0-13.0] 8.0 [3.0, 18.0] 0.0 [0.0, 4.0] <0.001 8.0 [5.0, 14.0] 

Death in-hospital, n(%) 12 (22.6) 21 (9.7) 30 (17.8) 3 (3.3) 0.002 19 (16.5) 
  Composite endpoint, n(%) 19 (35.8) 59 (27.3) 70 (41.4) 8 (8.9) <0.001 30 (26.1) 
COPD=Chronic Obstructive pulmonary disease; CAD: Coronary Artery Disease; SBP:  Systolic blood pressure; 
ACEi=angiotensin converting enzyme inhibitors; BMI=Body Mass Index; WBC=White Blood Cells count; ICU=Intensive care 
unit; Composite endpoint includes death in-hospital and/or admission to intensive care unit; continuous variables reported as 
median [IQR]. Continuous variables are expressed as mean±SD or median[range] as appropriate. P values derived from 
comparisons between COVID and non-COVID patients of the first wave Study Arm 3 population.  
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Online Table 6. Demographic characteristics of the Study Arm 4 population.   
Study Arm 4 population 

Total (n) 104 
Recruitment centre/region 
Leicester 
Bath 

 
56 
48 

Age (years) 63.7 [54.0, 74.0] 
Male sex, n (%) 63 (60.6) 
Risk factors, n (%)  

Hypertension 30 (28.8) 
Dyslipidaemia 13 (12.5) 
Diabetes mellitus  28 (26.9) 
CAD 3 (2.9) 
COPD 17 (16.3) 
Systolic blood pressure (mmHg) 128.2 ± 22.4 
Body Mass Index (kg/m2) 29.7 ± 5.8 

Biochemical measurements  
C-reactive protein (mg/L) 62.5 [28.0, 148.5] 
Troponin 9.5 [6.0, 23.3] 
White blood cell count (x103) 9.4 [6.5, 12.0] 
Lymphocytes cell count (x103) 1.0 [0.7, 1.6] 
Monocytes cell count (x103) 0.5 [0.3, 0.8] 

Tube Voltage (kVp)  
100 (kVp, n, %) 55 (52.9) 
110 ( kVp, n, %) 3 (2.9) 
120 (kVp, n, %) 39 (37.5) 
140 (kVp, n, %) 7 (6.7) 

Severity  
Mild 13.5% 
Moderate 39.4% 
Severe 27.9% 
Critical 19.2% 

COPD=Chronic Obstructive pulmonary disease; CAD: Coronary Artery Disease; 
continuous variables reported as means+/-SD or median[range] as appropriate. 
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Online Table 7. Conversion factors for different CT energies 
 Conversion Factor for Adipose Tissue 
100 kVp (tube voltage) 1 (reference) 
110 kVp (tube voltage) 1.054740019 
120 kVp (tube voltage) 1.114849188 
70keV (effective energy) 0.988683128 
58 keV (effective energy) 0.817537672 
55 keV (effective energy) 0.771195642 
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Online Table 8. Comparison of performance of different machine learning approached for the 
development of C19-RS.  

Model-Method AUC for COVID-19 status detection in Study Arm 3 (n=331) 

Extreme Gradient 
Boosting 

 

gbtree 0.65 [95%CI: 0.57-0.73], p<0.001 

gblinear 0.57 [95%CI: 0.50-0.64], p=0.056 

dart 0.62 [95%CI: 0.55-0.70], p<0.001 

Random Forest  

rf 0.62 [95%CI: 0.54-0.70], p<0.001 

ranger 0.58 [95%CI: 0.51-0.66], p=0.02 

Neural Network  

avNNet 0.55 [95%CI: 0.47-0.62], p=0.18 

Bayesian Model  

bayesglm 0.56 [95%CI: 0.49-0.63], p=0.09 
 
  



 

 41 

 
 
Online Table 9. Radiomic features comprising C19-RS 
AA Radiomic Feature Name  
F1 wavelet.LHH_glcm_Imc2_aorta  
F2 log.sigma.4.0.mm.3D_glszm_GrayLevelNonUniformityNormalized_ima  
F3 wavelet.LHH_glcm_Correlation_aorta  
F4 wavelet.LLL_glcm_JointAverage_ima  
F5 log.sigma.1.0.mm.3D_ngtdm_Strength_aorta  
F6 wavelet.LLL_glcm_DifferenceVariance_aorta  
F7 log.sigma.2.0.mm.3D_glcm_Correlation_aorta  
F8 log.sigma.1.0.mm.3D_firstorder_Skewness_aorta  
F9 log.sigma.1.0.mm.3D_glszm_SizeZoneNonUniformity_aorta  
F10 logarithm_glcm_Imc2_ima  
F11 wavelet.LLL_glszm_GrayLevelNonUniformityNormalized_ima  
F12 log.sigma.5.0.mm.3D_glrlm_RunLengthNonUniformityNormalized_aorta  
F13 wavelet.HLH_firstorder_Maximum_ima  
F14 log.sigma.5.0.mm.3D_glszm_SmallAreaHighGrayLevelEmphasis_aorta  
F15 wavelet.LHL_firstorder_Median_aorta  
F16 log.sigma.3.0.mm.3D_firstorder_Maximum_ima  
F17 log.sigma.1.0.mm.3D_glcm_InverseVariance_ima  
F18 wavelet.LHL_firstorder_Range_aorta  
F19 log.sigma.4.0.mm.3D_firstorder_Median_aorta  
F20 wavelet.HHH_glcm_ClusterTendency_ima  
F21 wavelet.HLL_glcm_ClusterProminence_aorta  
F22 wavelet.HHH_glcm_MaximumProbability_aorta  
F23 wavelet.LLL_glrlm_RunEntropy_aorta  
F24 wavelet.HLL_ngtdm_Strength_aorta  
F25 wavelet.HHL_firstorder_Maximum_aorta  
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Online Table 10. Proportion of Study Arm 3 patients with high C19-RS and outcomes with 
low troponin and CRP.  
 Total 

number 
Deaths in 
hospital 

Composite 
endpoint 

High C19-RS 

CRP<50mg/L 73 9 (12.3%) 14 (19.1%) 18 (24.6%) 
5 deaths/6 composite 

Troponin<20ng/L 182 16 (8.7%) 48 (26.37%) 61 (33.5%)  
11 deaths/23 composite 

 
CRP: C-Reactive Protein.   
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Online Table 11. Sensitivity analysis excluding variables with high missingness  

 Study Arm 3 Study Arm 4 

Fully Adjusted HR* 3.31 [95%CI: 1.49-7.33], p=0.003 2.58 [95%CI: 1.10-6.05], p=0.028 

Sensitivity Analysis HR# 3.55 [95%CI: 1.73-7.29], p=0.0006 2.21 [95%CI: 1.04-4.71], p=0.04 

Sensitivity analyses in Study Arm 3 and 4 populations are exploratory post-hoc analyses excluding 
variables with high degree of missingness (>10%) after data collection was completed.  
 
*adjusted for adjusted for age above 65, sex, hypertension, hyperlipidaemia, diabetes, BMI, presence of 
coronary artery disease, C-reactive protein plasma levels, white blood cell count, plasma troponin, 
history of chronic obstructive pulmonary disease and CT tube voltage 
 
#adjusted only for variables with missingness below 10%: age above 65, sex, hypertension, 
hyperlipidaemia, diabetes, presence of coronary artery disease, white blood cell count, history of 
chronic obstructive pulmonary disease and CT tube voltage 
 
 
 
  



 

 44 

 
Online Table 12. Genes in the Green Module 

ENSEMBL ID ENTREZ ID 
ENSG00000148498 PARD3 
ENSG00000088726 TMEM40 
ENSG00000047648 ARHGAP6 
ENSG00000101162 TUBB1 
ENSG00000005249 PRKAR2B 
ENSG00000085733 CTTN 
ENSG00000127533 F2RL3 
ENSG00000061918 GUCY1B1 
ENSG00000151693 ASAP2 
ENSG00000107863 ARHGAP21 
ENSG00000065534 MYLK 
ENSG00000177119 ANO6 
ENSG00000154146 NRGN 
ENSG00000123739 PLA2G12A 
ENSG00000138798 EGF 
ENSG00000144677 CTDSPL 
ENSG00000173210 ABLIM3 
ENSG00000140022 STON2 
ENSG00000011105 TSPAN9 
ENSG00000204424 LY6G6F 
ENSG00000102230 PCYT1B 
ENSG00000138735 PDE5A 
ENSG00000171611 PTCRA 
ENSG00000088053 GP6 
ENSG00000013016 EHD3 
ENSG00000107438 PDLIM1 
ENSG00000101856 PGRMC1 
ENSG00000178033 CALHM5 
ENSG00000197461 PDGFA 
ENSG00000158457 TSPAN33 
ENSG00000049323 LTBP1 
ENSG00000168497 CAVIN2 
ENSG00000090975 PITPNM2 
ENSG00000095303 PTGS1 
ENSG00000187800 PEAR1 
ENSG00000102362 SYTL4 
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ENSG00000164116 GUCY1A1 
ENSG00000169756 LIMS1 
ENSG00000108839 ALOX12 
ENSG00000180354 MTURN 
ENSG00000072422 RHOBTB1 
ENSG00000166091 CMTM5 
ENSG00000183785 TUBA8 
ENSG00000225528 Z82206.1 
ENSG00000204420 MPIG6B 
ENSG00000128266 GNAZ 
ENSG00000160789 LMNA 
ENSG00000185245 GP1BA 
ENSG00000113140 SPARC 
ENSG00000205038 PKHD1L1 
ENSG00000198478 SH3BGRL2 
ENSG00000174175 SELP 
ENSG00000149218 ENDOD1 
ENSG00000081377 CDC14B 
ENSG00000149564 ESAM 
ENSG00000165914 TTC7B 
ENSG00000165702 GFI1B 
ENSG00000164181 ELOVL7 
ENSG00000111644 ACRBP 
ENSG00000152952 PLOD2 
ENSG00000035403 VCL 
ENSG00000169247 SH3TC2 
ENSG00000267279 AC090409.1 
ENSG00000061676 NCKAP1 
ENSG00000169704 GP9 
ENSG00000099256 PRTFDC1 
ENSG00000179855 GIPC3 
ENSG00000006638 TBXA2R 
ENSG00000166681 BEX3 
ENSG00000188191 PRKAR1B 
ENSG00000143363 PRUNE1 
ENSG00000146376 ARHGAP18 
ENSG00000185532 PRKG1 
ENSG00000197959 DNM3 
ENSG00000165646 SLC18A2 
ENSG00000259207 ITGB3 
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ENSG00000180190 TDRP 
ENSG00000185340 GAS2L1 
ENSG00000163898 LIPH 
ENSG00000187699 C2orf88 
ENSG00000269556 TMEM185A 
ENSG00000172572 PDE3A 
ENSG00000128245 YWHAH 
ENSG00000122786 CALD1 
ENSG00000204310 AGPAT1 
ENSG00000109265 CRACD 
ENSG00000100351 GRAP2 
ENSG00000108960 MMD 
ENSG00000259330 INAFM2 
ENSG00000108576 SLC6A4 
ENSG00000161911 TREML1 
ENSG00000182732 RGS6 
ENSG00000160014 CALM3 
ENSG00000124491 F13A1 
ENSG00000212864 RNF208 
ENSG00000100678 SLC8A3 
ENSG00000177076 ACER2 
ENSG00000074416 MGLL 
ENSG00000069966 GNB5 
ENSG00000246889 AP000487.1 
ENSG00000163737 PF4 
ENSG00000127920 GNG11 
ENSG00000166963 MAP1A 
ENSG00000254703 SENCR 
ENSG00000106665 CLIP2 
ENSG00000150630 VEGFC 
ENSG00000119280 C1orf198 
ENSG00000108846 ABCC3 
ENSG00000260244 AC104083.1 
ENSG00000259719 LINC02284 
ENSG00000147036 LANCL3 
ENSG00000103184 SEC14L5 
ENSG00000137672 TRPC6 
ENSG00000138722 MMRN1 
ENSG00000104341 LAPTM4B 
ENSG00000169398 PTK2 



 

 47 

ENSG00000137941 TTLL7 
ENSG00000279970 AC023024.2 
ENSG00000111328 CDK2AP1 
ENSG00000003436 TFPI 
ENSG00000128578 STRIP2 
ENSG00000176783 RUFY1 
ENSG00000248516 AC105415.1 
ENSG00000197415 VEPH1 
ENSG00000120885 CLU 
ENSG00000082781 ITGB5 
ENSG00000110013 SIAE 
ENSG00000140374 ETFA 
ENSG00000102178 UBL4A 
ENSG00000187098 MITF 
ENSG00000133627 ACTR3B 
ENSG00000140479 PCSK6 
ENSG00000127831 VIL1 
ENSG00000250091 DNAH10OS 
ENSG00000148426 PROSER2 
ENSG00000088826 SMOX 
ENSG00000162367 TAL1 
ENSG00000255240 AP001636.3 
ENSG00000150594 ADRA2A 
ENSG00000069535 MAOB 
ENSG00000081181 ARG2 
ENSG00000205309 NT5M 
ENSG00000133401 PDZD2 
ENSG00000188677 PARVB 
ENSG00000106976 DNM1 
ENSG00000198873 GRK5 
ENSG00000101082 SLA2 
ENSG00000103942 HOMER2 
ENSG00000047617 ANO2 
ENSG00000160013 PTGIR 
ENSG00000225936 AL731557.1 
ENSG00000140682 TGFB1I1 
ENSG00000005961 ITGA2B 
ENSG00000178057 NDUFAF3 
ENSG00000256235 SMIM3 
ENSG00000101335 MYL9 
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ENSG00000259869 AL022344.1 
ENSG00000137942 FNBP1L 
ENSG00000128791 TWSG1 
ENSG00000227811 INKA2-AS1 
ENSG00000163430 FSTL1 
ENSG00000176903 PNMA1 
ENSG00000102804 TSC22D1 
ENSG00000138685 FGF2 
ENSG00000269970 AL162424.1 
ENSG00000022267 FHL1 
ENSG00000153162 BMP6 
ENSG00000167553 TUBA1C 
ENSG00000167645 YIF1B 
ENSG00000124762 CDKN1A 
ENSG00000235257 ITGA9-AS1 
ENSG00000264964 AP001033.3 
ENSG00000254614 AP003068.2 
ENSG00000234810 AL603840.1 
ENSG00000253520 AC136628.3 
ENSG00000153071 DAB2 
ENSG00000203485 INF2 
ENSG00000188549 CCDC9B 
ENSG00000110880 CORO1C 
ENSG00000117155 SSX2IP 
ENSG00000231131 LNCAROD 
ENSG00000095321 CRAT 
ENSG00000198948 MFAP3L 
ENSG00000050393 MCUR1 
ENSG00000249898 MCPH1-AS1 
ENSG00000198513 ATL1 
ENSG00000166086 JAM3 
ENSG00000167641 PPP1R14A 
ENSG00000119862 LGALSL 
ENSG00000188013 MEIS3P2 
ENSG00000106366 SERPINE1 
ENSG00000178732 GP5 
ENSG00000004866 ST7 
ENSG00000132970 WASF3 
ENSG00000147650 LRP12 
ENSG00000182253 SYNM 
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ENSG00000100439 ABHD4 
ENSG00000276141 WHAMMP3 
ENSG00000109572 CLCN3 
ENSG00000165682 CLEC1B 
ENSG00000254877 AP001636.2 
ENSG00000150637 CD226 
ENSG00000071051 NCK2 
ENSG00000041353 RAB27B 
ENSG00000253819 LINC01151 
ENSG00000174456 C12orf76 
ENSG00000134548 SPX 
ENSG00000143369 ECM1 
ENSG00000156011 PSD3 
ENSG00000143595 AQP10 
ENSG00000129521 EGLN3 
ENSG00000261253 AC137932.2 
ENSG00000260912 AL158206.1 
ENSG00000197879 MYO1C 
ENSG00000146858 ZC3HAV1L 
ENSG00000198586 TLK1 
ENSG00000185614 INKA1 
ENSG00000198753 PLXNB3 
ENSG00000140416 TPM1 
ENSG00000142192 APP 
ENSG00000141198 TOM1L1 
ENSG00000127838 PNKD 
ENSG00000169083 AR 
ENSG00000173542 MOB1B 
ENSG00000253394 LINC00534 
ENSG00000231652 AL590428.1 
ENSG00000197122 SRC 
ENSG00000117400 MPL 
ENSG00000154917 RAB6B 
ENSG00000205126 ACCSL 
ENSG00000184602 SNN 
ENSG00000097021 ACOT7 
ENSG00000214018 RRM2P3 
ENSG00000169047 IRS1 
ENSG00000184500 PROS1 
ENSG00000172794 RAB37 



 

 50 

ENSG00000223855 AC147651.1 
ENSG00000112078 KCTD20 
ENSG00000235609 AF127577.4 
ENSG00000141873 SLC39A3 
ENSG00000185052 SLC24A3 
ENSG00000024422 EHD2 
ENSG00000158560 DYNC1I1 
ENSG00000233276 GPX1 
ENSG00000079482 OPHN1 
ENSG00000183914 DNAH2 
ENSG00000172889 EGFL7 
ENSG00000260792 LINC02280 
ENSG00000171159 C9orf16 
ENSG00000068796 KIF2A 
ENSG00000109089 CDR2L 
ENSG00000084693 AGBL5 
ENSG00000283633 AP000547.3 
ENSG00000248636 AC002070.1 
ENSG00000175854 SWI5 
ENSG00000133317 LGALS12 
ENSG00000185015 CA13 
ENSG00000105971 CAV2 
ENSG00000185222 TCEAL9 
ENSG00000156535 CD109 
ENSG00000103876 FAH 
ENSG00000126903 SLC10A3 
ENSG00000179399 GPC5 
ENSG00000213977 TAX1BP3 
ENSG00000176490 DIRAS1 
ENSG00000139835 GRTP1 
ENSG00000101412 E2F1 
ENSG00000235513 L3MBTL2-AS1 
ENSG00000167363 FN3K 
ENSG00000272468 AL021807.1 
ENSG00000072657 TRHDE 
ENSG00000267060 PTGES3L 
ENSG00000186889 TMEM17 
ENSG00000134909 ARHGAP32 
ENSG00000170935 NCBP2L 
ENSG00000255478 AP000944.1 
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ENSG00000125257 ABCC4 
ENSG00000112290 WASF1 
ENSG00000167460 TPM4 
ENSG00000169241 SLC50A1 
ENSG00000198829 SUCNR1 
ENSG00000173852 DPY19L1 
ENSG00000255045 AP000866.5 
ENSG00000225981 AC102953.1 
ENSG00000213672 NCKIPSD 
ENSG00000148484 RSU1 
ENSG00000131711 MAP1B 
ENSG00000127325 BEST3 
ENSG00000188580 NKAIN2 
ENSG00000273123 AC020634.2 
ENSG00000224805 LINC00853 
ENSG00000112977 DAP 
ENSG00000143195 ILDR2 
ENSG00000135919 SERPINE2 
ENSG00000115290 GRB14 
ENSG00000108039 XPNPEP1 
ENSG00000250334 LINC00989 
ENSG00000162687 KCNT2 
ENSG00000172159 FRMD3 
ENSG00000147394 ZNF185 
ENSG00000006831 ADIPOR2 
ENSG00000143418 CERS2 
ENSG00000101333 PLCB4 
ENSG00000173626 TRAPPC3L 
ENSG00000163736 PPBP 
ENSG00000103740 ACSBG1 
ENSG00000169946 ZFPM2 
ENSG00000134668 SPOCD1 
ENSG00000120279 MYCT1 
ENSG00000284693 LINC02606 
ENSG00000282863 AC012560.2 
ENSG00000162852 CNST 
ENSG00000017260 ATP2C1 
ENSG00000228474 OST4 
ENSG00000087460 GNAS 
ENSG00000244041 LINC01011 
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ENSG00000153714 LURAP1L 
ENSG00000138080 EMILIN1 
ENSG00000144893 MED12L 
ENSG00000214357 NEURL1B 
ENSG00000156206 CFAP161 
ENSG00000072042 RDH11 
ENSG00000235927 NEXN-AS1 
ENSG00000103316 CRYM 
ENSG00000253227 AC090192.2 
ENSG00000183671 GPR1 
ENSG00000169860 P2RY1 
ENSG00000115170 ACVR1 
ENSG00000165716 DIPK1B 
ENSG00000174099 MSRB3 
ENSG00000113361 CDH6 
ENSG00000255874 LINC00346 
ENSG00000167468 GPX4 
ENSG00000130958 SLC35D2 
ENSG00000109066 TMEM104 
ENSG00000265148 TSPOAP1-AS1 
ENSG00000273117 AC144652.1 
ENSG00000180914 OXTR 
ENSG00000126803 HSPA2 
ENSG00000143995 MEIS1 
ENSG00000146416 AIG1 
ENSG00000100994 PYGB 
ENSG00000127252 PLAAT1 
ENSG00000169313 P2RY12 
ENSG00000287815 AC005081.1 
ENSG00000127526 SLC35E1 
ENSG00000181104 F2R 
ENSG00000226510 UPK1A-AS1 
ENSG00000182048 TRPC2 
ENSG00000115641 FHL2 
ENSG00000157837 SPPL3 
ENSG00000054356 PTPRN 
ENSG00000237118 CYP2F2P 
ENSG00000240497 AC092919.2 
ENSG00000250641 LY6G6F-

LY6G6D 
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ENSG00000167100 SAMD14 
ENSG00000196924 FLNA 
ENSG00000254786 AP001636.1 
ENSG00000183963 SMTN 
ENSG00000180573 H2AC6 
ENSG00000249992 TMEM158 
ENSG00000206052 DOK6 
ENSG00000180694 TMEM64 
ENSG00000282828 AC009971.1 
ENSG00000236279 CLEC2L 
ENSG00000161013 MGAT4B 
ENSG00000246705 H2AJ 
ENSG00000136231 IGF2BP3 
ENSG00000196611 MMP1 
ENSG00000283632 EXOC3L2 
ENSG00000095739 BAMBI 
ENSG00000163590 PPM1L 
ENSG00000113083 LOX 
ENSG00000198752 CDC42BPB 
ENSG00000140830 TXNL4B 
ENSG00000183454 GRIN2A 
ENSG00000224116 INHBA-AS1 
ENSG00000142949 PTPRF 
ENSG00000245008 AP001122.1 
ENSG00000172992 DCAKD 
ENSG00000182747 SLC35D3 
ENSG00000124302 CHST8 
ENSG00000164171 ITGA2 
ENSG00000285043 AC093512.2 
ENSG00000287860 AC079804.3 
ENSG00000254933 AP000785.1 
ENSG00000010278 CD9 
ENSG00000110799 VWF 
ENSG00000169129 AFAP1L2 
ENSG00000129354 AP1M2 
ENSG00000159461 AMFR 
ENSG00000129473 BCL2L2 
ENSG00000064601 CTSA 
ENSG00000166333 ILK 
ENSG00000204872 NAT8B 
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ENSG00000255200 PGAM1P8 
ENSG00000151748 SAV1 
ENSG00000123191 ATP7B 
ENSG00000134297 PLEKHA8P1 
ENSG00000137225 CAPN11 
ENSG00000168135 KCNJ4 
ENSG00000184113 CLDN5 
ENSG00000247735 AC120114.1 
ENSG00000132613 MTSS2 
ENSG00000099785 MARCHF2 
ENSG00000125952 MAX 
ENSG00000104067 TJP1 
ENSG00000197147 LRRC8B 
ENSG00000163833 FBXO40 
ENSG00000100592 DAAM1 
ENSG00000177697 CD151 
ENSG00000176170 SPHK1 
ENSG00000075945 KIFAP3 
ENSG00000126856 PRDM7 
ENSG00000243709 LEFTY1 
ENSG00000117640 MTFR1L 
ENSG00000162430 SELENON 
ENSG00000255364 SMILR 
ENSG00000185305 ARL15 
ENSG00000128272 ATF4 
ENSG00000165757 JCAD 
ENSG00000023697 DERA 
ENSG00000103769 RAB11A 
ENSG00000137801 THBS1 
ENSG00000162614 NEXN 
ENSG00000078018 MAP2 
ENSG00000279138 AP002847.1 
ENSG00000184678 H2BC21 
ENSG00000120903 CHRNA2 
ENSG00000125388 GRK4 
ENSG00000287514 AL450267.2 
ENSG00000149932 TMEM219 
ENSG00000229754 CXCR2P1 
ENSG00000227550 TRBV7-5 
ENSG00000170425 ADORA2B 
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ENSG00000260032 NORAD 
ENSG00000255325 AC108136.1 
ENSG00000237529 AL137847.2 
ENSG00000106484 MEST 
ENSG00000168734 PKIG 
ENSG00000165091 TMC1 
ENSG00000230749 MEIS1-AS2 
ENSG00000108187 PBLD 
ENSG00000270689 BUD13P1 
ENSG00000253355 AP003469.1 
ENSG00000166035 LIPC 
ENSG00000100003 SEC14L2 
ENSG00000204323 SMIM5 
ENSG00000064961 HMG20B 
ENSG00000229619 MBNL1-AS1 
ENSG00000169224 GCSAML 
ENSG00000272701 MESTIT1 
ENSG00000279673 AC092919.3 
ENSG00000170421 KRT8 
ENSG00000116962 NID1 
ENSG00000088280 ASAP3 
ENSG00000050628 PTGER3 
ENSG00000169504 CLIC4 
ENSG00000066185 ZMYND12 
ENSG00000166311 SMPD1 
ENSG00000232725 U52111.1 
ENSG00000204614 TRIM40 
ENSG00000079156 OSBPL6 
ENSG00000244300 GATA2-AS1 
ENSG00000245281 AC124242.1 
ENSG00000160188 RSPH1 
ENSG00000042062 RIPOR3 
ENSG00000185909 KLHDC8B 
ENSG00000213625 LEPROT 
ENSG00000177324 BEND2 
ENSG00000250348 AC113404.1 
ENSG00000130176 CNN1 
ENSG00000186792 HYAL3 
ENSG00000102572 STK24 
ENSG00000254506 AP003080.1 
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ENSG00000255002 LINC02324 
ENSG00000106868 SUSD1 
ENSG00000127314 RAP1B 
ENSG00000128311 TST 
ENSG00000073464 CLCN4 
ENSG00000239405 TMED10P2 
ENSG00000125967 NECAB3 
ENSG00000163734 CXCL3 
ENSG00000253737 AP003469.3 
ENSG00000168067 MAP4K2 
ENSG00000113638 TTC33 
ENSG00000236411 NDUFAF4P3 
ENSG00000184838 PRR16 
ENSG00000229666 MAST4-AS1 
ENSG00000123500 COL10A1 
ENSG00000203395 AC015969.1 
ENSG00000273355 AP000894.4 
ENSG00000151789 ZNF385D 
ENSG00000105507 CABP5 
ENSG00000117586 TNFSF4 
ENSG00000040531 CTNS 
ENSG00000257267 ZNF271P 
ENSG00000274139 AC090164.2 
ENSG00000122778 KIAA1549 
ENSG00000254718 AL157756.1 
ENSG00000011258 MBTD1 
ENSG00000285909 AP002762.2 
ENSG00000088836 SLC4A11 
ENSG00000134030 CTIF 
ENSG00000210151 MT-TS1 
ENSG00000152128 TMEM163 
ENSG00000248334 WHAMMP2 
ENSG00000254810 AP001189.3 
ENSG00000147862 NFIB 
ENSG00000129636 ITFG1 
ENSG00000284391 AL139398.1 
ENSG00000222032 AC112721.2 
ENSG00000174233 ADCY6 
ENSG00000004776 HSPB6 
ENSG00000163738 MTHFD2L 
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ENSG00000105499 PLA2G4C 
ENSG00000039987 BEST2 
ENSG00000143811 PYCR2 
ENSG00000174640 SLCO2A1 
ENSG00000233427 AL009181.2 
ENSG00000259120 SMIM6 
ENSG00000122970 IFT81 
ENSG00000144868 TMEM108 
ENSG00000169925 BRD3 
ENSG00000271743 AF287957.1 
ENSG00000124145 SDC4 
ENSG00000163359 COL6A3 
ENSG00000230385 AC012507.1 
ENSG00000167414 GNG8 
ENSG00000058866 DGKG 
ENSG00000263155 MYZAP 
ENSG00000132535 DLG4 
ENSG00000198805 PNP 
ENSG00000186480 INSIG1 
ENSG00000092096 SLC22A17 
ENSG00000142694 EVA1B 
ENSG00000158164 TMSB15A 
ENSG00000102893 PHKB 
ENSG00000055813 CCDC85A 
ENSG00000134853 PDGFRA 
ENSG00000226191 CLK3P2 
ENSG00000270055 AC127502.2 
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Online Table 13. GOBP pathway enrichment analysis for MEgreen module member genes.  

module geneset_id description p.adj p.val odds.ratio n_fg n_bg fg_freq bg_freq n_set 

green GO:0007596 blood coagulation 7.74E-19 8.06E-22 6.13 53 272 0.0891 0.0187 431 

green GO:0050817 coagulation 1.18E-18 1.37E-21 6.04 53 275 0.0891 0.0189 439 

green GO:0007599 hemostasis 1.34E-18 1.63E-21 6.01 53 276 0.0891 0.019 438 

green GO:0030168 platelet activation 6.62E-17 8.76E-20 8.91 36 136 0.0605 0.00936 183 

green GO:0002576 platelet degranulation 1.11E-13 2.31E-16 8.99 29 108 0.0487 0.00743 131 

green GO:1903034 regulation of response to 
wounding 

7.40E-10 3.14E-12 6.26 27 132 0.0454 0.00908 210 

green GO:0061041 regulation of wound healing 1.13E-09 5.15E-12 7.1 24 106 0.0403 0.00729 177 

green GO:0070527 platelet aggregation 1.73E-09 8.18E-12 12 17 51 0.0286 0.00351 68 

green GO:0003018 vascular process in circulatory 
system 

4.09E-08 2.50E-10 5.99 23 116 0.0387 0.00798 201 

green GO:0034109 homotypic cell-cell adhesion 4.15E-08 2.56E-10 8.33 18 70 0.0303 0.00482 90 

green GO:0006937 regulation of muscle 
contraction 

1.09E-07 7.42E-10 5.91 22 112 0.037 0.0077 209 

green GO:0030193 regulation of blood coagulation 2.52E-07 1.86E-09 8.53 16 61 0.0269 0.0042 103 

green GO:1900046 regulation of hemostasis 2.52E-07 1.86E-09 8.53 16 61 0.0269 0.0042 104 

green GO:0061045 negative regulation of wound 
healing 

4.28E-07 3.31E-09 8.99 15 55 0.0252 0.00378 93 

green GO:0050818 regulation of coagulation 5.10E-07 3.99E-09 8 16 64 0.0269 0.0044 109 

green GO:0006939 smooth muscle contraction 6.48E-07 5.09E-09 7.83 16 65 0.0269 0.00447 120 

green GO:1903035 negative regulation of response 
to wounding 

1.27E-06 1.03E-08 7.38 16 68 0.0269 0.00468 108 

green GO:0006940 regulation of smooth muscle 
contraction 

2.32E-06 2.02E-08 11 12 38 0.0202 0.00261 68 

green GO:0030195 negative regulation of blood 
coagulation 

2.32E-06 2.02E-08 11 12 38 0.0202 0.00261 68 

green GO:1900047 negative regulation of 
hemostasis 

2.32E-06 2.02E-08 11 12 38 0.0202 0.00261 69 



 

 66 

green GO:0090257 regulation of muscle system 
process 

2.65E-06 2.38E-08 4.2 25 169 0.042 0.0116 324 

green GO:0050819 negative regulation of 
coagulation 

4.19E-06 3.87E-08 10.2 12 40 0.0202 0.00275 73 

green GO:0090287 regulation of cellular response 
to growth factor stimulus 

6.69E-06 6.36E-08 3.84 26 190 0.0437 0.0131 356 

green GO:0035150 regulation of tube size 5.18E-05 5.57E-07 5.25 16 89 0.0269 0.00612 166 

green GO:0035296 regulation of tube diameter 5.18E-05 5.57E-07 5.25 16 89 0.0269 0.00612 165 

green GO:0097746 regulation of blood vessel 
diameter 

5.18E-05 5.57E-07 5.25 16 89 0.0269 0.00612 165 

green GO:0097581 lamellipodium organization 7.86E-05 8.86E-07 5.87 14 71 0.0235 0.00488 97 

green GO:0090092 regulation of transmembrane 
receptor protein 
serine/threonine kinase 
signaling pathway 

9.00E-05 1.03E-06 3.7 22 165 0.037 0.0114 330 

green GO:0007179 transforming growth factor beta 
receptor signaling pathway 

0.000132 1.54E-06 3.74 21 156 0.0353 0.0107 270 

green GO:0030100 regulation of endocytosis 0.000272 3.49E-06 3.53 21 164 0.0353 0.0113 233 

green GO:0071560 cellular response to 
transforming growth factor beta 
stimulus 

0.000321 4.18E-06 3.26 23 193 0.0387 0.0133 327 

green GO:0071559 response to transforming 
growth factor beta 

0.000435 5.92E-06 3.18 23 197 0.0387 0.0136 336 

green GO:0019935 cyclic-nucleotide-mediated 
signaling 

0.00044 6.02E-06 4.03 17 118 0.0286 0.00812 283 

green GO:0030198 extracellular matrix 
organization 

0.000443 6.08E-06 2.86 27 255 0.0454 0.0175 473 

green GO:0045987 positive regulation of smooth 
muscle contraction 

0.000443 6.09E-06 13.8 7 19 0.0118 0.00131 34 

green GO:0043062 extracellular structure 
organization 

0.000472 6.54E-06 2.85 27 256 0.0454 0.0176 476 

green GO:0031589 cell-substrate adhesion 0.000598 8.67E-06 2.74 28 275 0.0471 0.0189 430 

green GO:0007160 cell-matrix adhesion 0.00066 9.77E-06 3.28 21 175 0.0353 0.012 267 

green GO:0007188 adenylate cyclase-modulating 
G protein-coupled receptor 
signaling pathway 

0.000706 1.06E-05 3.84 17 123 0.0286 0.00846 304 
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green GO:0007187 G protein-coupled receptor 
signaling pathway, coupled to 
cyclic nucleotide second 
messenger 

0.00072 1.09E-05 3.65 18 136 0.0303 0.00936 361 

green GO:0043552 positive regulation of 
phosphatidylinositol 3-kinase 
activity 

0.000743 1.13E-05 9.48 8 28 0.0134 0.00193 34 

green GO:0038084 vascular endothelial growth 
factor signaling pathway 

0.000946 1.50E-05 9.03 8 29 0.0134 0.00199 52 
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