Paradoxical Combination of Saturable Absorption and Reverse-Saturable Absorption in Plasmon Semiconductor Nanocrystals

Xiangling Tian,1,2 Rongfei Wei,3* Dandan Yang,¹ and Jianrong Qiu1,4*

¹State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, School of Materials Science

and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, PR China

²Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang

Link, Singapore 637371, Singapore

*³*Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China

⁴State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou,

Zhejiang 310027, PR China

**qjr@zju.edu.cn; rfwei@zjnu.edu.cn*

Supporting Information

1. Experiment section

Synthesis of Al-doped ZnO nanocrystals (AZO NCs)

The Al-doped ZnO nanocrystals were prepared by using zinc salts with the dopant ions in basic solution and the details is shown in our previous work.¹ In short, Zinc acetate dehydrate (8.714g, Zn(CH₃COO)·2H₂O, 99.99%, Aladdin), aluminum hydroxide (0.958g, Al(OH)3, 99.9%, Aladdin), sodium hydroxide (NaOH, Aladdin) and distilled water (13 ml) were firstly dissolved in 80 ml diethylene glycol (DEG). Here, the Al dopant was adjusted to be 1wt% (or 3at%) to make sure that the start LSPR wavelength is less than 800 nm (the femtoseconds laser wavelength). The mixture was then heated up to 189 °C by oil-bath heating. After centrifuging and washing several times, the obtained nanocrystals were then dried in vaccum for next measurements. The Al-doped ZnO nanocrystals was dispersed into alcohol by ultrasonic oscillation and then spin-coated onto a 0.5 cm thick highpurity quartz slide for 10 times for characterization.

Characterization of Al-doped ZnO nanocrystals

A confocal microscopy system (Renishaw inVia, Gloucestershire, UK) operated at 532 nm excitation source was used to record Raman signal. A Bruker diffractometer with Cu K*α*¹ radiation (*λ*=1.5418 Å) was used to record the XRD pattern. A Perkin-Elmer Lambda-900 UV-Vis-NIR spectrophotometer (Perkin Elmer, Waltham, MA) was used to measure the linear optical absorption. An empty quartz slide was used to be a reference. The transmission electron microscope (TEM) images were recorded by a JEOL-2100F at 200 kV. Elemental analysis was measured by induced coupled plasma atomic emission spectroscopy (ICP-AES) with a Varian 720/730 Series spectrometer.

Z-scan

Optical nonlinearities at 800 nm and 1550 nm were performed by a well-developed open-aperture Z-scan technique. The detailed description is shown in our previous work.^{2, 3} In short, a commercial Ti:sapphire regenerative amplifier system (800 nm, 1 kHz, 130 fs) was employed to be the laser source. The wavelength is tuned by an optical parametric amplifier (OPA) from 800 nm to 1550 nm. The 0.5 mm thick high-purity quartz slide coated with the synthesized Al-doped ZnO nanocrystals was settled on a linear translation stage, which can move near the focus to imitate the change of the femtosecond laser intensity.

Pulse generation

The laser cavity is based on 2 m-long erbium-doped gain fiber (EDF). Another single mode fiber (SMF)-28e was used as the pigtails of the corresponding components. A commercial 980 nm laser was used to excite the gain fiber through a 980/1550 nm wavelength division multiplexer (WDM). The cavity birefringence was adjusted by employing a polarization controller (PC). In order to make sure the single-direction operation, a polarizationindependent optical isolator was constructed into the cavity. A 90:10 fiber coupler was adopted to output the laser. The AZO/PVA composite film was embedded between two fiber connectors and integrated into the laser cavity as saturable absorber for Q-switching operation. More details is shown in other article.²

2. Calculation of nonlinear absorption coefficient

For three-order nonlinearity process, the total absorption coefficient can be expressed as:

$$
\alpha(I) = \alpha_0 + \beta I \tag{S1}
$$

where α_0 is the linear absorption coefficient and β is three-order nonlinear absorption coefficient. The openaperture Z-scan normalized transmittance can be expressed as:⁴

$$
T(z) = \sum_{m=0}^{\infty} \frac{\left[q_0(z,0) \right]^n}{(m+1)^{2/2}}, q_0(z,0) = \frac{\beta L_{\text{eff}} I_0}{(1 + z^2/z_0^2)}
$$
(S2)

where I_0 is the laser intensity at the focal plane; *z* is the sample position; $z_0 = \pi \omega_0^2 / \lambda$ presents the Rayleigh range, $ω_0$ presents the minimum beam waist at the focal plane ($z=0$), $λ$ presents the laser free-space wavelength; $L_{\text{eff}}=(1 \exp(-\alpha_0 L)/\alpha_0$ is the effective length for three-order nonlinearity process; *L* is the sample length.

In three photon absorption (fifth-order nonlinearity) process, the total absorption coefficient can be described by:

$$
\alpha(I) = \alpha_0 + \gamma I^2 \tag{S3}
$$

where *γ* is three photon absorption coefficient. The open-aperture *Z*-scan normalized transmittance can be deduced as:⁵

$$
T(z) = \frac{1}{\pi^{1/2} p_0} \int_{-\infty}^{\infty} \ln \left(1 + p_0^2 \exp(-2x^2) \right)^{2} + p_0 \exp(-x^2) dx \qquad (S4)
$$

where $p_0 = \left[\frac{-740 \text{°C}}{2(1-\frac{2}{3})} \right]$, $L'_{\text{eff}}=[1-\exp(-2a_0L)]/(2a_0)$ is the effective length for three photon $\frac{1}{2}$ $2\lambda^2$, 2μ ell μ en μ ω_0 ω_1 $\begin{array}{c} 0 \end{array}$ $\begin{array}{c} \end{array}$ $2\left(2\right)2\left(2\right)$ $\frac{2}{\pi}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ${}^{2}_{0}L_{\text{eff}}^{2}$ $\Big|^{1/2}$ I^{2} -1 $\exp(A)$ $V_0 = \left(\frac{2\gamma I_0 L_{\text{eff}}}{(1 + z^2/z_0^2)^2}\right)$, $L_{\text{eff}} = [1-\exp(-2\alpha_0 L)]/(2\alpha_0)$ 2 \int , L_{eff} = [1-exp(-2 $\alpha_0 L$)]/(2 α_0) is $\bigg\}^{1/2}$ $\left(\frac{1+z^2/z_0^2}{2}\right)^2$, $L_{\text{eff}}=[1-\exp(1+z_0^2)]$ $\left(2\gamma I_0^2 L_{\rm eff}\right)^{1/2}$ $+ z^2/z_0^2$)², and $\frac{1}{z_0}$ is the set of $\frac{1}{z_0}$ $= \left[\frac{2\gamma I_0 L_{\text{eff}}}{2(1-\gamma L_{\text{eff}})^2}\right]$, $L_{\text{eff}} = [1-\exp(-2\alpha_0 L)]/(2\alpha_0)$ z^2/z_0^2)² \sum $z = 1$ $z = 1$ $z = 0$ $z = 0$ $p_0 = \left(\frac{2\gamma I_0^2 L_{\text{eff}}}{2(1/3\epsilon)^2}\right)^{1/2}$, $L^2_{\text{eff}} = [1-\exp(-2a_0L)]/(2a_0)$ is the efform

absorption process.

In the three-order nonlinearity and fifth-order nonlinearity (three photon absorption) process, the total absorption can be expressed as:

$$
\alpha(I) = \alpha_0 + \beta I + \gamma I^2 \tag{S5}
$$

The polynomial solution of the normalized transmittance as a function of the sample position $x=z/z_0$ is deduced as:

$$
T(x,t) = \exp(\alpha_0 L) \left[1 + \sum_{m=1}^{\infty} \left(-GL \right)^m q_m(\rho) \right]
$$
 (S6)

here, $\rho = I_0 \exp(-t^2 \tau^2) / [I_s(1+x^2)]$, τ is the half-width at e^{-1} of the maximum for the pulse duration; $G = \alpha_0 + \beta I_s + \gamma I_s^2$, I_s is the saturable intensity. The first term of $q_m(\rho)$ is considered and the $q_1(\rho)$ is given as:⁶

$$
q_1(\rho) = \left[(\alpha_0 + \beta I - \gamma I_s^2) \rho + \frac{\gamma I_s^2 \rho^2}{2} + (\gamma I_s^2 - \beta I_s) \ln(1 + \rho) \right] / (\alpha_0 + \beta I_s + \gamma I_s^2)
$$
 (S7).

All the parameters are defined as the above. Hence, the open-aperture Z-scan normalized transmittance can be deduced as:⁶

$$
T(x) = \frac{1}{\sqrt{\pi \tau}} \int_{-\infty}^{\infty} T(x, t) \exp(-t^2/\tau^2) dt
$$
 (S8).

3. Additional Figures

Fig. S1. Open Z-scan results (black square) and fitting curves (red line) of the AZO/Quartz film measured by decreasing the pump laser intensity.

Fig. S2. The relationship between $Ln(1-TOA)$ and $Ln(I_0)$ shows the slope is about 1.49, which indicates threephoton absorption behavior under higher irradiation intensity range.

References:

- 1. X. Tian, H. Luo, R. Wei, M. Liu, Z. Yang, Z. Luo, H. Zhu, J. Li and J. Qiu, *Nanoscale*, 2019, **11**, 13988-13995.
- 2. R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu and J. Qiu, *Nanoscale*, 2016, **8**, 7704-7710.
- 3. X. Tian, H. Luo, R. Wei, C. Zhu, Q. Guo, D. Yang, F. Wang, J. Li and J. Qiu, *Adv. Mater.*, 2018, **30**, 1801021.
- 4. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan and E. W. V. Stryland, *IEEE J. Quant. Electron.*, 1990, **26**, 760-769.
- 5. J. He, Y. Qu, H. Li, J. Mi and W. Ji, *Opt. Express*, 2005, **13**, 9235-9247.
- 6. J. Wang, B. Gu, X.-W. Ni and H.-T. Wang, *Opt. Laser Technol.*, 2012, **44**, 390-393.