Electronic Supplementary Information

3D hierarchical self-supported NiO/Co₃O₄@C/CoS₂ nanocomposites as electrode materials for high-performance supercapacitor

Xingxing Zhu,^a Mengyao Sun,^b Rui Zhao, ^a Yingqi Li, ^{ac} Bo Zhang,^a Yingli Zhang, ^a

Xingyou Lang,^a Yongfu Zhu,*^a Qing Jiang^a

^a Key Laboratory of Automobile Materials, Ministry of Education (Jilin University),

School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

^b School of Materials Science and Engineering, Fudan University, Shanghai 200433, China.

^c College of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.

*Corresponding author Email: yfzhu@jlu.edu.cn

Fig. S1. (a) The typical SEM image of the Ni-Co LDH. (b) The typical TEM image of the Ni-Co LDH (c) The typical SEM image of the NiO/Co₃O₄@C. (d) The typical TEM image of NiO/Co₃O₄@C. (e)HRTEM image of NiO/Co₃O₄@C. The cross section of NiO/Co₃O₄@C and NiO/Co₃O₄@C/CoS₂ (f, g).

Fig. S2 The XRD results of NiO/Co₃O₄@C/CoS₂ sample before and after 5000 cycles.

Fig. S3 Area distribution of S, Co, O, C and Ni elements in NiO/Co₃O₄@C/CoS₂.

Fig. S4 Fitted O 1s for NiO@Co₃O₄@C (a) and for NiO/Co₃O₄@C/CoS₂(b).

Fig. S5 Nitrogen adsorption–desorption isotherms and pore-size distribution (inset) of nickel foam coated with $NiO/Co_3O_4@C$ sample.

Fig. S6 The CV (a) and GCD (b) curves of as-prepared samples at scan rate 50 mV s⁻¹ and current density of 2 A g⁻¹.

Fig. S7 Illustration of more oxygen vacancies presence in the surface of Co_3O_4 during the reaction of $Co^{3+}+S_2O_3^{2-}+5H_2O = 8Co^{2+}+2SO_4^{2-}+10H^+$.

Fig. S8 GCD curves of the samples with or without Na₂S₂O₃.

Fig. S9 Nyquist plot of the NiO/Co₃O₄@C/CoS₂ electrode with its equivalent circuit (inset) used to fit the experimental data.

Fig. S10 Hybrid device of NiO/Co₃O₄@C/CoS₂//AC.

Fig. S11 The electrochemical behavior of $NiO/Co_3O_4@C/CoS_2$.

Fig. S12 Cyclic voltammograms of the NiO/Co₃O₄@C/CoS₂ electrode and activated carbon (AC) electrodes performed in a three-electrode system in 6 M KOH solution at a scan rate of 5 mV s⁻¹.

Fig. S13 (a) GCD curves of AC electrode at various current densities. (b) Rate performance of the AC electrode at various scan rates from 1 A g^{-1} to 3 A g^{-1} .

Fig. S14 GCD curves of NiO/Co $_3O_4@C/CoS_2//AC$ hybrid device at different current densities.

Fig. S15 Rate performance of NiO/Co₃O₄@C/CoS₂ hybrid electrode at various scan rates from 1 A g⁻¹ to 30 A g⁻¹; (b) Rate performance of NiO/Co₃O₄@C/CoS₂//AC hybrid device at various scan rates from 0.5 A g⁻¹ to 5 A g⁻¹.

Fig. S16 Real application of the two NiO/Co₃O₄@C/CoS₂//AC devices for lighting six LEDs at the same time.

Samples	Highest capacity (F g ⁻¹)	High rate performance	Ref
G-Ni(OH) ₂ /MoS ₂	1950 F g ⁻¹ at 1 A g ⁻¹	1400 F g ⁻¹ at 1 A g ⁻¹	1
NiCo ₂ O ₄ /NiO/	1693 F g ⁻¹ at 1 A g ⁻¹	~1480 F g ⁻¹ at 10 A g ⁻¹	2
Co ₃ O ₄			
Co ₃ O ₄ -	783 F g ⁻¹ at 1 A g ⁻¹	583 F g ⁻¹ at 10 A g ⁻¹	3
NiO/graphene foam			
MnO ₂ @NiCo-	1547 F g ⁻¹ at 1 A g ⁻¹	1189 F g ⁻¹ at 10 A g ⁻¹	4
LDH/CoS ₂			
CoO/Co-Cu-S	2300 F g ⁻¹ at 2 A g ⁻¹	~1702 F g ⁻¹ at 30 A g ⁻¹	5
NiO/Co ₃ O ₄ @C/	1024 C g ⁻¹ at 1A g ⁻¹	~759 C g ⁻¹ at 30 A g ⁻¹	This work
CoS_2			

 Table S1 Comparison of electrochemical performance of some reported electrode materials.

- C. Zhao, R. Wang, Y. Zhang, L. Chen, T. Li, X. Deng, P. Zhang and X. Lu, *Electrochim. Acta*, 2019, 320, 134591.
- 2. X. Feng, Y. Huang, C. Li, X. Chen, S. Zhou, X. Gao and C. Chen, *Chem. Eng. J.*, 2019, **368**, 51-60.
- 3. P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar and A. Yuan, *Chem. Eng. J.*, 2019, **369**, 57-63.
- 4. X. Wang, F. Huang, F. Rong, P. He, R. Que and S. P. Jiang, *J. Mater. Chem. A*, 2019, **7**, 12018-12028.
- W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu and X. W. D. Lou, *Angew Chem. Int. Ed. Engl.*, 2019, 58, 15441-15447.