Mo₂B, a MBene member with high electrical and thermal

conductivities, and satisfactory performances in lithium ion batteries

Xian-Hu Zha^{*,a}, Pengxiang Xu^a, Qing Huang^b, Shiyu Du^{*,b}, Rui-Qin Zhang^c

^aCenter for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518055, China ^bEngineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China

^cDepartment of Physics, City University of Hong Kong –Hong Kong SAR, China *Email: zhaxh@pcl.ac.cn; dushiyu@nimte.ac.cn.

The specific heat is calculated according to the following equation:

$$c = \frac{1}{N_k M} \sum_{s,k} k_B \left(\frac{h\omega_{s,k}}{k_B T}\right)^2 \frac{\exp(\frac{n\omega_{s,k}}{k_B T})}{\left[\exp(\frac{h\omega_{s,k}}{k_B T}) - 1\right]^2} \setminus *$$

MERGEFORMAT (S1),

Here, N_k and M denote the number of k-points adopted, and the mass of the Mo₂B unitcell, respectively. k_B and h are the Boltzmann's and the reduced Plank's constants, respectively. T represents temperature. $\omega_{s,k}$ is the circular phonon frequency of s branch at k point.

The thermal expansion coefficient is calculated according to the Grüneisen approximation. The detailed equation is as follows:

$$\alpha = \frac{1}{N_k} \frac{1}{a_0^2 \frac{\partial^2 E}{\partial a^2}|_0} \sum_{s,k} c(s,k) \gamma(s,k) \, \backslash * \qquad \text{MERGEFORMAT}$$

(S2),

where a_0 is the optimal lattice parameter, *E* denotes the total energy of the configuration investigated. $\gamma(s,k)$ represents the Grüneisen parameter, which is

calculated as
$$\gamma(s,k) = \frac{-a_0}{\omega_{0,s,k}} \frac{\partial \omega_{s,k}}{\partial a}$$
.

The phonon thermal conductivity is calculated according to the Klemens's theory:

$$\kappa_{p} = \frac{\rho}{T} \sum_{s} \frac{\langle \upsilon_{s} \rangle^{4}}{\langle \gamma_{s}^{2} \rangle} \frac{1}{\omega_{\max,s}} \ln \frac{\omega_{\max,s}}{\omega_{\min,s}} \setminus * \qquad \text{MERGEFORMAT}$$

(S3),

where ρ is the mass density, v_s and γ_s are the group velocity and Grüneisen parameter of branch $s \, . \, \omega_{\max,s}$ and $\omega_{\min,s}$ are the maximum and minimum circular phonon frequency of branch $s \, .$

Figure S1. Some metastable two-dimensional molybdenum borides with the ratio of molybdenum to boron is 2:1, predicted from a combination of the CALYPSO and VASP codes.

Table S1. Relative total energies ΔE (in eV) between the unit cells of the metastable configurations presented in Figure S1 and the H- and T-type Mo₂B. The space group is adopted to differentiate these structures, and 187 and 164 denote the H- and T-type Mo₂B, respectively.

Space group	47	6	1	123	191	187	164
ΔΕ	4.91	4.20	2.51	5.17	3.59	0.0525	0.000

Figure S1. The phonon dispersions of the (a) H-type and (b) T-type Mo₂B.

Figure S2. The Brillouin zones (BZs) for the H- and T-type Mo_2B , where the high-symmetry directions ΓM and ΓK respectively correspond to the armchair and zigzag directions in both the H- and T-type configurations.

Figure S3. Based on a 5 μ m flake length, (a) and (b) respectively shows the phonon thermal conductivity along the armchair (Γ M) and zigzag (Γ K) direction of the H-type Mo₂B. (c) and (d) respectively shows the corresponding value along the armchair and zigzag direction of the T-type Mo₂B.

Figure S4. (a) and (d) respectively show the top-view and side-view of the H-type Mo₂B with one Li atom on the top-site of the Mo atom, and this configuration is denoted as "Mo-site"; (b) and (e) are the top-view and side-view of the H-type Mo₂B with one Li atom on the top-site of the middle boron atom, the configuration of which is denoted as "B-site". (c) and (f) respectively present the top-site and side-view of the H-type Mo₂B with one Li atom on the top-site of the hexagonal center, and the structure is represented as "V-site".

Figure S5. (a) and (d) are respectively the top-view and side-view of the T-type Mo_2B with one Li atom on the top-site of the neighboring Mo atom, and the structure is denoted as "Mo1-site"; (b) and (e) are respectively the top-view and side-view of the T-type Mo_2B with one Li atom on the top-site of the middle boron atom, which is named as "B-site"; (c) and (f) respectively shows the top-view and side-view of the T-type Mo_2B with one Li atom on the top-site of the bottom Mo atom, and this structure is denoted as "Mo2-site".

Table S2.	The relative	total ene	ergies (in	eV) for	one Li	atom	on d	lifferent	sites	of both	the H-	and
T-type Me	o_2B .											

H-type	Mo-site	B-site	V-site		
	0.0263	0.128	0.000		
T-type	Mo1-site	B-site	Mo2-site		
	0.0198	0.0125	0.000		

Figure S6. (a) and (d) respectively show the top-view and side-view of the H-type Mo₂B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the Mo atom, and this configuration is denoted as "Mo-site"; (b) and (e) are the top-view and side-view of the H-type Mo_2B with thirth-three Li atoms, with the thirty-three Li atom on the top-site of the middle boron atom, and which structure is denoted as "B-site". (c) and (f) respectively present the top-site and side-view of the H-type Mo_2B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the middle boron atom, and which structure is denoted as "B-site". (c) and (f) respectively present the top-site and side-view of the H-type Mo_2B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the hexagonal center, and the structure is represented as "V-site".

Figure S7. (a) and (d) respectively show the top-view and side-view of the T-type Mo_2B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the top Mo atom, and this configuration is denoted as "Mo1-site"; (b) and (e) are the top-view and side-view of the T-type Mo_2B with thirty-three Li atoms, with the thirty-three Li atom on the top-site of the middle boron atom, and which structure is denoted as "B-site". (c) and (f) respectively present the top-site and side-view of the T-type Mo_2B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the top-site and side-view of the T-type Mo_2B with thirty-three Li atoms, and the thirty-three Li atom is on the top-site of the top-site of the top-site atom is on the top-site of the bottom Mo atom, and the structure is represented as "Mo2-site".

Table S3. The relative total energies (in eV) for the thirty-three Li atom on different sites of both

H-type V-site B-site Mo-site 0.000 0.00835 0.00852 T-type Mo1-site B-site Mo2-site 0.000 0.00648 0.0326

the H- and T-type Mo₂B.