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Figure S1 Fungal phylogenetic tree. Maximum likelihood tree showing the phylogenetic 
relationship of the 2 fungal MAGS (bold) based on 867 single-copy orthogroups. 
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Figure S2 Broad bacterial and fungal community shifts with burn severity. Non-metric 
multidimensional scaling (NMDS) ordination of all bacterial (left) and fungal (right) 
communities shaped by soil depth and colored by burn severity. 
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Figure S3 The impact of burn severity on surface and deep soil communities differs. 
Distance to centroid calculations of the NMDS ordinations of surface (A, C) and deep (B, D) soil 
bacterial (A, B) and fungal (C, D) communities by burn severity (n = 16 for control S and D, n = 
24 for low, moderate, and high severity-impacted S and D samples). P-values are indicated if 
comparisons are significantly different (pairwise t-test, p<0.05) between conditions. The lower 
and upper hinges of the boxplots represent the 25th and 75th percentile and the middle line is the 
median. The upper whisker extends to the median plus 1.5x interquartile range and the lower 
whisker extends to the median minus 1.5x interquartile range.  
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Figure S4 DOM aromaticity index trends across soil depths. Aromaticity index of DOM 
pools across burn severity conditions for all samples combined (A; n = 9 for control, 12 for low, 
11 for moderate, and 12 for high severity), and shallow (B; n = 4 for control, 6 for low, 5 for 
moderate, and 6 for high severity) and deep (C; n = 5 for control, 6 for low, moderate, and high 
severity) samples. P-values are shown if there is significant differences between conditions 
(pairwise t-test, p<0.05). The lower and upper hinges of the boxplots represent the 25th and 75th 
percentile and the middle line is the median. The upper whisker extends to the median plus 1.5x 
interquartile range and the lower whisker extends to the median minus 1.5x interquartile range. 
Data points represent outliers. 
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Figure S5 DNA and RNA viral community dynamics. NMDS of DNA (left) and RNA (right) 
vMAG abundance across all four conditions. 
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Figure S6 Peptidase expression prevalent in fungal MAGs. The diversity of all peptidases  
expressed by each fungal MAG across all 4 conditions. 
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Figure S7 Vitamin B12 synthesis pathway expressed in the burned deep soil. The aerobic 
cobalamin (Vitamin B12) biosynthesis pathway (adapted from Doxey et al., 2015 and Lu et al., 
2020) with arrows indicating the summed TMM in the colored condition. 
 
 
 
 
 
 
 
 
 
 



 9 

Figure S8 Kendrick mass-defect analyses of FTICR-MS samples. (Left) Example KMD series 
that differ by the mass of base unit C4H2 (Nominal Kendrick Mass; NKM) from samples that span 
the burn severity gradient. (Right) Each of the three series plotted across the burn severity gradient 
showing how the relative abundance differs and if a new formula is added with increasing severity. 
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Figure S9 Overall trends between low and high severity surface and deep soils in the gene 
coverage (left) and gene expression (right) of the different DRAM gene headers. In the gene 
coverage heat maps, a bolded box indicates that the two conditions are significantly different 
from one another (pairwise t-test, p<0.05). In the gene expression data, stars indicate whether 
there are genes within that DRAM header that are differentially expressed in that condition 
relative to the other. Data presented here is included in Supplementary Data 5. 
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Comparison p-value 
Bacterial, surface, control & low 3.7e-5 
Bacterial, surface, control & moderate 1.6e-12 
Bacterial, surface, control & high 2.6e-13 
Bacterial, surface, low & high 1.6e-5 
Bacterial, surface, low & moderate 4.9e-5 
Fungal, surface, control & low 0.00637 
Fungal, surface, control & moderate 2.5e-7 
Fungal, surface, control & high 1.5e-8 
Fungal, surface, low & high 0.00073 
Fungal, surface, low & moderate 0.00637 
Bacterial, deep, control & low 8.8e-5 
Bacterial, deep, control & moderate 8.3e-5 
Bacterial, deep, low & moderate 0.018 
Bacterial, deep, low & high 0.018 
Fungal, deep, control & moderate 0.0022 
Fungal, deep, control & high 0.0173 

 
Table S1. Corresponding p-values for significant differences in bacterial and fungal diversity as 
shown in Figure 1e, f. P-values are from one-sided 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 12 

 
 
 
 
 
 

Sample geTMM high expression cutoff 
R85 1.68 
R86 3.26 
R89 1.47 
R90 3.16 
R93 1.68 
R94 3.28 
R109 1.68 
R110 2.24 
R113 1.68 
R114 2.11 
R117 1.61 
R118 1.87 

 
Table S2. The geTMM cutoff values for high expression analysis in each sample. Values 
correspond to the 20th percentile value TMM. Transcripts were highly expressed if the TMM was 
above this value for 2/3 samples in any one condition. 
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Condition Nodes Edges Edge:node Modules N samples 
Bacterial communities      
Control, surface 10426 3662534 351.3 16 16 
Low, surface 6234 1194870 191.7 22 24 
Moderate, surface 2442 196930 80.6 11 24 

High, surface 2193 277073 126.3 11 24 

Control, deep 9452 2769191 292.9 16 16 
Low, deep 9132 1904471 208.5 21 24 
Moderate, deep 5916 1376628 232.7 18 24 
High, deep 6415 1151930 179.6 19 24 

Fungal communities      

Control, surface 2491 271323 108.9 12 16 

Low, surface 1548 126698 81.8 11 24 

Moderate, surface 238 14366 60.3 2 24 

High, surface 260 17026 65.5 2 24 

Control, deep 1569 145649 92.8 9 16 

Low, deep 681 48389 71.1 5 24 

Moderate, deep 242 14558 60.1 3 24 

High, deep 374 23626 63.1 3 24 

Table S3. Characteristics of WGCNA networks created from 16S rRNA gene sequencing data 
from each condition. 
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Guild # ESVs % Change 
with Low 

% Change 
with Mod 

% Change with High 

Ectomycorrhizal 321 -99.7 -99.9 -99.9 
Endophyte 39 -94.2 -95.9 -99.9 
Epiphyte 31 -81.1 -99.3 -98.8 

Fungal parasite 132 -19.5 -41.1 -65.2 
Plant pathogen 528 122.0 24.4 -65.2 

Undefined 
saprotroph 

1292 231.0 290.9 298.7 

Wood saprotroph 133 -34.2 -99.5 -99.2 
 
Table S4. Percent change in relative abundance from control to low, moderate, and high severity 
in surface soils of all ASVs assigned to each ecological guild by FUNguild 2. Data shown here 
only includes guilds with greater than 30 classified ASVs. 
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Supplementary Data 1. All sample metadata and associated chemistry data for subsets of 

samples. 

 

Supplementary Data 2. All metatranscriptomics and metagenomics mapping information 

including sequencing depth, % reads assembled or binned, and number of MAGs used from each 

metagenome. This data file also includes all MAG information (completeness, contamination, 

taxonomy, etc.), their relative abundance across samples, and the selected MAGs of interest for 

High S and High D. 

 

Supplementary Data 3. Kofamscan HMMs IDs for gene identification used in addition to 

DRAM and annotation results. 

 

Supplementary Data 4. Metatranscriptomics data including MAG-level geTMM across 

samples, DRAM-annotated transcript-level geTMM across samples, all differential expression 

analyses output, and transcript-level geTMM across samples of transcripts from assemblies 

annotated as inorganic N cycling in DRAM. 

 

Supplementary Data 5. Viral MAG (vMAG) MIUViG information including ID, assembly 

software, gene count, etc., annotation information of viral AMGs from DRAM, and the output 

from VirHostMatcher showing each putative MAG-viral linkage with the d2star value. 

 

Supplementary Data 6. Linear discriminant analysis (LDA) output from 16S rRNA gene and 

ITS amplicon sequencing data, showing fungal and bacterial ASVs that are discriminant for 

burned or unburned soils. 
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Supplementary Note 1. Microbiome community compositional shifts with burn 

Reflecting observations from prior studies3–6, bacterial communities in burned soils were 

characterized by lower diversity and were enriched in Actinobacteria and Bacteroidetes relative 

to unburned controls (Extended Data Fig. 2). The Actinobacteria genera Arthrobacter, 

Modestobacter, Blastococcus, and Actinomadura had the largest increases in relative abundance 

in burned soils relative to control soils and were discriminant taxa for burned soils 

(Supplementary Data 6). The diversity of fungal communities in surface soils also decreased 

with fire (Fig. 1e) and, similar to previous studies7–9, shifted from Basidiomycete- to 

Ascomycete-dominated with the Basidiomycota relative abundance decreasing by ~58% 

(Extended Data Fig. 2). Discriminant fungal taxa included ASVs from the Sordariomycetes, 

Saccharomycetes, and Dothideomycetes, taxa also found in previous fire studies6,9 

(Supplementary Data 6).  

 

The pyrophilous Ascomycetes increased in relative abundance by 118% between unburned and 

burned surface soils (~34% to 75%; Extended Data Fig. 2); dominant genera included 

Calyptrozyma (~30% relative abundance in burned surface soil), Tricharina (~13%), and 

Geopyxis (~7%). Geopyxis has been previously documented as a pyrophilous taxa and is 

identified as an endophyte, which would aid in their persistence through the fire event and 

proliferation thereafter10,11. The two most abundant Ascomycete orders in burned surface soils 

were Helotiales (~31% relative abundance), which have been found in other post-fire soils 12,13 

and lab pyrocosm experiments14 and Pezizales (~28%), which is a common post-fire soil 
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taxa7,8,15 known for producing resistant structures like spores16. The second most dominant 

Ascomycetes family Pyronemataceae (~21% relative abundance in burned surface soil) has been 

found to grow in soils heated in the laboratory to 70°C, to increase in forest soil samples post-

fire, and to readily degrade aromatic compounds in the presence of pyrolyzed OM8,17. The 

Ascomycotes displayed a higher fire tolerance than the Basidiomycota, which had a decrease in 

relative abundance by ~58% between unburned and burned surface soils, dropping from 50% to 

21% relative abundance (Extended Data Fig. 2).  

 

Supplementary Note 2. Deeper burned soils are dominated by distinct microbial 

membership 

Only 13 MAGs had an average relative abundance > 0.5% and a standard deviation less than the 

average relative abundance in High D soils, as compared to the 40 MAGs in High S. This is 

likely due to the heterogeneity of wildfire impact on deep soils as compared to the homogenizing 

influence wildfire has on surface soils. These 13 MAGs were affiliated with Actinobacteria, 

Eremiobacterota, Acidobacteriota, and Proteobacteria (Supplementary Data 2). Like the surface 

soil, the Actinobacteria dominated, with 10/13 of the MAGs being Actinobacteria, representing 

the genera Streptomyces, SCTD01, and Palsa-744. These 13 MAGs accounted for ~18% of the 

High D community composition, and 14.3% of total MAG gene expression. The 13 MAGs were 

also active in Low D samples, albeit to a lesser extent (accounting for ~5% of total expression). 

Of these 13 MAGs, there were two (RYN_267, RYN_347) that were significantly enriched 

(pairwise t-test; p < 0.05) in High D relative to Low D conditions, representing the 

Actinobacteria and Eremiobacterota.  
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Genes associated with thermal resistance were again common in the dominant High D MAGs. 

Four of these MAGs (R110.16, R86.130, R86.18, R94.45) had metabolic potential to synthesize 

the environmental stress protectant mycothiol18. All MAGs discussed here encoded at least one 

sporulation gene, and one of the MAGs (RYN_220) was affiliated with the Streptomyces which 

have been shown to form sporogenic structures (aerial hyphae) in response to adverse conditions 

(i.e., high temperatures, nutrient depletion)19. These stress response traits, common to the 

Streptomyces, likely facilitate their dominance on soils one year following high severity wildfire. 

 

Associated with the enrichment (16S data: 155% relative abundance increase from control to 

High D) and activity of Streptomyces in High D samples, we observed high expression of genes 

encoding the biosynthesis of cobalamin (vitamin B12, cob genes), an important coenzyme 

involved in gene regulation and the synthesis of nucleotides and amino acids. Cobalamin 

production is conserved within a relatively small group of microorganisms – including 

Streptomyces – and can serve as a keystone function within ecosystems20. The entire aerobic 

cobalamin biosynthesis pathway was expressed in Low D and High D samples (Supplementary 

Fig. 7;  pathway adapted20,21). Here, a Streptomyces MAG (RYN_220) was responsible for 13% 

of MAG gene expression linked to cobalamin biosynthesis in High D samples. In total, the 

MAGs mentioned above were responsible for nearly 35% of the total cobalamin biosynthesis 

MAG gene expression in High D samples. These observations contrast directly with High S 

samples; the general absence of Streptomyces in these samples resulted in limited expression of 

this pathway. Cobalamin biosynthesis gene expression was ~175% greater in High D samples, 

and 2 of the aforementioned MAGs (RYN_225, RYN_347) differentially expressed cobN and 

btuB (cobalamin transporter gene) in High D samples relative to High S. In the deep soil, the 
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increased transcription of genes for cobalamin synthesis could be a beneficial consequence of 

wildfire enriching taxa that encode this trait (i.e., Streptomyces). Given the noted importance of 

this cofactor in mediating a range of critical soil microbiome functions, this process could 

potentially aid in plant reestablishment22 and enhance ecosystem function across trophic levels23.  

 

Supplementary Note 3. Soil chemistry shifts across burn severity and depth 

Similar to the microbial data, we found that wildfire had a greater effect on surface soil 

chemistry (Supplementary Data 1). Surface soil pH was 7.8 on average in moderate and high 

severity plots; both were significantly higher than unburned samples (average pH of 7.2; 

pairwise t-test, p<0.05). Total soil C was significantly lower in the high/moderate (3.3%) than 

the low (13.3%) and unburned surface soils (15.7%) (pairwise t-test; all burn severity 

comparisons p<0.05). Interestingly, there were no significant changes in DOC, NH4-N, NO3-N, 

or %N, potentially because of small sample sizes. Average DOC was 148 mg/L in control plots, 

compared to 131, 58 and 43 mg/L in low, moderate, and high severity plots, respectively, though 

the pattern was not statistically significant. Only NH4-N had significant changes in deep samples, 

with significantly higher concentrations in burned (average 0.76 mg/L) vs. unburned (0.19 mg/L) 

samples (pairwise t-test; p<0.05).  

 

Supplementary Note 4. Kendrick mass-defect analyses 

Kendrick mass-defect (KMD) analysis with a base unit of C4H2 (equivalent to adding benzene to 

another benzene structure) provides further evidence of linkages between fire severity and 

increasing polyaromaticity (Supplementary Fig. 8). The series reveal the addition of a benzene 
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ring between unburned and burned soils and an increase in relative abundance of the increasingly 

polyaromatic formulas (Supplementary Fig. 8) 

 

Supplementary Note 5. Networks using Weighted Gene Correlation Network Analysis 

(WGCNA) 

To determine how fire-induced changes in community richness translated into the complexity of 

potential interactions within the soil microbiome, we performed Weighted Gene Correlation 

Network Analysis24 (WGCNA) on the 16S rRNA and ITS gene sequencing data. Across all 

surface soil samples, we measured strongly decreasing numbers of nodes with increasing burn 

severity, and associated decreases in the edge-to-node ratio. Similar trends were apparent in the 

deep soils, albeit with smaller changes between conditions (Supplementary Table 3). 

 

Supplementary Note 6. Genetic potential for processing polyaromatics 

We additionally looked for genes responsible for degrading naphthalene or removing a ring from 

a polycyclic aromatic ring (KEGG RM014; Supplementary Data 3) and found that none of the 

MAGs encoded a naphthalene 1,2-dioxygenase (nahA), but 33 MAGs encoded 2-

hydroxychromene-2-carboxylate isomerase (EC:5.99.1.4, nahD) and 10 encoded trans-o-

hydroxybenzylidenepyruvate hydratase-aldolase (EC:4.1.2.45, nahE). These two genes were also 

expressed in the dataset, but only by two MAGs in the Proteobacteria. 

 

Supplementary Note 7. Broad functional shifts with burn severity 

To analyze broad shifts in functional potential and gene expression between Low and high 

severity conditions within both soil depths, we categorized genes using DRAM gene headers. 
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There were 885,498 genes annotated with DRAM in the metagenomic dataset and 146,894 

transcripts annotated with DRAM that had counts of at least 10 across all 12 samples. A DESeq2 

analysis of the DRAM-annotated transcripts revealed 352 differentially expressed genes between 

Low S and High S samples and 26 between Low D and High D samples (Supplementary Data 

4). Most of the differential expression in High S and High D was attributed to the Actinobacteria 

phyla (97.9% and 50% of differentially expressed genes, respectively). There were genera and 

family-level differences between the activity in both soil depths, with Actinobacteriota genera 

Blastococcus (69.1%), SCTD01 (10.4%) Arthrobacter (4.8%) and Modestobacter (2.7%) as the 

large players in High S and the family Streptosporangiaceae (35%) being the biggest player in 

High D. Outside of the Actinobacteriota phylum, the Proteobacteria genus Palsa-1478 was 

responsible for 45% of differentially expressed genes in High D samples. Thus, the 

metatranscriptomics data additionally reflects the increased susceptibility of surface soil to fire 

relative to deep soils. 

 

There was a large change in broad functional potential between Low S and High S samples; of 

the 28 DRAM gene headers analyzed, 22 were significantly different in coverage between the 

severity conditions (Supplementary Fig. 9). Though there is a large shift in microbiome 

functional potential, the metatranscriptomics data reveals that there is less of a change in gene 

expression between Low S and High S conditions, exhibiting potential functional redundancy. 

Thirteen DRAM gene headers have differentially expressed genes, and 7 of these were genes 

only differentially expressed in high severity conditions (Supplementary Fig. 9). In total, there 

were 288 genes differentially expressed in High S and 64 genes differentially expressed in Low 

S. Reflecting the large role of Actinobacteriota in high severity-impacted soils mentioned above, 
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the majority of differentially expressed genes in High S were from the Actinobacteriota phyla 

(97.9% of differentially expressed genes). Specifically, the Actinobacteriota genera Blastococcus 

(69.1%), SCTD01 (10.4%) Arthrobacter (4.8%) and Modestobacter (2.7%)  

 

Contrastingly, the microbiome of deep soils exhibited a much smaller shift in functional potential 

with only 4/28 DRAM gene headers having a significant change in coverage between Low D and 

High D (peptidase, information systems, CAZY, and CRISPR; Supplementary Fig. 9). There 

was also little change in gene expression; there were 6 DRAM headers (26 total genes) with 

differentially expressed genes, 20 that were differentially expressed in High D and 6 in Low D 

(Supplementary Fig. 9). The Actinobacteriota phyla was responsible for the largest proportion 

of differentially expressed genes following high-severity fire (50%) and the family 

Streptosporangiaceae and was responsible for 35% of the differentially expressed genes. The 

Proteobacteria genera Palsa-1478 was also responsible for a large amount of differentially 

expressed genes (45%). 

 

Supplementary Note 8. Fungal MAGs encode secondary metabolite clusters 

The Coniochaeta MAG (R110-5) encoded 26 secondary metabolite clusters, including 12 

PolyKetide Synthase (PKS) clusters and 4 Non-Ribosomal Peptide Synthetase (NRPS) clusters. 

This trait appears to be conserved across the Coniochaeta genera, as the other four Coniochaeta 

genomes deposited on JGI MycoCosm encode an average of ~36, ranging from 25-66. Both 

polyketide and non-ribosomal peptide secondary metabolites display a diverse array of biological 

uses and properties including antibiotic synthesis25, siderophore production26, and fungal 

developmen27 (e.g., sporulation factors), and may give organisms a competitive edge, especially 
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under stressful conditions. The other fungal MAG (R113-184; Leotiomycetes) may persist 

following wildfire due to an endophytic lifestyle; 36 Leotiomycetes ESV’s were classified as 

endophytes by FUNGuild. Pyrophilous endophytic fungi have been found to occur survive fire 

events in small-scale refugia then, triggered by the fire, produce reproductive sporocarps 10. 
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