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SUPPLEMENTARY METHODS

Variant calling

The quality of each sample, was assessed on de novo assemblies. Assemblies longer than
6Mb, with more than 300 contigs, an average depth of coverage below 30x, a coverage of the
reference genome below 50% or evidence of a mixed infection were discarded. Sequence
reads, from 2366 samples, were mapped with BWA to the Mycobacterium abscessus
reference genome (ATCC19977) followed by an INDEL realignment step using GATK (total
alignment) 3. Furthermore, a single random sequence per patient was picked to generate an
alignment with a single sample per patient (single patient alignment). In total, 484 clinical
isolates plus the ATCC19977 strain were included in the single patient alignment. Bcftools
was used for SNP and small INDEL calling where additional criteria were used to filter SNPs,
requiring a minimum base call quality of 50, a minimum mapping quality of 20 and a minimum
number of matching reads covering a SNP of 8 (3 per strand) *. SNPs were annotated with
SNPeff °. In addition, we assessed larger deletions, which commonly drive phenotypic
diversity in mycobacteria . However, with common approaches it remains difficult to resolve
complex rearrangements and predicting its genomic coordinates can sometimes be
impossible. Since the coverage of our M. abscessus whole genome sequences was moderate
to high (overall mean coverage: 75x, Supplementary Figure 10) we explored if we could use
a very low coverage for identifying larger deletions at specific genomic coordinates. The M.
abscessus reference genome was partitioned into regions of 20bp with 10bp overlaps and the
coverage of these regions in clinical isolates assessed with sambamba ’. While most 20bp
windows had a coverage between 50-150x, we observed only very few windows with a
coverage of 10-25x. Large deletions did neither have a higher GC content, nor were they
enriched in GCC/CCG triplets . Windows with a mean coverage of 5x or lower, with a minor
allele frequency across all genomes greater than 5% and occurring in at least two consecutive
windows were called as large deletions. If the distribution of consecutive deletions was equal
across all isolates these variants were collapsed into a single variant. Using this method we
observed 23.426 regions with large deletions across 871 genes, but only in 9 essential genes,

ranging from O (closest neighbour of ATCC19977) up to 20.936 large deletions in single



isolates. A maximum likelihood tree of 331 samples assessed for Drosophila survival, inferred

from SNPs was constructed with FastTree ° and plotted using itol ™.

Assessment of M. abscessus morphotypes

The clinical isolates were plated on agar plates (Middlebrook 7H11 agar supplemented with
10% OADC) and their morphotypes, smooth or rough, macroscopically assessed between day
3 and day 5. All isolates were plated and assessed twice on different days. Isolates with a

consistent rough morphotype were considered rough.

Drosophila infection

11-14

For Drosophila infections , a pulled glass capillary needle was attached to a microinjection

dispense system (Picospritzer) and the solution containing a single cell suspension of M.

abscessus aspirated into a glass capillary "'

. The microinjection system was then
individually calibrated by visually assessing and adjusting the droplet size to 50nl. In order to
increase reproducibility and dynamic range across different clinical isolates we optimised the
M. abscessus inoculum (Supplementary Figure 10). 400 CFUs were injected in 50nl PBS
into the abdomen of anaesthetised 6-8 day old male flies. Flies were kept on CO; for a
maximum of 10min, transferred to a new vial and kept at 29°C. The sample size was chosen
to provide accurate and statistically comparable measures of Drosophila survival. Around 15
flies per condition (in total >350 conditions) were infected. Fly survival was assessed every
12h until day 10. Due to bio-safety concerns no additional fly food was provided after infection
reducing survival in control flies to a mean survival of about 8 days. In order to minimise
technical effects related to fly infection, the mean fly survival was calculated excluding the flies
dying within the first 3 days and flies where death deviated more than 3 SD from the mean.

Fly survival was compared using the log rank test.

GWAS threshold

The GWAS threshold, i.e. correction for multiple hypothesis testing, was calculated on the
effective number of independent high and moderate effect variants. Within the 331 isolates
phenotyped for Drosophila survival we obtained in total 75260 high/moderate effect variants
(large deletions, frameshifts, start/stop alterations, missense mutations) with a minor allele
frequency above 0.03. The assumption of Bonferroni correction is that individual tests are
independent, which is very conservative when considering genetic variants in extensive
linkage disequilibrium (LD), impairing statistical power. In order to correct for variant
dependency due to LD we assessed the Bonferroni threshold on the effective number of
independent tests '°. Using the genetic type 1 error calculator (GEC) on 75260 genotypes we

revealed 17925 independent tests, which were used to calculate a Bonferroni corrected



threshold (2.8*10°) . This threshold was applied for all genome-wide associations studies,

including those with less variants.

Identification of homologs and construction of multiple sequence alignments

For each of the proteins in the M. abscessus proteome, we have constructed a multiple
sequence alignment of homologous proteins, which formed a basis for subsequent work. The
alignments have been constructed using HHblits, a fast, highly sensitive, HMM-HMM-based
sequence search method '® and used the bundled nr30 database. In the interest of exploring
a broader evolutionary landscape of proteins in question, we have decided to include proteins

with E-value less than or equal to 10 in the alignment.

gRT-PCR of mycobacterial genes within Drosophila

gRT-PCRs to validate CRISPR-induced mycobacterial knockdown of MAB_472 within the
Drosophila infection model was carried out similarly to qRT-PCRs of antimicrobial peptides.
Four days post infection, three flies per sample were homogenized in TRIzol, transferred into
a 2 mL tube containing 500 uL of zirconium beads and bead beated twice for 2 minutes before
RNA extraction using chloroform and isopropanol. Following a DNAse treatment cDNA was
synthetised using Revertaid M-MuLV reverse transcriptase and random hexamers. gqPCRBIO
Probe Mix was used for TagMan qRT-PCR. Primers and FAM-TAMRA tagman probes used
are listed in Supplementary Table 3. The gene expression of each sample was calculated
based on the standard curve produced and normalised to the cDNA concentration of the

sample. At least 5 biological replicates were used per group.



SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1: Distribution of in vitro phenotypes and clinical outcomes
across M. abscessus isolates. (a) Planktonic growth of clinical M. abscessus isolates in five
different carbon sources was assessed after one day (d1) and 10 days (d10). (b) Minimal
inhibitory concentrations of five different antibiotics measured on several days. (¢) Distribution
of clinical outcomes in M. abscessus lung disease (clearance vs persistent infection and lung

function decline), associated with M. abscessus isolates.

Supplementary Figure 2: Distribution of macrophage and in vivo infection across M.
abscessus isolates. (a) Phenotypes associated with THP-1 macrophage infection, such as
the proportion of macrophages infected, M. abscessus intracellular replication and
macrophage death (all assessed via high-content imaging) and cytokine release at 24h post
infection (b) Drosophila survival and antimicrobial peptide expression after in vivo M.

abscessus infection.

Supplementary Figure 3: Characteristics of phenotypic clusters and macrolide
resistance. (a) Pearson correlation matrix of in-vitro and in-vivo bacterial phenotypes and
clinical outcomes (all phenotypes labelled and correlations annotated). (b) The 7 phenotypes
bacterial growth, drug resistance (amikacin and clarithromycin), intracellular replication,
macrophage death, Drosophila survival and antimicrobial response were used to group clinical
M. abscessus isolates. The distribution of specific phenotypes across these three revealed
clusters are illustrated and compared using a two-sided one-way analysis of variance
(Bacterial growth: p=3.6e-7; intracellular bacterial replication: p=1.8e-10; macrophage death:
p=5.1e-10; Drosophila survival: p=8.5e-11; clarithromycin resistance: p=2.5e-115). (c)
Maximum likelihood phylogenetic tree of 294 M. abscessus isolates, annotated for macrolide
resistance phenotypes (clarithromycin MIC day 11) and genotypes conferring acquired and

inducible macrolide resistance.

Supplementary Figure 4: Experimental and clinical phenotypes across M. abscessus
morphotypes and subspecies. (a) Phenotype distribution in smooth and rough clinical
isolates (two-sided unpaired t test). (b) Clinical outcomes do not differ across M. abscessus
morphotypes (two-sided unpaired t test or Fisher's exact test). (c) Phenotypic clustering
reveals similar phenotypic groups when only isolates with a smooth morphotype are used. (d)
M. a. massiliense isolates are generally more susceptible to macrolides (p=1.0e-12). Other
phenotypes are broadly similar across subspecies (two-sided one-way analysis of variance).

(e) Clinical outcomes do not differ between subspecies. (f) Phenotypic clustering reveals



similar phenotypic groups when only M. a. abscessus isolates are used (two-sided one-way

analysis of variance or Chi-squared test).

Supplementary Figure 5: Genome-wide association of known resistance mechanisms.
Genotype-phenotype associations of (a) amikacin and (b) clarithromycin MICs day 3 revealed
the known resistance loci in the 16S and 23S ribosomal RNA, respectively. (c) Erm(41)
conferring inducible macrolide resistance, was identified when assessing genetic associations
with clarithromycin MICs at day 11 in M. a. abscessus. Linear and mixed models were used
and p values calculated with the Wald test. The black horizontal lines mark the multiple

hypothesis testing threshold based on the number of independent variants.

Supplementary Figure 6: Linkage disequilibrium and co-evolving variant couplings. (a)
Analysis of linkage disequilibrium of M. abscessus variants. Pairwise R? measurements of
variants (as shown in Figure 3) now ordered by genomic position. (b) Distribution and
threshold of the variant-variant coupling strength in M. abscessus. Divergence of theoretical
(fitted distribution) and empirical distribution of the coupling strength. The dashed line
highlights the defined threshold (coupling strength above 0.080) with a false discovery rate of

1 in 10° couplings.

Supplementary Figure 7: Comparison of gene networks generated by Direct Coupling
Analysis and STRING. Gene networks generated from ccDCA (from Figure 4; node colour
representing gene ontology; edge thickness and shading representing coupling number and
strength respectively) are compared to STRING network analysis of the same genes (edge
colour representing supporting evidence type; metrics provided for network node number,
expected and observed edges, and STRING calculated protein-protein interaction

enrichment).

Supplementary Figure 8: Description and validation of virulence variants. (a) Virulence
variants around MAB_0471. Genetic variants of M. abscessus associated with Drosophila
survival (revealed with Wald test statistics) mapped around MAB_0471 (described in Figure
5). High-effect genetic variants shown in red, moderate-high in blue, low-moderate in green
and low in grey. The black horizontal line marks the multiple hypothesis testing threshold.
Clinical outcomes related to missense variant in the peptide synthetase MAB_3317c¢ and
sampling after NTM onset. The missense mutation K1835E in MAB_3317 was associated with
(b) a prolonged mean Drosophila survival (two-sided unpaired t-test; p=1.0e-13) and (c) a
higher fraction of persistent respiratory M. abscessus infections in Cystic Fibrosis patients
(two-sided Chi-squared test). (d) The two variants in MAB_0471 and MAB_3317 were not



associated with the time of sampling after onset of NTM lung disease (two-sided unpaired t-
test). (e) Validation of GWAS hits for Drosophila survival. Violin plot with median of MAB_472
expression in control (n=12 biologically independent samples) or knockdown mutants (n=17
biologically independent samples of 3 guides with 5 or 6 replicates each) extracted from
infected Drosophila (groups were compared using a two-sided unpaired t-test). Drosophila
survival curves uninfected (green), infected with control M. abscessus (grey), MAB_471 (f) or
MAB_472 (g) knockdown mutants (red), or knockdown mutants complemented with CRISPR-
untargetable genes (black). *** p<0.0001 (survival compared to the knockdown mutant using
a two-sided log rank test; MAB_0471 KD vs. MAB control: p=6.5e-17; MAB_0471 KD vs.
MAB_0471 KD::MAB_0471: p=4.2e-17; MAB_0472 KD vs. MAB control: p=4.0e-11;
MAB_0472 KD vs. MAB_0472 KD::MAB_0472: p=1.1e-5). (h) Epistatic interactions of
MAB_0471 and MAB_3317. Gene interaction network generated using ccDCA (shown in

Figure 5) now annotated by gene ontology.

Supplementary Figure 9: CRISPR/dCas9 knockdown with different guide RNAs. Kaplan-
Meier plots comparing three knockdowns per gene with empty vector controls using the log-
rank test (MAB_0471 sgRNA1: p=2.9e-9; MAB_0471 sgRNA2: p=4.5e-5; MAB_0472
sgRNA1: p=1.8e-6; MAB_0472 sgRNA2: p=3.1e-8; MAB_0472 sgRNA3: p=1.6e-9;
MAB_3317 sgRNA1: p=4.6e-6; MAB_3317 sgRNAZ2: p=2.9e-7; MAB_3317 sgRNA3: p=1.4e-
10).

Supplementary Figure 10: Rationale for large deletion assessments and Drosophila
infection inoculum (a) Large deletions of the M. abscessus genome. Moderate-high
coverage of the sequenced M. abscessus genomes. (b) Gap of 20bp windows with a mean
coverage of 10-25x. Two consecutive 20bp windows with a coverage of 5x or below and
occurring in at least 5% of all M. abscessus isolates were considered a large deletion (c)
Artemis illustration of a representative large deletion in MAB_1137c¢ associated with a rapid
loss of coverage (mapped reads), independent of GC content. (d) Distribution of large
deletions within 871 genes (black) across 330 clinical isolates and ATCC19977. (e) Drosophila
infection inoculum. Different inocula were used to optimise the Drosophila infection inoculum
(>15 flies per condition) (f) The best reproducibility was achieved with 500 colony forming
units. The highest dynamic range across different clinical isolates was observed with smaller
inocula. Accordingly, we used 400 colony forming units per fly to screen 331 M. abscessus

isolates using the Drosophila infection model.
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Supplementary Figure 2
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6
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Supplementary Figure 8
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Supplementary Figure 9
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Supplementary Figure 10
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SUPPLEMENTARY TABLES

Supplementary Table 1: Patient baseline characteristics.

n (with available

Median [interquartile

data) range] or %
Age (years) 315 17 [13-23]
Sex (female) 319 42.0%
Body mass index (kg/m2) 291 21 [18-24]
Cystic Fibrosis 275 96.3%
ATS defined NTM lung disease 312 85.0%
Sampling after NTM onset (months) 158 1.2 [0.5-26.8]
Clearance of NTM infection 296 50.3%
Lung function change within 1 year 276 2.8[0.1-5.6]

(% FEV1 decline)




Supplementary Table 2: gPCR primer sequences.

Gene (Drosophila) Primer 1 Primer 2
Attacin CACAATGTGGTGGGTCAGG GGCACCATGACCAGCATT
Defensin TTCTCGTGGCTATCGCTTTT GGAGAGTAGGTCGCATGTGG
Diptericin ACCGCAGTACCCACTCAATC CCCAAGTGCTGTCCATATCC
Drosocin CCATCGAGGATCACCTGACT CTTTAGGCGGGCAGAATG
Rpl1 TCCACCTTGAAGAAGGGCTA TTGCGGATCTCCTCAGACTT
Upd3 ACTGGGAGAACACCTGCAAT GCCCGTTTGGTTCTGTAGAT
Gene (M. abscessus) Primer 1 Primer 2
CCATCGGCTTCCTGCTTCTT CCGAACATGTCGAGGCTGAA
MAB_0472 Probe

TCGAGCGGGACGACATCGAA




Supplementary Table 3: Oligonucleotide sequences.

CRISPR

Gene guide Nr. Forward Reverse

YidC CGCTGGGCCCCAAGAACTTCTCATG AGAAGTTCTTGGGGCCCAG
MAB_471 1 | CGGAGTGCGCTGGTGCTGACGGCATG | CCGTCAGCACCAGCGCACTC
MAB_471 2 | CGGATCTCGCGTCGAATCGGAGCATG | CTCCGATTCGACGCGAGATC
MAB_471 3 | CGAAGGTATCGGCGGCTGGACCCATG | GGTCCAGCCGCCGATACCTT
MAB_472 1 | CGGGCTTCCTGCTTCTTTCGAGCATG CTCGAAAGAAGCAGGAAGCC
MAB_472 2 | CGTTCTTTCGAGCGGGACGACACATG TGTCGTCCCGCTCGAAAGAA
MAB_472 3 | CGACATGTTCGGTGTGTGTCTGCATG CAGACACACACCGAACATGT
MAB_3317c 1 | CGCCGGACATTGTCGTCGTTGGCATG CCAACGACGACAATGTCCGG
MAB_3317c 2 | CGACACGATGCCGTCGATTCCTCATG AGGAATCGACGGCATCGTGT
MAB_3317c 3 | CGCGGTGCTGAAAGAGTGCCCGCATG | CGGGCACTCTTTCAGCACCG

Gene Mutant Forward oligo Reverse oligo

MbtD mut256 | CCGAGGACGGTGTGTTCGCG TGAGGTGCTCGACGATTTGGTGAACC
MbtD mut410 | GCCGAGGCACCCGACCGGGTAT GCGTAGGGCATCCCAGTTGTAGTCCAG




Supplementary Table 4: Reagents.

Acetate solution Sigma-Aldrich 3863
Amikacin sulfate Sigma-Aldrich A1774
Anhydrotetracycline Cayman 10009542
Cefoxitin Sigma-Aldrich C4786
Cellmask Invitrogen C10046
Clarithromycin Sigma-Aldrich C9742
Clofazimine Sigma-Aldrich C8895
DAPI Thermo Fisher Scientific 62248
DMEM Sigma-Aldrich D6429
Fetal Bovine Serum Thermo Fisher Scientific 10082147
Glucose Sigma-Aldrich G8270
Glycerol Thermo Fisher Scientific G/0600/08
Hygromycin B Sigma-Aldrich 400051
Kanamycin Sulfate Sigma-Aldrich 420411
Linezolid Sigma-Aldrich A10533
Middlebrook 7H11 Agar Sigma-Aldrich M0428
Middlebrook 7H9 Broth Sigma-Aldrich M0178
Middlebrook ADC Sigma-Aldrich M0553
Middlebroook OADC Sigma-Aldrich M0678
Mueller Hinton Broth Thermo Fisher Scientific YT3462
Penicillin Streptomycin P4333 P4333
Phorbol-12-myristat-13-aceta Sigma-Aldrich P1585
gPCRBIO Probe Mix Lo-ROX PCR Biosystems PB20.11-05
RevertAid Reverse Transcriptase Thermo Fisher Scientific EP0441
RPMI 1640 with UltraGlutamine | Lonza BE12-702F
Sensimix™ SYBR no-ROX kit Bioline QT650-05-BL
Sodium L-lactate Sigma-Aldrich L7022
Sodium pyruvate Sigma-Aldrich 12539059
TRIzol Thermo Fisher Scientific 15596018
Tweeen 80 Sigma-Aldrich P4780
Zeocin AlfaAesar J67140.8=
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