## **Supplemental Figure Legends**

## Figure S1. CID MS/MS fragmentation spectra of lanosterol, T-MAS, zymosterol and ergosterol standards.

**Figure S2. Effect of PSZ and FLU on the proliferation of** *L. donovani* **promastigotes.** The growth of *L. donovani* LV82 promastigotes was determined in the presence or absence of PSZ or FLU for 72 h as outlined in the Methods section. Data shown represent biological replicates for PSZ (n=6 determinations) and FLU (n=4 determinations). The PSZ data was fitted using the four parameter equation  $y = m1 + (m2 - m1)/[1 + (x/m3)^{m4}]$  from GraphPad Prism (v. 9.3.1 San Diego, CA) and then the absolute IC<sub>50</sub> value was determined as in Joice *et al.*<sup>30</sup> to be 2.8 µM. The IC<sub>50</sub> value for FLU could not be ascertained as growth inhibition did not reach 50% at the highest FLU concentration tested, indicating an IC<sub>50</sub> > 100 µM. For both PSZ and FLU, error bars represent the standard error of the biological replicates.

Figure S3. Effect of PSZ and FLU on the proliferation of *L. tarentolae* promastigotes. The growth of *L. tarentolae* UC strain promastigotes was determined in the presence or absence of PSZ or FLU for 72 h as outlined in the Methods section. Symbols and error bars represent the mean and standard error of biological triplicates. Data were fitted using the four parameter equation  $y = m1 + (m2 - m1)/[1 + (x/m3)^{m4}]$  from GraphPad Prism (v. 9.3.1 San Diego, CA). The PSZ data did not fit the four parameter equation above (R<sup>2</sup> < 0.5); the absolute IC<sub>50</sub> value for FLU was determined as in Joice *et al.*<sup>30</sup> to be 170 µM.

## Figure S4. <sup>1</sup>H NMR spectra of (A) lanosterol standard and (B) the purified unknown intermediate sterol 4,14dimethylzymosterol.

Figure S5. <sup>13</sup>C NMR spectra of (A-C) lanosterol standard and (D-F) the purified unknown intermediate sterol 4,14-dimethylzymosterol.

Figure S6. HMBC NMR spectra of (A-C) lanosterol standard and HMBC (D-E) and HSQC (F) NMR spectra the purified unknown intermediate sterol 4,14-dimethylzymosterol.

Figure S1. CID MS/MS fragmentation spectra of lanosterol, T-MAS, zymosterol and ergosterol standards.



Figure 1S - Cont'd



Figure S2. Effect of PSZ and FLU on the proliferation of *L. donovani* promastigotes.



Figure S3. Effect of PSZ and FLU on the proliferation of *L*. tarentolae promastigotes.



Figure S4. <sup>1</sup>H NMR spectra of (A) lanosterol standard and (B) the purified unknown intermediate sterol 4,14-dimethylzymosterol.

A) Lanosterol <sup>1</sup>H



B) Unknown <sup>1</sup>H



Figure S5. <sup>13</sup>C NMR spectra of (A-C) lanosterol standard and (D-F) the purified unknown intermediate sterol 4,14-dimethylzymosterol.

A) Lanosterol <sup>13</sup>C



B) Lanosterol DEPT vs. <sup>13</sup>C



C) Lanosterol DEPT vs. <sup>13</sup>C





## E) Unknown DEPT

| -125.2764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -76.6341                               |                           | -47.0676<br>-47.0676<br>-39.2089<br>-36.3855 | 36.2915 | -31.1426<br>-31.0630<br>-30.8033 | -28.2046    | 25.5535     | 24.4326      | 20.7276 | 18.2299                                                                                     | - V15.7317<br>V15.0736 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|----------------------------------------------|---------|----------------------------------|-------------|-------------|--------------|---------|---------------------------------------------------------------------------------------------|------------------------|
| 13 CH or CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing the file for the solar description | elecits Manufacture La    | alek Derbesel Konstr                         |         | .n.sthenheid                     | Los betarti | (Antibular) | en wie al re |         | -nu n                                                                                       | havelausi              |
| $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ |                                        | na findi onde de di se si | a v s v l t l delati                         | 10      | CH <sub>2</sub>                  |             | 1           |              |         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | inter-defects          |
| 30 125 120 115 110 105 100 95 90 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 75 7<br>f1 (pp                      | 70 65 6<br>pm)            | 0 55                                         | 50      | 45 4                             | io s        | 35 3        | 30           | 25      | 20                                                                                          | 15                     |

F) Unknown DEPT vs. <sup>13</sup>C



Figure S6. HMBC NMR spectra of lanosterol standard and the purified unknown intermediate sterol 4,14-dimethylzymosterol.

A) Lanosterol HMBC – H3 near C4



Figure S6. cont'd





D) Unknown HMBC





Figure S6. cont'd

